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Abstract

We discuss the role of auxiliary functions in the development of transcendental
number theory.

Initially, auxiliary functions were completely explicit (§ 1). The earliest
transcendence proof is due to Liouville (§ 1.1), who produced the first explicit
examples of transcendental numbers at a time where their existence was not yet
known; in his proof, the auxiliary function is just a polynomial in one variable.
Hermite’s proof of the transcendence of e (1873) is much more involved, the
auxiliary function he builds (§ 1.2) is the first example of the Padé approxi-
mants (§ 1.3), which can be viewed as a far reaching generalization of continued
fraction expansion [13, 14]. Hypergeometric functions (§ 1.4) are among the
best candidates for using Padé approximations techniques.

Another tool, which plays the role of auxiliary functions, is produced by
interpolation formulae (§ 2). They occurred in the theory after a question
by Weierstraß (§ 2.1) on the so-called exceptional set Sf of a transcendental
function f , which is the set of algebraic numbers α such that f(α) is algebraic.
The answer to his question is that any set of algebraic numbers is the exceptional
set of some transcendental function f ; this shows that one should add further
conditions in order to get transcendence criteria. One way is to replace algebraic
number by rational integer: this gives rise to the study of integer–valued entire
functions (§ 2.2) with the works of G. Pólya (1915), A.O. Gel’fond (1929) and
many others. The connexion with transcendental number theory may not have
been clear until the solution by A.O. Gel’fond in 1929 of the question of the
transcendence of eπ, a special case of Hilbert’s seventh problem (§ 2.3). Along
these lines, recent developments are due to T. Rivoal, who renewed forgotten
rational interpolation formulae (1935) of R. Lagrange (§ 2.4).
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The simple (but powerful) construction by Liouville was extended to several
variables by A. Thue (§ 3.1.1), who introduced the Dirichlet’s box principle (pi-
geonhole principle) (§ 3) into the topic of Diophantine approximation in the early
1900’s. In the 1920’s, Siegel (§ 3.1) developed this idea and applied it in 1932 to
transcendental number theory. This gave rise to the Gel’fond–Schneider method
(§ 3.1.2), which produces the Schneider–Lang Criterion in one (§ 3.1.3) or sev-
eral (§ 3.1.4) variables. Among many developments of this method are results
on modular functions (§ 3.1.6). Variants of the auxiliary functions produced
by Dirichlet’s Box Principle are universal auxiliary functions, which have small
Taylor coefficients at the origin (§ 3.2). Another approach, due to K. Mahler
(§ 3.3), involves auxiliary functions whose existence is deduced from linear al-
gebra instead of Thue–Siegel Lemma 3.1.

In 1991, M. Laurent introduced interpolation determinants (§ 4). Two years
later, J.B. Bost used Arakhelov theory (§ 5) to prove slope inequalities, which
dispenses of the choice of bases.

1 Explicit functions

1.1 Liouville

The first examples of transcendental numbers were produced by Liouville [48]
in 1844. At that time, it was not yet known that transcendental numbers exist.
The idea of Liouville is to show that all algebraic real numbers α are badly
approximated by rational numbers. The simplest example is a rational number
α = a/b: for any rational number p/q != a/b, the inequality

∣∣∣∣
a

b
− p

q

∣∣∣∣ ≥
1
bq

holds. For an irrational real number x, on the contrary, for any ε > 0 there
exists a rational number p/q such that

0 <

∣∣∣∣x−
p

q

∣∣∣∣ ≤
ε

q
·

This yields an irrationality criterion, which is the basic tool for proving the
irrationality of specific numbers: a real number x is irrational if and only if
there exists a sequence (pn/qn)n≥0 of distinct rational numbers with

lim
n→∞

qn

∣∣∣∣x−
pn

qn

∣∣∣∣ = 0.

This criterion is not too demanding: the quality of the approximation is not
very strong. Indeed, for a given irrational number x, it is known that there
exist much better rational approximations, since there exist infinitely many
rational numbers p/q for which

∣∣∣∣x−
p

q

∣∣∣∣ ≤
1

2q2
·

3
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It is a remarkable fact that, on the one hand, there exist such sharp approxi-
mations, and on the other hand, we are usually not able to produce (let alone,
to show the existence of) much weaker rational approximations. Also, in exam-
ples like ζ(3), there is essentially a single known explicit sequence of rational
approximations which arises from the irrationality proofs – of course, once the
irrationality is established, the existence of other much better approximations
follows, but, so far, no one is able to produce an explicit sequence of such ap-
proximations.

Liouville extended the irrationality criterion into a transcendence criterion.
The proof by Liouville involves the irreducible polynomial f ∈ Z[X] of the given
irrational algebraic number α. Since α is algebraic, there exists an irreducible
polynomial f ∈ Z[X] such that f(α) = 0. Let d be the degree of f . For p/q ∈ Q,
the number qdf(p/q) is a non–zero rational integer, hence

|f(p/q)| ≥ 1
qd

·

On the other hand, it is easily seen that there exists a constant c(α) > 0,
depending only on α (and its irreducible polynomial f), such that

|f(p/q)| ≤ c(α)
∣∣∣∣α−

p

q

∣∣∣∣ .

An explicit value for a suitable c(α) is given, for instance, in Exercice 3.6 of
[104]. Therefore, ∣∣∣∣α−

p

q

∣∣∣∣ ≥
c′(α)
qd

,

with c′(α) = 1/c(α).
Let ξ be a real number such that, for any κ > 0, there exists a rational

number p/q with q ≥ 2 satisfying

0 <

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1
qκ

·

It follows from Liouville’s inequality that ξ is transcendental. Real numbers
satisfying this assumption are called Liouville’s numbers. The first examples
[48], produced by Liouville in 1844, involved properties of continued fractions,
but already in the first part of his 1844 note, he considered series

∑

m≥1

1
&m!

for & ∈ Z≥2. Seven years later, in [49], he refers to a letter from Goldbach to
Euler for numbers ∑

m≥1

km

10m!
,

4
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where (km)m≥1 is a sequence of integers in the range {0, . . . , 9}. Next (see p. 140
of [49]), he uses the same argument to prove the irrationality of

∑

m≥1

1
&m2

,

whose transcendence has been proved only in 1996 by Yu. V. Nesterenko [62, 61].
We consider below (§ 3.1.1) extensions of Liouville’s result by Thue, Siegel,

Roth and Schmidt.

1.2 Hermite

During his course at the École Polytechnique in 1815 (see [84]), Fourier gave a
simple proof for the irrationality of e, which can be found in many textbooks (for
instance, Th. 47 Chap. 4 § 7 of Hardy and Wright [36]). The idea is to truncate
the Taylor expansion at the origin of the exponential function. In this proof, the
auxiliary function is the tail of the Taylor expansion of the exponential function

ez −
N∑

n=0

zn

n!
,

which one specializes at z = 1. As noticed by F. Beukers, the proof becomes
even shorter if one specializes at z = −1. This proof has been revisited in 1840
by Liouville [47], who succeeded to extend the argument and to prove that e2

is not a quadratic number. This result is quoted by Hermite in his memoir [37].
Fourier’s argument produces rational approximations to the number e, which
are sharp enough to prove the irrationality of e, but not the transcendence.
The denominators of these approximations are N !. One of Hermite’s ideas is to
look for other rational approximations with less restrictive restrictions on the
denominators. Instead of the auxiliary functions ez − A(z) for some A ∈ Q[z],
Hermite introduces more general auxiliary functions R(z) = B(z)ez −A(z). He
finds a polynomial B such that the Taylor expansion at the origin of B(z)ez

has a large gap: he calls A(z) the polynomial part of the expansion before the
gap, so that the auxiliary function R(z) has a zero of high multiplicity at the
origin. Hermite gives explicit formulae for A, B and R. In particular, the
polynomials A and B have rational coefficients – the question is homogeneous,
one may multiply by a denominator to get integer coefficients. Also, he obtains
upper bounds for these integer coefficients (they are not too large) and for the
modulus of the remainder (which is small on a given disc). As an example, given
r ∈ Q \ {0} and ε > 0, one can use this construction to show the existence of
A, B and R with 0 < |R(r)| < ε. Hence er !∈ Q. This gives another proof of
Lambert’s result on the irrationality of er for r ∈ Q\{0}, and this proof extends
to the irrationality of π as well [12, 63].

Hermite [37] goes much further, since he obtains the transcendence of e.
To achieve this goal, he considers simultaneous rational approximations to the
exponential function, in analogy with Diophantine approximation. The idea

5
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is as follows. Let a0, a1, . . . , am be rational integers and B0, B1, . . . , Bm be
polynomials in Z[x]. For 1 ≤ k ≤ m, define

Rk(x) = B0(x)ekx −Bk(x).

Set bj = Bj(1), 0 ≤ j ≤ m and

R = a1R1(1) + · · · + amRm(1).

The numbers aj and bj are rational integers, hence

a0b0 + a1b1 + · · · + ambm = b0(a0 + a1e + a2e
2 + · · · + amem)−R

also. Therefore, if one can prove 0 < |R| < 1, then one deduces

a0 + a1e + · · · + amem != 0.

