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On the Brahmagupta–Fermat–Pell equation

The equation x

2
� dy

2 = ±1, where the unknowns x and y are positive

integers while d is a fixed positive integer which is not a square, has been

mistakenly called with the name of Pell by Euler. It was investigated by

Indian mathematicians since Brahmagupta (628) who solved the case

d = 92, next by Bhaskara II (1150) for d = 61 and Narayana (during the

14-th Century) for d = 103. The smallest solution of x

2
� dy

2 = 1 for

these values of d are respectively

1 1512 � 92 · 1202 = 1, 1 766 319 0492 � 61 · 226 153 9802 = 1

and

227 5282 � 103 · 22 4192 = 1,

hence they have not been found by a brute force search !

After a short introduction to this long story, we explain the connection

with Diophantine approximation and continued fractions, next we say a

few words on more recent developments of the subject.
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Archimedes cattle problem

The sun god had a herd of
cattle consisting of bulls and
cows, one part of which was
white, a second black, a third
spotted, and a fourth brown.
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The Bovinum Problema

Among the bulls, the number of white ones was one half plus
one third the number of the black greater than the brown.

The number of the black, one quarter plus one fifth the
number of the spotted greater than the brown.

The number of the spotted, one sixth and one seventh the
number of the white greater than the brown.
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First system of equations

B = white bulls, N = black bulls,
T = brown bulls , X = spotted bulls

B �

✓
1

2

+

1

3

◆
N = N �

✓
1

4

+

1

5

◆
X

= X �

✓
1

6

+

1

7

◆
B = T .

Up to a multiplicative factor, the solution is

B0 = 2226, N0 = 1602, X0 = 1580, T 0 = 891.
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The Bovinum Problema

Among the cows, the number of white ones was one third plus
one quarter of the total black cattle.

The number of the black, one quarter plus one fifth the total
of the spotted cattle ;

The number of spotted, one fifth plus one sixth the total of
the brown cattle ;

The number of the brown, one sixth plus one seventh the total
of the white cattle.

What was the composition of the herd ?
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Second system of equations

b = white cows, n = black cows,
t = brown cows, x = spotted cows

b =

✓
1

3

+

1

4

◆
(N + n), n =

✓
1

4

+

1

5

◆
(X + x),

t =

✓
1

6

+

1

7

◆
(B + b), x =

✓
1

5

+

1

6

◆
(T + t).

Since the solutions b, n, x, t are requested to be integers, one
deduces

(B,N,X, T ) = k ⇥ 4657⇥ (B0, N0, X0, T 0).
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Archimedes Cattle Problem

If thou canst accurately tell, O stranger, the number of cattle
of the Sun, giving separately the number of well-fed bulls and
again the number of females according to each colour, thou
wouldst not be called unskilled or ignorant of numbers, but
not yet shalt thou be numbered among the wise.
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The Bovinum Problema

But come, understand also all these conditions regarding the
cattle of the Sun.

When the white bulls mingled their number with the black,
they stood firm, equal in depth and breadth, and the plains of
Thrinacia, stretching far in all ways, were filled with their
multitude.

Again, when the yellow and the dappled bulls were gathered
into one herd they stood in such a manner that their number,
beginning from one, grew slowly greater till it completed a
triangular figure, there being no bulls of other colours in their
midst nor none of them lacking.
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Arithmetic constraints

B +N = a square,

T +X = a triangular number.

As a function of the integer k, we have B +N = 4Ak with
A = 3 · 11 · 29 · 4657 squarefree. Hence k = AU

2 with U an
integer. On the other side if T +X is a triangular number
(= m(m+ 1)/2), then

8(T +X) + 1 is a square (2m+ 1)

2
= V

2
.
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Pell’s equation associated with the cattle problem

Writing T +X = Wk with W = 7 · 353 · 4657, we get

V

2
�DU

2
= 1

with D = 8AW = (2 · 4657)

2
· 2 · 3 · 7 · 11 · 29 · 353.

2 · 3 · 7 · 11 · 29 · 353 = 4 729 494.

D = (2 · 4657)

2
· 4 729 494 = 410 286 423 278 424.
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Cattle problem

If thou art able, O stranger, to find out all these things and
gather them together in your mind, giving all the relations,
thou shalt depart crowned with glory and knowing that thou
hast been adjudged perfect in this species of wisdom.
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History : letter from Archimedes to Eratosthenes

Archimedes
(287 BC –212 BC)

Eratosthenes of Cyrene
(276 BC - 194 BC)
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History (continued)

Odyssey of Homer - the Sun God Herd

Gotthold Ephraim Lessing : 1729–1781 – Library Herzog
August, Wolfenbüttel, 1773

C.F. Meyer, 1867

A. Amthor, 1880 : the smallest solution has 206 545 digits,
starting with 776.
B. Krumbiegel and A. Amthor, Das Problema Bovinum des
Archimedes, Historisch-literarische Abteilung der Zeitschrift für
Mathematik und Physik, 25 (1880), 121–136, 153–171.
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History (continued)

A.H. Bell, The “Cattle Problem” by Archimedes 251 BC,
Amer. Math. Monthly 2 (1895), 140–141.
Computation of the first 30 and last 12 decimal digits. The
Hillsboro, Illinois, Mathematical Club, A.H. Bell, E. Fish,
G.H. Richard – 4 years of computations.

