Abstract

Srinivasa Ramanujan His life and his work

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI http://www. imj-prg.fr/~michel.waldschmidt/

Srinivasa Ramanujan

Erode December 22, 1887 -
Chetput, (Madras), April 26, 1920

PKS was the first biographer of Srinivas Ramanujan.

The Hindu, November 1, 2009
Passion for numbers by
Soudhamini
http://beta.thehindu.com/education/article41732.ece

Biography of Srinivasa Ramanujan
(December 22, 1887 - April 26, 1920)

1887 : born in Erode (near Tanjore)
1894-1903 : school in Kumbakonam
In 1900 he began to work on his own on mathematics summing geometric and arithmetic series.

Sarangapani Sannidhi Street Kumbakonam

Ramanujan House Kumbakonam

Ramanujan House in Kumbakonam

Town High School Kumbakonam

Ramanujan House Kumbakonam

Town High School Kumbakonam

1903: G.S.Carr - A synopsis of elementary results - a book on pure mathematics (1886) 5000 formulae

$$
\begin{array}{cl}
\sqrt{x}+y=7, & x+\sqrt{y}=11 \\
x=9, & y=4 .
\end{array}
$$

Biography (continued)

1903 (December) : exam at Madras University
1904 (January) : enters Government Arts College,
Kumbakonam

Sri K. Ranganatha Rao Prize

Subrahmanyam scholarship

Euler constant

$$
\begin{gathered}
S_{N}=\sum_{n=1}^{N} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{N} \\
\int_{1}^{N} \frac{d x}{x+1}<S_{N}<1+\int_{1}^{N} \frac{d x}{x} \\
\gamma=\lim _{N \rightarrow \infty}\left(S_{N}-\log N\right)
\end{gathered}
$$

MacTutor History of Mathematics

http://www-history.mcs.st-andrews.ac.uk/

By 1904 Ramanujan had begun to undertake deep research. He investigated the series

$$
\sum_{n} \frac{1}{n}
$$

and calculated Euler's constant to 15 decimal places.

He began to study the Bernoulli numbers, although this was entirely his own independent discovery.

Reference

Jeffrey C. Lagarias Euler's constant : Euler's work and modern developments Bulletin Amer. Math. Soc. 50 (2013), No. 4, 527-628.
arXiv:1303.1856 [math.NT]
Bibliography: 314 references.

Euler archives and Eneström index

http://eulerarchive.maa.org/
Gustaf Eneström (1852-1923) Die Schriften Euler's
chronologisch nach den Jahren geordnet, in denen sie verfasst worden sind
Jahresbericht der Deutschen
Mathematiker-Vereinigung, 1913.

http://www.math.dartmouth.edu/~euler/index/enestrom.html ミ ๑ac

Harmonic numbers

$$
\begin{gathered}
H_{1}=1, \quad H_{2}=1+\frac{1}{2}=\frac{3}{2}, \quad H_{3}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6} \\
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\sum_{j=1}^{n} \frac{1}{j}
\end{gathered}
$$

Sequence :
$1, \quad \frac{3}{2}, \quad \frac{11}{6}, \quad \frac{25}{12}, \quad \frac{137}{60}, \quad \frac{49}{20}, \quad \frac{363}{140}, \quad \frac{761}{280}, \quad \frac{7129}{2520}, \ldots$
http://www.eulerarchive.org/

(Référence [86] of the text by Lagarias)

The online encyclopaedia of integer sequences
https://oeis.org/

Neil J. A. Sloane

Numerators and denominators

Numerators : https://oeis .org/A001008
$1,3,11,25,137,49,363,761,7129,7381,83711,86021,1145993$,
$1171733,1195757,2436559,42142223,14274301,275295799$, $55835135,18858053,19093197,444316699,1347822955, \ldots$

Denominators: https://oeis.org/A002805
$1,2,6,12,60,20,140,280,2520,2520,27720,27720,360360$, 360360, 360360, 720720, 12252240, 4084080, 77597520, $15519504,5173168,5173168,118982864,356948592, \ldots$

Riemann zeta function

$$
\begin{aligned}
\zeta(s) & =\sum_{n \geq 1} \frac{1}{n^{s}} \\
& =\prod_{p} \frac{1}{1-p^{-s}}
\end{aligned}
$$

Euler : $s \in \mathbb{R}$.
Riemann $: s \in \mathbb{C}$.

