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Abstract

According to Nature News, 10 September 2012, quoting
Dorian Goldfeld, the abc Conjecture is “the most important
unsolved problem in Diophantine analysis”. It is a kind of grand
unified theory of Diophantine curves : “The remarkable thing
about the abc Conjecture is that it provides a way of reformulating
an infinite number of Diophantine problems,” says Goldfeld, “and,
if it is true, of solving them.” Proposed independently in the
mid-80s by David Masser of the University of Basel and Joseph
Oesterlé of Pierre et Marie Curie University (Paris 6), the abc
Conjecture describes a kind of balance or tension between addition
and multiplication, formalizing the observation that when two
numbers a and b are divisible by large powers of small primes,
a+ b tends to be divisible by small powers of large primes. The abc
Conjecture implies – in a few lines – the proofs of many di�cult
theorems and outstanding conjectures in Diophantine equations–
including Fermat’s Last Theorem.
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Abstract (continued)
This talk will be at an elementary level, giving a collection of
consequences of the abc Conjecture. It will not include an
introduction to the Inter-universal Teichmüller Theory of
Shinichi Mochizuki.

http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html
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Poster with Razvan Barbulescu — Archives HAL

https://hal.archives-ouvertes.fr/hal-01626155
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As simple as abc
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American Broadcasting Company

http://fr.wikipedia.org/wiki/American_Broadcasting_Company
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Annapurna Base Camp, October 22, 2014

Mt. Annapurna (8091m) is the 10th highest mountain in the
world and the journey to its base camp is one of the most
popular treks on earth.
http://www.himalayanglacier.com/trekking-in-nepal/160/

annapurna-base-camp-trek.htm
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The radical of a positive integer
According to the fundamental theorem of arithmetic, any
integer n � 2 can be written as a product of prime numbers :

n = pa11 pa22 · · · patt .

The radical (also called kernel) Rad(n) of n is the product of
the distinct primes dividing n :

Rad(n) = p1p2 · · · pt.

Rad(n)  n.

Examples : Rad(2a) = 2,

Rad(60 500) = Rad(22 · 53 · 112) = 2 · 5 · 11 = 110,

Rad(82 852 996 681 926) = 2 · 3 · 23 · 109 = 15 042.
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abc–triples

An abc–triple is a triple of three positive integers a, b, c which
are coprime, a < b and that a+ b = c.

Examples:

1 + 2 = 3, 1 + 8 = 9,

1 + 80 = 81, 4 + 121 = 125,

2 + 310 · 109 = 235, 112 + 325673 = 221 · 23.
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13 abc–triples with c < 10

a, b, c are coprime, 1  a < b, a+ b = c and c  9.

1 + 2 = 3
1 + 3 = 4
1 + 4 = 5 2 + 3 = 5
1 + 5 = 6
1 + 6 = 7 2 + 5 = 7 3 + 4 = 7
1 + 7 = 8 3 + 5 = 8
1 + 8 = 9 2 + 7 = 9 4 + 5 = 9
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Radical of the abc–triples with c < 10

Rad(1 · 2 · 3) = 6
Rad(1 · 3 · 4) = 6
Rad(1 · 4 · 5) = 10 Rad(2 · 3 · 5) = 30
Rad(1 · 5 · 6) = 30
Rad(1 · 6 · 7) = 42 Rad(2 · 5 · 7) = 70 Rad(3 · 4 · 7) = 42
Rad(1 · 7 · 8) = 14 Rad(3 · 5 · 8) = 30
Rad(1 · 8 · 9) = 6 Rad(2 · 7 · 9) = 54 Rad(4 · 5 · 9) = 30

a = 1, b = 8, c = 9, a+ b = c, gcd = 1, Rad(abc) < c.
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abc–hits

Following F. Beukers, an
abc–hit is an abc–triple such
that Rad(abc) < c.

http://www.staff.science.uu.nl/~beuke106/ABCpresentation.pdf

Example: (1, 8, 9) is an abc–hit since 1 + 8 = 9,
gcd(1, 8, 9) = 1 and

Rad(1 · 8 · 9) = Rad(23 · 32) = 2 · 3 = 6 < 9.
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On the condition that a, b, c are relatively prime

Starting with a+ b = c, multiply by a power of a divisor d > 1
of abc and get

ad` + bd` = cd`.

The radical did not increase : the radical of the product of the
three numbers ad`, bd` and cd` is nothing else than Rad(abc) ;
but c is replaced by cd`.

For ` su�ciently large, cd` is larger than Rad(abc).

But (ad`, bd`, cd`) is not an abc–hit.

It would be too easy to get examples without the condition
that a, b, c are relatively prime.
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Some abc–hits

(1, 80, 81) is an abc–hit since 1 + 80 = 81, gcd(1, 80, 81) = 1
and

Rad(1 · 80 · 81) = Rad(24 · 5 · 34) = 2 · 5 · 3 = 30 < 81.

(4, 121, 125) is an abc–hit since 4 + 121 = 125,
gcd(4, 121, 125) = 1 and

Rad(4 · 121 · 125) = Rad(22 · 53 · 112) = 2 · 5 · 11 = 110 < 125.
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Further abc–hits

• (2, 310 · 109, 235) = (2, 6 436 341, 6 436 343)

is an abc–hit since 2 + 310 · 109 = 235 and
Rad(2 · 310 · 109 · 235) = 15 042 < 235 = 6436 343.