“Since it has been calculated that it would take the work of a
thousand men for a thousand years to determine the complete
number [of cattle], it is obvious that the world will never have
a complete solution”
Pre-computer-age thinking from a letter to The New York
Times, January 18, 1931
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History (continued)

H.C. Williams, R.A. German and C.R. Zarnke, Solution of the
cattle problem of Archimedes, Math. of Computation 19
(1965), 671–674.

H.G. Nelson, A solution to Archimedes’ cattle problem,
J. Recreational Math. 13 (3) (1980–81), 162–176.

I. Vardi, Archimedes’ Cattle Problem, Amer. Math. Monthly
105 (1998), 305-319.

H.W. Lenstra Jr, Solving the Pell Equation, Notices of the
A.M.S. 49 (2) (2002) 182–192.
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The solution

Equation x

2
� 410 286 423 278 424y

2
= 1.

Print out of the smallest solution with 206 545 decimal digits :
47 pages (H.G. Nelson, 1980).

77602714 ? ? ? ? ? ?37983357 ? ? ? ? ? ?55081800

where each of the twelve symbols ? represents 17 210 digits.
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Large numbers

A number written with only 3 digits, but having nearly 370

millions decimal digits

The number of decimal digits of 99
9
is

�
9

9 log 9

log 10

⌫
= 369 693 100.

10

1010 has 1 + 10

10 decimal digits.
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Ilan Vardi
http://www.math.nyu.edu/ crorres/Archimedes/Cattle/Solution1.html

⌅
25194541
184119152 (109931986732829734979866232821433543901088049+

50549485234315033074477819735540408986340
p

4729494
�4658k

Archimedes’ Cattle Problem,
American Math. Monthly 105
(1998), 305-319.
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A simple solution to Archimedes’ cattle problem

Antti Nygrén, “A simple solution to Archimedes’ cattle
problem”, University of Oulu Linnanmaa, Oulu, Finland Acta
Universitatis Ouluensis Scientiae Rerum Naturalium, 2001.

50 first digits
77602714064868182695302328332138866642323224059233

50 last digits :
05994630144292500354883118973723406626719455081800
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Solution of Pell’s equation

H.W. Lenstra Jr,
Solving the Pell Equation,
Notices of the A.M.S.
49 (2) (2002) 182–192.

http://www.ams.org/notices/200202/fea-lenstra.pdf
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Solution of Archimedes Problem
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649 + 180
√

13 =
(

3 +
√

13
2

)6
.

Also in the case d = 109, which Fermat posed as a
challenge problem in 1657, the fundamental solu-
tion is a sixth power:

158 070671986249 + 15 140424455100
√

109

=
(

261 + 25
√

109
2

)6
.

However, this is as far as it goes: it is an elemen-
tary exercise in algebraic number theory to show
that if n is a positive integer for which x1 + y1

√
d

has an nth root in Q (
√
d ), then n = 1, 2, 3, or 6, the

case n = 2 being possible only for d ≡ 1, 2, or
5 mod 8, and the cases n = 3 and 6 only for
d ≡ 5 mod 8. Thus, for large squarefree d one can-
not expect to save much space by writing x1 + y1

√
d

as a power. This is also true when one allows the
root to lie in a composite of quadratic fields, as we
did for the cattle problem.

Let d again be an arbitrary positive integer that
is not a square. Instead of powers, we consider
power products in Q (

√
d ), that is, expressions of

the form t
∏

i=1
(ai + bi

√

d )ni

where t is a nonnegative integer, ai , bi, ni are 
integers, ni ̸= 0, and for each i at least one of ai
and bi is nonzero. We define the length of such an
expression to be

t
∑

i=1

(

log |ni| + log(|ai| + |bi|
√

d )
)

.

This is roughly proportional to the amount of bits
needed to specify the numbers ai , bi, and ni . Each
power product represents a nonzero element of
Q (
√
d ), and that element can be expressed uniquely

as (a + b
√
d )/c, with a, b, c ∈ Z, gcd(a, b, c) = 1 ,

c > 0. However, the number of bits of a, b, c will
typically grow linearly with the exponents |ni|
themselves rather than with their logarithms. So one
avoids using the latter representation and works
directly with the power products instead.

Several fundamental issues are raised by the
representation of elements as power products. For
example, can we recognize whether two power
products represent the same element of Q (

√
d ) by

means of a polynomial time algorithm? Here “poly-
nomial time” means, as before, that the run time
is bounded by a polynomial function of the length
of the input, which in this case equals the sum of
the lengths of the two given power products. Sim-
ilarly, can we decide in polynomial time whether a
given power product represents an element of the
form a + b

√
d with a, b ∈ Z, that is, an element of

Z[
√
d]? If it does, can we decide whether one has

a2 − db2 = 1 and a, b > 0, so that we have a solu-
tion to Pell’s equation, and can we compute the
residue classes of a and b modulo a given positive
integer m, all in polynomial time?