Euler (1731)
De progressionibus harmonicis observationes

The sequence
Leonhard Euler
(1707-1783)

$$
H_{n}-\log n
$$

has a limit $\gamma=0,57721 \underline{8} \ldots$ when n tends to infinity.

Moreover,

$$
\gamma=\sum_{m=2}^{\infty}(-1)^{m} \frac{\zeta(m)}{m}
$$

Numerical value of Euler's constant

The online encyclopaedia of integer sequences
https://oeis.org/A001620
Decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma.

Yee (2010) computed 29844489545 decimal digits of gamma.
$\gamma=0,577215664901532860606512090082402431042 \ldots$

Euler constant

Euler－Mascheroni constant
$\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right)=0.5772156649 \ldots$

Neil J．A．Sloane＇s encyclopaedia
http：／／www．research．att．com／～njas／sequences／A001620

Kumbakonam

1905 ：Fails final exam
1906 ：Enters Pachaiyappa＇s College，Madras
III，goes back to Kumbakonam
1907 （December）：Fails final exam．
1908 ：continued fractions and divergent series
1909 （April）：underwent an operation
1909 （July 14）：marriage with S Janaki Ammal（1900—1994）

Bernoulli numbers

$$
\begin{array}{rlr}
B_{0}=1, \quad \sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0 & \begin{array}{l}
\text { for } n>1 . \\
\text { Jacob Bernoulli }(1654-1705)
\end{array} \\
B_{0}+2 B_{1}=0 & B_{1}=-\frac{1}{2} \\
B_{0}+3 B_{1}+3 B_{2}=0 & B_{2}=\frac{1}{6} \\
B_{0}+4 B_{1}+6 B_{2}+4 B_{3}=0 & B_{3}=0 \\
B_{0}+5 B_{1}+10 B_{2}+10 B_{3}+5 B_{4}=0 & B_{4}=-\frac{1}{30}
\end{array}
$$

Madras

1910 ：meets Ramaswami Aiyar
1911 ：first mathematical paper
1912 ：clerk office，Madras Port Trust — Sir Francis Spring and Sir Gilbert Walker get a scholarship for him from the University of Madras starting May 1913 for 2 years．

1912 Questions in the

Journal of the Indian Mathematical Society

$$
\begin{aligned}
& \sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\cdots}}}}=? \\
& \sqrt{6+2 \sqrt{7+3 \sqrt{8+4 \sqrt{9+\cdots}}}}=?
\end{aligned}
$$

Answers from Ramanujan

$$
\begin{aligned}
& \sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\cdots}}}}=3 \\
& \sqrt{6+2 \sqrt{7+3 \sqrt{8+4 \sqrt{9+\cdots}}}}=4
\end{aligned}
$$

$$
\begin{gathered}
\text { "Proofs" } n(n+2) \\
(n+2)^{2}=1+(n+1)(n+3) \\
n(n+2)=n \sqrt{1+(n+1)(n+3)} \\
f(n)=n(n+2) \\
f(n)=n \sqrt{1+f(n+1)} \\
f(n)=n \sqrt{1+(n+1) \sqrt{1+f(n+2)}} \\
=n \sqrt{1+(n+1) \sqrt{1+(n+2) \sqrt{1+(n+3) \cdots}}}
\end{gathered}
$$

$$
f(1)=3
$$

"Proofs" $n(n+3)$

$$
\begin{gathered}
(n+3)^{2}=n+5+(n+1)(n+4) \\
n(n+3)=n \sqrt{n+5+(n+1)(n+4)} \\
g(n)=n(n+3) \\
g(n)=n \sqrt{n+5+g(n+1)} \\
g(n)=n \sqrt{n+5+(n+1) \sqrt{n+6+g(n+2)}} \\
=n \sqrt{n+5+(n+1) \sqrt{n+6+(n+2) \sqrt{n+7+\cdots}}} \\
g(1)=4
\end{gathered}
$$

