
12th - 17th March, 2017 WAMS School

Mathematics Department, College of Science, Salahaddin University, Erbil (Kurdistan Iraq)

Topics in algebraic number theory
and Diophantine approximation

Diophantine Approximation:

an introduction

Michel Waldschmidt
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Introduction to Diophantine Approximation

Rational approximation to a real number : continued fractions
and applications.

Rational approximation to an algebraic number :
transcendence theorem of Thue, Siegel, Roth.

Simultaneous approximation. Schmidt Subspace Theorem.

Diophantine approximation in fields of power series.



Continued fractions

The Euclidean algorithm for computing the Greatest Common
Divisor (gcd) of two positive integers is arguably the oldest
mathematical algorithms : it goes back to antiquity and was
known to Euclid. A closely related algorithm yields the
continued fraction expansion of a real number, which is a very
e�cient process for finding the best rational approximations of
a real number. Continued fractions is a versatile tool for
solving problems related with movements involving two
di↵erent periods. This is how it occurs in number theory, in
complex analysis, in dynamical systems, as well as questions
related with music, calendars, gears. . . We will quote some of
these applications.



What is the connection between the following
questions ?

How to construct a calendar ?

How to design a planetarium ?

How to build a musical scale ?

How to find two positive integers x, y such that

x

2 � 61y

2

= 1?

How to prove the irrationality of constants from analysis ?

Answer : continued fractions.
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Number of days in a year
What is a year ? Astronomical year (Sidereal, tropical,
anomalistic. . .).
A year is the orbital period of the Earth moving in its orbit
around the Sun. For an observer on the Earth, this
corresponds to the period it takes to the Sun to complete one
course throughout the zodiac along the ecliptic.
A year is approximately 365.2422 days.
A good approximation is

365 +

1

4

= 365.25

with a leap year every 4 years. This is a little bit too much.
A better approximation is

365 +

8

33

= 365.2424 . . .
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The Gregorian calendar

The Gregorian calendar is based on a cycle of 400 years : there
is one leap year every year which is a multiple of 4 but not of
100 unless it is a multiple of 400.

It is named after Pope
Gregory XIII, who introduced
it in 1582.



The Gregorian calendar

In 400 years, in the Gregorian calendar, one omits 3 leap years,
hence there are 365 · 400 + 100� 3 = 146 097 days.

Since 400 = 4(33 · 3 + 1), in 400 years, the number of days
counted with a year of 365 + 8

33

days is

✓
365 +

8

33

◆
· 400 = 365 · 400 + 3 · 32 + 32

33

= 146 096.9696 . . .
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Further correction needed

In 10 000 years, the number of days in reality is

365.2422 · 10 000 = 3 652 422

while the number of days in the Gregorian calendar is

146 097 · 25 = 3 652 425.

Hence one should omit three more leap years every 10 000

years.



Approximating 365.2422

Write

365.2422 = 365 +

1

4.1288 . . .

The first approximation is 365 +
1

4

·

Next write

4.1288 · · · = 4 +

1

7.7628 . . .

·

The second approximation is

365 +

1

4 +

1

7

= 365 +

7

29

·
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Replacing 365.2422 with 365 +

8

33

Next write

7.7628 · · · = 7 +

1

1.3109 . . .

The third approximation is

365 +

1

4 +

1

7 +

1

1

= 365 +

1

4 +

1

8

= 365 +

8

33

·

Using 1.3109 · · · = 1 +

1

3.2162 . . .

, one could continue by

writing

365.2422 = 365 +

1

4 +

1

7 +

1

1 +

1

3.2162
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Continued fraction notation

Write

365.2422 = 365 +

1

4 +

1

7 +

1

1 +

1

3 +

. . .

= [365, 4, 7, 1, 3, . . . ].

Third approximation :

[365, 4, 7, 1] = [365, 4, 8] = 365 +

1

4 +

1

8

= 365 +

8

33

·



References on calendars

Exercise ; During 4000 years, the number of Fridays 13 is
6880, the number of Thursdays 13 is 6840 (and there are 6850
Mondays or Tuesdays 13).

V. Frederick Rickey, Mathematics of the Gregorian Calendar,
The Mathematical Intelligencer 7 n�1 (1985) 53–56.

Jacques Dutka, On the Gregorian revision of the Julian
Calendar, The Mathematical Intelligencer 10 n�1 (1988)
56–64.
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Description and design of a planetarium

Automati planetarii of Christiaan Huygens (1629 –1695)
astronomer, physicist, probabilist and horologist.
Huygens designed more accurate clocks than the ones
available at the time. His invention of the pendulum clock was
a breakthrough in timekeeping, and he made a prototype by
the end of 1656.