All questions just raised have affirmative an-
swers, even in the context of general algebraic
number fields. Algorithms proving this were ex-
hibited recently by Guoqiang Ge. In particular, one
can efficiently decide whether a given power prod-
uct represents a solution to Pell’s equation, and if
it does, one can efficiently compute any desired
number of “least significant” decimal digits of that
solution; taking the logarithm of the power prod-
uct, one can do the same for the leading digits, and
for the number of decimal digits, except possibly
in the probably very rare cases that a or b is ex-
cessively close to a power of 10. There is no known
polynomial time algorithm for deciding whether a
given power product represents the fundamental
solution to Pell’s equation.

Figure 4.

H.W. Lenstra Jr,
Solving the Pell Equation,
Notices of the A.M.S.
49 (2) (2002) 182–192.
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Early results in India
Brahmagupta (598 – 670)
Brahmasphutasiddhanta : Composition method : samasa –
Brahmagupta identity

(a

2
� db

2
)(x

2
� dy

2
) = (ax+ dby)

2
� d(ay + bx)

2
.

Bhaskara II or Bhaskaracharya (1114 - 1185)
Cyclic method (Chakravala) : produce a solution to Pell’s
equation x

2
� dy

2
= 1 starting from a solution to

a

2
� db

2
= k with a small k.

http://mathworld.wolfram.com/BrahmaguptasProblem.html

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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History

John Pell : 1610–1685

Pierre de Fermat : 1601–1665
Letter to Frenicle in 1657

Lord William Brouncker : 1620–1684

Leonard Euler : 1707–1783
Book of algebra in 1770 + continued fractions

Joseph–Louis Lagrange : 1736–1813
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1773 : Lagrange and Lessing
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Pell’s equation and call x1 + y1
√
d the fundamen-

tal solution.
One may view the solvability of Pell’s equation

as a special case of Dirichlet’s unit theorem from
algebraic number theory, which describes the 
structure of the group of units of a general ring of
algebraic integers; for the ring Z[

√
d], it is the prod-

uct of {±1} and an infinite cyclic group.
As an example, consider d = 14. One has

√

14 = 3 +
1

1 +
1

2 +
1

1 +
1

3 +
√

14

,

so the continued fraction expansion of 3 +
√

14 is
purely periodic with period length 4. Truncating the
expansion at the end of the first period, one finds
that the fraction

3 +
1

1 +
1

2 +
1
1
1

=
15
4

is a fair approximation to 
√

14. The numerator 
and denominator of this fraction yield the funda-
mental solution x1 = 15, y1 = 4 ; indeed one has
152 = 14 · 42 + 1 . Furthermore, one computes
(15 + 4

√
14)2 = 449 + 120

√
14 , so x2 = 449, y2 =

120; and so on. One finds:

n xn yn
1 15 4
2 449 120
3 13455 3596
4 403201 107760
5 12082575 3229204
6 362074049 96768360

The shape of the table reflects the exponential
growth of xn and yn with n.

For general d, the continued fraction expansion
of [
√
d] +

√
d is again purely periodic, and the period

displays a symmetry similar to the one visible for
d = 14. If the period length is even, one proceeds as
above; if the period length is odd, one truncates at
the end of the second period.

The cattle problem
An interesting example of the Pell equation, both
from a computational and from a historical per-
spective, is furnished by the cattle problem of
Archimedes (287–212 B.C.). A manuscript con-
taining this problem was discovered by Lessing
(1729–1781) in the Wolffenbüttel library, and 
published by him in 1773 (see Figure 2). It is now
generally credited to Archimedes (see [5, 13]). In
twenty-two Greek elegiac distichs, the problem
asks for the number of white, black, dappled, and
brown bulls and cows belonging to the Sun god,
subject to several arithmetical restrictions. A ver-
sion in English heroic couplets, taken from [1], is
shown in Figure 3. In modern mathematical nota-
tion the problem is no less elegant. Writing x , y ,
z , t for the numbers of white, black, dappled, and
brown bulls, respectively, one reads in lines 8–16
the restrictions

Figures 1 and 2.
Title pages of two
publications from
1773. The first (far
left) contains
Lagrange’s proof of
the solvability of
Pell’s equation,
already written and
submitted in 1768.
The second
contains Lessing’s
discovery of the
cattle problem of
Archimedes.
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The trivial solution (x, y) = (1, 0)

Let d be a nonzero integer. Consider the equation
x

2
� dy

2
= ±1 in positive integers x and y.

The trivial solution is x = 1, y = 0. We are interested with
nontrivial solutions.

In case d  �2, there is no nontrivial solution to
x

2
+ |d|y

2
= ±1.

For d = �1 the only non–trivial solution to x

2
+ y

2
= ±1 is

x = 0, y = 1.

Assume now d is positive.
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Nontrivial solutions

If d = e

2 is the square of an integer e, there is no nontrivial
solution :

x

2
� e

2
y

2
= (x� ey)(x+ ey) = ±1 =) x = 1, y = 0.