Hermite’s construction is more general: he produces rational approximations to
the functions 1, eα1x, . . . , eαmx, when α1, . . . ,αm are pairwise distinct complex
numbers. Let n0, . . . , nm be rational integers, all ≥ 0. Set N = n0 + · · · + nm.
Hermite constructs explicitly polynomials B0, B1, . . . , Bm, with Bj of degree
N − nj , such that each of the functions

B0(z)eαkz −Bk(z), (1 ≤ k ≤ m)

has a zero at the origin of multiplicity at least N .
Such functions are now known as Padé approximations of the second kind

(or of type II).

1.3 Padé approximation

In his thesis in 1892, H.E. Padé studied systematically the approximation of
complex analytic functions by rational functions. See Brezinski’s papers [13, 14],
where further references to previous works by Jacobi (1845), Faá di Bruno
(1859), Sturm, Brioschi, Sylvester, Frobenius (1870), Darboux (1876), Kro-
necker (1881) are given.

There are two dual points of view, giving rise to the two types of Padé
Approximants [24].

Let f0, . . . , fm be complex functions which are analytic near the origin and
n0, . . . , nm be non–negative rational integers. Set N = n0 + · · · + nm.

Padé approximants of type II are polynomials B0, . . . , Bm with Bj having
degree ≤ N − nj , such that each of the functions

Bi(z)fj(z)−Bj(z)fi(z) (0 ≤ i < j ≤ m)

has a zero at the origin of multiplicity ≥ N + 1.
Padé approximants of type I are polynomials P1, . . . , Pm, with Pj of degree

≤ nj , such that the function

P1(z)f1(z) + · · · + Pm(z)fm(z)

6
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has a zero at the origin of multiplicity at least N + m− 1.
For type I as well as type II, existence of Padé approximants follow from

linear algebra: one compares the number of equations which are produced by
the vanishing conditions on the one hand, with the number of coefficients of
P , considered as unknowns, on the other. Unicity of the solution, up to a
multiplicative constant (the linear system of equations is homogeneous) is true
only in specific cases (perfect systems): it amounts to proving that the matrix
of the system of equations is regular.

These approximants were also studied by Ch. Hermite for the exponentials
functions in 1873 and 1893; later, in 1917, he gave further integral formulae for
the remainder. For transcendence purposes, Padé approximants of type I have
been used for the first time in 1932 by K. Mahler [51], who produced effective
versions of the transcendence theorems by Hermite, Lindemann and Weierstraß.

In the theory of Diophantine approximation, there are transference theorems,
initially due to Khintchine (see, for instance, [16, 45]). Similar transference
properties for Padé approximation have been considered by H. Jager [39] and
J. Coates [18, 19].

1.4 Hypergeometric methods

Explicit Padé approximations are known only for restricted classes of functions;
however, when they are available, they often produce very sharp Diophantine
estimates. Among the best candidates for having explicit Padé Approximations
are the hypergeometric functions. A. Thue [88] developed this idea in the early
20th Century and was able to solve explicitly several classes of Diophantine
equations. There is a contrast between the measures of irrationality, for instance,
which can be obtained by hypergeometric methods, and those produced by
other methods, like Baker’s method (§ 3.1.2): typically, hypergeometric methods
produce numerical constants with one or two digits (when the expected value is
something like 1 or 2), where Baker’s method produces constants with several
hundreds digits. On the other hand, Baker’s method works in much more general
situations. Compared with the Thue–Siegel–Roth–Schmidt’s method (§ 3.1.1),
it has the great advantage of being explicit.

Among many contributors to this topic, we quote A. Thue, C.L. Siegel,
A. Baker, G.V. Chudnovskii, M. Bennett, P. Voutier, G. Rhin, C. Viola, T. Rivoal. . .
These works also involve sorts of auxiliary functions (integrals) depending on
parameters which need to be suitably selected in order to produce sharp esti-
mates.

Chapter 2 of [24] deals with effective constructions in transcendental number
theory and includes two sections (§ 6 and § 7) on generalized hypergeometric
functions and series.

7
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2 Interpolation methods

We discuss here another type of auxiliary function, which occurred in works
related with a question of Weierstraß on the exceptional set of a transcendental
entire function. Recall that an entire function is a complex valued function
which is analytic in C. A function f is algebraic (over C(z)) if f is a solution of
a functional equation P (z, f(z)) = 0 for some non–zero polynomial P ∈ C[X, Y ].
An entire function is algebraic if and only if it is a polynomial. A function which
is not algebraic is called transcendental1.

2.1 Weierstraß question

Weierstraß (see [53]) initiated the question of investigating the set of algebraic
numbers where a given transcendental entire function f takes algebraic values.

Denote by Q the field of algebraic numbers (algebraic closure of Q in C).
For an entire function f , we define the exceptional set Sf of f as the set of
algebraic numbers α such that f(α) is algebraic:

Sf :=
{
α ∈ Q ; f(α) ∈ Q

}
.

For instance, Hermite–Lindemann’s Theorem on the transcendence of log α and
eβ for α and β algebraic numbers is the fact that the exceptional set of the
function ez is {0}. Also, the exceptional set of ez + e1+z is empty, by the
Theorem of Lindemann–Weierstrass. The exceptional set of functions like 2z or
eiπz is Q, as shown by the Theorem of Gel’fond and Schneider.

The exceptional set of a polynomial is Q if the polynomial has algebraic
coefficients, otherwise it is finite. Also, any finite set of algebraic numbers is
the exceptional set of some entire function: for s ≥ 1 the set {α1, . . . ,αs} is the
exceptional set of the polynomial π(z − α1) · · · (z − αs) ∈ C[z] and also of the
transcendental entire function (z − α2) · · · (z − αs)ez−α1 . Assuming Schanuel’s
conjecture, further explicit examples of exceptional sets for entire functions can
be produced, for instance Z≥0 or Z.

The study of exceptional sets started in 1886 with a letter of Weierstrass to
Strauss. This study was later developed by Strauss, Stäckel, Faber – see [53].
Further results are due to van der Poorten, Gramain, Surroca and others (see
[35, 86]).

Among the results which were obtained, a typical one is the following: if A is
a countable subset of C and if E is a dense subset of C, there exist transcendental
entire functions f mapping A into E.

Also, van der Poorten noticed in [89] that there are transcendental entire
functions f such that Dkf(α) ∈ Q(α) for all k ≥ 0 and all algebraic α.

1A polynomial whose coefficients are not all algebraic numbers is an algebraic function,
namely is algebraic over C(z), but is a transcendental element over Q(z). However, as soon
as a polynomial assumes algebraic values at infinitely many points (including derivatives), its
coefficients are algebraic. Therefore, for the questions we consider, it makes no difference to
consider algebraicity of functions over C or over Q.

8
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The question of possible sets Sf has been solved in [38]: any set of algebraic
numbers is the exceptional set of some transcendental entire function. Also mul-
tiplicities can be included, as follows: define the exceptional set with multiplicity
of a transcendental entire function f as the subset of (α, t) ∈ Q×Z≥0 such that
f (t)(α) ∈ Q. Here, f (t) stands for the t-th derivative of f .

Then any subset of Q×Z≥0 is the exceptional set with multiplicities of some
transcendental entire function f . More generally, the main result of [38] is the
following:

Let A be a countable subset of C. For each pair (α, s) with α ∈ A,
and s ∈ Z≥0, let Eα,s be a dense subset of C. Then there exists a
transcendental entire function f such that

(
d

dz

)s

f(α) ∈ Eα,s (2.1)

for all (α, s) ∈ A× Z≥0.

One may replace C by R: it means that one may take for the sets Eα,s dense
subsets of R, provided that one requires A to be a countable subset of R.

The proof is a construction of an interpolation series (see § 2.2) on a sequence
where each w occurs infinitely often. The coefficients of the interpolation series
are selected recursively to be sufficiently small (and nonzero), so that the sum
f of the series is a transcendental entire function.

This process yields uncountably many such functions. Further, one may also
require that they are algebraically independent over C(z) together with their
derivatives. Furthermore, at the same time, one may request further restrictions
on each of these functions f . For instance, given any transcendental function g
with g(0) != 0, one may require |f |R ≤ |g|R for all R ≥ 0.

As a very special case of 2.1 (selecting A to be the set Q of algebraic numbers
and each Eα,s to be either Q or its complement in C), one deduces the existence
of uncountably many algebraic independent transcendental entire functions f
such that any Taylor coefficient at any algebraic point α takes a prescribed
value, either algebraic or transcendental.

2.2 Integer–valued entire functions

A simple measure for the growth of an entire function f is the real valued
function R '→ |f |R, where

|f |R = sup
|z|=R

|f(z)|.

An entire function f has an order of growth ≤ ) if for all ε > 0 the inequality

|f |R ≤ exp
(
R%+ε

)

holds for sufficiently large R.
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In 1915, G. Pólya [68] initiated the study of integer–valued entire functions;
he proved that if f is a transcendental entire function such that f(n) ∈ Z for
all n ∈ Z≥0, then

lim sup
R→∞

1
R

log |f |R > 0. (2.2)

An example is the function 2z for which the left hand side is log 2. A stronger
version of the fact that 2z is the “smallest” entire transcendental function map-
ping the positive integers to rational integers is the estimate

lim sup
R→∞

2−R|f |R ≥ 1,

which is valid under the same assumptions as for (2.2).
Pólya’s method involves interpolation series: given an entire function f and

a sequence of complex numbers (αn)n≥1, define inductively a sequence (fn)n≥0

of entire functions by f0 = f and, for n ≥ 0,

fn(z) = fn(αn+1) + (z − αn+1)fn+1(z).