Earth and Saturn

The ratio between the angle covered by the Earth and the
angle covered by Saturn is

77 708 431

2 640 858

= 29.425 448 . . .

Not to scale !



Continued fraction of 77 708 431/2 640 858
The ratio between the angle covered by the Earth and the
angle covered by Saturn is

77 708 431

2 640 858

= 29.425 448 · · · = 29 +

1

2 +

1

2 + . . .

·

The continued fraction of this
ratio is

[29, 2, 2, 1, 5, 1, 4, . . . ]

and

[29, 2, 2, 1] = 29 +

3

7

=

206

7

·

206

7

= 29.428 5 . . .

http://plus.maths.org/content/chaos-numberland-secret-life-continued-fractions

http://plus.maths.org/content/chaos-numberland-secret-life-continued-fractions


The algorithm of continued fractions
Let x 2 R. Euclidean division of x by 1 :

x = bxc+ {x} with bxc 2 Z and 0  {x} < 1.

If x is not an integer, then {x} 6= 0. Set x
1

=

1

{x} , so that

x = bxc+ 1

x

1

with bxc 2 Z and x

1

> 1.

If x
1

is not an integer, set x
2

=

1

{x
1

} :

x = bxc+ 1

bx
1

c+ 1

x

2

with x

2

> 1.
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Continued fraction expansion

Set a
0

= bxc and a

i

= bx
i

c for i � 1.
Then :

x = bxc+ 1

[x

1

] +

1

bx
2

c+ 1

. . .

= a

0

+

1

a

1

+

1

a

2

+

1

. . .

the algorithm stops after finitely many steps if and only if x is
rational.
We use the notation

x = [a

0

, a

1

, a

2

, a

3

, . . . ]

Remark : if a
k

� 2, then
[a

0

, a

1

, a

2

, a

3

, . . . , a

k

] = [a

0

, a

1

, a

2

, a

3

, . . . , a

k

� 1, 1].
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Continued fractions and rational approximation

For
x = [a

0

, a

1

, a

2

, . . . , a

k

, . . .]

the rational numbers in the sequence

p

k

q

k

= [a

0

, a

1

, a

2

, . . . , a

k

] (k = 1, 2, . . .)

give rational approximations for x which are the best ones
when comparing the quality of the approximation and the size
of the denominator.

a

0

, a

1

, a

2

, . . . are the partial quotients,

p

0

q

0

,

p

1

q

1

,

p

2

q

2

. . . are the convergents.
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Connection with the Euclidean algorithm

If x is rational, x =

p

q

, this

process is nothing else than
Euclidean algorithm of
dividing p by q :

p = a

0

q + r

0

, 0  r

0

< q.

If r
0

6= 0,

x

1

=

q

r

0

> 1.

Euclide :
(⇠ -306, ⇠ -283)

q = a

1

r

0

+ r

1

, x

2

=

r

0

r

1

·



Harmonics

The successive harmonics of a note of frequency n are the
vibrations with frequencies 2n, 3n, 4n, 5n, . . .



Octaves

The successive octaves of a note of frequency n are vibrations
with frequencies 2n, 4n, 8n, 16n,. . .The ear recognizes notes
at the octave one from the other.

Using octaves, one replaces each note by a note with
frequency in a given interval, say [n, 2n). The classical choice
in Hertz is [264, 528). For simplicity we take rather [1, 2).

Hence a note with frequency f is replaced by a note with
frequency r with 1  r < 2, where

f = 2

a

r, a = [log

2

f ] 2 Z, r = 2

{log2 f} 2 [1, 2).

This is a multiplicative version of the Euclidean division.
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The fourth and the fifth

A note with frequency 3 (which is a harmonic of 1) is at the

octave of a note with frequency
3

2

·

The musical interval


1,

3

2

�
is called fifth, the ratio of the

endpoints of the interval is
3

2

·

The musical interval


3

2

, 2

�
is the fourth, with ratio

4

3

.
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The successive fifths

The successive fifths are the notes in the interval [1, 2], which
are at the octave of notes with frequency

1, 3, 9, 27, 81, . . .

namely :

1,

3

2

,

9

8

,

27

16

,

81

64

, · · ·

We shall never come back to the initial value 1, since the
Diophantine equation 3

a

= 2

b has no solution in positive
integers a, b.
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Approximating 3

a by 2b

The fact that the equation 3

a

= 2

b has no solution in positive
integers a, b means that the logarithm in basis 2 of 3 :

log

2

3 =

log 3

log 2

= 1.58496250072 . . . ,

which is the solution x of the equation 2

x

= 3, is irrational.