Answer of M.J.M. Hill in 1912

$$
\begin{gathered}
1+2+3+\cdots+n=\frac{1}{2} n(n+1) \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(2 n+1)(n+1)}{6} \\
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
\end{gathered}
$$

Letter of S. Ramanujan to M.J.M. Hill in 1912

$$
\begin{aligned}
& 1+2+3+\cdots+\infty=-\frac{1}{12} \\
& 1^{2}+2^{2}+3^{2}+\cdots+\infty^{2}=0 \\
& 1^{3}+2^{3}+3^{3}+\cdots+\infty^{3}=\frac{1}{120}
\end{aligned}
$$

> hac $34 / 98$

Renormalisation of divergent series

Leonhard Euler
(1707-1783)
Introductio in analysin infinitorum
(1748)

Euler
Values of Riemann zeta function at negative integers :

$$
\begin{gathered}
\zeta(-k)=-\frac{B_{k+1}}{k+1} \quad(n \geq 1) \\
\zeta(-2 n)=1^{2 n}+2^{2 n}+3^{2 n}+4^{2 n}+\cdots=0 \quad(n \geq 1) \\
\zeta(-1)=1+2+3+4+\cdots=-\frac{1}{12} \\
\zeta(-3)=1^{3}+2^{3}+3^{3}+4^{3}+\cdots=\frac{1}{120} \\
\zeta(-5)=1^{5}+2^{5}+3^{5}+4^{5}+\cdots=-\frac{1}{252}
\end{gathered}
$$

Letters to H.F. Baker and E.W. Hobson in 1912

No answer to his letters to H.F. Baker and E.W. Hobson in 1912. . .
G.H. Hardy : Divergent Series (1949)

Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever
\square

Niels Henrik Abel (1802-1829)

Letter of Ramanujan to Hardy
(January 16, 1913)

I have had no university education but I have undergone the ordinary school course. After leaving school I have been employing the spare time at my disposal to work at mathematics. I have not trodden through the conventional regular course which is followed in a university course, but I am striking out a new path for myself. I have made a special investigation of divergent series in general and the results I get are termed by the local mathematicians as "startling".

Godfrey Harold Hardy（1877－1947）

Hardy and Littlewood

John Edensor Littlewood（1885－1977）

Letter from Ramanujan to Hardy
（January 16，1913）

$$
\begin{gathered}
1-2+3-4+\cdots=\frac{1}{4} \\
1-1!+2!-3!+\cdots=.596 .
\end{gathered}
$$

Answer from Hardy

(February 8, 1913)
I was exceedingly interested by your letter and by the theorems which you state. You will however understand that, before I can judge properly of the value of what you have done, it is essential that I should see proofs of some of your assertions. Your results seem to me to fall into roughly three classes :
(1) there are a number of results that are already known, or easily deducible from known theorems;
(2) there are results which, so far as I know, are new and interesting, but interesting rather from their curiosity and apparent difficulty than their importance;
(3) there are results which appear to be new and important...

Ramanujan - Taxi Cab Number 1729

Hardy's obituary of Ramanujan :

I had ridden in taxi-cab No 1729, and remarked that the number $(7 \cdot 13 \cdot 19)$ seemed to me a rather dull one...

$$
\begin{aligned}
1729 & =1^{3}+12^{3}=9^{3}+10^{3} \\
12^{3} & =1728, \quad 9^{3}=729
\end{aligned}
$$

1913, February 27 : New letter from Ramanujan to Hardy

1913 : Visit of Neville to India

1914, March 17 to April 14 : travel to Cambridge.