Define, for j ≥ 0,

Pj(z) = (z − α1)(z − α2) · · · (z − αj).

One gets an expansion

f(z) = A(z) + Pn(z)fn(z),

where

A = a0 + a1P1 + · · · + an−1Pn−1 ∈ C[z] and an = fn(αn+1) (n ≥ 0).

Conditions for such an expansion to be convergent as n →∞ are known – see,
for instance, [32].

Such interpolation series produce formulae for functions with given values at
the sequence of points αn; when some of the αn’s are repeated, these formulae
involve the successive derivatives of the function at the given point. For instance,
for a constant sequence αn = z0 for all n ≥ 1, one obtains the Taylor series
expansion of f at z0. These formulae have been studied by I. Newton and J-L.
Lagrange.

Analytic formulae for the coefficients an and for the remainder fn follow from
Cauchy’s residue Theorem. Indeed, let x, z, α1, . . . ,αn be complex numbers
with x !∈ {z, α1, . . . ,αn}. Starting from the easy relation

1
x− z

=
1

x− α1
+

z − α1

x− α1
· 1
x− z

, (2.3)

one deduces by induction the next formula due to Hermite:

1
x− z

=
n−1∑

j=0

(z − α1)(z − α2) · · · (z − αj)
(x− α1)(x− α2) · · · (x− αj+1)

+
(z − α1)(z − α2) · · · (z − αn)
(x− α1)(x− α2) · · · (x− αn)

· 1
x− z

·

10
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Let D be an open disc containing α1, . . . ,αn, let C denote the circumference of
D, let D′ be an open disc containing the closure of D. Assume f is analytic in
D′. Then

aj =
1

2iπ

∫

C

f(x)dx

(x− α1)(x− α2) · · · (x− αj+1)
(0 ≤ j ≤ n− 1)

and
fn(z) =

1
2iπ

∫

C

f(x)dx

(x− α1)(x− α2) · · · (x− αn)(x− z)
·

Pólya applies these formulae to prove that if f is an entire function which does
not grow too fast and satisfies f(n) ∈ Z for n ∈ Z≥0, then the coefficients an in
the expansion of f at the sequence (αn)n≥1 = {0, 1, 2, . . .} vanish for sufficiently
large n, hence f is a polynomial.

Further works on this topic, using a variety of methods, are due to G.H. Hardy,
G. Pólya, D. Sato, E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson, F. Gross,. . .
– and A.O. Gel’fond (see § 2.3).

2.3 Transcendence of eπ

Pólya’s study of the growth of transcendental entire functions taking integral
values at the positive rational integers was extended to the Gaussian integers
by A.O. Gel’fond in 1929 [30]. By means of interpolation series at the points
in Z[i], he proved that if f is a transcendental entire function which satisfies
f(α) ∈ Z[i] for all α ∈ Z[i], then

lim sup
R→∞

1
R2

log |f |R ≥ γ. (2.4)

The example of the Weierstraß sigma function attached to the lattice Z[i]

σ(z) = z
∏

ω∈Z[i]\{0}

(
1− z

ω

)
e

z
ω + z2

2ω2

(which is nothing else than the Hadamard canonical product with a simple zero
at any point of Z[i]), shows that the constant γ in 2.4 cannot be larger than
π/2. Often, for such problems, dealing with a discrete subset of C, replacing
integer values by zero values gives some hint of what should be expected, at least
for the order of growth (the exponent 2 of R2 in the left hand side of formula
(2.4)), if not for the value of the constant (the number γ in the right hand side
of formula (2.4)). Other examples of Hadamard canonical products are

z
∏

n≥1

(
1− z

n

)
ez/n = −eγzΓ(−z)−1

for the set Z>0 = {1, 2, . . . } of positive integers and

z
∏

n∈Z\{0}

(
1− z

n

)
ez/n = π−1 sin(πz)

11
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for the set Z of rational integers.
The initial admissible value computed by A.O. Gel’fond in 1929 for γ in (2.4)

was pretty small, namely γ = 10−45. It was improved by several mathemati-
cians, including Fukasawa, Gruman, Masser, until 1981, when F. Gramain [34]
reached the value γ = π/(2e), which is best possible, as shown by D.W. Masser
[56] one year earlier. See [1] for recent results and extensions to number fields.

This work of Gel’fond’s [30] turns out to have fundamental consequences on
the development of transcendental number theory, due to its connexion with
the number eπ. Indeed, the assertion that the number

eπ = 23, 140 692 632 779 269 005 729 086 367 . . .

is irrational is equivalent to saying that the function eπz cannot take all its values
in Q(i) when the argument z ranges over Z[i]. By expanding the function eπz

into an interpolation series at the Gaussian integers, Gel’fond was able to prove
the transcendence of eπ. More generally, Gel’fond proved the transcendence of
αβ for α and β algebraic, α != 0, α != 1 and β imaginary quadratic. In 1930,
Kuzmin extended the proof to the case where β is real quadratic, thus proving
the transcendence of 2

√
2. The same year, Boehle proved that if β is algebraic

of degree d ≥ 2, then one at least of the d − 1 numbers αβ , αβ2
, . . . ,αβd−1

is
transcendental (see, for instance, [25]).

The next important step came from Siegel’s introduction of further ideas in
the theory (see § 3.1.2).

We conclude this subsection by noting that our knowledge of the Diophantine
properties of the number eπ is far from being complete. It was proved recently by
Yu.V. Nesterenko (see § 3.1.6) that the two numbers π and eπ are algebraically
independent, but there is no proof, so far, that eπ is not a Liouville number.

2.4 Lagrange interpolation

Newton-Lagrange interpolation (§ 2.2) of a function yields a series of polynomi-
als, namely linear combinations of products (z−α1) · · · (z−αn). Another type
of interpolation has been devised in [40] by another Lagrange (René and not
Joseph–Louis), in 1935, who introduced instead a series of rational fractions.
Starting from the formula

1
x− z

=
α− β

(x− α)(x− β)
+

x− β

x− α
· z − α

z − β
· 1
x− z

in place of (2.3), iterating and integrating as in § 2.2, one deduces an expansion

f(z) =
n−1∑

j=0

bj
(z − α1) · · · (z − αj)
(z − β1) · · · (z − βj)

+ Rn(z).

This approach has been developed in 2006 [69] by T. Rivoal, who applies it to
the Hurwitz zeta function

ζ(s, z) =
∞∑

k=1

1
(k + z)s

(s ∈ C, *e(s) > 1, z ∈ C).

12
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He expands ζ(2, z) as a Lagrange series in

z2(z − 1)2 · · · (z − n + 1)2

(z + 1)2 · · · (z + n)2
·

He shows that the coefficients of the expansion belong to Q + Qζ(3). This
enables him to produce a new proof of Apéry’s Theorem on the irrationality of
ζ(3).

Further, he gives a new proof of the irrationality of log 2, by expanding
∞∑

k=1

(−1)k

k + z

into a Lagrange interpolation series. Furthermore, he gives a new proof of the
irrationality of ζ(2), by expanding the function

∞∑

k=1

(
1
k
− 1

k + z

)

as a Hermite–Lagrange series in
(
z(z − 1) · · · (z − n + 1)

)2

(z + 1) · · · (z + n)
·

It is striking that these constructions yield exactly the same sequences of rational
approximations as the one produced by methods which look very much different
[26].

Further developments of the interpolation methods should be possible. For
instance, Taylor series are the special case of Hermite’s formula with a single
point and multiplicities — they give rise to Padé approximants. Multiplicities
could also be introduced in Lagrange–Rivoal interpolation.

3 Auxiliary functions arising from the Dirich-
let’s box principle

3.1 Thue–Siegel lemma

Here is a translation of a statement p. 213 of Siegel’s paper [81]:

Lemma 3.1 (Thue–Siegel). Let

y1 = a11x1 + · · · + a1nxn
...

ym = am1x1 + · · · + amnxn

be m linear forms in n variables with rational integer coefficients. Assume n >
m. Let A ∈ Z>0 be an upper bound for the absolute values of the mn coefficients

13
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akl. Then the system of homogeneous linear equations y1 = 0, . . . , ym = 0 has
a solution in rational integers x1, . . . , xn, not all of which are 0, with absolute
values less than 1 + (nA)m/(n−m).

The fact that there is a non-trivial solution is a consequence of linear alge-
bra, thanks to the assumption n > m. The point here is that Dirichlet’s box
principe shows the existence of a non-trivial solution satisfying an explicit upper
bound. The estimate for that solution is essential in the proofs due to A. Thue,
C.L. Siegel, and later A.O. Gel’fond, Th. Schneider, A. Baker, W.M. Schmidt
and others (however, K. Mahler devised another method where such estimate
is not required, linear algebra suffices – see § 3.3).

The initial proof by Thue and Siegel relied on the box principle. More
sophisticated arguments have been introduced by K. Mahler, using geometry of
numbers, and they yield to a number of developments which we do not survey
here (see, for instance, [75]).