Powers of 2 which are close to powers of 3 correspond to

rational approximations
a

b

to log

2

3 :

log

2

3 ' a

b

, 2

a ' 3

b

.
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Approximating log

2

3 by rational numbers

Hence it is natural to consider the continued fraction expansion

log

2

3 = 1.58496250072 · · · = [1, 1, 1, 2, 2, 3, 1, 5, . . . ]

and to truncate this expansion :

[1] = 1, [1, 1] = 2, [1, 1, 1] =

3

2

, [1, 1, 1, 2] =

8

5

= 1.6.

The approximation of log
2

3 = 1.58 . . . by
8

5

= 1.6 means that

2

8

= 256 is not too far from 3

5

= 243.

The number

✓
3

2

◆
5

= 7.593 . . . is close to 2

3 ; this means that

5 fifths produce almost to 3 octaves.



Approximating log

2

3 by rational numbers

The next approximation is

[1, 1, 1, 2, 2] = 1 +

1

1 +

1

1 +

1

2 +

1

2

=

19

12

= 1.5833 . . .

It is related to the fact that 219 is close to 3

12 :

2

19

= 524 288 ' 3

12

= 531 441,

✓
3

2

◆
12

= 129.74 . . . is close to 2

7

= 128.

In music it means that twelve fifths is a bit more than seven
octaves.



Pythagoras

Pythagoras of Samos
(about 569 BC - about 475
BC)

The comma of Pythagoras is

3

12

2

19

= 1.01364

It produces an error of about 1.36%, which most people
cannot ear.



Further remarkable approximations

5

3

= 125 ' 2

7

= 128

✓
5

4

◆
3

= 1.953 . . . ' 2

Three thirds (ratio 5/4) produce almost one octave.

2

10

= 1024 ' 10

3

• Computers (kilo octets)

• Acoustic : multiplying the intensity of a sound by 10 means
adding 10 decibels (logarithmic scale).
Multiplying the intensity by k, amounts to add d decibels with
10

d

= k

10.
Since 2

10 ' 10

3, doubling the intensity, is close to adding 3

decibels.
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Leonardo Pisano (Fibonacci)

Fibonacci sequence (F

n

)

n�0

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F

0

= 0, F

1

= 1,

F

n

= F

n�1

+ F

n�2

(n � 2).

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)

http://oeis.org/A000045


Fibonacci sequence and Golden Ratio
The developments

[1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], . . .

are the quotients

F
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F
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F
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F
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F
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F
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F
5

F
4

F
6

F
5

F
7

F
6

k k k k k k . . .
1

1

2

1

3

2

5

3

8

5

13

8

of consecutive Fibonacci numbers.

The development [1, 1, 1, 1, 1, . . . ] is the continued fraction

expansion of the Golden Ratio

� =
1 +

p
5

2
= lim

n!1

F
n+1

F
n

= 1.6180339887499 . . .

which satisfies

� = 1 +
1

�
·
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Continued fraction of
p
2

The number
p
2 = 1.414 213 562 373 095 048 801 688 724 209 . . .

satisfies p
2 = 1 +

1p
2 + 1

·

For instance
p
2 = 1 +

1

2 +

1p
2 + 1

= 1 +

1

2 +

1

2 +

1

. . .

We write the continued fraction expansion of
p
2 using the

shorter notation
p
2 = [1, 2, 2, 2, 2, 2, . . . ] = [1, 2].
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A4 format
The number

p
2 is twice its inverse :

p
2 = 2/

p
2.

Folding a rectangular piece of paper with sides in proportionp
2 yields a new rectangular piece of paper with sides in

proportion
p
2 again.



Irrationality of
p
2 : geometric proof

• Start with a rectangle have side length 1 and 1 +

p
2.

• Decompose it into two squares with sides 1 and a smaller
rectangle of sides 1 +

p
2� 2 =

p
2� 1 and 1.