Assume now d is positive and not a square.

Let us write

x

2
� dy

2
= (x+ y

p

d)(x� y

p

d).
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Finding solutions
The relation

x

2
� dy

2
= ±1.

is equivalent to

(x� y

p

d)(x+ y

p

d) = ±1.

Theorem.
Given two solutions (x1, y1) and (x2, y2) in rational integers,

x1
2
� dy1

2
= ±1, x2

2
� dy2

2
= ±1,

define (x3, y3) by writing

(x1 + y1

p

d)(x2 + y2

p

d) = x3 + y3

p

d.

Then (x3, y3) is also a solution.
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Two solutions produce a third one
Proof.
From

(x1 + y1

p

d)(x2 + y2

p

d) = x3 + y3

p

d.

we deduce

(x1 � y1

p

d)(x2 � y2

p

d) = x3 � y3

p

d.

The product of the left hand sides

(x1 + y1

p

d)(x2 + y2

p

d)(x1 � y1

p

d)(x2 � y2

p

d)

is (x1
2
� dy1

2
)(x2

2
� dy2

2
) = ±1, hence

(x3 + y3

p

d)(x3 � y3

p

d) = x3
2
� dy3

2
= ±1,

which shows that (x3, y3) is also a solution.
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A multiplicative group

In the same way, given one solution (x, y), if we define (x

0
, y

0
)

by writing
(x+ y

p

d)

�1
= x

0
+ y

0
p

d,

then
(x� y

p

d)

�1
= x

0
� y

0
p

d,

and it follows that (x0
, y

0
) is again a solution.

This means that the set of solutions in rational integers
(positive or negative) is a multiplicative group. The trivial
solution is the unity of this group.
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Group law on a conic

The curve x

2
�Dy

2
= 1 is a conic, and on a conic there is a

group law which can be described geometrically. The fact that
it is associative is proved by using Pascal’s Theorem.
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The group of solutions (x, y) 2 Z⇥ Z

Let G be the set of (x, y) 2 Z2 satisfying x

2
� dy

2
= ±1. The

bijection
(x, y) 2 G 7�! x+ y

p

d 2 Z[
p

d]

⇥

endows G with a structure of multiplicative group.

The solution (�1, 0) is a torsion element of order 2.
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Infinitely many solutions

If there is a nontrivial solution (x1, y1) in positive integers,
then there are infinitely many of them, which are obtained by
writing

(x1 + y1

p

d)

n
= xn + yn

p

d

for n = 1, 2, . . ..

We list the solutions by increasing values of x+ y

p

d (it
amounts to the same to take the ordering given by x, or the
one given by y).

Hence, assuming there is a non–trivial solution, it follows that
there is a minimal solution > 1, which is called the
fundamental solution.
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Two important theorems

Let d be a positive integer which is not a square.

Theorem.
There is a non–trivial solution (x, y) in positive integers to the
equation x

2
� dy

2
= ±1.

Hence there are infinitely many solutions in positive integers.
And there is a smallest one, the fundamental solution (x1, y1).
For any n in Z and any choice of the sign ±, a solution (x, y)

in rational integers is given by (x1 + y1

p

d)

n
= x+

p

dy.

Theorem.
For any solution of the equation x

2
� dy

2
= ±1, there exists a

rational integer n in Z and a sign ±, such that
x+

p

dy = ±(x1 + y1

p

d)

n.
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The group G has rank  1

Let ' denote the morphism

(x, y) 2 G 7�!

�
log |x+ y

p

d| , log |x� y

p

d|

�
2 R2

.

The kernel of ' is the torsion subgroup {(±1, 0)} of G. The
image G of G is a discrete subgroup of the line
{(t1, t2) 2 R2

; t1 + t2 = 0}. Hence there exists u 2 G such
that G = Zu.

Therefore the abelian group of all solutions in Z⇥ Z has rank
 1.

The existence of a solution other than (±1, 0) means that the
rank of this group is 1.
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+1 or �1 ?

• If the fundamental solution x1
2
� dy1

2
= ±1 produces the

+ sign, then the equation x

2
� dy

2
= �1 has no solution.

• If the fundamental solution x1
2
� dy1

2
= ±1 produces the

� sign, then the fundamental solution of the equation
x

2
� dy

2
= 1 is (x2, y2) with x2 + y2

p

d = (x1 + y1

p

d)

2,
hence

x2 = x1
2
+ dy1

2
, y2 = 2x1y1.

The solutions of x2
� dy

2
= 1 are the (xn, yn) with n even,

the solutions of x2
� dy

2
= �1 are obtained with n odd.
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Algorithm for the fundamental solution

All the problem now is to find the fundamental solution.

Here is the idea. If x, y is a solution, then the equation
x

2
� dy

2
= ±1, written as

x

y

�

p

d = ±

1

y(x+ y

p

d)

,

shows that x/y is a good rational approximation to
p

d.

There is an algorithm for finding the best rational
approximations of a real number : it is given by continued
fractions.
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Continued fraction expansion :
geometric point of view

Start with a rectangle have side lengths 1 and x. The
proportion is x.