3.1.1 The origin of the Thue–Siegel Lemma

The first improvement of Liouville’s inequality was reached by A. Thue in 1909
[87, 88]. Instead of evaluating the values at p/q of a polynomial in a single
variable (viz. the irreducible polynomial of the given algebraic number α), he
considers two approximations p1/q1 and p2/q2 of α and evaluates at the point
(p1/q1, p2/q2) a polynomial P in two variables. This polynomial P ∈ Z[X, Y ] is
constructed (or, rather, is shown to exist) by means of Dirichlet’s box principle
(Lemma 3.1). The required conditions are that P has zeroes of sufficiently large
multiplicity at (0, 0) and at (p1/q1, p2/q2). The multiplicity is weighted: this is
what Thue called the index of P at a point. The estimate for the coefficients of
the solution of the system of linear equations in Lemma 3.1 plays an important
role in the proof.

One of the main difficulties that Thue had to overcome was to produce a
zero estimate, in order to find a non–zero value of some derivative of P .

A crucial feature of Thue’s argument is that he needs to select a second
approximation p2/q2 depending on a first one p1/q1. Hence, a first very good
approximation p1/q1 is required to produce an effective result from this method.
In general, such arguments lead to sharp estimates for all p/q with at most one
exception. This approach has been worked out by J.W.S. Cassels, H. Davenport
and others to deduce upper bounds for the number of solutions of certain Dio-
phantine equations. However, these results are not effective, meaning that they
do not yield complete solutions of these equations. More recently, E. Bombieri
has produced examples where a sufficiently good approximation exists for the
method to work in an effective way. Later, he produced effective refinements
to Liouville’s inequality by extending the argument (see [24] Chap. 1 § 5.4).

Further improvement of Thue’s method were obtained by C.L. Siegel in the
1920’s: he developed Thue’s method and succeeded in refining his irrationality
measure for algebraic real numbers. In 1929, Siegel [81], thanks to a further
sharpening of his previous estimate, derived his well known theorem on integer
points on curves: the set of integral points on a curve of genus ≥ 1 is finite.

14
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The introduction of the fundamental memoir [81] of C.L. Siegel in 1929
stresses the importance of Thue’s idea involving the pigeonhole principle. In
the second part of this paper, he extends the Lindemann–Weierstraß Theorem
(on the algebraic independence of eβ1 , . . . , eβn when β1, . . . ,βn are Q-linearly
independent algebraic numbers) from the usual exponential function to a wide
class of entire functions, which he calls E-functions. He also introduces the
class of G-functions, which has been extensively studied since 1929. See also
his monograph in 1949 [83], Shidlovskii’s book [80] and the Encyclopaedia vol-
ume by Feldman and Nesterenko [24] for E–functions, André’s book [3] and [24]
Chap. 5 § 7 for G–functions. Among many developments related to G func-
tions are the works of Th. Schneider, V.G. Sprindzuck and P. Dèbes related to
algebraic functions (see [24] Chap. 5 § 7).

The work of Thue and Siegel on the rational approximation to algebraic
numbers was extended by many a mathematician, including Th. Schneider,
A.O. Gel’fond, F. Dyson, until K. F. Roth obtained in 1955 a result which is
essentially optimal. In his proof, he introduces polynomials in many variables.

An incredibly powerful higher dimensional generalization of Thue–Siegel–
Roth’s Theorem, the Subspace Theorem, was obtained in 1970 by W.M. Schmidt
[75]; see also [7, 8]. Again, the proof involves a construction of an auxiliary
polynomial in several variables, and one of the most difficult auxiliary results is
a zero estimate (index theorem).

Schmidt’s Subspace Theorem, together with its variants (including effective
estimates for the exceptional subspaces, as well as results involving several val-
uations), have a large number of applications: to Diophantine approximation
and Diophantine equations, to transcendence and algebraic independence, to
the complexity of algebraic numbers – see [7].

We give here only a simplified statement of this fundamental result, which
is already quite deep and very powerful.

Theorem 3.2 (Schmidt’s Subspace Theorem – simplified form). For m ≥ 2
let L1, . . . , Lm be independent linear forms in m variables with algebraic coeffi-
cients. Let ε > 0. Then the set

{x = (x1, . . . , xm) ∈ Zm ; |L1(x) · · ·Lm(x)| ≤| x|−ε}

is contained in the union of finitely many proper subspaces of Qm.

3.1.2 Siegel, Gel’fond, Schneider

In 1932, C.L. Siegel [82] obtained the first results on the transcendence of elliptic
integrals of the first kind (a Weierstrass elliptic function cannot have simulta-
neously algebraic periods and algebraic invariants g2, g3), by means of a very
ingenious argument, which involved an auxiliary function whose existence fol-
lows from the Dirichlet’s box principle. This idea turned out to be crucial in
the development of transcendental number theory.

The seventh of the 23 problems raised by D. Hilbert in 1900 is to prove
the transcendence of the numbers αβ for α and β algebraic (α != 0, α != 1,

15
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β !∈ Q). In this statement, αβ stands for exp(β log α), where log α is any2

logarithm of α. The solution was achieved independently by A.O. Gel’fond [31]
and Th. Schneider [76] in 1934. Consequences, already quoted by Hilbert, are
the facts that 2

√
2 and eπ are transcendental. The question of the arithmetic

nature of 2
√

2 was considered by L. Euler in 1748 [22].
The proofs by Gel’fond and Schneider are different, but both of them rest on

some auxiliary function, which arises from Dirichlet’s box principle, following
Siegel’s contribution to the theory.

Here are the basic ideas behind the methods of Gel’fond and Schneider. Let
us argue by contradiction and assume that α, β and αβ are all algebraic, with
α != 0, α != 1, β !∈ Q. Define K = Q(α,β, αβ). By assumption, K is a number
field.

A.O. Gel’fond’s proof [31] rests on the fact that the two entire functions ez

and eβz are algebraically independent, they satisfy differential equations with
algebraic coefficients and they take simultaneously values in K for infinitely
many z, viz. z ∈ Z log α.

Th. Schneider’s proof [76] is different: he notices that the two entire functions
z and αz = ez log α are algebraically independent, they take simultaneously
values in K for infinitely many z, viz. z ∈ Z + Zβ. He makes no use of
differential equations, since the coefficient log α, which occurs by derivating the
function αz, is not algebraic.

Schneider introduces a polynomial A(X,Y ) ∈ Z[X, Y ] in two variables and
considers the auxiliary function

F (z) = A(z, αz)

at the points m + nβ: these values γmn are in the number field K.
Gel’fond also introduces a polynomial A(X,Y ) ∈ Z[X,Y ] in two variables

and considers the auxiliary function

F (z) = A(ez, eβz);

the values γmn at the points m log α of the derivatives F (n)(z) are again in the
number field K.

With these notations, the proofs are similar: the first step is the existence
of a non–zero polynomial A, of partial degrees bounded by L1 and L2, say,
such that the associated numbers γmn vanish for certain values of m and n, say
0 ≤ m < M , 0 ≤ n < N . This amounts to showing that a system of linear
homogeneous equations has a non–trivial solution; linear algebra suffices for the
existence. In this system of equations, the coefficients are algebraic numbers
in the number field K, the unknowns are the coefficients of the polynomial A.
There are several options at this stage: one may either require only that the
coefficients of A lie in the ring of integers of K, in which case the assumption

2The assumption α != 1 can be replaced by the weaker assumption log α != 0. That means
that one can take α = 1, provided that we select for log α a non–zero multiple of 2iπ. The
result allowing α = 1 is not more general: it amounts to the same to take α = −1, provided
that one replaces β by 2β.
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L1L2 > MN suffices. An alternative way is to require the coefficients of A to
be in Z, in which case one needs to assume L1L2 > MN [K : Q].

This approach is not quite sufficient for the next steps: one will need es-
timates for the coefficients of this auxiliary polynomial A. This is where the
Thue–Siegel Lemma 3.1 comes into the picture: by assuming that the number
of unknowns, namely L1L2, is slightly larger than the number of equations, say
twice as large, this lemma produces a bound, for a non–trivial solution of the
homogeneous linear system, which is sharp enough for the rest of the proof.

The second step is an induction: one proves that γmn vanishes for further
values of (m, n). Since there are two parameters (m, n), there are several options
for this extrapolation (increasing m, or n, or m + n, for instance), but, anyway,
the idea is that if F has sufficiently many zeroes, then F takes rather small values
on some disc (Schwarz Lemma), and so do its derivatives (Cauchy’s inequalities).
Further, an element of K which is sufficiently small should vanish (by a Liouville
type inequality, or a so-called size inequality, or else the product formula – see,
for instance, [41, 8, 24, 104] among many references on this topic).

For the last step, there are also several options: one may perform the induc-
tion with infinitely many steps and use an asymptotic zero estimate, or else stop
after a finite number of steps and prove that some determinant does not vanish.
The second method is more difficult and this is the one Schneider succeeded to
complete, but his proof can be simplified by pursuing the induction forever.

There is a duality between the two methods. In Gel’fond ’s proof, replace L1

and L2 by S1 and S2, and replace M and N by T0 and T1; hence, the numbers
γmn which arise are (

d

dz

)t0 (
e(s1+s2β)z

)
z=t1 log α

.