1918 : (May) Fellow of the Royal Society
(November) Fellow of Trinity College, Cambridge.

1919, February 27 to March 13 : travel back to India.

Narendra Jadhav - Taxi Cab Number 1729

Narendra Jadhav (born 1953) is a noted Indian bureaucrat, economist, social scientist, writer and educationist. He is a member of Planning Commission of India as well as a member of National Advisory Council (NAC), since 31 May 2010. Prior to this, he had worked with International Monetary Fund (IMF) and headed economic research at Reserve Bank of India (RBI).

He was Vice-Chancellor (from 24 August 2006 to 15 June 2009) of University of Pune Author of Outcaste - A Memoir, Life and Triumphs of an Untouchable Family In India (2003).

Ramanujan－Taxi Cab Number 1729

$$
\begin{gathered}
12^{3}=1728, \quad 9^{3}=729 \\
50=7^{2}+1^{2}=5^{2}+5^{2}
\end{gathered}
$$

$$
\begin{aligned}
4104 & =2^{3}+16^{3}=9^{3}+15^{3} \\
13832 & =2^{3}+24^{3}=18^{3}+20^{3} \\
40033 & =9^{3}+34^{3}=16^{3}+33^{3}
\end{aligned}
$$

$$
\vdots
$$

Diophantine equations

$$
\begin{gathered}
x^{3}+y^{3}+z^{3}=w^{3} \\
(x, y, z, w)=(3,4,5,6) \\
3^{3}+4^{3}+5^{3}=27+64+125=216=6^{3}
\end{gathered}
$$

Parametric solution ：

$$
\begin{array}{lr}
x=3 a^{2}+5 a b-5 b^{2} & y=4 a^{2}-4 a b+6 b^{2} \\
z=5 a^{2}-5 a b-3 b^{2} & w=6 a^{2}-4 a b+4 b^{2}
\end{array}
$$

Leonhard Euler（1707－1783）

$$
59^{4}+158^{4}=133^{4}+134^{4}=635318657
$$

Ramanujan－Nagell Equation

Trygve Nagell（1895－1988）

$$
x^{2}+7=2^{n}
$$

$$
x^{2}+D=2^{n}
$$

Nagell (1948) : for $D=7$, no further solution
R. Apéry (1960) : for $D>0, D \neq 7$, the equation $x^{2}+D=2^{n}$ has at most 2 solutions.

Examples with 2 solutions:

$$
\begin{array}{cl}
D=23: \quad 3^{2}+23=32, & 45^{2}+23=2^{11}=2048 \\
D=2^{\ell+1}-1, \ell \geq 3: & \left(2^{\ell}-1\right)^{2}+2^{\ell+1}-1=2^{2 \ell}
\end{array}
$$

$$
x^{2}+D=2^{n}
$$

F. Beukers (1980) : at most one solution otherwise.

M. Bennett (1995) : considers the case $D<0$.

Ramanujan

$$
\begin{array}{cl}
p(5 n+4) & \text { is a multiple of } 5 \\
p(7 n+5) & \text { is a multiple of } 7 \\
p(11 n+6) & \text { is a multiple of } 11 \\
p(25 n+24) & \text { is a multiple of } 25 \\
p(49 n+47) & \text { is a multiple of } 49 \\
p(121 n+116) & \text { is a multiple of } 121
\end{array}
$$

Honoring a Gift from Kumbakonam

Notices of the AMS， $53 \mathrm{~N}^{\circ} 6$（July 2006） 640－651
http：／／www．ams．org／notices／200606／ fea－ono．pdf