• (112, 32 · 56 · 73, 221 · 23) = (121, 48 234 275, 48 234 496)

is an abc–hit since 112 + 32 · 56 · 73 = 221 · 23 and
Rad(221 · 32 · 56 · 73 · 112 · 23) = 53 130 < 221 · 23 = 48 234 496.

• (1, 5 · 127 · (2 · 3 · 7)3, 196) = (1, 47 045 880, 47 045 881)

is an abc–hit since 1 + 5 · 127 · (2 · 3 · 7)3 = 196 and
Rad(5 · 127 · (2 · 3 · 7)3 · 196) = 5 · 127 · 2 · 3 · 7 · 19 = 506 730.
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abc–triples and abc–hits

Among 15 · 106 abc–triples with c < 104, we have 120
abc–hits.

Among 380 · 106 abc–triples with c < 5 · 104, we have 276
abc–hits.
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More abc–hits
Recall the abc–hit (1, 80, 81), where 81 = 34.

(1, 316 � 1, 316) = (1, 43 046 720, 43 046 721)

is an abc–hit.
Proof.

316 � 1= (38 � 1)(38 + 1)

= (34 � 1)(34 + 1)(38 + 1)

= (32 � 1)(32 + 1)(34 + 1)(38 + 1)

= (3� 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)

is divisible by 26. (Quotient : 672 605).
Hence

Rad((316 � 1) · 316)  316 � 1

26
· 2 · 3 < 316.
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Infinitely many abc–hits
Proposition. There are infinitely many abc–hits.

Take k � 1, a = 1, c = 32
k
, b = c� 1.

Lemma. 2k+2
divides 32

k � 1.

Proof : Induction on k using

32
k � 1 = (32

k�1 � 1)(32
k�1

+ 1).

Consequence :

Rad((32
k � 1) · 32k)  32

k � 1

2k+1
· 3 < 32

k
.

Hence
(1, 32

k � 1, 32
k
)

is an abc–hit.
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Infinitely many abc–hits

This argument shows that there exist infinitely many
abc–triples such that

c >
1

6 log 3
R logR

with R = Rad(abc).

Question : Are there abc–triples for which c > Rad(abc)2 ?

We do not know the answer.
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Examples

When a, b and c are three positive relatively prime integers
satisfying a+ b = c, define

�(a, b, c) =
log c

log Rad(abc)
·

Here are the two largest known values for �(abc)

a+ b = c �(a, b, c) authors

2 + 310 · 109 = 235 1.629912 . . . É. Reyssat
112 + 325673 = 221 · 23 1.625990 . . . B.M. de Weger
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Number of digits of the good abc–triples

At the date of September 11, 2008, 217 abc triples with
�(a, b, c) � 1.4 were known. https://nitaj.users.lmno.cnrs.fr/tableabc.pdf

At the date of August 1, 2015, 238 were known. On May 15,
2017, the total is 240. http://www.math.leidenuniv.nl/~desmit/abc/index.php?sort=1

Contributions by A. Nitaj,
T. Dokchitser, J. Browkin,
J. Brzezinski, F. Rubin,
T. Schulmeiss, B. de Weger,
J. Demeyer, K. Visser,
P. Montgomery, H. Te Riele,
A. Rosenheinrich, J. Calvo,
M. Hegner, J. Wrobenski. . .

The list up to 20 digits is complete.
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Eric Reyssat : 2 + 310 · 109 = 235
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Example of Reyssat 2 + 310 · 109 = 235

a+ b = c

a = 2, b = 310 · 109, c = 235 = 6436 343,

Rad(abc) = Rad(2 · 310 · 109 · 235) = 2 · 3 · 109 · 23 = 15 042,

�(a, b, c) =
log c

log Rad(abc)
=

5 log 23

log 15 042
' 1.62991.
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Continued fraction

2 + 109 · 310 = 235

Continued fraction of 1091/5 : [2; 1, 1, 4, 77733, . . . ],
approximation : [2; 1, 1, 4] = 23/9

1091/5= 2.555 555 39 . . .

23

9
= 2.555 555 55 . . .

N. A. Carella. Note on the ABC Conjecture

http://arXiv.org/abs/math/0606221
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Benne de Weger : 112 + 32 · 56 · 73 = 221 · 23

Rad(221 · 32 · 56 · 73 · 112 · 23) = 2 · 3 · 5 · 7 · 11 · 23 = 53 130.

221 · 23 = 48 234 496 = (53 130)1.625990...
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Explicit abc Conjecture

According to S. Laishram and T. N. Shorey, an explicit
version, due to A. Baker, of the abc Conjecture, yields

c < Rad(abc)7/4

for any abc–triple (a, b, c).
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The abc Conjecture

Recall that for a positive integer n, the radical of n is

Rad(n) =
Y

p|n

p.

abc Conjecture. Let " > 0. Then the set of abc triples for
which

c > Rad(abc)1+"

is finite.

