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EXERCISES

Exercise 1. Let b > 2 be an integer, (a,)n>0 be a bounded sequence of rational
integers and (u,)n>0 an increasing sequence of positive integers. Assume that
the set {n >0 | a, # 0} is infinite. Define

Y= Z apb™ ",

n>0

(a) Assume

lim sup(tp41 — up) = 00.
n— oo

Show that 9 is irrational.
(b) Assume
lim sup(up 41 — 2uy) = oo.
n—oo
Show that ¥ is not a quadratic number.

(c) Assume
Un4-1

lim sup > 1.
n—00 Un
Show that 9 is transcendental.
(d) Assume
lim sup Yntl _ ~+00.

n—oo un

Show that ¥ is a Liouville number.

Exercise 2. Consider the following numbers:

= 1 =1
Sy ::;m’ 52;:;2”2_1,

> 1
53 1= Z::l (2n+1)2n+2)

1 3 1 1
Sy = — .
4 T;)(zm“ 4n+2+4n+3+4n+4)

Are they rational, algebraic irrational or transcendental?


http://www.imj-prg.fr/~michel.waldschmidt/index2.html

Exercise 3. Conjecture 2 p. 213 of the Introduction to Chapters X and XI in
Lang [ECDA] ' is the following:

For any € > 0, there exists a constant C(€) > 0 such that, for any
nonzero rational integers ai,...,ap, b1, ..., by with alfl e a,bl"’ #* 1,
we have

C(e)"B
bi L igbn 1] >
Ay crln = (Bi- BpA, Ay

where A; = max{1,|a;|}, B; = max{1,|b;|]} (1 <i<n)and B =
max{|Bi,...,Bn}.

(a) Assuming this conjecture, deduce the following result :

Let € > 0. There exists a constant C'(e) > 0 such that for z,y,p,q
positive integers satisfying xP # y?, we have

|;L'p — yq| > C(G) maX{l‘p’yq}l_%—é—e'

(b) Deduce the same estimate (a) from the abe Conjecture:

Let € > 0. There exists a constant k(€) > 0 with the following prop-
erty. Let a,b,c be three positive relatively prime integers satisfying
a+b=c. Then

c < r(e)Rad(abe)' .

Here, for a positive integer n, the radical of n is defined as

Rad(n) = Hp

pln

where the product is over the prime numbers p dividing n.
(c) Let

(Un)nso0 = 1,4,8,9,16, 25,27, 32, 36,49, 64, 81,100, 121,125,128, 144, . ..

be the sequence? of perfect powers a® with ¢ > 1 and b > 2. Deduce from (a)
Pillai’s Conjecture: tpy1 — Uy — 00 a8 N — 00.

Check that Pillai’s Conjecture is equivalent to the following statement: for any
k > 1, the equation P — y? = k has only finitely many solutions in positive
integers x,y,p, q satisfying p > 2, ¢ > 2.

1[ECDA] S. LANG, Elliptic curves: Diophantine analysis. Grund. der Math. Wiss. 231,
Springer-Verlag (1978).
?http://oeis.org/A001597


http://oeis.org/A001597

Exercise 4. Show that the only solutions of the equation 2% 4+ 3° = 5° in
nonnegative integers a, b and ¢ are given by

243=5, 2241=5, 2%43%2=52

Remark. Such equations occur in the theory of finite groups®. This exercise
shows that elementary methods sometimes yield very precise results, but only in
very specific special cases, using ad hoc arguments; while methods from Diophan-
tine approximation give much more general statements, in a systematic way4 -
however it is often necessary to complete the results arising from Diophantine
approximation with numerical computations.

Exercise 5. Recall that £ denotes the Q—vector subspace of C of all logarithms
of all nonzero algebraic numbers:

L={\eC | e cQ}.

(a) The homogeneous version of Baker’s Theorem on the linear independence of
logarithms of algebraic numbers is the following statement:

Let A1, ..., Ay be Q-linearly independent elements of L. Then A1, ..., Ay
be Q-linearly independent.

Prove that this theorem is equivalent to the following statement.

Let n be a positive integer and V' a vector subspace of C" which is
rational over Q. Then

voct=J Encn,
ECV

where E ranges over the vector subspaces of C" which are rational
over Q and contained in V.

Recall® that for a subfield K of C, a vector subspace of C" is rational over K
if it has a basis of elements of K™; this is equivalent to saying that it is an
intersection of kernels of linear forms with coefficients in K.