Eulerian products
Riemann zeta function
For $s>1$ ，

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

Georg Friedrich Bernhard Riemann（1826－1866）

Leonhard Euler（1707－1783）

$$
\begin{gathered}
1+p(1) x+p(2) x^{2}+\cdots+p(n) x^{n}+\cdots \\
=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots\left(1-x^{n}\right) \cdots} \\
1+\sum_{n=1}^{\infty} p(n) x^{n}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-1}
\end{gathered}
$$

Ramanujan tau function

$$
\begin{gathered}
x(1-x)^{-1}=\sum_{n=1}^{\infty} x^{n} \\
x \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) x^{n} \\
\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}=\prod_{p}\left(1-\tau(p) p^{-s}+p^{11-2 s}\right)^{-1}
\end{gathered}
$$

$\tau(p n)$ is divisible by p for $p=2,3,5,7,23$.
also : congruences modulo 691
(numerator of Bernoulli number B_{12})

Hardy-Ramanujan

For almost all integers n, the number of prime factors of n is $\log \log n$.
$A_{\epsilon}(x)=\{n \leq x ;(1-\epsilon) \log \log n<\omega(n)<(1+\epsilon) \log \log n\}$.

$$
\frac{1}{x} A_{\epsilon}(x) \rightarrow 1 \quad \text { when } \quad x \rightarrow \infty
$$

Pierre Deligne

Ramanujan's Conjecture, proved by Deligne in 1974

$$
|\tau(p)|<2 p^{11 / 2}
$$

Highly composite numbers

(Proc. London Math. Soc. 1915)

$$
\begin{gathered}
n= \\
2
\end{gathered} \quad 4 \quad 6 \quad 12 \begin{array}{rrrrrrr}
24 & 36 & 48 & 60 & 120 \ldots \\
d(n)= & 2 & 3 & 4 & 6 & 8 & 9 \\
10 & 12 & 16 \ldots
\end{array}
$$

Question: For $t \in \mathbf{R}$, do the conditions $2^{t} \in \mathbf{Z}$ and $3^{t} \in \mathbf{Z}$ imply $t \in \mathbf{Z}$?

Example : For $t=\frac{\log 1729}{\log 2}$, we have $2^{t}=1729 \in \mathbf{Z}$, but

$$
3^{t}=\exp ((\log 3)(\log 1729) / \log 2)=135451.447153 \ldots
$$

is not an integer.

Pàl Erdős

Alaoglu and Erdős：On highly composite and similar numbers， 1944.

C．L．Siegel ：For $t \in \mathbf{R}$ ，the conditions $2^{t} \in \mathbf{Z}, 3^{t} \in \mathbf{Z}$ and $5^{t} \in \mathbf{Z}$ imply $t \in \mathbf{Z}$ ．

Serge Lang，K．Ramachandra ：six exponentials theorem，four exponentials conjecture．

Approximation for π due to Ramanujan

$$
\begin{aligned}
\frac{63}{25}\left(\frac{17+15 \sqrt{5}}{7+15 \sqrt{5}}\right) & =3.14159265380568820189839000630 \ldots \\
\pi & =3.14159265358979323846264338328 \ldots
\end{aligned}
$$

Five exponentials Theorem and generalizations

1985 ：Five exponentials
Theorem．

1993，Damien Roy，Matrices whose coefficients are linear forms in logarithms
J．Number Theory 41 （1992） no．1，22－47．

Another formula due to Ramanujan for π

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$n=0: 6$ exact digits for $3.141592 \ldots$
$n \rightarrow n+1: 8$ more digits

Ramanujan＇s formula for $1 / \pi$

$$
\frac{1}{\pi}=\sum_{m=0}^{\infty}\binom{2 m}{m} \frac{42 m+5}{2^{12 m+4}}
$$

Decimals of π

Ramanujan's formulae were used in 1985: 1.7 $\cdot 10^{7}$ digits for π (1.7 crores)

In 1999:2•10 ${ }^{10}$ digits (2000 crores)
18 Aug 2009 : Pi Calculation Record Destroyed : 2.5 Trillion Decimals $\left(2.5 \cdot 10^{12}\right)$.
$2,576,980,377,524$ decimal places in 73 hours 36 minutes
Massive parallel computer called: T2K Tsukuba System.
Team leader professor Daisuke Takahashi.

