A course on linear recurrent sequences African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Tutorial 1

Tuesday, January 26, 2021

- 1. Let d be a positive integer which is not the square of an integer. The goal is to give two proofs that d is not the square of a rational number. Assume $\sqrt{d}=n / m$ with n, m positive integers and $n / m \notin \mathbb{Z}$.
(a) Prove that there exists an integer k in the interval

$$
\sqrt{d}-1<k<\sqrt{d}
$$

Define n^{\prime} and m^{\prime} by

$$
n^{\prime}=d m-k n=n(\sqrt{d}-k) \quad \text { and } \quad m^{\prime}=n-k m=m(\sqrt{d}-k)
$$

Check $0<n^{\prime}<n, 0<m^{\prime}<m$ and $n / m=n^{\prime} / m^{\prime}$.
Conclude.
(b) Prove that there exists an integer ℓ in the interval

$$
\sqrt{d}<\ell<\sqrt{d}+1
$$

Check that the numbers n^{\prime} and m^{\prime} defined by

$$
n^{\prime}=\ell n-d m=n(\ell-\sqrt{d}) \quad \text { and } \quad m^{\prime}=\ell m-n=m(\ell-\sqrt{d})
$$

satisfy $0<n^{\prime}<n, 0<m^{\prime}<m$ and $n / m=n^{\prime} / m^{\prime}$. Conclude.

- 2. Prove the irrationality of $\sqrt{2}$ using the pictures A and B below, and the irrationality of $\sqrt{3}$ using the picture C below. Explain the connection with question 1 (a) for $\sqrt{2}$ and 1 (b) for $\sqrt{3}$.

- 3. Prove the irrationality of the diagonal of a regular octogon and of the diagonal of a regular pentagon :

- 4. Consider an equilateral triangle having its vertices on a regular square grid with squares of side 1 .
(a) Prove that the area of this triangle is a rational number.
(b) Let a be the length of the side of the triangle. Check that a^{2} is an integer.

Compute the area of the triangle in terms of a.
(c) Check that 3 does not divide a sum of two squares of relatively prime integers.
(d) Can you draw an equilateral triangle on the screen of a computer?

Hint. The following pictures may help you :

