Name: \qquad

Number Theory

II. Prime Numbers

African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université
Quizz 2 Date: 18/11/2021
(a) Prove that any positive integer >1 of the form $3 n-1$ has at least one prime divisor congruent to 2 modulo 3.
(b) Deduce that there are infinitely many prime numbers congruent to 2 modulo 3 .

Solution

(a) The product of prime numbers congruent to 1 modulo 3 is congruent to 1 modulo 3 . Hence an integer >1 which is congruent to -1 modulo 3 has at least one prime divisor congruent to 2 modulo 3.
(b) We repeat the proof given in the course of the fact that there are infinitely many prime numbers congruent to 3 modulo 4: let $\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{s}\right\}$ be a finite set of prime number congruent to 2 modulo 3 . Consider their product $N=p_{1} p_{2} \cdots p_{s}$. According to (a), the number $3 N-1$ has a prime divisor congruent to 2 modulo 3 , hence this prime divisor is not one of $\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{s}\right\}$ since it does not divide $3 N-(3 N-1)=1$. Hence there is a prime number congruent to 2 modulo 3 which is not in the set $\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{s}\right\}$.