Equivalent statement : For each " > 0 there exists (") such
that, if a, b and c in Z>0 are relatively prime and satisfy

a+ b = c, then
c < (")Rad(abc)1+".
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Lower bound for the radical of abc

The abc Conjecture is a lower bound for the radical of the
product abc :

abc Conjecture. For any " > 0, there exist (") such that, if

a, b and c are relatively prime positive integers which satisfy

a+ b = c, then
Rad(abc) > (")c1�".
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The abc Conjecture of Oesterlé and Masser

The abc Conjecture resulted from a discussion between
J. Oesterlé and D. W. Masser in the mid 1980’s.
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C.L. Stewart and Yu Kunrui
Best known non conditional result : C.L. Stewart and Yu
Kunrui (1991, 2001) :

log c  R1/3(logR)3.

with R = Rad(abc) :

c  eR
1/3(logR)3 .
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Lucien Szpiro

J. Oesterlé and A. Nitaj
proved that the abc
Conjecture implies a previous
conjecture by L. Szpiro on the
conductor of elliptic curves.

Given any " > 0, there exists a constant C(") > 0 such that,

for every elliptic curve with minimal discriminant � and

conductor N ,

|�| < C(")N6+".
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Szpiro’s Conjecture

Conversely, J. Oesterlé proved
in 1988 that the conjecture of
L. Szpiro implies a weak form
of the abc conjecture with
1� ✏ replaced by (5/6)� ✏.
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Further examples
When a, b and c are three positive relatively prime integers
satisfying a+ b = c, define

%(a, b, c) =
log abc

log Rad(abc)
·

Here are the two largest known values for %(abc), found by
A. Nitaj.

a+ b = c %(a, b, c)

13 · 196 + 230 · 5 = 313 · 112 · 31 4.41901 . . .
25 · 112 · 199 + 515 · 372 · 47 = 37 · 711 · 743 4.26801 . . .

On March 19, 2003, 47 abc triples were known with
0 < a < b < c, a+ b = c and gcd(a, b) = 1 satisfying
%(a, b, c) > 4. https://nitaj.users.lmno.cnrs.fr/tableszpiro.pdf
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Abderrahmane Nitaj
https://nitaj.users.lmno.cnrs.fr/abc.html
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Bart de Smit

http://www.math.leidenuniv.nl/~desmit/abc/
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Escher and the Droste e↵ect

http://escherdroste.math.leidenuniv.nl/
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www.abcathome.com

ABC@home is an educational and non-profit distributed
computing project finding abc-triples related to the ABC
conjecture.

The ABC conjecture is currently one of the greatest open
problems in mathematics. If it is proven to be true, a lot of
other open problems can be answered directly from it.

The ABC conjecture is one of the greatest open mathematical
questions, one of the holy grails of mathematics. It will teach
us something about our very own numbers.
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Fermat’s Last Theorem xn + yn = zn for n � 6

Pierre de Fermat Andrew Wiles
1601 – 1665 1953 –

Solution in 1994
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Fermat’s last Theorem for n � 6 as a consequence
of the abc Conjecture

Assume xn + yn = zn with gcd(x, y, z) = 1 and x < y. Then
(xn, yn, zn) is an abc–triple with

Rad(xnynzn)  xyz < z3.

If the explicit abc Conjecture c < Rad(abc)2 is true, then one
deduces

zn < z6,

hence n  5 (and therefore n  2).
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Square, cubes. . .

• A perfect power is an integer of the form ab where a � 1
and b > 1 are positive integers.

• Squares :

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . . .

• Cubes :

1, 8, 27, 64, 125, 216, 343, 512, 729, 1 000, 1 331, . . .

• Fifth powers :

1, 32, 243, 1 024, 3 125, 7 776, 16 807, 32 768, . . .
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Perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,
128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343,
361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, . . .

Neil J. A. Sloane’s encyclopaedia
http://oeis.org/A001597
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Nearly equal perfect powers

• Di↵erence 1 : (8, 9)

• Di↵erence 2 : (25, 27), . . .

• Di↵erence 3 : (1, 4), (125, 128), . . .

• Di↵erence 4 : (4, 8), (32, 36), (121, 125), . . .

• Di↵erence 5 : (4, 9), (27, 32),. . .
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Two conjectures

Eugène Charles Catalan (1814 – 1894)

Subbayya Sivasankaranarayana Pillai
(1901-1950)

• Catalan’s Conjecture : In the sequence of perfect powers,
8, 9 is the only example of consecutive integers.

• Pillai’s Conjecture : In the sequence of perfect powers, the
di↵erence between two consecutive terms tends to infinity.
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Pillai’s Conjecture :

• Pillai’s Conjecture : In the sequence of perfect powers, the
di↵erence between two consecutive terms tends to infinity.

• Alternatively : Let k be a positive integer. The equation

xp � yq = k,

where the unknowns x, y, p and q take integer values, all � 2,
has only finitely many solutions (x, y, p, q).
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Results

P. Mihăilescu, 2002.

Catalan was right : the
equation xp � yq = 1 where

the unknowns x, y, p and q
take integer values, all � 2,
has only one solution

(x, y, p, q) = (3, 2, 2, 3).
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Previous work on Catalan’s Conjecture

J.W.S. Cassels, Rob Tijdeman

xp < yq < exp exp exp exp(730)

Michel Langevin
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Previous work on Catalan’s Conjecture

Maurice Mignotte Yuri Bilu
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Pillai’s conjecture and the abc Conjecture

There is no value of k � 2 for which one knows that Pillai’s
equation xp � yq = k has only finitely many solutions.