(b) The Conjecture on algebraic independence of logarithms of algebraic num-
bers is the following statement:

3J.L.Brenner & L.L.Foster, Exponential Diophantine equations, Pacific J. Math. 101
(1982), 263-301.

4D.Z.Mo & R.Tijdeman, Exponential Diophantine equations with four terms, Indag. Math.
(N.S.) 3 (1992), 47-57.

SExercise 1.4 of [GL.326]
M. Waldschmidt Diophantine approximation on linear algebraic groups. Grundlehren der
Mathematischen Wissenschaften. 326. Springer, 2000.
http://dx.doi.org/10.1007/978-3-662-11569-5


http://dx.doi.org/10.1007/978-3-662-11569-5

Let A\1,..., A, be Q-linearly independent elements of L. Let P €
Q[X4,...,X,] be a nonzero polynomial with rational coefficients.
Then P(A1,..., ) #0.

Prove that this conjecture is equivalent to the following conjecture (D. Roy):

For any algebraic subvariety B of C" defined over the field Q of
algebraic numbers,

vnLt= ) Encr,
ECYU

where E ranges over the set of vector subspaces of C™, rational over
Q, which are contained in Q.

(¢) List the vector subspaces of C* contained in the hypersurface
X1Xy— XoX3=0.

Which are the ones rational over Q7
(d) Recall the Four Exponentials Conjectures:

Let x1, s, be two complex numbers which are linearly independent
over Q. Let y1,y2, be two complex numbers which are linearly inde-
pendent over Q. Then one at least of the four numbers

eflyl’ er1y27 em’2y1’ eCEQyz

1s transcendental.

Deduce the Four Exponentials Conjecture from the Conjecture on algebraic
independence of logarithms of algebraic numbers.

Exercise 6. (a) Assuming Schanuel’s Conjecture, what is the transcendence
degree of the field generated over Q by the following 31 numbers?

e, m,em, e+m, e, 7 e, e, 7", et+te", m+e", me", " , e, 7"

1
eVZ 9V2 gm ge omoV3 92Y% (VB VT D03
Vs

rlogh, 7+ log5, 21952, 71983 (1og2)VZ 2V23V3 15g]0g3.

(b) Among these 31 numbers, which ones are known to be transcendental?
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SOLUTIONS OF THE EXERCISES

Solution to Exercise 1.
Any subsequence of a sequence (uy,),>¢ satisfying one of the conditions (a) to
(d) satisfies the same condition. Hence there is no loss of generality to assume
an # 0 for all n > 0.

Since the sequence u,, is increasing, we have u,1 > u, + 1 for all n > 0,
hence w1 > Uy +k foralln > 0and k > 0. Set A = max |an|. For N > 1, set

N-1
gy = b"N-1 and py = E Apb¥N 1T,

n=0

We have
D aph i S AN hTUNE S AN CpTve TR < AN,
n>N41 k>0 k>1
Assume N is sufficiently large, so that
UNFLITUN > A,

Then

- L |an]
Z anb w < bUiN S bUN ,
n>N+1
hence

qN

which ensures
9+ PN
qNn

Also we have

Ll A+
0< oy ol P
qN bun bun bun

n>N+1


http://www.imj-prg.fr/~michel.waldschmidt/index2.html

(a) Assume

lim sup(upn4+1 — up) = o0.
n—oo

We write b = gnb"N"“N-1_ Let € > 0. There exists N satisfying
A+1

€

buN—uN,1 >

From
A+1 €
bun bun—1’
we deduce
0< ‘19 _bNyp €
qN Iy

which implies that ¥ is irrational.
(b) Assume
lim sup(ty41 — 2u,) = oo.

n— oo
We write b~ = ¢%b"N 2“N-1_ Let € > 0. There exists N satisfying
b’IJ,N72’U,N71 > A + 1 .
€
We have
A+1 €
bun < bun—1’

hence

€

2
an

which implies that ¢ is not a quadratic number.
(c1) Assume

0<‘19pN <
qnN

U
ntl 9

lim sup
n—oo  Un
We write 0"~ = ¢ /uN=1 There exist n > 2 and infinitely many N such that
uy > nuy—1. From

2A 24
YA )
gnN qXIN/uN_l qN
using the Thue-Siegel-Roth Theorem, we deduce that 9 is transcendental.
(c2) Assume

) u
lim sup AR Y

n—oo  Un
We write b*N = q}(,N/uN’l. There exist 7 > 1 and infinitely many N such that
uy > nuy—1. From

qn quNN UN-1 dn



using Ridout’s Theorem, we deduce that 1 is transcendental.