The lost notebook

George Andrews, 1976

Ramanujan Notebooks

Written from 1903 to 1914

First : 16 chapters, 134 pages
Second : 21 chapters, 252 pages
Third: 33 pages
B.M. Wilson, G.N. Watson

Edited in 1957 in Bombay

Last work of Ramanujan

Mock theta functions
R. ZWEGERS - < Mock ϑ-functions and real analytic modular forms. >, in Berndt, Bruce C. (ed.) et al., q-series with applications to combinatorics, number theory, and physics. Proceedings of a conference, University of Illinois, Urbana-Champaign, IL, USA, October 26-28, 2000.
Providence, RI : American Mathematical Society (AMS). Contemp. Math. 291, 269-277, 2001.

Bruce Berndt, 1985-87 (5 volumes)

SASTRA Ramanujan Prize

SASTRA Ramanujan Prize

2009: Kathrin Bringmann.

International Conference in
Number Theory \& Mock
Theta Function
Srinivasa Ramanujan Center,
Sastra University,
Kumbakonam, Dec. 22, 2009.
www.math.ufl.edu/sastra-prize/2009,html

Terence Tao (2006) and Ben Green (2007)

Previous SASTRA Ramanujan Prize winners

Manjul Bhargava and Kannan Soundararajan (2005)

Akshay Venkatesh (2008)

Sastra Ramanujan Prize

Year	Name	University
2005	Manjul Bhargava Kannan Soundararajan	Princeton University University of Michigan
2006	Terence Tao	University of California at Los Angeles
2007	Ben Green	Cambridge University
2008	Akshay Venkatesh	Stanford University
2009	Kathrin Bringmann	University of Cologne， University of Minnesota
2010	Wei Zhang	Havard University
2011	Roman Holowinsky ${ }^{[1]}$	Onio State University
2012	Zhiwei Yun ${ }^{[2]}$	Stanford University
2013	Peter Scholze ${ }^{[3]}$	University of Bonn
2014	James Maynard ${ }^{[4]}$	Oxford University，England，and University of Montreal，Canada
2015	Jacob Tsimerman ${ }^{[5]}$	University of Toronto，Canada

https：／／en．wikipedia．org／wiki／SASTRA＿Ramanujan＿Prize

ICTP Ramanujan Prize

－ 2005 Marcelo Viana，Brazil ${ }^{[3]}$
－ 2006 Ramdorai Sujatha，India ${ }^{[4]}$
－ 2007 Jorge Lauret，Argentina ${ }^{[5]}$
－ 2008 Enrique Pujals，Argentina／Brazil ${ }^{[6]}$
－ 2009 Ernesto Lupercio，Mexico ${ }^{[7]}$
－ 2010 Shi Yuguang，China ${ }^{[8]}$
－ 2011 Philibert Nang，Gabon ${ }^{[9]}$
－ 2012 Fernando Codá Marques，Brazil ${ }^{[10]}$
－ 2013 Tian Ye，China ${ }^{[11]}$
－ 2014 Miguel Walsh，Argentina ${ }^{[12]}$
－ 2015 Amalendu Krishna，India ${ }^{[13]}$
https：／／en．wikipedia．org／wiki／ICTP＿Ramanujan＿Prize

References（continued）

［2］Don Zagier（March 16，2005，BNF／SMF）：
＂Ramanujan to Hardy，from the first to the last letter．．．＂
http：／／smf．emath．fr／VieSociete／Rencontres／BNF／2005／
［3］MacTutor History of Mathematics
http：／／www－groups．dcs．st－and．ac．uk／～history／
［4］Eric Weisstein worlds of mathematics，Wolfram Research http：／／scienceworld．wolfram．com／
［5］Wikipedia，the free encyclopedia．
http：／／en．wikipedia．org／wiki／Ramanujan