Pillai’s conjecture as a consequence of the abc Conjecture :
if xp 6= yq, then

|xp � yq| � c(✏)max{xp, yq}�✏

with

 = 1� 1

p
� 1

q
·
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Lower bounds for linear forms in logarithms

• A special case of my
conjectures with S. Lang for

|q log y � p log x|

yields

|xp � yq| � c(✏)max{xp, yq}�✏

with

 = 1� 1

p
� 1

q
·

Serge Lang
(1927 - 2005)
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Not a consequence of the abc Conjecture

p = 3, q = 2

Hall’s Conjecture (1971) :

if x3 6= y2, then

|x3 � y2| � cmax{x3, y2}1/6.

http://en.wikipedia.org/wiki/Marshall_Hall,_Jr
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Conjecture of F. Beukers and C.L. Stewart (2010)

Let p, q be coprime integers with p > q � 2. Then, for any
c > 0, there exist infinitely many positive integers x, y such

that

0 < |xp � yq| < cmax{xp, yq}

with  = 1� 1

p
� 1

q
·
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Generalized Fermat’s equation xp + yq = zr

Consider the equation xp + yq = zr in positive integers
(x, y, z, p, q, r) such that x, y, z relatively prime and p, q, r
are � 2.

If
1

p
+

1

q
+

1

r
� 1,

then (p, q, r) is a permutation of one of

(2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5),

(2, 4, 4), (2, 3, 6), (3, 3, 3)

and in each case the set of solutions (x, y, z) is known (for
some of these values there are infinitely many solutions).
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Frits Beukers and Don Zagier

For
1

p
+

1

q
+

1

r
< 1,

10 primitive solutions (x, y, z, p, q, r) (up to obvious
symmetries) to the equation

xp + yq = zr

are known.
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Primitive solutions to xp + yq = zr

Condition : x, y, z are relatively prime

Trivial example of a non primitive solution : 2p + 2p = 2p+1.

Exercise (Claude Levesque) : for any pairwise relatively prime
(p, q, r), there exist positive integers x, y, z with xp + yq = zr.

Hint : �
17⇥ 7121

�3
+
�
2⇥ 719

�7
=
�
7113

�5
.
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Generalized Fermat’s equation

For
1

p
+

1

q
+

1

r
< 1,

the equation
xp + yq = zr

has the following 10 solutions with x, y, z relatively prime :

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 338 + 1 549 0342 = 15 6133,

1 4143 + 2 213 4592 = 657, 9 2623 + 15 312 2832 = 1137,

177 + 76 2713 = 21 063 9282, 438 + 96 2223 = 30 042 9072.
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Conjecture of Beal, Granville and Tijdeman–Zagier

The equation xp + yq = zr has no solution in positive integers
(x, y, z, p, q, r) with each of p, q and r at least 3 and with x,
y, z relatively prime.

http://mathoverflow.net/
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Andrew Beal

Find a solution with all exponents at least 3, or prove that

there is no such solution.

http://www.forbes.com/2009/04/03/

banking-andy-beal-business-wall-street-beal.html
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Beal’s Prize

Mauldin, R. D. – A generalization of Fermat’s last theorem :

the Beal Conjecture and prize problem. Notices Amer. Math.
Soc. 44 N�11 (1997), 1436–1437.
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Beal’s Prize : 1, 000, 000$ US

An AMS-appointed committee will award this prize for either a
proof of, or a counterexample to, the Beal Conjecture
published in a refereed and respected mathematics publication.
The prize money – currently US$1,000,000 – is being held in
trust by the AMS until it is awarded. Income from the prize
fund is used to support the annual Erdős Memorial Lecture
and other activities of the Society.

One of Andrew Beal’s goals is to inspire young people to think
about the equation, think about winning the o↵ered prize, and
in the process become more interested in the field of
mathematics.

http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize
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Henri Darmon, Andrew Granville
“Fermat-Catalan” Conjecture (H. Darmon and A. Granville),
consequence of the abc Conjecture : the set of solutions

(x, y, z, p, q, r) to xp + yq = zr with x, y, z relatively prime

and (1/p) + (1/q) + (1/r) < 1 is finite.

Hint:
1

p
+

1

q
+

1

r
< 1 implies

1

p
+

1

q
+

1

r
 41

42
·

1995 (H. Darmon and A. Granville) : unconditionally, for fixed
(p, q, r), only finitely many (x, y, z).
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Henri Darmon, Löıc Merel : (p, p, 2) and (p, p, 3)

Unconditional results by H. Darmon and L. Merel (1997) :
For p � 4, the equation xp + yp = z2 has no solution in
relatively prime positive integers x, y, z.
For p � 3, the equation xp + yp = z3 has no solution in
relatively prime positive integers x, y, z.
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Fermat’s Little Theorem

For a > 1, any prime p not
dividing a divides ap�1 � 1.

Hence if p is an odd prime,
then p divides 2p�1 � 1.

Wieferich primes (1909) : p2 divides 2p�1 � 1

The only known Wieferich primes are 1093 and 3511. These
are the only ones below 4 · 1012.
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Infinitely many primes are not Wieferich assuming
abc

J.H. Silverman : if the abc
Conjecture is true, given a
positive integer a > 1, there
exist infinitely many primes p
such that p2 does not divide
ap�1 � 1.

Nothing is known about the
finiteness of the set of
Wieferich primes.
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Consecutive integers with the same radical

Notice that

75 = 3 · 52 and 1215 = 35 · 5

hence
Rad(75) = Rad(1215) = 3 · 5 = 15.