(d) In the same way, if

. Un+1
lim sup nt

n— oo un

pry OO’
then for any x > 0 there exists N such that uy > kuy_1, hence

24
9PN o

0< ,
‘ qN qn

and 9 is a Liouville number. O

Ezxamples
For the sequence u,, = |2"| with > 1, we have lim (up41 — un) = 00.
n—oo

For the sequence u,, = |2"| with z > 2, we have lim (up41 — 2u,) = co.
n—oo

" w
For the sequence w,, = |2% | with z > 1, we have lim ntl S 9.
n—oo Uy
u
For the sequence u,, = [2™ | with # > 1, we have lim —** = oo

n—oo 1
Of course, each of the three last lower bounds implies the one above.

Solution to Exercise 2.

The answer is that S; and Sy are rational (telescoping series), Sy is also rational,
while S5 is transcendental.

1. Forn >1,
111
nn+1) n n+l
Hence
P S S S SRR SRR Y S S S A B A WA U A
' 1.272.3"3.4"4.5 - 2 2 3 3 4 4 5
2. Forn > 2,
1 11 1
n2—1 2\n—-1 n+1)"
Hence

Cn+1)@2n+2) 2n+1 2n+2

1
14—
+2



1
and S3 =log2 — 3

4. Using, for |z| < 1, the principal value of the logarithm

1 (1+ ) Z2+2’3 Z4+ N Z4n+1 Z4n+2 N Z4n+3 Z4n+4 N
O Z —_— 2_7 —_—— — P J— J— o o
& 2737 1 An+1 4n+2 4n+3 dn+a
we deduce

4 4n—+2 4n+4
log(1422) = 22 _E _Z “
og(l+z7) = 2 2 " o+ 1 Tonra

Hence, for |z] < 1,

Z4n+1 324n+2 Z4n+3 z4n+4
(o
in+1 4n+2 4dn+3 4n+4

n>0

> = log(1 + z) — log(1 + 2?).

The left hand side and the right hand side has a limit for z — 1, and this
limit is the same (set z = 1 — ¢ with € — 0); hence Sy = 0.

O

Remark A consequence of Baker’s Theorem on the linear independence, over
the field Q of algebraic numbers, of Q-linearly independent logarithms of alge-
braic numbers, is the following:

Let @Q € Q[X] be a polynomial with only simple zeroes, with all its
zeroes in the interval [—1,0). Let P be a polynomial with algebraic
coefficients of degree > deg P 4+ 2. Then the number

> o
= Q)
18 either zero or transcendental.

The proof ¢ uses some result of Lehmer 7. The example

oo

1 s
nz;; m+1)2n+1)(An+1) 3

is given by Lehmer.

6 Adhikari, S. D. & Saradha, N. & Shorey, T. N. & Tijdeman, R. Transcendental infinite
sums. Indag. Math. (N.S.) 12 (2001), no. 1, 1-14.

"Lehmer, D.H. Euler constants for arithmetical progressions. Acta Arith. 27, 125-142
(1975)



Solution to Exercise 3.
In this solution we use the same letter €, where a formal proof should involve
€/2, €/4...; also the C(¢) should have different indices.

Remark: since a; # 0 and b; # 0 we have A; = |a;| and B; = |b;|, no need
to introduce max{1,-}.

Let ¢ > 0 and let z,y,p,q be positive integers satisfying a? # y?. By
symmetry we may assume xP > y?. We may also assume

P —yl < %xp
and
pg > p+q,
otherwise the lower bound is obvious.
(a) The Conjecture in [ECDA] with n =2, a1 =, ag =y, by = —p, bs = ¢,
Ay =z, Ay =y, By = p, By = ¢q, B =max{p, ¢} implies

2
|x7pyq B 1| > C(e)*B .
(B1B2A1Ag)tte
We have
plogz  log(aP) .
plog2 <plogz, qlog2 <gqlogy <plogz, B< = < (2P),
log 2 log 2
1+4+€
(BlBZ) § Bl+e < (wp)e
B
and Ay < z7. Hence

(B1BaA1Ag)' e < plHE4pe
— g5 =
and therefore

(b) Let k = 2P — y9. Write 2 = y? + k and let a = y?, b = k, ¢ = zP. The
radical R(abc) satisfies R < xzyk. The abc Conjecture yields

xP < k(e)(zyk) T

with zy < (J}p)%—'—%. Hence
1
k> CO(e)—(a%)' 2 Cle)(a?)! "5 i,
ry
(c) Let k > 1. Assume z, y, p, ¢ are positive integers with p > 2, ¢ > 2 and

1 1
2P —y?=k. If p¢g>p+gq,then 1 — - — = > = From
p q 6



we deduce
yl <P < C(e)k’6+5.

