Limbe (Cameroun) - online

A course on linear recurrent sequences African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Tutorial 3

February 2021

• 1. Let d be a positive integer which is not the square of an integer. Let (x_1, y_1) satisfy $x_1^2 - dy_1^2 = 1$. Define the sequence $(x_n, y_n)_{n \ge 0}$ by

$$x_n + \sqrt{dy_n} = (x_1 + \sqrt{dy_1})^n$$

for $n \ge 0$. Check that the sequences $(x_n)_{n\ge 0}$ and $(y_n)_{n\ge 0}$ satisfy the linear recurrence relation

 $u_{n+2} = 2x_1u_{n+1} - u_n.$

• 2. Set $u_0 = 1$, $u_1 = 4$, and, for $n \ge 2$, $u_n = 4u_{n-1} - 4u_{n-2}$. (a) The generating series $\sum_{n\ge 0} u_n z^n$ is the Taylor expansion of a rational fraction : which one?

(b) The exponential generating series $\sum_{n\geq 0} u_n \frac{z^n}{n!}$ is a solution of a differential equation : which one?

• 3. A word on the alphabet with two letters $\{a, b\}$ is a finite sequence of letters, like *aaba*, *abab*.

Let α and β be two positive integers. The weight of the letter a is α , the weight of the letter b is β . The weight of a word is the sum of the weights of its letters. Given a positive integer n, denote by u_n the number of words of weight n.

Write the linear recurrence formula satisfied by the sequence $(u_n)_{n\geq 0}$.

Write $\sum_{n\geq 0} u_n z^n$ as a rational fraction in the following cases (a) $\alpha = \beta$.

(b) $\alpha = 1, \beta = 2.$

(c) $\alpha = 1, \beta = 3.$ (d) $\alpha = 2, \beta = 3.$

• 4. Let u and d be two real numbers with d > u > 0. Let $(p_n)_{n \ge 0}$ be a sequence of real numbers in the interval (0, 1) satisfying

$$(u+d)p_n = up_{n-1} + dp_{n+1}$$
 $(n \ge 1)$ and $\sum_{n\ge 0} p_n = 1.$

Compute p_n .

Remark. This is a toy version of Ising model in *statistical mechanics*. There is a ball on a vibrating stair with levels $0, 1, 2, \ldots$,

- for $n \ge 0$, p_n is the probability that the ball reaches the level n,
- for $n \ge 0$, up_n the probability that the ball leaves level n, goes up and reaches level n + 1,
- for $n \ge 1$, dp_n the probability that the ball leaves level n, goes down and reaches level n 1.

The temperature is $T = (\log \frac{d}{u})^{-1}$, the level n is the energy, the probability that the ball has energy n is

$$p_n = \frac{1}{Z} \mathrm{e}^{-n/T},$$

where

$$Z = \frac{1}{1 - e^{-1/T}}$$

If T is small, that is if u is small, then $p_0 = 1/Z$ is close to 1, the ball is likely to be at level 0, the noise is low. If T is large, that is if u is large, then p_0 is small, there are many levels where the ball is likely to be, the noise is high. **Reference:** Vincent Beffara "J. W. Gibbs : les mathématiques du hasard au cœur de la physique?" Conférence donnée dans le cadre du cycle « Un texte, un mathématicien ».

https://smf.emath.fr/evenements-smf/conference-bnf-v-beffara-2021