But also
76 = 22 · 19 and 1216 = 26 · 19

have the same radical

Rad(76) = Rad(1216) = 2 · 19 = 38.
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Consecutive integers with the same radical

For k � 1, the two numbers

x = 2k � 2 = 2(2k�1 � 1)

and
y = (2k � 1)2 � 1 = 2k+1(2k�1 � 1)

have the same radical, and also

x+ 1 = 2k � 1 and y + 1 = (2k � 1)2

have the same radical.

65 / 120

Consecutive integers with the same radical

Are there further examples of x 6= y with

Rad(x) = Rad(y) and Rad(x+ 1) = Rad(y + 1)?

Is–it possible to find two distinct integers x, y such that

Rad(x) = Rad(y),

Rad(x+ 1) = Rad(y + 1)

and
Rad(x+ 2) = Rad(y + 2)?
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Erdős – Woods Conjecture

http://school.maths.uwa.edu.au/~woods/

There exists an absolute constant k such that, if x and y are
positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k � 1, then x = y.
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Erdős – Woods as a consequence of abc

M. Langevin : The abc
Conjecture implies that there
exists an absolute constant k
such that, if x and y are
positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k � 1, then
x = y.

Already in 1975 M. Langevin studied the radical of n(n+ k)
with gcd(n, k) = 1 using lower bounds for linear forms in
logarithms (Baker’s method).
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A factorial as a product of factorials
For n > a1 � a2 � · · · � at > 1, t > 1, consider

a1!a2! · · · at! = n!

Trivial solutions :
2r! = (2r � 1)!2!r with r � 2.

Non trivial solutions :
7!3!22! = 9!, 7!6! = 10!, 7!5!3! = 10!, 14!5!2! = 16!.

Saranya Nair and Tarlok Shorey : The e↵ective abc conjecture
implies Hickerson’s conjecture that the largest non-trivial
solution is given by n = 16.
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Erdős Conjecture on 2n � 1

In 1965, P. Erdős conjectured that the greatest prime factor
P (2n � 1) satisfies

P (2n � 1)

n
! 1 when n ! 1.

In 2002, R. Murty and S. Wong proved that this is a
consequence of the abc Conjecture.
In 2012, C.L. Stewart proved Erdős Conjecture (in a wider
context of Lucas and Lehmer sequences) :

P (2n � 1) > n exp
�
log n/104 log log n

�
.
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Is abc Conjecture optimal ?

Let � > 0. In 1986, C.L. Stewart and R. Tijdeman proved that
there are infinitely many abc–triples for which

c > R exp

✓
(4� �)

(logR)1/2

log logR

◆
.

Better than c > R logR.
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Conjectures by Machiel van Frankenhuijsen, Olivier
Robert, Cam Stewart and Gérald Tenenbaum

Let " > 0. There exists (") > 0 such that for any abc triple
with R = Rad(abc) > 8,

c < (")R exp

 
(4
p
3 + ")

✓
logR

log logR

◆1/2
!
.

Further, there exist infinitely many abc–triples for which

c > R exp

 
(4
p
3� ")

✓
logR

log logR

◆1/2
!
.
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Machiel van Frankenhuijsen, Olivier Robert, Cam
Stewart and Gérald Tenenbaum
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Heuristic assumption

Whenever a and b are coprime positive integers, R(a+ b) is
independent of R(a) and R(b).

O. Robert, C.L. Stewart and G. Tenenbaum, A refinement of

the abc conjecture, Bull. London Math. Soc., Bull. London
Math. Soc. (2014) 46 (6) : 1156-1166.
http://blms.oxfordjournals.org/content/46/6/1156.full.pdf

http://iecl.univ-lorraine.fr/~Gerald.Tenenbaum/PUBLIC/Prepublications_et_publications/abc.pdf
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Waring’s Problem

Edward Waring
(1736 - 1798)

In 1770, a few months before J.L. Lagrange
solved a conjecture of Bachet (1621)
and Fermat (1640) by proving
that every positive integer is the
sum of at most four squares of integers,
E. Waring wrote :

“Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5,

6, 7, 8, vel novem cubis compositus, est etiam quadrato-quadratus

vel e duobus, tribus, &.̧ usque ad novemdecim compositus, & sic

deinceps”

“Every integer is a cube or the sum of two, three, . . .nine cubes ;

every integer is also the square of a square, or the sum of up to

nineteen such ; and so forth. Similar laws may be a�rmed for the

correspondingly defined numbers of quantities of any like degree.”
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Waring’s functions g(k) and G(k)

• Waring’s function g is defined as follows : For any integer

k � 2, g(k) is the least positive integer s such that any

positive integer N can be written xk
1 + · · ·+ xk

s .

• Waring’s function G is defined as follows : For any integer

k � 2, G(k) is the least positive integer s such that any

su�ciently large positive integer N can be written

xk
1 + · · ·+ xk

s .
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J.L. Lagrange : g(2) = 4.

g(2)  4 : any positive
number is a sum of at most 4
squares :
n = x21 + x22 + x23 + x24.

g(2) � 4 : there are positive
numbers (for instance 7)
which are not sum of 3
squares.

Joseph-Louis Lagrange
(1736 – 1813)

Lower bounds are easy, not upper bounds.
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g(4) � 19.

We want to write 79 as sum a41 + a42 + · · ·+ a4s with s as
small as possible.

Since 79 < 81, we cannot use 34. Hence we can use only
24 = 16 and 14 = 1.