• This second small rectangle has side lenghts in the
proportion

1p
2� 1

= 1 +

p
2,

which is the same as for the large one.
• Hence the second small rectangle can be split into two
squares and a third smaller rectangle, the sides of which are
again in the same proportion.
• This process does not end.
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Rectangles with proportion 1 +

p
2



Irrationality of
p
2 : geometric proof

If we start with a rectangle having integer side lengths, then
this process stops after finitely may steps (the side lengths of
the successive rectangles produces a decreasing sequence of
positive integers).

Also, for a rectangle with side lengths in a rational proportion,
this process stops after finitely may steps (reduce to a
common denominator and scale).

Hence 1 +

p
2 is an irrational number, and

p
2 also.
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Geometric proof of irrationality

Set t =
p
2 + 1 = 2.414 213 56 . . . The continued fraction

expansion of t is
[2, 2, . . . ] = [2].

Indeed, from p
2� 1 =

1p
2 + 1

,

we deduce

t = 2 +

1

t

·

Decompose an interval of length t into three intervals, two of
length 1 and one of length 1/t.
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t =

p
2 + 1 = 2.414 213 56 · · · = 2 + 1/t



Decompose the interval of length 1

2 +

1

t

= t,

2

t

+

1

t

2

= 1.

We go from the first picture to the second by a homothety
1/t, because t = 2 + 1/t.



New homothety 1/t

Intervalle (0, 1/t) enlarged :
2

t

2

+

1

t

3

=

1

t

:



Geometric proof of irrationality

An interval of length t =

p
2 + 1 is decomposed into two

intervals of length 1 and one of length 1/t.

After a homothety 1/t, the interval of length 1 is decomposed
into two intervals of length 1/t and one of length 1/t

2.

The next step is to decompose an interval of length 1/t into
two intervals of length 1/t

2 and one of length 1/t

3.

Next, an interval of length 1/t

2 produces two intervals of
length 1/t

3 and one of length 1/t

4.

At each step we get two large intervals and a small one. The
process does not stop.
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Decomposition of a rational interval

Start with a rational number u = a/b, say a > b > 0 with a

and b integers.

Decompose an interval of length u into a whole number of
intervals of length 1 plus an interval of length less than 1.

It is convenient to scale : it amounts to the same to
decompose an interval of length a into a whole number of
intervals of length b, plus an interval of length less than b, say
c, which is an integer � 0.
This is the Euclidean division, again.

The process stops after finitely many steps.
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The Golden Ratio

The Golden Ratio

� =

1 +

p
5

2

= 1.6180339887499 . . .

satisfies

� = 1 +

1

�

·

If we start from a rectangle with the Golden ratio as proportion
of length sides, at each step we get a square and a smaller
rectangle with the same proportion for the length sides.
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The Golden Ratio

(1 +

p
5)/2 = 1.6180339887499 . . .

Golden Rectangle



Leonard Euler (1707 – 1783)

Leonhard Euler
De fractionibus continuis dissertatio,
Commentarii Acad. Sci. Petropolitanae,
9 (1737), 1744, p. 98–137 ;
Opera Omnia Ser. I vol. 14,
Commentationes Analyticae, p. 187–215.

e= lim

n!1
(1 + 1/n)

n

= 2.718 281 828 459 045 235 360 287 471 352 . . .



Continued fraction expansion for e

e = 2 +

1

1 +

1

2 +

1

1 +

1

1 +

1

4 +

1

. . .
= [2 , 1, 2, 1, 1, 4, 1, 1, 6, . . . ]

= [2, 1, 2m, 1]

m�1

.

e is neither rational (J-H. Lambert, 1766) nor quadratic
irrational (J-L. Lagrange, 1770).



Lagrange (1736 – 1813)

Joseph-Louis Lagrange was an
Italian-born French
mathematician who excelled
in all fields of analysis and
number theory and analytic
and celestial mechanics.



Irrationality of ⇡

Johann Heinrich Lambert (1728 – 1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,
Mémoires de l’Académie des Sciences
de Berlin, 17 (1761), p. 265-322 ;
lu en 1767 ; Math. Werke, t. II.

tan(v) is irrational when v 6= 0 is rational.
Hence ⇡ is irrational, since tan(⇡/4) = 1.



Lambert and King Frédérick II

— Que savez vous,
Lambert ?
— Tout, Sire.
— Et de qui le
tenez–vous ?
— De moi-même !