Ramanujan according to Wikipedia

Erode December 22, 1887 — Chetput, (Madras), April 26, 1920

Landau-Ramanujan constant Mock theta functions
Ramanujan prime
Ramanujan-Soldner constant Ramanujan theta function Ramanujan's sum
Rogers-Ramanujan identities
http://en.wikipedia.org/wiki/Srinivasa_Ramanujan صac

Ramanujan primes

In mathematics, a Ramanujan prime is a prime number that satisfies a result proven by Srinivasa Ramanujan relating to the prime-counting function.
$\pi(x)-\pi(x / 2) \geq 1,2,3,4,5, \ldots \quad$ for all $\quad x \geq 2,11,17,29,41, \ldots$
respectively, where $\pi(x)$ is the prime-counting function, that is, the number of primes less than or equal to x.

Landau-Ramanujan constant

In mathematics, the Landau-Ramanujan constant occurs in a number theory result stating that the number of positive integers less than x which are the sum of two square numbers, for large x, varies as

$$
x / \sqrt{\ln (x)}
$$

The constant of proportionality is the Landau-Ramanujan constant, which was discovered independently by Edmund Landau and Srinivasa Ramanujan.
More formally, if $N(x)$ is the number of positive integers less than x which are the sum of two squares, then
$\lim _{x \rightarrow \infty} \frac{N(x) \sqrt{\ln (x)}}{x} \approx 0.76422365358922066299069873125$.

Ramanujan primes

$2,11,17,29,41,47,59,67,71,97,101,107,127,149$
$151,167,179,181,227,229,233,239,241,263,269,281$,
$307,311,347,349,367,373,401,409,419,431,433,439$,
461, 487, 491, 503, 569, 571, 587, 593, 599, 601, 607, 641, ..
$a(n)$ is the smallest number such that if $x \geq a(n)$, then $\pi(x)-\pi(x / 2) \geq n$, where $\pi(x)$ is the number of primes $\leq x$.

Neil J. A. Sloane's encyclopaedia
http:
//www.research.att.com/~njas/sequences/A104272
//ww.research.att.com/~njas/sequences/A104272

Ramanujan-Soldner constant

In mathematics, the Ramanujan-Soldner constant is a mathematical constant defined as the unique positive zero of the logarithmic integral function. It is named after Srinivasa Ramanujan and Johann Georg von Soldner (16 July 1776-13 May 1833).

Its value is approximately
1.451369234883381050283968485892027449493 . .

Ramanujan theta function

$$
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}
$$

Carl Gustav Jacob Jacobi (1804-1851)

In mathematics, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta.

Ramanujan's sum (1918)

In number theory, a branch of mathematics, Ramanujan's sum, usually denoted $c_{q}(n)$, is a function of two positive integer variables q and n defined by the formula

$$
c_{q}(n)=\sum_{\substack{1 \leq a \leq q \\(a, q)=1}} e^{2 \pi i \frac{a}{q} n}
$$

Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently-large odd number is the sum of three primes.

Rogers-Ramanujan identities

Leonard James Rogers
1862-1933

In mathematics, the Rogers-Ramanujan identities are a set of identities related to basic hypergeometric series. They were discovered by Leonard James Rogers (1894) and subsequently rediscovered by Srinivasa Ramanujan (1913) as well as by Issai Schur (1917).
G.H. Hardy: Divergent Series