In Schneider’s proof, replace L1 and L2 by T1 and T2, and replace M and N by
S0 and S1; then the numbers γmn which arise are

(
zt0αt1z

)
z=s1+s2β

.

It is easily seen that the numbers γmn arising from Gel’fond’s and Schneider’s
methods are the same, namely

(s1 + s2β)t0αt1s1(αβ)t1s2 . (3.3)

See [99] and § 13.7 of [104].
Gel’fond–Schneider Theorem was extended in 1966 by A. Baker [4], who

proved the more general result that if log α1, . . . , log αn are Q–linearly inde-
pendent logarithms of algebraic numbers, then the numbers 1, log α1, . . . , log αn

are linearly independent over Q. The auxiliary function used by Baker may be
considered as a function of several variables, or as a function of a single com-
plex variable, depending on the point of view (cf. [95]). The analytic estimate
(Schwarz lemma) involves merely a single variable. The differential equations
can be written with a single variable with transcendental coefficients. By intro-
ducing several variables, only algebraic coefficients occur. See also § 3.1.4.

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

To be more precise, assume that α1, . . . ,αn, αn+1, β0, . . . ,βn are algebraic
numbers which satisfy

β0 + β1 log α1 + βn log αn = log αn+1

for some specified values of the logarithms of the αj . Then the n + 2 functions
of n + 1 variables

z0, e
z1 , . . . , ezn , eβ0z0+β1z1+···+βnzn

satisfy differential equations with algebraic coefficients and take algebraic values
at the integral multiples of the point

(1, log α1, . . . , log αn) ∈ Cn+1.

This situation is therefore an extension of the setup in Gel’fond’s solution of
Hilbert’s seventh problem, and Baker’s method can be viewed as an exten-
sion of Gel’fond’s method. The fact that all points are on a complex line
C(1, log α1, . . . , log αn) ⊂ Cn+1 means that Baker’s method requires only tools
from the theory of one complex variable.

On the other hand, the corresponding extension of Schneider’s method re-
quires several variables: under the same assumptions, consider the functions

z0, z1, . . . , zn, ez0αz1
1 · · ·αzn

n

and the points in the subgroup of Cn+1 generated by
(
{0}× Zn

)
+ Z(β0, β1, . . . ,βn).

Since Baker’s Theorem includes the transcendence of e, there is no hope to prove
it without introducing the differential equation of the exponential function – in
the factor ez0 of the last function ez0αz1

1 · · ·αzn
n , the number e cannot be replaced

by an algebraic number! – hence we need to take also derivatives with respect
to z0. For this method, we refer to [104]. The duality between Baker’s method
and Schneider’s method in several variables is explained below in § 3.2.

3.1.3 Schneider–Lang Criterion

In 1949, [78] Th. Schneider produced a very general statement on algebraic
values of analytic functions, which can be used as a principle for proofs of
transcendence. This statement includes a large number of previously known
results, like the Hermite–Lindemann and Gel’fond–Schneider Theorems. It also
contains the so–called Six exponentials Theorem 3.9 (which was not explicitly
in the literature then). To a certain extent, such statements provide partial
answers to Weierstraß question (see § 2.1) that exceptional sets of transcendental
functions are not too large; here, one puts restrictions on the functions, while in
Pólya’s work concerning integer–valued entire functions, the assumptions were
mainly on the points and the values (the mere condition on the functions were
that they have a finite order of growth).
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A few years later, in his book [79] on transcendental numbers, Schneider gave
variants of this statement, which lose some generality but gained in simplicity.

Further simplifications were introduced by S. Lang in 1964 and the state-
ment which is reproduced in his book on transcendental numbers [41] is the
so-called Criterion of Schneider–Lang (see also the appendix of [42] as well as
[95] Th. 3.3.1).

Theorem 3.4. Let K be a number field and f1, . . . , fd be entire functions in C.
Assume that f1 and f2 are algebraically independent over K and have finite order
of growth. Assume also that they satisfy differential equations: for 1 ≤ i ≤ d,
assume that the derivative f ′i of fi is a polynomial in f1, . . . , fd with coefficients
in K. Then the set S of w ∈ C such that all fi(w) are in K is finite3.

This statement includes the Hermite–Lindemann Theorem on the transcen-
dence of eα: take

K = Q(α, eα), f1(z) = z, f2(z) = ez, S = {mα ; m ∈ Z},

as well as the Gel’fond –Schneider Theorem on the transcendence of αβ following
Gel’fond’s method: take

K = Q(α,β, αβ), f1(z) = ez, f2(z) = eβz, S = {m log α ; m ∈ Z}.

This criterion 3.4 does not include some of the results which are proved by
means of Schneider’s method (for instance, it does not contain the Six Expo-
nentials Theorem 3.9), but there are different criteria (not involving differential
equations) for that purpose (see, for instance, [41, 95, 104]).

Here is the idea of the proof of the Schneider–Lang Criterion 3.4. We argue
by contradiction: assume f1 and f2 take simultaneously their values in the
number field K for different values w1, . . . , wS ∈ C, where S is sufficiently
large. We want to show that there exists a non–zero polynomial P ∈ Z[X1, X2],
such that the function P (f1, f2) is the zero function: this will contradict the
assumption that f1 and f2 are algebraically independent.

The first step is to show that there exists a non–zero polynomial P ∈
Z[X1, X2], such that the function F = P (f1, f2) has a zero of high multiplicity,
say ≥ T , at each ws, (1 ≤ s ≤ S): we consider the system of ST homogeneous
linear equations

(
d

dz

)t

F (ws) = 0 for 1 ≤ s ≤ S and 0 ≤ t < T, (3.5)

where the unknowns are the coefficients of P . If we require that the partial
degrees of P are strictly less than L1 and L2 respectively, then the number
of unknowns is L1L2. Since we are looking for a polynomial P with rational

3For simplicity, we consider only entire functions; Schneider–Lang’s Theorem deals, more
generally, with meromorphic functions, and this is important for applications, for instance to
elliptic functions. To deal with functions which are analytic in a disc only is also an interesting
issue [90, 91, 92, 93, 94].
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integer coefficients, we need to introduce the degree [K : Q] of the number field
K. As soon L1L2 > TS[K : Q], there is a non–trivial solution. Further, the
Thue–Siegel Lemma 3.1 produces an upper bound for the coefficients of P . This
bound is sharp enough if one assumes for instance L1L2 ≥ 2TS[K : Q].

The next step is an induction: the goal is to prove that F = 0. By induction
on T ′ ≥ T , one first proves

(
d

dz

)t

F (ws) = 0 for 1 ≤ s ≤ S and 0 ≤ t < T ′.

One already knows that these conditions hold for T ′ = T by (3.5).
The proof of this induction is the same as the ones by Gel’fond and Schneider

of the transcendence of αβ , (see § 3.1.2), combining an analytic upper bound
(Schwarz Lemma) and an arithmetic lower bound (Liouville’s inequality). At
the end of the induction, one deduces F = 0, which is the desired contradiction
with the algebraic independence of f1 and f2.

As we have seen in § 3.1.2, such a scheme of proof is characteristic of the
Gel’fond–Schneider’s method.

The main analytic argument is Schwarz Lemma for functions of one variable,
which produces an upper bound for the modulus of an analytic function having
many zeroes. One also uses Cauchy’s inequalities in order to bound the moduli
of the derivatives of the auxiliary function.

In this context, a well known open problem raised by Th. Schneider (this
is the second in the list of his 8 problems from his book [79]) is related with
his proof of the transcendence of j(τ). Here, j denotes the modular function
defined in the upper half plane ,m(z) > 0, while τ is an algebraic point in this
upper half plane which is not imaginary quadratic. Schneider himself proved
the transcendence of j(τ), but his proof is not direct, it rests on the use of
elliptic functions (one may apply the Schneider–Lang Criterion for meromorphic
functions). His question is to prove the same result by using modular functions.
In spite of recent progress on transcendence of values of modular functions (see
§ 3.1.6), this problem is still open. The difficulty lies in the analytic estimate
and the absence of a suitable Schwarz Lemma – the best results on this topic
are due to I.Wakabayashi [90, 91, 92, 93, 94].

3.1.4 Higher dimension: several variables

In 1941, Th. Schneider [77] obtained an outstanding result on the values of
Euler’s Gamma and Beta functions: for any rational numbers a and b such that
none of a, b and a + b is an integer, the number

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

is transcendental.
His proof involves a generalization of Gel’fond’s method to several variables

and yields a general transcendence criterion for functions satisfying differential
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equations with algebraic coefficients and taking algebraic values at the points of
a large Cartesian product. He applies this criterion to the theta functions asso-
ciated with the Jacobian of the Fermat curves. His transcendence results apply,
more generally, to yield transcendence results on periods of abelian varieties.

After a suggestion of P. Cartier, S. Lang extended the classical results on
the transcendence of the values of the classical exponential function to the ex-
ponential function of commutative algebraic groups. During this process, he
generalized the one dimensional Schneider–Lang criterion 3.4 to several vari-
ables [41] Chap. IV. In this higher dimensional criterion, the conclusion is that
the set of exceptional values in Cn cannot contain a large Cartesian product.
This was the generalization to several variables of the fact that in the one di-
mensional case the exceptional set is finite (with a bound for the number of
elements).