Continued fraction of ⇡

The development of ⇡ = 3.1415926535898 . . . starts with

⇡ = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . . ]

Open problem : is the sequence of partial quotients bounded ?
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Continued fraction expansion for e1/a

Starting point : y = tanh(x/a) satisfies the di↵erential
equation ay

0
+ y

2

= 1.
This leads Euler to

e

1/a

= [1, a� 1, 1, 1, 3a� 1, 1, 1, 5a� 1, . . . ]

= [1, (2m+ 1)a� 1, 1]

m�0

.



Continued fraction expansion of tan(x)

tan(x) =

1

i

tanh(ix), tanh(x) =

e

x � e

�x

e

x

+ e

�x

·

tan(x) =

x

1� x

2

3� x

2

5� x

2

7� x

2

9� x

2

. . .

·



Padé approximants

Henri Eugène Padé,
1863 – 1953

Claude Brezinski
History of Continued
Fractions and Padé
Approximants.
Springer-Verlag, Berlin, 1991,
551 pages.

http://math.univ-lille1.fr/~brezinsk/

http://math.univ-lille1.fr/~brezinsk/


Diophantine approximation in the real life

Calendars : bissextile years

Spokes

Small divisors and dynamical systems (H. Poincaré)

Periods of Saturn orbits (Cassini divisions)

Chaotic systems.

Stability of the solar system. Expansion of the universe.

General theory of relativity. Cosmology. Black holes.

Resonance in astronomy

Quasi-cristals

Acoustic of concert halls



Number Theory in Science and communication

M.R. Schroeder.

Number theory in science

and communication :
with applications in
cryptography, physics, digital
information, computing and
self similarity
Springer series in information
sciences 7 1986.
4th ed. (2006) 367 p.



Electric networks

• The resistance of a network in series

� � �A A A
R

1

r � � �A A A
R

2

r
is the sum R

1

+R

2

.

• The resistance R of a network in parallel

r � � �A A A
R

1

� � �A A A
R

2

r
satisfies

1

R

=

1

R

1

+

1

R

2

·



Electric networks and continued fractions

The resistance U of the circuit r � � �A A A
R

�
�
�

H
H
H

1/S

�
�
�

H
H
H

1/T

ris given by

U =

1

S +

1

R +

1

T



Decomposition of a square in squares

• For the network r � � �A A A
R

0

� � �A A A
R

1

� � �A A A
R

2

�
�
�

H
H
H

1/S

1

�
�
�

H
H
H

1/S

2

�
�
�

H
H
H

1/S

3

r
the resistance is given by a continued fraction expansion

[R

0

, S

1

, R

1

, S

2

, R

2

, . . . ]

• Electric networks and continued fractions have been used to
find the first solution to the problem of decomposing an
integer square into a disjoint union of integer squares, all of
which are distinct.



Squaring the square



Quadratic numbers

The continued fraction expansion of a real number is
ultimately periodic if and only if the number is a quadratic
number, that means root of a degree 2 polynomial with
rational coe�cients.
For a positive integer d which is not a square, the continued
fraction expansion of the number

p
d is

p
d = [a

0

, a

1

, a

2

, . . . , a

k

, a

1

, a

2

, . . . , a

k

, a

1

, a

2

, . . .],

which we write for simplicity
p
d = [a

0

, a

1

, a

2

, . . . , a

k

].

Hence
p
2 = [1, 2] and

p
3 = [1, 1, 2].
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For a positive integer d which is not a square, the continued
fraction expansion of the number

p
d is

p
d = [a

0

, a

1

, a

2

, . . . , a

k

, a

1

, a

2

, . . . , a

k

, a

1

, a

2

, . . .],

which we write for simplicity
p
d = [a

0

, a

1

, a

2

, . . . , a

k

].

Hence
p
2 = [1, 2] and

p
3 = [1, 1, 2].



Connexion with the equation x

2 � dy

2

= ±1

Let d be a positive integer which is not a square. Consider the
Diophantine equation

(1) x

2 � dy

2

= ±1

where the unknowns x, y take their values in Z.
If (x, y) is a solution with y � 1, then

(x�
p
dy)(x+

p
dy) = 1, hence

x

y

is a rational approximation

of
p
d and this approximation is sharper when x is larger.