In

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots
$$

set $z=-1$, as Euler does :

$$
1-1+1-1+\cdots=\frac{1}{2} \cdots
$$

Similarly, from the derivative of the previous series

$$
\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+4 z^{3}+\cdots
$$

deduce

$$
1-2+3-4+\cdots=\frac{1}{4}
$$

Cesaro convergence

For a series

$$
a_{0}+a_{1}+\cdots+a_{n}+\cdots=s
$$

converging (in the sense of Cauchy), the partial sums

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n}
$$

have a mean value

$$
\frac{s_{0}+\cdots+s_{n}}{n+1}
$$

which is a sequence which converges (in the sense of Cauchy) to s.
For the diverging series

$$
1-1+1-1+\cdots
$$

$s=1-2+3-4+\cdots$

There are further reasons to attribute the value $1 / 4$ to s. For instance
$s=1-(1-1+1-1+\cdots)-(1-2+3-4+\cdots)=1-\frac{1}{2}-s$
gives $2 s=1 / 2$, hence $s=1 / 4$.
Also computing the square by expanding the product

$$
(1-1+1-1+\cdots)^{2}=(1-1+1-1+\cdots)(1-1+1-1+\cdots)
$$

yields to

$$
1-2+3-4+\cdots=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

Cesaro convergence

For the series

$$
1+0-1+1+0-1+\cdots
$$

the Cesaro limit

$$
\lim _{n \rightarrow \infty} \frac{s_{0}+\cdots+s_{n}}{n+1}
$$

exists and is $2 / 3$.
the limit exists and is $1 / 2$.

Rules for summing divergent series

$$
a_{0}+a_{1}+a_{2}+\cdots=s \quad \text { implies } \quad k a_{0}+k a_{1}+k a_{2}+\cdots=k s
$$

$$
\begin{array}{r}
a_{0}+a_{1}+a_{2}+\cdots=s \quad \text { and } \quad b_{0}+b_{1}+b_{2}+\cdots=t \quad \text { implies } \\
a_{0}+b_{0}+a_{1}+b_{1}+a_{2}+b_{2}+\cdots=s+t
\end{array}
$$

$a_{0}+a_{1}+a_{2}+\cdots=s \quad$ if and only if $\quad a_{1}+a_{2}+\cdots=s-a_{0}$.

Further examples of divergent Series

$$
\begin{aligned}
1+1+1+\cdots & =0 \\
1-2+4-8+\cdots & =\frac{1}{3} \\
1+2+4+8+\cdots & =-1 \\
1^{2 k}+2^{2 k}+3^{2 k}+4^{2 k}+5^{2 k}+\cdots & =0 \quad \text { for } \quad k \geq 1
\end{aligned}
$$

Euler:
$1-1!+2!-3!+4!+\cdots=-e\left(\gamma-1+\frac{1}{2 \cdot 2!}-\frac{1}{3 \cdot 3!}+\cdots\right)$
gives the value $0.5963 \ldots$ also found by Ramanujan.

Recall

$$
\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+4 z^{3}+\cdots
$$

Take one more derivative, you find also

$$
1 \cdot 2-2 \cdot 3+3 \cdot 4-4 \cdot 5+\cdots=\frac{1}{4}
$$

from which you deduce

$$
1^{2}-2^{2}+3^{2}-4^{2}+\cdots=0
$$

Ramanujan's method (following Joseph Oesterlé)

Here is Ramanujan's method for computing the value of divergent series and for accelerating the convergence of series.

The series

$$
a_{0}-a_{1}+a_{2}-a_{3}+\cdots
$$

can be written

$$
\frac{1}{2}\left(a_{0}+\left(b_{0}-b_{1}+b_{3}-b_{4}+\cdots\right)\right)
$$

where $b_{n}=a_{n}-a_{n+1}$.

For instance in the case $a_{n}=1 / n^{s}$ we have $b_{n} \sim s / n^{s+1}$.
Repeating the process yields the analytic continuation of the
Riemann zeta function.

For $s=-k$ where k is a positive integer, Ramanujan's
method yields the Bernoulli numbers.

In the case of convergent series like

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\log 2
$$

or for Euler constant, Ramanujan's method gives an efficient way of accelerating the convergence.

Srinivasa Ramanujan
 His life and his work

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI http://www.imj-prg.fr/~michel.waldschmidt/

