On the abc Conjecture and some of its consequences

by

Michel Waldschmidt

Université P. et M. Curie (Paris VI)
http://www.imj-prg.fr/~michel.waldschmidt/

Abstract (continued)

This talk will be at an elementary level, giving a collection of consequences of the $a b c$ Conjecture. It will not include an introduction to the Inter-universal Teichmüller Theory of Shinichi Mochizuki.

[^0]According to Nature News, 10 September 2012, quoting Dorian Goldfeld, the $a b c$ Conjecture is "the most important unsolved problem in Diophantine analysis". It is a kind of grand unified theory of Diophantine curves: "The remarkable thing about the $a b c$ Conjecture is that it provides a way of reformulating an infinite number of Diophantine problems," says Goldfeld, "and, if it is true, of solving them." Proposed independently in the mid-80s by David Masser of the University of Basel and Joseph Oesterlé of Pierre et Marie Curie University (Paris 6), the $a b c$ Conjecture describes a kind of balance or tension between addition and multiplication, formalizing the observation that when two numbers a and b are divisible by large powers of small primes, $a+b$ tends to be divisible by small powers of large primes. The $a b c$ Conjecture implies - in a few lines - the proofs of many difficult theorems and outstanding conjectures in Diophantine equationsincluding Fermat's Last Theorem.

https://hal.archives-ouvertes.fr/hal-01626155

As simple as abc

American Broadcasting Company

Annapurna Base Camp, October 22, 2014

Mt. Annapurna (8091m) is the 10th highest mountain in the world and the journey to its base camp is one of the most popular treks on earth.
http://www.himalayanglacier.com/trekking-in-nepal/160/ annapurna-base-camp-trek.htm

The radical of a positive integer
According to the fundamental theorem of arithmetic, any integer $n \geq 2$ can be written as a product of prime numbers :

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}}
$$

The radical (also called kernel) $\operatorname{Rad}(n)$ of n is the product of the distinct primes dividing n :

$$
\begin{gathered}
\operatorname{Rad}(n)=p_{1} p_{2} \cdots p_{t} \\
\operatorname{Rad}(n) \leq n
\end{gathered}
$$

Examples: $\operatorname{Rad}\left(2^{a}\right)=2$,
$\operatorname{Rad}(60500)=\operatorname{Rad}\left(2^{2} \cdot 5^{3} \cdot 11^{2}\right)=2 \cdot 5 \cdot 11=110$,
$\operatorname{Rad}(82852996681926)=2 \cdot 3 \cdot 23 \cdot 109=15042$.

An $a b c$-triple is a triple of three positive integers a, b, c which are coprime, $a<b$ and that $a+b=c$.

Examples:

$$
\begin{gathered}
1+2=3, \quad 1+8=9 \\
1+80=81, \quad 4+121=125 \\
2+3^{10} \cdot 109=23^{5}, \quad 11^{2}+3^{2} 5^{6} 7^{3}=2^{21} \cdot 23
\end{gathered}
$$

Radical of the $a b c$-triples with $c<10$
$\operatorname{Rad}(1 \cdot 2 \cdot 3)=6$
$\operatorname{Rad}(1 \cdot 3 \cdot 4)=6$
$\operatorname{Rad}(1 \cdot 4 \cdot 5)=10 \quad \operatorname{Rad}(2 \cdot 3 \cdot 5)=30$
$\operatorname{Rad}(1 \cdot 5 \cdot 6)=30$
$\operatorname{Rad}(1 \cdot 6 \cdot 7)=42 \quad \operatorname{Rad}(2 \cdot 5 \cdot 7)=70 \quad \operatorname{Rad}(3 \cdot 4 \cdot 7)=42$
$\operatorname{Rad}(1 \cdot 7 \cdot 8)=14 \quad \operatorname{Rad}(3 \cdot 5 \cdot 8)=30$
$\operatorname{Rad}(1 \cdot 8 \cdot 9)=6 \quad \operatorname{Rad}(2 \cdot 7 \cdot 9)=54 \quad \operatorname{Rad}(4 \cdot 5 \cdot 9)=30$
$a=1, b=8, c=9, a+b=c, \operatorname{gcd}=1, \operatorname{Rad}(a b c)<c$.