A simplified version of the Schneider–Lang Criterion in several variables for
Cartesian products is the following ([104] Theorem 4.1).

Theorem 3.6 (Schneider–Lang Criterion in several variables). Let d and n be
two integers with d > n ≥ 1, K be a number field, and f1, . . . , fd be algebraically
independent entire functions of finite order of growth. Assume, for 1 ≤ ν ≤
n and 1 ≤ i ≤ d, that the partial derivative (∂/∂zν)fi of fi belongs to the
ring K[f1, . . . , fd]. Further, let (y

1
, . . . , y

n
) be a basis of Cn over C. Then the

numbers

fi(s1y1
+ · · · + sny

n
),

(
1 ≤ i ≤ d, (s1, . . . , sn) ∈ Zn

)

do not all belong to K.

Besides the corollaries already derived by Schneider in 1941, Lang gave fur-
ther consequences of this result to commutative algebraic groups, especially
abelian varieties [41] Chap. IV and [98] Chap. 5.

It is interesting, from an historical point of view, to notice that Bertrand and
Masser [6] succeeded in 1980 to deduce Baker’s Theorem form the Schneider–
Lang Criterion 3.6 (see [104] § 4.2). They could also prove the elliptic analog
of Baker’s result and obtain the linear independence, over the field of algebraic
numbers, of elliptic logarithms of algebraic points – at that time such a result
was available only in the case of complex multiplication (by previous work of
D.W. Masser).

According to [41], Historical Note of Chap. IV, M. Nagata suggested that, in
the higher dimensional version of the Schneider–Lang Criterion, the conclusion
could be that the exceptional set of points, where all the functions take simul-
taneously values in a number field K, is contained in an algebraic hypersurface,
the bound for the number of points being replaced by a bound for the degree of
the hypersurface. This program was fulfilled by E. Bombieri in 1970 [10].

Theorem 3.7 (Bombieri). Let d and n be two integers with d > n ≥ 1, K be
a number field, and f1, . . . , fd be algebraically independent entire functions of
finite order of growth. Assume, for 1 ≤ ν ≤ n and 1 ≤ i ≤ d, that the partial
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derivative (∂/∂zν)fi of fi belongs to the ring K[f1, . . . , fd]. Then the set of
points w ∈ Cn where the d functions f1, . . . , fd all take values in K is contained
in an algebraic hypersurface.

Bombieri produces an upper bound for the degree of such an hypersurface
(see also [98] Th. 5.1.1). His proof [10] involves different tools, including L2–
estimates by L. Hörmander for functions of several variables. One main difficulty
that Bombieri had to overcome was to generalize Schwarz Lemma to several
variables, and his solution involves an earlier work by E. Bombieri and S. Lang
[9], where they use Lelong’s theory of the mass of zeroes of analytic functions
in a ball. Chapter 7 of [98] is devoted to this question. The next statement
(Proposition 3.8) follows from the results in Chapter 7 of [98]. Given a finite
subset S of Cn and an integer t ≥ 1, one defines ωt(S) as the smallest degree of
a polynomial having a zero at each point of S of multiplicity at least t. Then
the sequence ω(t)/t has a limit Ω(S), which satisfies

1
t + n− 1

ωt(S) ≤ Ω(S) ≤ 1
t
ωt(S) ≤ ω1(S)

for all t ≥ 1.

Proposition 3.8 (Schwarz Lemma in several variables). Let S be a finite subset
of Cn and ε be a positive real number. There exists a positive real number
r0 = r0(S, ε) such that, for any positive integer t, any real numbers R and r
with R > r ≥ r0 and any entire function having a zero of multiplicity ≥ t at
each point of S,

|f |r ≤
(

4nr

R

)t(Ω(S)−ε)

|f |R.

More recent results on Schwarz Lemma in several variables are due to D. Roy
[71, 72, 73, 74]. In particular, [73] shows that Conjecture 7.1.10 of [98], on
Schwarz’s Lemma in several variables for finitely generated subgroups of Cn,
does not hold without a technical condition of distribution.

3.1.5 The six exponentials Theorem

Here is the six exponentials Theorem, due to Siegel, Lang and Ramachandra
[41, 95, 104, 98].

Theorem 3.9 (Six exponentials Theorem). Let x1, . . . , xd be complex numbers
which are linearly independent over Q and let y1, . . . , y* be also complex numbers
which are linearly independent over Q. Assume d& > d + &. Then one at least
of the numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ &) (3.10)

is transcendental.

The condition d& > d + & in integers d and & means that the relevant cases
are d = 2 and & = 3 or d = 3 and & = 2 (there is a symmetry), hence the name

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

of the statement (since &d = 6 in these cases). We refer to [41, 95] for more
information on this topic.

The classical proof by Schneider’s method involves an auxiliary function of
the form

F (z) = P (ex1z, . . . , exdz),

where the existence of the polynomial P follows from Dirichlet’s box principle
and the Thue–Siegel Lemma 3.1. The conditions which are required are that
F vanishes at many points of the form s1y1 + . . . + s*y*, with varying integers
s1, . . . , s*. The induction shows that F vanishes at more points of this form,
until one deduces that F vanishes at all such points, and the conclusion then
easily follows. One could avoid an infinite induction by using a zero estimate.

A variant is to use an interpolation determinant (see § 4 and [104] Chap. 2).
As an example of upper bound for an interpolation determinant, here is Lemma
2.8 in [104].

Lemma 3.11. Let ϕ1, . . . ,ϕL be entire functions in C, ζ1, . . . , ζL be elements
of C, σ1, . . . ,σL nonnegative integers, and 0 < r ≤ R be real numbers, with
|ζµ| ≤ r (1 ≤ µ ≤ L). Then the absolute value of the determinant

∆ = det
(( d

dz

)σµ

ϕλ(ζµ)
)

1≤λ,µ≤L

is bounded from above by

|∆| ≤
(

R

r

)−L(L−1)/2+σ1+···+σL

L!
L∏

λ=1

max
1≤µ≤L

sup
|z|=R

∣∣∣∣

(
d

dz

)σµ

ϕλ(z)
∣∣∣∣ .

Another method of proof of the six exponentials Theorem 3.9 is proposed
in [101, 103]. The starting idea is to consider the function of two complex
variables ezw. If all numbers in (3.10) are algebraic, then this function takes
algebraic values (in fact in a number field) at all points (z, w), where z is of
the form t1x1 + · · · + tdxd and w of the form s1y1 + . . . + s*y*, with integers
t1, . . . , td, s1, . . . , s*. The method does not work like this: a single function ezw

in two variables does not suffice, one needs several functions. For this reason
one introduces redundant variables. Letting zh and wk be new independent
variables, one investigates the values of the functions are ezhwk at the points of
Cartesian products.

Redundant variables had already been introduced in transcendental number
theory in 1981 by P. Philippon [65], for giving a proof of an algebraic inde-
pendence result announced by G.V. Chudnovskii – at that time, the original
proof was very complicated ; the approach by Philippon, using a criterion for
algebraic independence due to É. Reyssat, introduced a dramatic simplification.
Now, much sharper results are known. In 1981, introducing several variables
was called Landau’s trick, which is a homogeneity argument: letting the number
of variables tend to infinity enables one to kill error terms (see for instance [98],
§ 7.1.a p. 116).
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The generalisation of the six exponentials Theorem to higher dimension, also
with multiplicities, is one of the main topics of [104].

Further auxiliary functions occur in the works on algebraic independence by
A.O. Gel’fond [33], G.V. Chudnovskii and others. A reference is [61].

3.1.6 Modular functions

The solution, by the team at St Etienne [5], of the problems raised by Mahler
and Manin on the transcendence of the values of the modular function J(q) for
algebraic values of q in the unit disc,4 involves an interesting auxiliary func-
tion. The general scheme of proof is the one of Gel’fond and Schneider. They
construct their auxiliary function by means of the Thue–Siegel Lemma 3.1 as
a polynomial in z and J(z) having a high multiplicity zero at the origin, say
≥ L. They consider the exact order of multiplicity M , which by construction
is ≥ L, and they bound |z−MF (z)| in terms of |z| (this amounts to using the
easiest case of Schwarz Lemma in one variable with a single point). They apply
this estimate to z = qS , where S is the smallest integer for which F (qS) != 0.
Liouville’s estimate gives the conclusion. See also [61], Chap. 2.

A variant of this construction was performed by Yu. V. Nesterenko in 1996
(see [62] and [61] Chap. 3), when he proved the algebraic independence of π, eπ

and Γ(1/4): his main result is that for any q in the open set 0 < |q| < 1, the
transcendence degree of the field

Q
(
q, P (q), Q(q), R(q)

)

is at least 3. Here, P , Q, R are the classical Ramanujan functions, which
are sometimes denoted as E2, E4 and E6 (Eisenstein series). The auxiliary
function F is a polynomial in the four functions z, E2(z), E4(z), E6(z) ; like
for the théorème stéphanois on the transcendence of J(q), it is constructed by
means of the Thue–Siegel Lemma 3.1, so that it has a zero at the origin of large
multiplicity, say M . In order to apply a criterion for algebraic independence,
Nesterenko needs to establish an upper bound for M , and this is not an easy
result. An alternative argument, due to Philippon (see [61] Chap. 4), is to apply
a measure of algebraic independence of Faisant and Philibert [23] on numbers
of the form ω/π and η/π.