Finally if p = g = 2 then
k:xz—y22x2—(x—1)2:2x—1

and 1
y? < a? < Z(k+ 1)2.

A sequence (vy,),>0 of positive real numbers tends to infinity if and only if for
each K > 0 the set of n > 0 such that v,, < K is finite. Hence a sequence
(vn)n>o of positive integers tends to infinity if and only if for each k& > 0 the
set of n > 0 such that v, = k is finite. We apply this remark to the sequence
Up = Up+1 — Up Where (uy)n>0 is the sequence of perfect powers. O

Solution to Exercise 4.

Let a, b, ¢ satisfy 2% + 3* = 5°. We may assume ¢ > 3 since for ¢ = 0,1, 2 the

solutions are only the obvious ones. Looking at the parity we deduce a > 1.
From now on we assume a > 1, ¢ > 3.

(a) Consider the special case a = 1:

2+30=5°

with b > 2. Since ¢(9) = 6, we consider the powers of 5 modulo 9 with the
exponents modulo 6:

cmod6 |[0|1]2|3|4]|5
5 mod9 |1 |5 |78 4|2

From 5° = 2 mod 9, we deduce ¢ = 5 mod 6. We also have ¢(7) = 6. We
consider the powers modulo 7 with the exponents modulo 6:

mod6 |01 |2]3[4]5

5° mod7 | 1|5 |4|6|2]3
3 mod7[1|3]2]6|4]5

Frzom ¢ = 5 mod 6 we deduce 5 = 3 mod 7, hence 3° = 1 mod 7, and
consequently b = 0 mod 6. On the other hand 3° = 5 — 2 = 3 mod 4, hence
b is odd, a contradiction.
From now on, we assume a > 2.
(b) Consider the special case b = 0:
2% 4+1=>5"
From ¢ > 3 we deduce ¢ > 7. From 2 = —1 mod 5 we deduce a = 2 mod 4.

Hence a has an odd prime divisor p. We write a = kp with k even > 0, and

5¢ = (2F + 1)(2’6(17*1) _9k(=2) L ... _ ok 4 1).

10



Hence 2% + 1 is a power of 5. If k > 3, then 2¥ = —1 mod 25, hence
ok(p=1) _ok(P=2) 4 ... _ 2% 4 1 =p mod 25.

This yields p = 0 mod 25 which is a contradiction with the fact that p is a
prime number. If £ < 2, then & = 2, the same argument shows p = 0 mod 5,
hence p =5, a = 10; but 2!° + 1 = 1025 is not a power of 5.

From now on, we assume b > 1.
(c) Consider the special case a = 3:

8+3" =5

From ¢ > 3 we deduce b > 5. The above table for 5¢ modulo 9 shows that ¢ = 3
mod 6. Write ¢ = 6y + 3:

3b _ 56’y+3 _ 8= (52'y+1 _ 2)(54’y+2 —9. 52’y+1 + 4),
which gives 527! =2 mod 9. Hence
507+2 _ 9. 5271 L4 =4 mod 9;

this shows that the left hand side is not a power of 3.
(d) Assume a is odd > 5. We have

g0 — 2 mod5 ifa=1 mod4
13 mod5 ifa=3 mod4.

From 2% +3% =0 mod 5 we deduce that b is also odd. Both 3 and 5 have order
8 modulo 32. We consider the 3 and 5¢ modulo 32 with the exponent modulo
8 and b odd:

bmod8 | 1] 35
3° mod32|3|27]19 | 11

and

¢ mod 8 0|11 2 3 4 5 16| 7
5 mod32 | 1|5 |25(129 |17 (21913

It follows that the congruence 3° = 5 mod 32 has no solution with b odd.
(e) The only remaining case is a is even, a = 2a. Recall b > 1 and a > 2. From
5°=4% =1 mod 3 we deduce that c is also even, ¢ = 2. Write

(57 — 2%)(57 +2%) = 3b.