Since 79 < 5⇥ 16, we can use at most 4 terms 24.

Now
79 = 64 + 15 = 4⇥ 24 + 15⇥ 14

with 4 + 15 terms a4 (namely 4 with 24 and 15 with 14).

The number of terms is 19.
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n = x41 + · · · + x419 : g(4) = 19
Any positive integer is the sum of at most 19 biquadrates

R. Balasubramanian, J-M. Deshouillers, F. Dress (1986).

François Dress, R. Balasubramanian, Jean-Marc Deshouillers
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Evaluations of g(k) for k = 2, 3, 4, . . .

g(2) = 4 Lagrange 1770
g(3) = 9 Kempner 1912
g(4) = 19 Balusubramanian,Dress,Deshouillers 1986
g(5) = 37 Chen Jingrun 1964
g(6) = 73 Pillai 1940
g(7) = 143 Dickson 1936
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Lower bound for g(k)

Let k � 2. Select N < 3k of the form N = 2kq � 1. Since
N < 3k, writing N as a sum of k-th powers can involve no
term 3k, and since N < 2kq, it involves at most (q � 1) terms
2k, all others being 1k ; so the mot economical way of writing
N as a sum of k-th powers is

N = (q � 1)2k + (2k � 1)1k

which requires a total number of (q � 1) + (2k � 1) terms.
The largest value is obtained by taking for q the largest integer
with 2kq < 3k. Since (3/2)k is not an integer, this integer q is
b(3/2)kc (quotient of the division of 3k by 2k).
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g(k) � I(k)

For each integer k � 2, define
I(k) = 2k + b(3/2)kc � 2.
Then g(k) � I(k).

(J. A. Euler, son of Leonhard
Euler).
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The ideal Waring’s “Theorem” : g(k) = I(k)

Recall
I(k) = 2k + b(3/2)kc � 2.

Conjecture (C.A. Bretschneider, 1853) : g(k) = I(k) for any
k � 2.
Divide 3k by 2k :

3k = 2kq + r with 0 < r < 2k, q = b(3/2)kc

The remainder r = 3k � 2kq satisfies r < 2k. A slight
improvement of this upper bound would yield the desired
result. L.E. Dickson and S.S. Pillai proved independently in
1936 that g(k) = I(k), provided that r = 3k � 2kq satisfies

r  2k � q � 2 with q = b(3/2)kc.
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The condition r  2k � q � 2

The condition r  2k � q � 2 is satisfied for
4  k  471 600 000.

If, for some k, the condition r  2k � q � 2 is not satisfied,
then (3/2)k is extremely close to an integer :

q + 1� q � 2

2k
<

✓
3

2

◆k

< q + 1,

which is unlikely : one expects that the numbers (3/2)k are
well distributed modulo 1.
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Mahler’s contribution

• The estimate

r  2k � q � 2

is valid for all su�ciently large
k.

Kurt Mahler
(1903 - 1988)

Hence the ideal Waring’s Theorem

g(k) = 2k + b(3/2)kc � 2

holds for all su�ciently large k.
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Waring’s Problem and the abc Conjecture

S. David : the estimate

r  2k � q � 2

for su�ciently large k follows
from the abc Conjecture.

S. Laishram : the ideal Waring’s Theorem
g(k) = 2k + b(3/2)kc � 2 follows from the explicit abc
Conjecture.
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Conjecture of Alan Baker (1996)

Let (a, b, c) be an abc–triple and let ✏ > 0. Then

c  
�
✏�!R

�1+✏

where  is an absolute constant, R = Rad(abc) and
! = !(abc) is the number of distinct prime factors of abc.

Remark of Andrew Granville : the minimum of the function on
the right hand side over ✏ > 0 occurs essentially with
✏ = !/ logR. This yields a slightly sharper form of the
conjecture :

c  R
(logR)!

!!
·
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Alan Baker : explicit abc Conjecture (2004)

Let (a, b, c) be an abc–triple.
Then

c  6

5
R
(logR)!

!!

with R = Rad(abc) the
radical of abc and ! = !(abc)
the number of distinct prime
factors of abc.
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Shanta Laishram and Tarlok Shorey

The Nagell–Ljunggren
equation is the equation

yq =
xn � 1

x� 1

in integers x > 1, y > 1,
n > 2, q > 1.

This means that in basis x, all the digits of the perfect power
yq are 1.
If the explicit abc–conjecture of Baker is true, then the only
solutions are

112 =
35 � 1

3� 1
, 202 =

74 � 1

7� 1
, 73 =

183 � 1

18� 1
·
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The abc conjecture for number fields

P. Vojta (1987) - variants due to D.W. Masser and K. Győry
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The abc conjecture for number fields (continued)

Survey by J. Browkin.

Jerzy Browkin
(1934 – 2015)

The abc– conjecture for
Algebraic Numbers
Acta Mathematica Sinica,
Jan., 2006, Vol. 22, No. 1,
pp. 211–222

http://dx.doi.org/10.1007/s10114-005-0624-3
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Mordell’s Conjecture (Faltings’s Theorem)

Using an e↵ective extension of the abc Conjecture for a
number field, N. Elkies deduces an e↵ective version of
Faltings’s Theorem on the finiteness of the set of rational
points on an algebraic curve of genus � 2 over the same
number field.