3.2 Universal auxiliary functions

3.2.1 A general existence theorem

In the Gel’fond–Schneider method, the auxiliary function is constructed by
means of the Thue–Siegel Lemma 3.1, and the requirement is that it has many
zeroes (multiplicity are there in Gel’fond’s method, not in Schneider’s method).
There is an alternative construction, which was initiated in a joint work with
M. Mignotte in 1974 [59], in connexion with quantitative statements related
with transcendence criteria like the Schneider–Lang criterion. This approach

4The connexion between J(q) and j(τ) is j(τ) = J(e2iπτ ).
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turned out to be especially efficient in another context, namely in extending
Schneider’s method to several variables [96]. The idea is to require that the
auxiliary function F has small Taylor coefficients at the origin; it follows that
its modulus on some discs will be small, hence its values (including derivatives,
if one wishes) at points in such a disc will also be small. Combining Liouville’s
estimate with Cauchy’s inequality for estimating the derivatives, one deduces
that F has a lot of zeroes, more than would be reached by the Dirichlet’s box
principle. At this stage there are several situations. The easy case is when a
sharp zero estimate is known: we immediately reach the conclusion without any
further extrapolation: in particular there is no need of Schwarz Lemmas in sev-
eral variables. This is what happend in [96] for exponential functions in several
variables, the zero estimate being due to D.W. Masser [57]. This transcendence
result, dealing with products of multiplicative groups (tori), can be extended to
commutative algebraic groups [97], thanks to the zero estimate of Masser and
Wüstholz [54, 55].

A zero estimate is a statement which gives a lower bound for the degree of a
polynomial which vanishes at given points (when multiplicities are introduced,
this is sometimes called a multiplicity estimate). D.W. Masser developed the
study of zero estimates, and P. Philippon, G. Wüstholz, Yu.V. Nesterenko were
among those who contributed to the theory. Introductions to this subject have
been written by D. Roy (Chapters 5 and 8 of [104] and Chapter 11 of [61]). Also
Chapter 5 of [4] is devoted to multiplicity estimates.

A Schwarz Lemma is a statement which gives an upper bound for the max-
imum modulus of an analytic function which vanishes at given points – multi-
plicities may be there. We gave an example in Proposition 3.8.

When the function has only small values at these points, instead of zeroes,
one speaks either of a small value Lemma or of an approximate Schwarz Lemma
[66].

A Schwarz Lemma implies a zero estimate, and a small value Lemma im-
plies a Schwarz Lemma. However, the assumptions for obtaining a small value
Lemma, for instance, are usually stronger than for only a Schwarz Lemma: as
an example, in one variable, there is no need to introduce an assumption on the
distance of the given points for a Schwarz Lemma, while a small value Lemma
woud not be true without such a condition.

The construction of universal auxiliary functions is developed in [99] (see
Lemme 2.1) and [100]. Here is Proposition 4.10 of [104].

Proposition 3.12. Let L and n be positive integers, N , U , V , R, r positive
real numbers and ϕ1, . . . ,ϕL entire functions in Cn. Define W = N + U + V
and assume

W ≥ 12n2, e ≤ R

r
≤ eW/6,

L∑

λ=1

|ϕλ|R ≤ eU

and
(2W )n+1 ≤ LN

(
log(R/r)

)n
.
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Then there exist rational integers p1, . . . , pL, with

0 < max
1≤λ≤L

|pλ| ≤ eN ,

such that the function F = p1ϕ1 + · · · + pLϕL satisfies

|F |r ≤ e−V .

For an application to algebraic independence, see [61] Prop. 3.3 Ch. 14.
The construction of universal auxiliary functions is one of the tools in D. Roy’s

approach to Schanuel’s Conjecture in [71, 72].

3.2.2 Duality

In the papers [99] (see Lemme 2.1) and [100], a dual construction is performed,
where auxiliary analytic functionals are constructed. The duality (3.3) be-
tween the methods of Schneider and Gel’fond can be explained by means of
the Fourier–Borel transform (see [99], especially Lemmas 3.1 and 7.6, and [104],
§ 13.7). In the special case of exponential polynomials, the Fourier–Borel duality
reduces to the relation

Dσ
(
zτetz

)
(s) = Dτ (zσesz) (t), (3.13)

where σ, τ , s, t, z stand for tuples

σ = (σ1, . . . ,σn) ∈ Zn
≥0, τ = (τ1, . . . , τn) ∈ Zn

≥0,
s = (s1, . . . , sn) ∈ Cn, t = (t1, . . . , tn) ∈ Cn,
z = (z1, . . . , zn) ∈ Cn

and

Dσ =
(

∂

∂z1

)σ1

· · ·
(

∂

∂zn

)σn

(see [99] Lemma 3.1 and [104] Corollary 13.21). This is a generalization in
several variables of the formula

(
d

dz

)σ (
zτetz

)
(s) =

(
d

dz

)τ

(zσesz) (t)

for t, s in C and σ, τ non–negative integers, both sides being

min{τ,σ}∑

k=0

σ!τ !
k!(τ − k)!(σ − k)!

tσ−ksτ−kest.

Another (less special) case of (3.13) is the duality between Schneider’s method
in several variables and Baker’s method. In Baker’s method, one considers the
values at (t, t log α1, . . . , t log αn) of

(
∂

∂z0

)τ0

· · ·
(

∂

∂zn

)τn (
zσ
0 es1z1 · · · esnznes0(β0z0+···+βnzn)

)
,

26



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

while Schneider’s method in several variables deals with the values of
(

∂

∂z0

)σ (
zτ0
0 zτ1

1 · · · zτn
n (ez0αz1

1 · · ·αzn
n )t

)

at the points
(s0β0, s1 + s0β1, . . . , sn + s0βn).

Again, these values are just the same, namely

min{τ0,σ}∑

k=0

σ!τ0!
k!(τ0 − k)!(σ − k)!

tσ−k(s0β0)τ0−k(s1+s0β1)τ1 · · · (sn+s0βn)τn(αs0
0 · · ·αsn

n )t

with
α0 = eβ0αβ1

1 · · ·αβn
n .

This is a special case of (3.13) with

τ = (τ0, . . . , τn) ∈ Zn+1
≥0 , σ = (σ0, 0, . . . , 0) ∈ Zn+1

≥0 ,

t = (t, t log α1, . . . , t log αn) ∈ Cn+1, s = (s0β0, s1+s0β1, . . . , sn+s0βn) ∈ Cn+1,

z = (z0, . . . , zn) ∈ Cn+1.

3.3 Mahler’s Method

In 1929, K. Mahler [50] developed an original method to prove the transcen-
dence of values of functions satisfying certain types of functional equations.
This method was somehow forgotten, for instance it is not quoted among the
440 references of the survey paper [25] by N.I. Fel’dman, and A.B. Šidlovskĭı.
After the publication of the paper [52] by Mahler in 1969, several mathemati-
cians (including K. Kubota, J.H. Loxton and A.J. van der Poorten) extended
the method (see the Lecture Notes [64] by K. Nishioka for further references).
The construction of the auxiliary function is similar to what is done in Gel’fond–
Schneider’s method, with a main difference: in place of the Thue–Siegel Lemma
3.1, only linear algebra is required. No estimate for the coefficients of the aux-
iliary polynomial is needed in Mahler’s method.

The following example is taken from § 1.1 of [64]. Let d ≥ 2 be a rational
integer and α an algebraic number with 0 < |α| < 1. Here is a sketch of proof
that the number

∞∑

k=0

αdk

is transcendental, a result due to K. Mahler [50]. The basic remark is that the
function

f(z) =
∞∑

k=0

zdk

27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

satisfies the functional equation f(zd) = f(z) − z. It is not difficult to check
also that f is a transcendental function, which means that if P is a non–zero
polynomial in C[X, Y ], then the function F (z) = P

(
z, f(z)

)
is not the zero

function. From linear algebra, it follows that if L is a sufficiently large integer,
there exist a non–zero polynomial P in Z[X, Y ] of partial degrees ≤ L such that
the associated function F (z) = P

(
z, f(z)

)
has a zero at the origin of multiplicity

> L2. Indeed, the existence of P amounts to showing the existence of a non–
trivial solution to a system of L2+1 homogeneous linear equations with rational
coefficients in (L + 1)2 unknowns.

If T denotes the multiplicity of F at the origin, then the limit

lim
k→∞

F (αdk

)α−dkT

is a non–zero constant. One deduces an upper bound for |F (αdk

)| when k is a
sufficiently large positive integer, and this upper bound is not compatible with
Liouville’s inequality. Hence f(α) is transcendental.

Another instructive example of application of Mahler’s method is given by
D.W. Masser in the first of his Cetraro’s lectures [58].

The numbers whose transcendence is proved by this method are not Liou-
ville numbers, but they are quite well approximated by algebraic numbers. In
the example we discussed, the number f(α) is very well approximated by the
algebraic numbers

K∑

k=0

αdk

, (K > 0).