From 57 + 2% = 0 mod 3 we deduce that o and = have opposite parity. This
implies that 57 — 2% is not a multiple of 3, hence 57 —2% =1 and 57 +2% = 3°.
Eliminating 57 yields

20t 41 =3P,
which shows that « is even, hence > 2, while 7 is odd. From 57 =5 mod 8 and
3* =1 mod 8, it follows that there is no nontrivial solution with a even. O

11



Solution to Exercise 5.

(a) We first deduce the homogeneous version of Baker’s Theorem from the state-
ment in (a). Let A = (A1,...,\,) be an elements of L™ with A\y,..., A, linearly
dependent over Q:

with (B1,...,8n) € Q" \ {0}. Let V be the hyperplane of C* of equation
Brz1+ -+ Bpzn = 0.

Since A € V and V is rational over Q, the statement in (a) claims that there
exists a vector subspace F of C", contained in V' (hence # C"), rational over Q,
such that A € E. From F # C" it follows that Ay, ..., A, are linearly dependent
over Q.

Conversely, assume the homogeneous version of Baker’s Theorem. Let V' be
a subspace of C™ rational over Q. The inclusion

VLo U ENL"
ECV

is trivial. Let A = (Aq,...,A\n) € VN L™ Let u,...,u be a basis of the
Q-—vector space spanned by the numbers Ay, ..., \,; write

)\Z:Zb”u] (’L:L,Tl)
Jj=1

Define, for 1 < j <r,
b; = (b1j,...,bn;) € Q™.

Let E be the vector subspace of C™ spanned by b;,...,b,. From its definition,
FE is rational over Q. Also from

A= Z ,Ujbj
j=1

we deduce A € EN L™
By assumption V is the intersection of hyperplanes of C" which are rational

over Q. Let H be such a hyperplane and
5121++5nzn:0
an equation of H, where (B1,...,0,) € Q" \ {0}. Since A € V C H, we have

z": BiXi =0,
i=1
that is W
> Bibiju; = 0.

i=1 j=1

12



According to the homogeneous version of Baker’s Theorem, the numbers p, ..., pur
are Q-linearly independent. Hence

Zﬁzb” =0 fOl"j: 1,...,7",

i=1
which means that b, € H for j = 1,...,r, hence £ C H. This is true for all
hyperplanes H of C™ which are rational over Q and contain V, hence E C V.
(b) We first deduce the conjecture on algebraic independence of logarithms from
Roy’s Conjecture. Let A = (A1,..., ;) be an elements of £™ with Ay,..., A, al-
gebraically dependent. Let P € Q[X1, ..., X,,]\{0} besuch that P(\,...,\,) =
0. Let U be the hypersurface of C" of equation P(z1,...,2,) = 0. Since A € T,
Roy’s Conjecture claims that there exists a vector subspace E of C", contained
in ¥ (hence # C"), rational over Q, such that A € E. From E # C" it follows
that Aq,..., A\, are linearly dependent over Q.

Conversely, assume the conjecture on algebraic independence of logarithms.

Let 2 be an algebraic subvariety of C™ defined over the field Q of algebraic
numbers. The inclusion

vnLro | Encn
ECU

where F ranges over the set of vector subspaces of C", rational over QQ, which
are contained in ‘¥, is trivial.
Let A= (A1,...,\n) € BN LY. As for part (a), we write

A=) nsb;
j=1

with p1,..., u, linearly independent over Q in £ and
b; = (bij,...,bny) €Q" 1<j5<m;

we also denote by E be the vector subspace of C" spanned by by, ...,b,, so that
E is rational over Q and A € ENL".

By assumption 9 is the intersection of hypersurfaces of C" which are rational
over Q. Let H be such a hypersurface and

P(zl,...,zn):O
an equation of H, where P € Q[X1,...,X,]\ {0}. Since A € U C H, we have
P()‘la'-'7>\n):03

that is

P Zbljﬂj7'-~azbnjﬂj =0.
j=1 j=1

13



According to the conjecture on algebraic independence of logarithms, the num-

bers pi1, ..., u, are algebraically independent. Hence
T T
P> bty > bujts | =0
j=1 j=1
for all (t1,...,t,) € C", which means

E=Cb +---+Cb, C H.