13 abc-triples with $c<10$
a, b, c are coprime, $1 \leq a<b, a+b=c$ and $c \leq 9$.

$$
\begin{array}{lll}
1+2=3 & & \\
1+3=4 & & \\
1+4=5 & 2+3=5 & \\
1+5=6 & & \\
1+6=7 & 2+5=7 & 3+4=7 \\
1+7=8 & & 3+5=8 \\
1+8=9 & 2+7=9 &
\end{array}
$$

$a b c-$ hits

Following F. Beukers, an $a b c$-hit is an $a b c$-triple such that $\operatorname{Rad}(a b c)<c$.

http://www.staff.science.uu.nl/~beuke106/ABCpresentation.pdf
Example: $(1,8,9)$ is an $a b c$-hit since $1+8=9$, $\operatorname{gcd}(1,8,9)=1$ and

$$
\operatorname{Rad}(1 \cdot 8 \cdot 9)=\operatorname{Rad}\left(2^{3} \cdot 3^{2}\right)=2 \cdot 3=6<9
$$

On the condition that a, b, c are relatively prime
Starting with $a+b=c$, multiply by a power of a divisor $d>1$ of $a b c$ and get

$$
a d^{l}+b d^{l}=c d^{l} .
$$

The radical did not increase : the radical of the product of the three numbers $a d^{\ell}, b d^{\ell}$ and $c d^{l}$ is nothing else than $\operatorname{Rad}(a b c)$; but c is replaced by $c d^{\ell}$.

For ℓ sufficiently large, $c d^{\ell}$ is larger than $\operatorname{Rad}(a b c)$.
But $\left(a d^{\ell}, b d^{\ell}, c d^{\ell}\right)$ is not an $a b c$-hit.
It would be too easy to get examples without the condition that a, b, c are relatively prime.

Further $a b c$-hits

- $\quad\left(2,3^{10} \cdot 109,23^{5}\right)=(2,6436341,6436343)$
is an $a b c$-hit since $2+3^{10} \cdot 109=23^{5}$ and
$\operatorname{Rad}\left(2 \cdot 3^{10} \cdot 109 \cdot 23^{5}\right)=15042<23^{5}=6436343$.
- $\quad\left(11^{2}, 3^{2} \cdot 5^{6} \cdot 7^{3}, 2^{21} \cdot 23\right)=(121,48234275,48234496)$
is an $a b c$-hit since $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$ and
$\operatorname{Rad}\left(2^{21} \cdot 3^{2} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 23\right)=53130<2^{21} \cdot 23=48234496$.
- $\quad\left(1,5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3}, 19^{6}\right)=(1,47045880,47045881)$
is an $a b c$-hit since $1+5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3}=19^{6}$ and
$\operatorname{Rad}\left(5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3} \cdot 19^{6}\right)=5 \cdot 127 \cdot 2 \cdot 3 \cdot 7 \cdot 19=506730$.

More $a b c$-hits

Recall the $a b c$-hit $(1,80,81)$, where $81=3^{4}$.

$$
\left(1,3^{16}-1,3^{16}\right)=(1,43046720,43046721)
$$

is an $a b c$-hit.
Proof.

$$
\begin{aligned}
3^{16}-1 & =\left(3^{8}-1\right)\left(3^{8}+1\right) \\
& =\left(3^{4}-1\right)\left(3^{4}+1\right)\left(3^{8}+1\right) \\
& =\left(3^{2}-1\right)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right) \\
& =(3-1)(3+1)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)
\end{aligned}
$$

is divisible by 2^{6}. (Quotient : 672605).
Hence

$$
\operatorname{Rad}\left(\left(3^{16}-1\right) \cdot 3^{16}\right) \leq \frac{3^{16}-1}{2^{6}} \cdot 2 \cdot 3<3^{16}
$$

Infinitely many $a b c$-hits

This argument shows that there exist infinitely many $a b c$-triples such that

$$
c>\frac{1}{6 \log 3} R \log R
$$

with $R=\operatorname{Rad}(a b c)$.

Question: Are there $a b c$-triples for which $c>\operatorname{Rad}(a b c)^{2}$?

Infinitely many $a b c$-hits

Proposition. There are infinitely many abc-hits.
Take $k \geq 1, a=1, c=3^{2^{k}}, b=c-1$.
Lemma. 2^{k+2} divides $3^{2^{k}}-1$.
Proof : Induction on k using

$$
3^{2^{k}}-1=\left(3^{2^{k-1}}-1\right)\left(3^{2^{k-1}}+1\right)
$$

Consequence :

$$
\operatorname{Rad}\left(\left(3^{2^{k}}-1\right) \cdot 3^{2^{k}}\right) \leq \frac{3^{2^{k}}-1}{2^{k+1}} \cdot 3<3^{2^{k}}
$$

Hence

$$
\left(1,3^{2^{k}}-1,3^{2^{k}}\right)
$$

is an $a b c$-hit.

Examples

When a, b and c are three positive relatively prime integers satisfying $a+b=c$, define

$$
\lambda(a, b, c)=\frac{\log c}{\log \operatorname{Rad}(a b c)} .
$$

Here are the two largest known values for $\lambda(a b c)$

$a+b$	$=c$	$\lambda(a, b, c)$	
$2+3^{10} \cdot 109$	$=23^{5}$	$1.629912 \ldots$	É. Reyssat
$11^{2}+3^{2} 5^{6} 7^{3}$	$=2^{21} \cdot 23$	$1.625990 \ldots$	B.M. de Weger

We do not know the answer.