Split it into bxc squares with sides 1 and a smaller rectangle of
sides {x} = x� bxc and 1.
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Rectangles with proportion x

Continued fraction of x

x

1

1
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Example : 2 < x < 3

Example:  2<x<3

x

1

x-211
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Number of squares : a
0

= bxc with x = bxc + {x}

x

1

{x}1
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Continued fraction expansion :
geometric point of view

Recall x1 = 1/{x}

The small rectangle has side lengths in the proportion x1.

Repeat the process : split the small rectangle into bx1c squares
and a third smaller rectangle, with sides in the proportion
x2 = 1/{x1}.

This process produces the continued fraction expansion of x.

The sequence a0, a1, . . . is given by the number of squares at
each step.
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Continued fractions of a positive rational integer d
Recipe : let d be a positive integer which is not a square. Then
the continued fraction of the number

p

d is periodic.

If k is the smallest period length (that means that the length
of any period is a positive integer multiple of k), this
continued fraction can be written

p

d = [a0 , a1, a2, . . . , ak],

with ak = 2a0 and a0 = b

p

dc.

Further, (a1, a2, . . . , ak�1) is a palindrome

aj = ak�j for 1  j < k � 1.

Fact : the rational number given by the continued fraction
[a0, a1, . . . , ak�1] is a good rational approximation to

p

d.
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Parity of the length of the palindrome

If k is even, the fundamental solution of the equation
x

2
� dy

2
= 1 is given by the fraction

[a0, a1, a2, . . . , ak�1] =
x1

y1
·

In this case the equation x

2
� dy

2
= �1 has no solution.
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Parity of the length of the palindrome

If k is odd, the fundamental solution (x1, y1) of the equation
x

2
� dy

2
= �1 is given by the fraction

[a0, a1, a2, . . . , ak�1] =
x1

y1

and the fundamental solution (x2, y2) of the equation
x

2
� dy

2
= 1 by the fraction

[a0, a1, a2, . . . , ak�1, ak, a1, a2, . . . , ak�1] =
x2

y2
·

Remark. In both cases where k is either even or odd, we
obtain the sequence (xn, yn)n�1 of all solutions by repeating
n� 1 times a1, a2, . . . , ak followed by a1, a2, . . . , ak�1.

45 / 139

The simplest Pell equation x

2

� 2y2 = ±1

Euclid of Alexandria about 325 BC - about 265 BC ,
Elements, II § 10

17

2
� 2 · 12

2
= 289� 2 · 144 = 1.

99

2
� 2 · 70

2
= 9801� 2 · 4900 = 1.

577

2
� 2 · 408

2
= 332 929� 2 · 166 464 = 1.
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Pythagorean triples
Pythagoras of Samos
about 569 BC - about 475 BC

Which are the right angle triangles with
integer sides such that the two sides
of the right angle are consecutive integers ?

x

2
+ y

2
= z

2
, y = x+ 1.

2x

2
+ 2x+ 1 = z

2

(2x+ 1)

2
� 2z

2
= �1

X

2
� 2Y

2
= �1

(X, Y ) = (1, 1), (7, 5), (41, 29) . . .
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x

2

� 2y2 = ±1
p

2 = 1, 4142135623730950488016887242 . . .

satisfies
p

2 = 1 +

1

p

2 + 1

·

Hence the continued fraction expansion is periodic with
period length 1 :

p

2 = [1, 2, 2, 2, 2, 2, . . . ] = [1, 2],

The fundamental solution of x2
� 2y

2
= �1 is x1 = 1, y1 = 1

1

2
� 2 · 1

2
= �1,

the continued fraction expansion of x1/y1 is [1].
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Pell’s equation x

2

� 2y2 = 1

The fundamental solution of

x

2
� 2y

2
= 1

is x = 3, y = 2, given by

[1, 2] = 1 +

1

2

=

3

2

·
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x

2

� 3y2 = 1
The continued fraction expansion of the number

p

3 = 1, 7320508075688772935274463415 . . .

is
p

3 = [1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, . . . ] = [1, 1, 2],

because
p

3 + 1 = 2 +

1

1 +

1

p

3 + 1

·

The fundamental solution of x2
� 3y

2
= 1 is x = 2, y = 1,

corresponding to

[1, 1] = 1 +

1

1

=

2

1

·
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x

2

� 3y2 = 1

The fundamental solution of x2
� 3y

2
= 1 is (x, y) = (2, 1) :

(2 +

p

3)(2�

p

3) = 4� 3 = 1.

There is no solution to the equation x

2
� 3y

2
= �1.