This is true for all hypersurfaces H of C" which are rational over Q and contain
0, hence £ C Q.

(¢) Let Z be the hypersurface in C* defined by the polynomial X; Xy — X5 X3.
Since this polynomial is homogeneous, for any a = (a1, as,as,a4) € Z \ {0},
the line Ca is contained in Z. Vector subspaces of dimension 2 (planes) of ct
contained in Z are the following: for u := (h : k) € P}(C),

Vu = {($17$2,$3,Z‘4) | hl‘l = ]{;-r?,, th = k‘x4},

Wy = {(z1, 2, x3,24) | hw1 = kxo, hwg = kxy}.

Let us show that {0}, the lines Ca with a € Z and the planes V,, and W, with
u € P}(C) give a complete list of the vector subspaces of C* contained in Z.
Those which are rational over Q are {0}, the lines Ca with a € Q*N Z and the
planes V,, and W,,, with u := (h : k) € P*(Q).

Let E be C-vector subspace of C* contained in Z. Let a = (a1, as,as, as)
and b = (b1, ba,bs3,bs) be two elements # 0 in E. For z and y in C, the point
za+ yb = (xay + yb1, xas + ybe, xas + ybs, xas + ybs) belongs to E, hence to Z:

(xa1 + yb1)(zas + ybs) = (zaz + ybe)(zas + ybs).
This amounts to
araq = asasg, biby = bobs, ai1by + asby = azbs + asbs.
We eliminate a4 and by by multiplying the third equation by a1b;:
a%b1b4 + a1a4b% = ay1a2b1b3 + a1a3b1bs,

which yields
a%bgbg + agagbi = aja2b1b3 + a1a3b1bs,

or

(a1b3 — agbl)(albg - agbl) =0.

Therefore one at least of the two numbers a1b3 — bias, a;bs — asb, vanishes. We
consider several cases.

e Assume a1 = ag =0 for all @ € E. Then E C V(y.q).

e Assume a; = a3 =0 for all @ € E. Then E C W(y.p).

14



e Otherwise, there exists b € E and ¢ € E with (b1,b2) # (0,0) and (c1,¢3) #
(0,0). Then one at least of b, ¢, b+ ¢, say a, has (a1, az2) # (0,0) and (a1,a3) #
(0,0). We fix such an a.

e Assume a1bg —agzby = 0 for all b € E. If by = by = 0, then the equation
a1by + asby = agbs + aszbs becomes a1by = asby. This relation is also true if
by = by = 0. If (by,b3) # (0,0) and (bg,bs) # (0,0), then we have (a; : a3) =
(b1 : b3) = (ba : by). In all cases we deduce

(lgbl = a1b3 and a3b2 = a1b4

for all b € F, which means ' C V(4,.q,)-

e Assume there exists b € E such that a1b3 — azb; # 0. Hence a1by — agb; = 0.
Let ¢ € E. Since b+ ¢ € E, one at least of the two numbers a;(bs + ¢3) —
as(by + c1), a1(by + ¢2) — az(by + ¢1) vanishes. If aq (b3 + ¢3) — az(by +¢1) =0,
from a1b3 — azby # 0 we deduce ajcs — azc; # 0, hence ayjco = asey. If
ay(bg +c2) —az(by + ¢1) = 0, then again ajcy = agcy. Therefore ajco = asey for
all c € E. In the same way as in the previous case, we deduce that for all c € F
we have

asc; = ajco and ascz = ajcy

for all ¢ € V, which means E C W,,.q,)-

(d) Let
A1 A2
(%)
be a 2 x 2 matrix with entries in £ and zero determinant. According to (b), the
Conjecture on algebraic independence of logarithms of algebraic numbers implies
that the point (A1, A2, A3, \4) belongs to a vector subspace of C* rational over Q

contained in the hypersurface Z in C* defined by the polynomial X1 X, — X5 X5.
From (c) we deduce that there exists (h, k) € Q*\ {(0,0)} with either

hA1 = kA3, hda = k)

or

ha1 = kX2, hAg = k4.

In the first case the rows of the matrix are linearly dependent over @Q, in the
second case the columns of the matrix are linearly dependent over Q.