L.J. Mordell (1922) G. Faltings (1984) N. Elkies (1991)

http://www.math.harvard.edu/~elkies/
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The abc conjecture for number fields

Andrea Surroca

The e↵ective abc Conjecture
implies an e↵ective version of
Siegel’s Theorem on the
finiteness of the set of integer
points on a curve.

A. Surroca, Méthodes de transcendance et géométrie

diophantienne, Thèse, Université de Paris 6, 2003.
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Thue–Siegel–Roth Theorem (Bombieri)

Using the abc Conjecture for number fields, E. Bombieri
(1994) deduces a refinement of the Thue–Siegel–Roth
Theorem on the rational approximation of algebraic numbers

����↵� p

q

���� >
1

q2+"

where he replaces " by

(log q)�1/2(log log q)�1

where  depends only on the
algebraic number ↵.
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Siegel’s zeroes (A. Granville and H.M. Stark)

The uniform abc Conjecture for number fields implies a lower
bound for the class number of an imaginary quadratic number
field, and K. Mahler has shown that this implies that the
associated L–function has no Siegel zero.
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abc and Vojta’s height Conjecture

Paul Vojta

Vojta stated a conjectural
inequality on the height of
algebraic points of bounded
degree on a smooth complete
variety over a global field of
characteristic zero which
implies the abc Conjecture.
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Further consequences of the abc Conjecture
• Erdős’s Conjecture on consecutive powerful numbers.
• Dressler’s Conjecture : between two positive integers having the same
prime factors, there is always a prime (Cochrane and
textcolormacouleurDressler 1999).
• Squarefree and powerfree values of polynomials (Browkin, Filaseta,
Greaves and Schinzel, 1995).
• Lang’s conjectures : lower bounds for heights, number of integral points
on elliptic curves (Frey 1987, Hindry Silverman 1988).
• Bounds for the order of the Tate–Shafarevich group (Goldfeld and
Szpiro 1995).
• Greenberg’s Conjecture on Iwasawa invariants � and µ in cyclotomic
extensions (Ichimura 1998).
• Lower bound for the class number of imaginary quadratic fields
(Granville and Stark 2000), hence no Siegel zero for the associated
L–function (Mahler).
• Fundamental units of certain quadratic and biquadratic fields
(Katayama 1999).
• The height conjecture and the degree conjecture (Frey 1987, Mai and
Murty 1996)
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The n–Conjecture

Nils Bruin, Generalization of
the ABC-conjecture, Master
Thesis, Leiden University,
1995.

http://www.cecm.sfu.ca/

~nbruin/scriptie.pdf

Let n � 3. There exists a positive constant n such that, if
x1, . . . , xn are relatively prime rational integers satisfying
x1 + · · ·+ xn = 0 and if no proper subsum vanishes, then

max{|x1|, . . . , |xn|}  Rad(x1 · · · xn)
n .

? Should hold for all but finitely many (x1, . . . , xn) with
n = 2n� 5 + ✏ ?
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A consequence of the n–Conjecture

Open problem : for k � 5, no positive integer can be written
in two essentially di↵erent ways as sum of two k–th powers.

It is not even known whether such a k exists.
Reference : Hardy and Wright : §21.11

For k = 4 (Euler) :

594 + 1584 = 1334 + 1344 = 635 318 657

A parametric family of solutions of x4
1 + x4

2 = x4
3 + x4

4 is known
Reference : http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

99 / 120

abc and meromorphic function fields

Nevanlinna value distribution theory.

Recent work of Hu, Pei–Chu, Yang, Chung-Chun and P. Vojta.
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ABC Theorem for polynomials

Let K be an algebraically closed field. The radical of a monic
polynomial

P (X) =
nY

i=1

(X � ↵i)
ai 2 K[X]

with ↵i pairwise distinct is defined as

Rad(P )(X) =
nY

i=1

(X � ↵i) 2 K[X].
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ABC Theorem for polynomials

ABC Theorem (A. Hurwitz,
W.W. Stothers, R. Mason).
Let A, B, C be three
relatively prime polynomials in
K[X] with A+B = C and
let R = Rad(ABC). Then

max{deg(A), deg(B), deg(C)}

< deg(R). Adolf Hurwitz (1859–1919)

This result can be compared with the abc Conjecture, where
the degree replaces the logarithm.
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The radical of a polynomial as a gcd

The common zeroes of

P (X) =
nY

i=1

(X � ↵i)
ai 2 K[X]

and P 0 are the ↵i with ai � 2. They are zeroes of P 0 with
multiplicity ai � 1. Hence

Rad(P ) =
P

gcd(P, P 0)
·
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Proof of the ABC Theorem for polynomials

Now suppose A+B = C with A,B,C relatively prime.

Notice that

Rad(ABC) = Rad(A)Rad(B)Rad(C).

We may suppose A, B, C to be monic and, say,
deg(A)  deg(B)  deg(C).

Write
A+B = C, A0 +B0 = C 0,

and
AB0 � A0B = AC 0 � A0C.
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Proof of the ABC Theorem for polynomials
Recall gcd(A,B,C) = 1. Since gcd(C,C 0) divides
AC 0 � A0C = AB0 � A0B, it divides also

AB0 � A0B

gcd(A,A0) gcd(B0B0)

which is a polynomial of degree

< deg
�
Rad(A)

�
+ deg

�
Rad(B)

�
= deg

�
Rad(AB)

�
.