The period of the continued fraction
p

3 = [1, 1, 2]

is [1, 2] of even length 2.
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Small values of d
x

2
� 2y

2
= ±1,

p

2 = [1, 2], k = 1, (x1, y1) = (1, 1),

1

2
� 2 · 1

2
= �1.

x

2
� 3y

2
= ±1,

p

3 = [1, 1, 2], k = 2, (x1, y1) = (2, 1),

2

2
� 3 · 1

2
= 1.

x

2
� 5y

2
= ±1,

p

5 = [2, 4], k = 1, (x1, y1) = (2, 1),

2

2
� 5 · 1

2
= �1.

x

2
� 6y

2
= ±1,

p

6 = [2, 2, 4], k = 2, (x1, y1) = (5, 4),

5

2
� 6 · 2

2
= 1.

x

2
� 7y

2
= ±1,

p

7 = [2, 1, 1, 1, 4], k = 4, (x1, y1) = (8, 3),

8

2
� 7 · 3

2
= 1.

x

2
� 8y

2
= ±1,

p

8 = [2, 1, 4], k = 2, (x1, y1) = (3, 1),

3

2
� 8 · 1

2
= 1.
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Brahmagupta’s Problem (628)

The continued fraction expansion of
p

92 is
p

92 = [9, 1, 1, 2, 4, 2, 1, 1, 18].

The fundamental solution of the equation x

2
� 92y

2
= 1 is

given by

[9, 1, 1, 2, 4, 2, 1, 1] =

1151

120

·

Indeed, 11512 � 92 · 120

2
= 1324 801� 1 324 800 = 1.
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Narayana’s equation x

2

� 103y2 = 1

p

103 = [10, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

[10, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] =

227 528

22 419

Fundamental solution : x = 227 528, y = 22 419.

227 5282 � 103 · 22 4192 = 51 768 990 784� 51 768 990 783 = 1.
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Equation of Bhaskhara II x2 � 61y2 = ±1

p

61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

[7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1] =

29 718

3 805

29 718

2
= 883 159 524, 61 · 3805

2
= 883 159 525

is the fundamental solution of x2
� 61y

2
= �1.

The fundamental solution of x2
� 61y

2
= 1 is

[7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1] =
1 766 319 049

226 153 980
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2015 and 2016
For d = 2015,

p

2015 = [44, 1, 7, 1, 88], [44, 1, 7, 1] =

404

9

period length 4, fundamental solution

404

2
� 2015 · 9

2
= 163 216� 163 215 = 1.

For d = 2016,

p

2016 = [44, 1, 8, 1, 88], [44, 1, 8, 1] =

449

10

,

period length 4, fundamental solution

449

2
� 2016 · 10

2
= 201 601� 201 600 = 1.
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wims : WWW Interactive Multipurpose Server
Exercise : for 2017, compute the period length and the
number of digits of the fundamental solution.
Hint. reference : http://wims.unice.fr/wims/
The continued fraction is computed by PARI version 2.2.1.

Contfrac

Développement en fraction continue de n = sqrt(2017) :

44.911023145771239487806208936597233878237421468866973176690761402726225992801339533565586793363241625500783980040488865044704051123419120488454731522531569165262907159868308886447109257654848549499722588802060 =
44 + / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / . . .

Avec javascript, placer la souris sur un dénominateur fera afficher le convergent du terme correspondant (précision limitée) :

Mode de présentation de la fraction continue :

n  + / / / / . . . = $$ n_1+{\strut 1\over\displaystyle n_2+ {\strut 1\over\displaystyle n_3+ {\strut 1\over\displaystyle n_4+ {\strut 1\over\displaystyle n_5+\cdots}}}}} $$

Développer un autre nombre.

Le calcul de la fraction continue est assuré par PARI version 2.5.0. Auteurs: pari@math.u-bordeaux.fr.
PARI peut etre obtenu à ftp://megrez.math.u-bordeaux.fr (et beaucoup d'autres sites ftp).
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http://wims.unice.fr/wims/wims.cgi?session=FP8DE98CDB....

1 sur 1 23/10/2015 12:42
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Back to Archimedes

x

2
� 410 286 423 278 424y

2
= 1

Computation of the continued fraction of
p

410 286 423 278 424.

In 1867, C.F. Meyer performed the first 240 steps of the
algorithm and then gave up.

The length of the period has now be computed : it is 203 254.
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Solution by Amthor – Lenstra

d = (2 · 4657)

2
· d

0
d

0
= 2 · 3 · 7 · 11 · 29 · 353.

Length of the period for
p

d

0 : 92.

Fundamental unit : u = x

0
+ y

0
p

d

0

u =

�
300 426 607 914 281 713 365 ·

p

609+

84 129 507 677 858 393 258

p

7766

�2

Fundamental solution of the Archimedes equation :

x1 + y1

p

d = u

2329
.

p = 4657, (p+ 1)/2 = 2329 = 17 · 137.
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Size of the fundamental solution

2

p

d < x1 + y1

p

d < (4e

2
d)

p
d
.

Any method for solving the Brahmagupta–Fermat–Pell
equation which requires to produce the digits of the
fundamental solution has an exponential complexity.

Length Ld of the period :

log 2

2

Ld  log(x1 + y1

p

d) 

log(4d)

2

Ld.
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Masser Problem 999
Find a quadratic polynomial F (X, Y ) over Z with coe�cients
of absolute value at most 999 (i.e. with at most three digits)
such that the smallest integer solution of F (X, Y ) = 0 is as
large as possible.
Daniel M. Kornhauser, On the smallest solution to the
general binary quadratic Diophantine equation. Acta Arith. 55
(1990), 83-94.
Smallest solution may be as large as 2H/5, and

2

999/5
= 1.39 . . . 10

60
.