This is why a strategy for solving Pell’s equation (1) is based
on the continued fraction expansion of

p
d.
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Problem of Brahmagupta (628)

Brahmasphutasiddhanta :
Solve in integers the equation

x

2 � 92y

2

= 1

If (x, y) is a solution, then (x�
p
92y)(x+

p
92y) = 1, hence

x

y

is a good approximation of
p
92 = 9.591663046625 . . ..



Problem of Brahmagupta (628)

The continued fraction expansion of
p
92 is

p
92 = [9, 1, 1, 2, 4, 2, 1, 1, 18].

A solution of
x

2 � 92y

2

= 1

is obtained from

[9, 1, 1, 2, 4, 2, 1, 1] =

1151

120

·

Indeed 1151

2 � 92 · 1202 = 1324 801� 1 324 800 = 1.
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Bhaskara II (12th Century)

Lilavati

(Bijaganita, 1150)
x

2 � 61y

2

= 1 Solution :
x = 1766 319 049,
y = 226 153 980.

Cyclic method (Chakravala) of Brahmagupta.

p
61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

[7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 5] =
1 766 319 049

226 153 980



Narayana (14th Century)

Narayana cows
(Tom Johnson)

x

2 � 103y

2

= 1. Solution :

x = 227 528, y = 22 419.

227 5282 � 103 · 22 4192 = 51 768 990 784� 51 768 990 783 = 1.

p
103 = [10, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

[10, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] =

227 528

22 419
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Correspondence from Fermat to Brouncker

“pour ne vous donner pas trop de peine” ( Fermat)
“ to make it not too di�cult”

X

2 �DY

2

= 1, with D = 61 and D = 109.

Solutions respectively :

(1 766 319 049 , 226 153 980)

(158 070 671 986 249, 15 140 424 455 100)

158 070 671 986 249 + 15 140 424 455 100

p
109 = 

261 + 25

p
109

2

!
6

.
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A reference on the History of Numbers

André Weil
Number theory. :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004



Farey dissection

John Farey
(1766 –1826) geologist

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Farey.html

Patrice Philippon.
A Farey Tail.
Notices of the AMS Volume
59, (6), 2012, 746 – 757.

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Farey.html


Riemannian varieties with negative curvature

The study of the so-called Pell-Fermat Diophantine equation
yield the construction of Riemannian varieties with negative
curvature : arithmetic varieties.

Nicolas Bergeron (Paris VI) :
“Sur la topologie de certains
espaces provenant de
constructions arithmétiques”
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Ergodic theory

Torus of dimension 1 :
R/Z ' S

1

Gauss map

T : x 7! 1

x

�
�
1

x

⌫

Deterministic chaotic
dynamical system.

This transformation is ergodic : any subset E of [0, 1) such
that T�1

(E) ⇢ E has measure 0 or 1.



Birkho↵ ergodic Theorem

Let T be an ergodic endomorphism of the probability space X

and let f : X ! R be a real-valued measurable function.
Then for almost every x in X, we have

1

n

nX

j=1

f � T j

(x) �!
Z

fdm

as n ! 1.

George David Birkho↵
(1884–1944)



Connection with the Riemann zeta function

For s of real part > 1,

⇣(s) =

X

n�1

1

n

s

=

Y

p

1

1� p

�s

·

We have also

⇣(s) =

1

s� 1

� s

Z
1

0

T (x)x

s�1

dx

with

T (x) =

1

x

�
�
1

x

⌫
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Generalization of the continued fraction expansion
in higher dimension

Simultaneous rational approximation to real numbers is much
more di�cult than the rational approximation theory for a
single number.

The continued fraction expansion algorithms has many specific
features, so far there is no extension of this algorithm in higher
dimension with all such properties.
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Jacobi – Perron

Partial answers are known, like the Jacobi – Perron algorithm

Carl Gustav Jacob Jacobi
(1804 –1851) Oskar Perron (1880 – 1975)

Die Lehre von den Kettenbrüchen, 1913.



Geometry of numbers

The geometry of numbers
studies convex bodies and
integer vectors in
n-dimensional space. The
geometry of numbers was
initiated by Hermann
Minkowski (1864 – 1909).



The LLL algorithm

Given a basis of Rn, the LLL algorithm produces a basis of the
lattice they generate, most often with smaller norm than the
initial one.

Arjen Lenstra Hendrik Lenstra Laszlo Lovasz



Parametric geometry of numbers

Recent work by

Wolfgang M. Schmidt and Leo Summerer, Damien Roy


