A course on linear recurrent sequences African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Tutorial 2

Thursday, January 28, 2021

- 1. Exercise 4 of tutorial 1.

Consider an equilateral triangle having its vertices on a regular square grid with squares of side 1 .
(a) Prove that the area of this triangle is a rational number.
(b) Let a be the length of the side of the triangle. Check that a^{2} is an integer. Compute the area of the triangle in terms of a.
(c) Check that 3 does not divide a sum of two squares of relatively prime integers.
(d) Can you draw an equilateral triangle on the screen of a computer?

- 2. Questions of the students.
(a) How can we find all the solution of the equation $X^{2}-d Y^{2}=-1$, for a given d when a solution exist?
(b) I would like to know a little bit more about the infinite descent of Fermat.
(c) What is the condition on an irrational number to have a periodic decomposition in continued fraction?
(d) For a fixed integer d, I would like to know if the equation $X^{2}-d Y^{2}=1$ has always a non trivial solution?
- 3. The triangle of sides $(3,4,5)$ is a rectangle triangle with hypotenus 5 , the two sides of the right angle are consecutive integers, 3 and 4 . Let $\left(c_{n}\right)_{n \geq 1}$ be the sequence, starting with $c_{1}=5$, of the integers which are the hypotenus of a right angle triangle where the two sides of the right angle are consecutive integers. Compute c_{2}. For $n \geq 3$, write c_{n} as a linear combination of c_{n-1} and c_{n-2}. Compute c_{3} and c_{4}.
- 4. Prove that every positive integer is the sum, uniquely, of one or more distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers.