Pell equation for 991 :

379 516 400 906 811 930 638 014 896 080

2
�

991 ⇥ 12 055 735 790 331 359 447 442 538 767

2
= 1.
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Arithmetic varieties

Let D be an integer which is not a square. The quadratic form
x

2
�Dy

2 is anisotropic over Q (no non–trivial zero). Define
G = {(x, y) 2 R2

; x

2
�Dy

2
= 1}.

The map
G �! R⇥

(x, y) 7�! t = x+ y

p

D

is bijective : the inverse bijection is obtained by writing
u = 1/t, 2x = t+ u, 2y

p

D = t� u, so that t = x+ y

p

D

and u = x� y

p

D.
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Arithmetic varieties

By transport of structure, this endows

G = {(x, y) 2 R2
; x

2
�Dy

2
= 1}

with a multiplicative group structure, isomorphic to R⇥, for
which

G �! GL2(R)

(x, y) 7�!

✓
x Dy

y x

◆
.

in an injective morphism of groups. Its image G(R) is
therefore isomorphic to R⇥.
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Arithmetic varieties

A matrix

✓
a b

c d

◆
preserves the quadratic form x

2
�Dy

2 if

and only if

(ax+ by)

2
�D(cx+ dy)

2
= x

2
�Dy

2
,

which can be written

a

2
�Dc

2
= 1, b

2
�Dd

2
= D, ab = cdD.

Hence the group of matrices of determinant 1 with coe�cients
in Z which preserve the quadratic form x

2
�Dy

2 is

G(Z) =

⇢✓
a Dc

c a

◆
2 GL2(Z)

�
.

64 / 139



Riemannian varieties with negative curvature

According to the works by Siegel, Harish–Chandra, Borel and
Godement, the quotient of G(R) by G(Z) is compact. Hence
G(Z) is infinite (of rank 1 over Z), which means that there are
infinitely many integer solutions to the equation a

2
�Dc

2
= 1.

This is not a new proof of this result, but rather an
interpretation and a generalization.

Nicolas Bergeron (Paris VI) : “Sur la topologie de certains
espaces provenant de constructions arithmétiques”
“ Sur la forme de certains espaces provenant de constructions
arithmétiques, Images des Mathématiques, (2004).
http://people.math.jussieu.fr/⇠bergeron/

65 / 139

Substitutions in Christo↵el’s word

J. Riss, 1974
J-P. Borel et F. Laubie, Quelques mots sur la droite projective
réelle ; Journal de Théorie des Nombres de Bordeaux, 5 1
(1993), 23–51
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Rational approximations to a real numbers

If x is a rational number, there is a constant c > 0 such that
for any p/q 2 Q with p/q 6= x, we have |x� p/q| � c/q.

Proof : write x = a/b and set c = 1/b.

If x is a real irrational number, there are infinitely many
p/q 2 Q with |x� p/q| < 1/q

2.

The best rational approximations p/q are given by the
algorithm of continued fraction.

With a single real number x, it amounts to the same to
investigate |x�

p
q
| or |qx� p| for p, q in Z, q > 0.
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Rational approximation to a single number
Continued fractions (Leonhard Euler)

Farey dissection (Sir John Farey)

Dirichlet’s Box Principle (Gustav Lejeune – Dirichlet)

Geometry of numbers (Hermann Minkowski)

Euler

(1707 – 1783)

Farey

(1766 – 1826)

Dirichlet

(1805 – 1859)

Minkowski

(1864–1909)
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Continued fractions : the convergents

Given rational integers a0, a1, . . . , an with ai � 1 for i � 1, the
finite continued fraction

[a0, a1, a2, a3, . . . , an]

can be written
P n(a0, a1, . . . , an)

Qn(a1, a2, . . . , an)

where P n and Qn are polynomials with integer coe�cients.
We wish to write these polynomials explicitly.
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Continued fractions : the convergents
Let F be a field, Z0, Z1, . . . variables. We will define
polynomials P n and Qn in F[Z0, . . . , Zn] and F[Z1, . . . , Zn]

respectively such that

[Z0, Z1, . . . , Zn] =
P n

Qn

·

Here are the first values :

P 0 = Z0, Q0 = 1,

P 0

Q0
= Z0;

P 1 = Z0Z1 + 1, Q1 = Z1,
P 1

Q1
= Z0 +

1

Z1
;

P 2 = Z0Z1Z2+Z2+Z0, Q2 = Z1Z2+1,

P 2

Q2
= Z0+

1

Z1 +
1

Z2

·
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Continued fractions : the convergents

P 3 = Z0Z1Z2Z3 + Z2Z3 + Z0Z3 + Z0Z1 + 1,

Q3 = Z1Z2Z3 + Z3 + Z1,

P 3

Q3
= Z0 +

1

Z1 +
1

Z2 +
1

Z3

·

P 2 = Z2P 1 + P 0, Q2 = Z2Q1 +Q0.

