A course on linear recurrent sequences African Institute for Mathematical Sciences (AIMS) Michel Waldschmidt, Sorbonne Université

Tutorial 3

February 2021

- 1. Let d be a positive integer which is not the square of an integer. Let $\left(x_{1}, y_{1}\right)$ satisfy $x_{1}^{2}-d y_{1}^{2}=1$. Define the sequence $\left(x_{n}, y_{n}\right)_{n \geq 0}$ by

$$
x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n}
$$

for $n \geq 0$. Check that the sequences $\left(x_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq 0}$ satisfy the linear recurrence relation

$$
u_{n+2}=2 x_{1} u_{n+1}-u_{n} .
$$

- 2. Set $u_{0}=1, u_{1}=4$, and, for $n \geq 2, u_{n}=4 u_{n-1}-4 u_{n-2}$.
(a) The generating series $\sum_{n \geq 0} u_{n} z^{n}$ is the Taylor expansion of a rational fraction : which one?
(b) The exponential generating series $\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}$ is a solution of a differential equation : which one?
- 3. A word on the alphabet with two letters $\{a, b\}$ is a finite sequence of letters, like $a a b a$, $a b a b$.

Let α and β be two positive integers. The weight of the letter a is α, the weight of the letter b is β. The weight of a word is the sum of the weights of its letters. Given a positive integer n, denote by u_{n} the number of words of weight n.
Write the linear recurrence formula satisfied by the sequence $\left(u_{n}\right)_{n \geq 0}$.
Write $\sum_{n \geq 0} u_{n} z^{n}$ as a rational fraction in the following cases
(a) $\alpha=\beta$.
(b) $\alpha=1, \beta=2$.
(c) $\alpha=1, \beta=3$.
(d) $\alpha=2, \beta=3$.

- 4. Let u and d be two real numbers with $d>u>0$. Let $\left(p_{n}\right)_{n \geq 0}$ be a sequence of real numbers in the interval $(0,1)$ satisfying

$$
(u+d) p_{n}=u p_{n-1}+d p_{n+1} \quad(n \geq 1) \quad \text { and } \quad \sum_{n \geq 0} p_{n}=1 .
$$

Compute p_{n}.
Remark. This is a toy version of Ising model in statistical mechanics. There is a ball on a vibrating stair with levels $0,1,2, \ldots$,

- for $n \geq 0, p_{n}$ is the probability that the ball reaches the level n,
- for $n \geq 0, u p_{n}$ the probability that the ball leaves level n, goes up and reaches level $n+1$,
- for $n \geq 1, d p_{n}$ the probability that the ball leaves level n, goes down and reaches level $n-1$.
The temperature is $T=\left(\log \frac{d}{u}\right)^{-1}$, the level n is the energy, the probability that the ball has energy n is

$$
p_{n}=\frac{1}{Z} \mathrm{e}^{-n / T}
$$

where

$$
Z=\frac{1}{1-e^{-1 / T}} .
$$

If T is small, that is if u is small, then $p_{0}=1 / Z$ is close to 1 , the ball is likely to be at level 0 , the noise is low. If T is large, that is if u is large, then p_{0} is small, there are many levels where the ball is likely to be, the noise is high. Reference: Vincent Beffara "J. W. Gibbs : les mathématiques du hasard au cœur de la physique?" Conférence donnée dans le cadre du cycle «Un texte, un mathématicien >.
https://smf.emath.fr/evenements-smf/conference-bnf-v-beffara-2021