Reference: [GL326] Exercices 1.5 and 1.8; also § 11.5 p.397 O

Solution to Exercise 6.
(a) There are 6 obvious algebraic dependence relations among these 31 numbers:
we can remove the numbers

em,e+m e+e", m+e", me", ™+ logh.
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Let us deduce from Schanuel’s Conjecture that the transcendence degree is 25 by
showing that this conjecture implies the algebraic independence of the following
30 numbers:

log 2, log 3, logb, log?7, e\/i7 e‘/g, eﬁ, loglog 2, loglog3, e, w, €™, log,

. . 2 e ™
7Te7 el? 7'('1’ ee) TrTr’ eﬂ' 9 ee 9 TrTr ) 2\/57 2\/3’ 3\/57 27{" 297

92¥% glog2 7log3 (155 9)V2,

We use Schanuel’s Conjecture several times. It is easier to explain the proof
by proceeding backwards. We want to prove (subject to Schanuel’s Conjec-
ture) that a field has transcendence degree 30. We introduce 30 numbers,
r1,...,T30 so that for n = 1,...,30, exactly one of x,,e" is not in the field
Q(z1,. .. xp_1,€",...,e"" 1), From Schanuel’s Conjecture, the fact that the
field Q(z1,...,x30,€™,...,e") will follow from Schanuel’s Conjecture, pro-
vided that we prove the linear independence of these 30 numbers, x1,...,z30.
This will be the next step.
Here are x1,...,x30 and their exponentials:

log2 log3 logh log7 V2 V5 V7 loglog2 loglog3
2 3 5 7 V2 V5 VT log 2 log 3

1 ir =« logm elogm i ilogm e wlogm =2

. 2
e —1, " T w° e' e e® " e’

¢ 7w"logm V2log2 V3log2 V3log3 wlog2 elog?2

g 9v2 9V3 3v3 o7 2e

2V2]0g 2 (log2)? (log3)(log7) V2loglog2

92¥%  glog2 7logs (log 2)V2.
So it remains to deduce from Schanuel’s Conjecture that the 30 numbers z1, ..., T3
are linearly independent over Q. A linear combination with integer coefficients
among x1,...,Z30 is a polynomial in the following 12 numbers:

log 2, log3, logh, log7, loglog?2, loglog3, e, w, logm, e°, ©", V2,

The algebraic independence of these 12 numbers follows from Schanuel’s Conjec-
ture by means of the same strategy, involving a new set of numbers 1, ..., T2,
given as follows with their exponentials

log2 log3 logb log7 loglog2 loglog3
1 3 5 7 log 2 log 3

V2log2 1 ir logm e wlogm
9V2

e —1 T e® .
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For the proof that Schanuel’s Conjecture implies the linear independence of the
12 x;’s in the second set, we modify slightly the strategy: a linear combination
with integer coefficients among the 12 numbers x1,...,x12 is a multiplicative
dependence relation among the following 6 numbers

log 2, log 3, 2‘/5, e, m, e, .
Hence we are led to prove (assuming Schanuel’s Conjecture) that these 7 num-
bers are algebraically independent, and for this purpose we introduce a third
set of x;’s and their exponentials, namely

log2 log3 V2log2 1 ir e wlogn
2 3 2v2

e —1 e° .

A linear combination among the 7 numbers xy,...,z7 of the third set is a
polynomial in the 5 numbers log 2, log 3, e, m and logw. We introduce a fourth
set of x;’s with their exponentials:

log2 log3 1 ir logw
2 3 e -1

Finally Schanuel’s Conjecture implies the algebraic independence of e and T,
hence the multiplicative independence of 2, 3, e and 7, hence the linear inde-
pendence over QQ of the 5 numbers log 2, log 3, 1, ir and log .

(b) Among the given 31 numbers, the following 13 ones are known to be tran-
scendental: from Hermite Lindemann Theorem on the transcendence of e“:

e7 Tr? e\/§7 el;

from Lindemann Weierstrass Theorem on the algebraic independence of e®*:
eV + ie‘ﬁ;
from Gel’fond-Schneider Theorem on the transcendence of o

1
e”, 2‘/5, — log 3;
71'

from Baker’s Theorem on linear independence of logarithms of algebraic num-

bers:
e™2V3 1+ logh, 2V23V3,

from Nesterenko’s Theorem on the algebraic independence of 7w and e™:
m+e", me”.

For the 18 other ones, we do not know even that they are irrational.

Remark. Some further partial results are known, for instance that one at least
e 2
of e + 7, em is transcendental; the same for €°, €° , also e + 7, €™ , and also e,
2

e™ . O
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