P 3 = Z3P 2 + P 1, Q3 = Z3Q2 +Q1.
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Continued fractions : the convergents

For n = 2 and n = 3, we observe that

P n = ZnP n�1 + P n�2, Qn = ZnQn�1 +Qn�2.

This will be our definition of P n and Qn.

In matrix form, it is
✓
P n

Qn

◆
=

✓
P n�1 P n�2

Qn�1 Qn�2

◆✓
Zn

1

◆
.
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Definition of P
n

and Q

n

With 2⇥ 2 matrices :
✓
P n P n�1

Qn Qn�1

◆
=

✓
P n�1 P n�2

Qn�1 Qn�2

◆✓
Zn 1

1 0

◆
.

Hence :
✓
P n P n�1

Qn Qn�1

◆
=

✓
Z0 1

1 0

◆✓
Z1 1

1 0

◆
· · ·

✓
Zn 1

1 0

◆
.
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Continued fractions : definition of P
n

and Q

n

✓
P n P n�1

Qn Qn�1

◆
=

✓
Z0 1

1 0

◆✓
Z1 1

1 0

◆
· · ·

✓
Zn 1

1 0

◆
for n � �1.

In particular ✓
P�1 P�2

Q�1 Q�2

◆
=

✓
1 0

0 1

◆
.

One checks [Z0, Z1, . . . , Zn] = P n/Qn for all n � 0.
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Simple continued fraction of a real number

For
x = [a0, a1, a2, . . . , an]

we have
x =

pn

qn

with

pn = P n(a0, a1, . . . , an) and qn = Qn(a1, . . . , an).
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Simple continued fraction of a real number
For

x = [a0, a1, a2, . . . , an, . . .]

the rational numbers in the sequence

pn

qn

= [a0, a1, a2, . . . , an] (k = 1, 2, . . .)

give rational approximations for x which are the best ones
when comparing the quality of the approximation and the size
of the denominator.
a0, a1, a2, . . . are the partial quotients,
pn/qn (n � 0) are the convergents.
xn = [an, an+1, . . . ] (n � 0) are the complete quotients.
Hence

x = [a0, a1, . . . , an�1, xn] =
xnpn�1 + pn�2

xnqn�1 + qn�2
·
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Continued fractions and rational approximation

From

qn = anqn�1 + qn�2 and qnx� pn =

(�1)

n

an+1qn + qn�1

one deduces the inequalities

anqn�1  qn  (an + 1)qn�1

and

1

(an+1 + 2)qn

<

1

qn+1 + qn

< |qnx� pn| <
1

qn+1
<

1

an+1qn
·
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Convergents are the best rational approximations

Let pn/qn be the n–th convergent of the continued fraction
expansion of an irrational number x.
Theorem. Let a/b be any rational number such that
1  b  qn. Then :

|qnx� pn|  |bx� a|

with equality if and only if (a, b) = (pn, qn).

Corollary. For 1  b  qn we have
����x�

pn

qn

���� 
���x�

a

b

���

with equality if and only if (a, b) = (pn, qn).
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Legendre Theorem

Adrien–Marie Legendre
(1752 – 1833)

If
����x�

p

q

���� 
1

2q

2
,

then p/q is a convergent of
x.
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Lagrange Theorem

Lagrange
(1736 – 1813)

The continued fraction
expansion of a real irrational
number x is ultimately
periodic if and only if x is
quadratic.
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Diophantus of Alexandria (250 ±50)
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Rational approximation

The rational numbers are dense in the real numbers :
For any x in R and any ✏ > 0, there exists p/q 2 Q such that

����x�

p

q

���� < ✏.

Numerical approximation : starting from the rational numbers,
compute the maximal number of digits of x with the minimum
number of operations (notion of complexity).

Rational approximation : given x and ✏, find p/q with q

minimal such that |x� p/q| < ✏.
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Rational approximation to real numbers

Easy : for any x 2 R and any q � 1, there exists p 2 Z with
|qx� p|  1/2.
Solution : take for p the nearest integer to qx.

This inequality ����x�

p

q

���� <
1

2q

is best possible when qx is half an integer. We want to
investigate stronger estimates : hence we need to exclude
rational numbers.
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Rational approximation to rational numbers
A rational number has an excellent rational approximation :
itself !
But there is no other good approximation : if x is rational,
there exists a constant c = c(x) > 0 such that, for any
p/q 2 Q with p/q 6= x,

����x�

p

q

���� �
c

q

·

Proof : Write x = a/b and set c = 1/b : since aq � bp is a
nonzero integer, it has absolute value at least 1, and

����x�

p

q

���� =
|aq � bp|

bq

�

1

bq
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Criterion for irrationality

Consequence. Let # 2 R. Assume that for any ✏ > 0, there
exists p/q 2 Q with

0 < |q#� p| < ✏.

Then # is irrational.
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Rational approximation to irrational real numbers

Any irrational real number x has much better rational
approximations than those of order 1/q, namely there exist
approximations of order 1/q2 (hence p will always be the
nearest integer to qx).

For any x 2 R \Q, there exists infinitely many p/q with
����x�

p

q

���� 
1

q

2
·
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