4 Interpolation determinants

An interesting development of the saga of auxiliary functions took place in 1991,
with the introduction of interpolation determinants by M. Laurent. Its origin
goes back to earlier works on a question raised by Lehmer, which we first discuss.

4.1 Lehmer’s Problem

Let θ be a non–zero algebraic integer of degree d. Mahler’s measure of θ is

M(θ) =
d∏

i=1

max(1, |θi|) = exp
(∫ 1

0
log |f(e2iπt|dt

)
,

where θ = θ1 and θ2, · · · , θd are the conjugates of θ and f the (monic) irreducible
polynomial of θ in Z[X]

f(X) = (X − θ1) · · · (X − θd) ∈ Z[X].

From the definition one deduces M(θ) ≥ 1. According to a well-known and easy
result of Kronecker, M(θ) = 1 if and only if θ is a root of unity.
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D.H. Lehmer [46] asked whether there is a constant c > 1 such that M(θ) < c
implies that θ is a root of unity.

Among many tools which have been introduced to answer this question,
we only quote some of them which are relevant for our concern. In 1977, M.
Mignotte [60] used ordinary Vandermonde determinants to study algebraic num-
bers whose conjugates are close to the unit circle. In 1978, C.L. Stewart [85]
sharpened earlier results by Schinzel and Zassenhaus (1965) and Blanksby and
Montgomery (1971) by introducing an auxiliary function (whose existence fol-
lows from the Thue–Siegel Lemma 3.1) and using an extrapolation similar to
what is done in the Gel’fond–Schneider method.

Auxiliary functions, introduced by Stewart, were one of the tools used by
E. Dobrowolski in 1979 [21] His ability to exploit congruences mod p was a
major advance that significantly sharpened the previous estimates of Blanksby–
Montgomery and Stewart. This use of congruences mod p, and then summing
the estimates over p in a suitable interval, resulted in a very substantial im-
provement, falling just short of the Lehmer conjecture. He achieved the best
unconditional result known so far in this direction (apart from some marginal
improvements on the numerical value for c):

There is a constant c such that, for θ a non–zero algebraic integer
of degree d,

M(θ) < 1 + c(log log d/ log d)3

implies that θ is a root of unity.

In 1982, D. Cantor and E.G. Straus [15] revisited this method of Dobrowolski
by replacing the auxiliary function by a generalised Vandermonde determinant.
The idea is the following: in Dobrowolski’s proof, there is a zero lemma which
can be translated into a statement that some matrix has a maximal rank; there-
fore, some determinant is not zero. On the one hand, this determinant is not
too large: an upper bound for its absolute value follows from Hadamard’s in-
equality; the upper bound depends on M(θ). On the other hand, the absolute
value of this determinant is shown to be big, because it has many factors of
the form

∏
i,j |θ

p
i − θj |k, for many primes p. The lower bound makes use of a

Lemma due to Dobrowolski: For θ not a root of unity,
∏

i,j

|θp
i − θj | ≥ pd

for any prime p. Combining the upper and lower bounds yields the conclusion.
One may also prove the lower bound by means of a p–adic Schwarz Lemma:

a function (here merely a polynomial) with many zeroes has a small (p–adic)
absolute value. This alternative argument produces a proof which is similar to
the ones arising from transcendental number theory, with analytic estimates on
the one side and arithmetic estimates (Liouville type, or product formula) on
the other. See [104] § 3.6.5 and § 3.6.6.

Dobrowolski’s result has been extended to several variables by F. Amoroso
and S. David in [2] – the higher dimensional version is much more involved.
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We refer to S. David’s survey [20] for further references on this topic. We only
notice the role of the generalized Dirichlet exponents ωt and Ω (see [98], § 1.3 and
Chap. 7), which were introduced in transcendental number theory, in connexion
with multidimensional Schwarz Lemmas (cf. Proposition 3.8).

4.2 Laurent’s interpolation determinants

In 1991, M. Laurent [44] discovered that one may get rid of the Dirichlet’s box
principle in Gel’fond–Schneider’s method by means of his interpolation determi-
nants. In the classical approach, there is a zero estimate (or vanishing estimate,
also called multiplicity estimate when derivatives are there), which shows that
some auxiliary function cannot have too many zeroes. This statement can be
converted into the non–vanishing of some determinant. Laurent works directly
with this determinant: a Liouville-type estimate produces a lower bound; the
remarkable fact is that analytic estimates like Schwarz Lemma produce sharp
upper bounds. Again, the analytic estimates depend only in one variable (even
if the determinant is a value of a function in many variables, it suffices to re-
strict this function to a complex line – see [104] § 6.2). Therefore, this approach
is especially efficient when dealing with functions of several variables, where
Schwarz Lemmas are lacking.

Baker’s method is introduced in [104] § 10.2 with interpolation determinants
and in § 10.3 with auxiliary functions.

Interpolation determinants are easy to use when a sharp zero estimate is
available. If not, it is more tricky to prove the analytic estimate. However,
it is possible to perform extrapolation in the transcendence methods involving
interpolation determinants: an example is a proof of Pólya’s theorem (2.2) by
means of interpolation determinants [102].

Proving algebraic independence results by means of interpolation determi-
nants was quoted as an open problem in [99] p. 257: at that time (1991),
auxiliary functions (or auxiliary functionals) were required, together with a
zero estimate (or an interpolation estimate). The first solution to this prob-
lem in 1997 [70] (see also [104] Corollary 15.10) makes a detour via measures
of simultaneous approximations: such measures can be proved by means of in-
terpolation determinants, and they suffice to produce algebraic independence
statements (small transcendence degree: at least two numbers in certain given
sets are algebraically independent). Conjecturally, this method should produce
large transcendence degree results as well – see [104] Conjecture 15.31. See also
the work by P. Philippon [67].

Another approach, due to M. Laurent and D. Roy [43] (see also [61] Chap. 13),
is based on the observation that in algebraic independence proofs, the determi-
nants which occur produce sequences of polynomials having small values to-
gether with their derivatives at a given point. By means of a generalization
of Gel’fond’s transcendence criterion involving multiplicities, M. Laurent and
D. Roy succeeded to get algebraic independence results. Further generalisa-
tions of Gel’fond’s criterion involving not only multiplicities, but also several
points (having some structure, either additive or multiplicative) are being in-
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vestigated by D. Roy in connection with his original strategy towards a proof
of Schanuel’s Conjecture [71, 72].

5 Bost slope inequalities, Arakelov’s Theory

Interpolation determinants require choices of bases. A further tool has been
introduced by J-B. Bost in 1994 [11], where bases are no longer required: the
method is more intrinsic. His argument rests on Arakelov’s Theory, which is
used to produce slope inequalities. This new approach is especially interesting
for results on abelian varieties obtained by transcendence methods, the examples
developed by Bost being related with the work of D. Masser and G. Wüstholz on
periods and isogenies of abelian varieties over number fields. Further estimates
related to Baker’s method and measures of linear independence of logarithms of
algebraic points on abelian varieties have been achieved by E. Gaudron [27, 28,
29] using Bost’s approach. An enlightening introduction to Bost method can be
found in the Bourbaki lecture [17] by A. Chambert-Loir in 2002.

References

[1] M. Ably and M. M’zari, Interpolation polynomiale sur un ordre d’un
corps de nombres, The Ramanujan J., 17 (2008), pp. 281–304.

[2] F. Amoroso and S. David, Le problème de Lehmer en dimension
supérieure, J. reine angew. Math., 513 (1999), pp. 145–179.
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[49] , Sur des classes très étendues de quantités dont la valeur n’est ni
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l’ensemble des points algébriques de fonctions analytiques, in
Seminar on number theory, 1983–1984 (Talence, 1983/1984),
Univ. Bordeaux I, Talence, 1984, pp. 8, Exp. No. 19.
http://www.digizeitschriften.de/resolveppn/GDZPPN002545349&L=2.

[91] , On the optimality of certain estimates for algebraic values of ana-
lytic functions, J. Austral. Math. Soc. Ser. A, 39 (1985), pp. 400–414.

[92] , Algebraic values of meromorphic functions on Riemann surfaces,
J. Number Theory, 25 (1987), pp. 220–229.

[93] , Algebraic values of functions on the unit disk, in Prospects of math-
ematical science (Tokyo, 1986), World Sci. Publishing, Singapore, 1988,
pp. 235–266.

[94] , An extension of the Schneider-Lang theorem, in Seminar on Dio-
phantine Approximation (Japanese) (Yokohama, 1987), vol. 12 of Sem.
Math. Sci., Keio Univ., Yokohama, 1988, pp. 79–83.

[95] M. Waldschmidt, Nombres transcendants, Springer-Verlag, Berlin,
1974. Lecture Notes in Mathematics, Vol. 402.

37

http://www.digizeitschriften.de/resolveppn/GDZPPN002545349&L=2
http://www.bibnum.education.fr/mathematiques/melange-danalyse-algebrique-et-de-geometrie
http://www.bibnum.education.fr/mathematiques/melange-danalyse-algebrique-et-de-geometrie


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[96] , Transcendance et exponentielles en plusieurs variables, Invent.
Math., 63 (1981), pp. 97–127.

[97] , Sous-groupes analytiques de groupes algébriques, Ann. of Math. (2),
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