A course on linear recurrent sequences

African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Quizz 2 (10') - solution

January 30, 2021
Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence :

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n \geq 2
$$

Let $\Phi=(1+\sqrt{5}) / 2$ be the golden ratio (golden mean).
Recall

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)
$$

for $n \geq 1$.
(a) Deduce

$$
\Phi^{n}=F_{n-1}+F_{n} \Phi
$$

(b) What is the value of $F_{n-1} F_{n+1}-F_{n}^{2}$ for $n \geq 1$?

Solution.

Since

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{1}{\Phi}=\binom{\Phi}{\Phi^{2}}
$$

one deduces by induction

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}\binom{1}{\Phi}=\binom{\Phi^{n}}{\Phi^{n+1}}
$$

for $n \geq 0$. Therefore

$$
\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)\binom{1}{\Phi}=\binom{\Phi^{n}}{\Phi^{n+1}},
$$

hence the result.
(b) The determinant of

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}
$$

is $(-1)^{n}$, while the determinant of

$$
\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)
$$

is $F_{n-1} F_{n+1}-F_{n}^{2}$. Hence

$$
F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}
$$

for $n \geq 1$.