Hence
deg
�
gcd(C,C 0)

�
< deg

�
Rad(AB)

�

and

deg(C) < deg
�
Rad(C)

�
+ deg

�
Rad(AB)

�
= deg

�
Rad(ABC)

�
.
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Shinichi Mochizuki

INTER-UNIVERSAL
TEICHMÜLLER THEORY
IV :
LOG-VOLUME
COMPUTATIONS AND
SET-THEORETIC
FOUNDATIONS
by
Shinichi Mochizuki
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http://www.kurims.kyoto-u.ac.jp/

~motizuki/top-english.html

    

    

    

    

Shinichi Mochizuki@RIMS http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

1 sur 1 10/10/12 12:48
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Papers of Shinichi Mochizuki

• General Arithmetic Geometry

• Intrinsic Hodge Theory

• p–adic Teichmüller Theory

• Anabelian Geometry, the Geometry of Categories

• The Hodge-Arakelov Theory of Elliptic Curves

• Inter-universal Teichmüller Theory

108 / 120



Shinichi Mochizuki

[1] Inter-universal Teichmüller Theory I : Construction of
Hodge Theaters. PDF

[2] Inter-universal Teichmüller Theory II :
Hodge-Arakelov-theoretic Evaluation. PDF

[3] Inter-universal Teichmüller Theory III : Canonical Splittings
of the Log-theta-lattice. PDF

[4] Inter-universal Teichmüller Theory IV : Log-volume
Computations and Set-theoretic Foundations. PDF
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https://en.wikipedia.org/wiki/Abc_conjecture

In August 2012, Shinichi
Mochizuki released a series of
four preprints announcing a
proof of the abc Conjecture.

When an error in one of the articles was pointed out by
Vesselin Dimitrov and Akshay Venkatesh in October 2012,
Mochizuki posted a comment on his website acknowledging
the mistake, stating that it would not a↵ect the result, and
promising a corrected version in the near future. He proceeded
to post a series of corrected papers of which the latest dated
November 2017.
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http://www.kurims.kyoto-u.ac.jp/

~motizuki/top-english.html
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https://www.maths.nottingham.ac.uk/personal/ibf/files/symcor.iut.html

Workshop on IUT Theory of
Shinichi Mochizuki, December
7-11 2015

CMI Workshop supported by
Clay Math Institute and
Symmetries and
Correspondences

Organisers : Ivan Fesenko, Minhyong Kim, Kobi Kremnitzer
Finding the speakers and the program of the workshop : Ivan
Fesenko
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CMI Workshop supported by Clay Math Institute
and Symmetries and Correspondences

The work (currently being refereed) of SHINICHI MOCHIZUKI
on inter-universal Teichmüller theory (also known as arithmetic
deformation theory) and its application to famous conjectures
in diophantine geometry became publicly available in August
2012. This theory, developed over 20 years, introduces a vast
collection of novel ideas, methods and objects. Aspects of the
theory extend arithmetic geometry to a non-scheme-theoretic
setting and, more generally, have the potential to open new
fundamental areas of mathematics.

The workshop aims to present and analyse key principles,
concepts, objects and proofs of the theory of Mochizuki and
study its relations with existing theories in di↵erent areas, to
help to increase the number of experts in the theory of
Mochizuki and stimulate its further applications.
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Speakers

Shinichi Mochizuki will answer questions during skype sessions
of the workshop. He also responds directly to emailed
questions.

Invited speakers : Oren Ben-Bassat, Weronika Czerniawska,
Yuichiro Hoshi, Ariyan Javanpeykar, Kiran Kedlaya, Robert
Kucharczyk, Ulf Kühn, Lars Kuehne, Emmanuel Lepage,
Chung Pang Mok, Jakob Stix, Tamás Szamuely, Fucheng Tan,
Go Yamashita, Shou-Wu Zhang.
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Participants

115 / 120

State of the art concerning Mochizuki’s
contribution (Nov. 2017)

The submitted proof is more than 500 pages long and is
currently being peer-reviewed.

Ivan Fesenko estimates that the proof has been veri-
fied at least 30 times in §3.1 of the most recent updated version
https://www.maths.nottingham.ac.uk/personal/ibf/notesoniut.pdf

of his survey.
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Links

Not Even Wrong
Latest on abc
Posted on December 16, 2017 by Peter Woit

http://www.math.columbia.edu/~woit/wordpress/?p=9871

The ABC conjecture has (still) not been proved
Posted on December 17, 2017 by Frank Calegari

https://galoisrepresentations.wordpress.com/2017/12/

17/the-abc-conjecture-has-still-not-been-proved/

Hector Pasten

Shimura curves and the abc conjecture

https://arxiv.org/abs/1705.09251
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Reference

Michel Waldschmidt
On the abc conjecture and some of its consequences.
Mathematics in 21st Century, 6th World Conference, Lahore,
March 2013,
(P. Cartier, A.D.R. Choudary, M. Waldschmidt Editors),
Springer Proceedings in Mathematics and Statistics 98
(2015), 211–230.

http://www.imj-prg.fr/~michel.waldschmidt//articles/pdf/abcLahoreProceedings.pdf
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Poster with Razvan Barbulescu — Archives HAL

https://hal.archives-ouvertes.fr/hal-01626155
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On the abc Conjecture

and some of its consequences

by

Michel Waldschmidt

Université P. et M. Curie (Paris VI)

http://www.imj-prg.fr/~michel.waldschmidt/
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