Number of digits of the good $a b c$-triples
At the date of September 11, 2008, $217 a b c$ triples with $\lambda(a, b, c) \geq 1.4$ were known. https://nitaj. users.1mno.cnrs.fr/tableabc.pdf At the date of August 1, 2015, 238 were known. On May 15, 2017, the total is 240 . http://www. math. 1eidenuniv.n1/-desmit/abc/index.php?sort=1

The list up to 20 digits is complete.

Example of Reyssat $2+3^{10} \cdot 109=23^{5}$

$$
\begin{aligned}
& a+b=c \\
& \quad a=2, \quad b=3^{10} \cdot 109, \quad c=23^{5}=6436343
\end{aligned}
$$

$$
\operatorname{Rad}(a b c)=\operatorname{Rad}\left(2 \cdot 3^{10} \cdot 109 \cdot 23^{5}\right)=2 \cdot 3 \cdot 109 \cdot 23=15042
$$

$$
\lambda(a, b, c)=\frac{\log c}{\log \operatorname{Rad}(a b c)}=\frac{5 \log 23}{\log 15042} \simeq 1.62991
$$

Eric Reyssat : $2+3^{10} \cdot 109=23^{5}$

Continued fraction

$$
2+109 \cdot 3^{10}=23^{5}
$$

Continued fraction of $109^{1 / 5}:[2 ; 1,1,4,77733, \ldots]$, approximation : $[2 ; 1,1,4]=23 / 9$

$$
\begin{aligned}
109^{1 / 5} & =2.55555539 \ldots \\
\frac{23}{9} & =2.55555555 \ldots
\end{aligned}
$$

N. A. Carella. Note on the $A B C$ Conjecture

http://arXiv.org/abs/math/0606221

Benne de Weger: $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$
$\operatorname{Rad}\left(2^{21} \cdot 3^{2} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 23\right)=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=53130$.

$$
2^{21} \cdot 23=48234496=(53130)^{1.625990 \ldots}
$$

The $a b c$ Conjecture

Recall that for a positive integer n, the radical of n is

$$
\operatorname{Rad}(n)=\prod_{p \mid n} p .
$$

$a b c$ Conjecture. Let $\varepsilon>0$. Then the set of abc triples for which

$$
c>\operatorname{Rad}(a b c)^{1+\varepsilon}
$$

is finite.
Equivalent statement : For each $\varepsilon>0$ there exists $\kappa(\varepsilon)$ such that, if a, b and c in $\mathbf{Z}_{>0}$ are relatively prime and satisfy $a+b=c$, then

$$
c<\kappa(\varepsilon) \operatorname{Rad}(a b c)^{1+\varepsilon} .
$$

Explicit $a b c$ Conjecture

According to S. Laishram and T. N. Shorey, an explicit version, due to A . Baker, of the $a b c$ Conjecture, yields

$$
c<\operatorname{Rad}(a b c)^{7 / 4}
$$

for any $a b c$-triple (a, b, c).

Lower bound for the radical of $a b c$

The $a b c$ Conjecture is a lower bound for the radical of the product $a b c$:
$a b c$ Conjecture. For any $\varepsilon>0$, there exist $\kappa(\varepsilon)$ such that, if a, b and c are relatively prime positive integers which satisfy $a+b=c$, then

$$
\operatorname{Rad}(a b c)>\kappa(\varepsilon) c^{1-\varepsilon} .
$$

The abc Conjecture of Oesterlé and Masser

The $a b c$ Conjecture resulted from a discussion between J. Oesterlé and D. W. Masser in the mid 1980's.

Lucien Szpiro

J. Oesterlé and A. Nitaj proved that the $a b c$
Conjecture implies a previous conjecture by L. Szpiro on the conductor of elliptic curves.

Given any $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that, for every elliptic curve with minimal discriminant Δ and conductor N,

$$
|\Delta|<C(\varepsilon) N^{6+\varepsilon}
$$

C.L. Stewart and Yu Kunrui

Best known non conditional result : C.L. Stewart and Yu Kunrui $(1991,2001)$:

$$
\log c \leq \kappa R^{1 / 3}(\log R)^{3}
$$

with $R=\operatorname{Rad}(a b c)$:

$$
c \leq e^{\kappa R^{1 / 3}(\log R)^{3}}
$$

Szpiro's Conjecture

Conversely, J. Oesterlé proved in 1988 that the conjecture of L. Szpiro implies a weak form of the $a b c$ conjecture with $1-\epsilon$ replaced by $(5 / 6)-\epsilon$.

Further examples

When a, b and c are three positive relatively prime integers satisfying $a+b=c$ ，define

$$
\varrho(a, b, c)=\frac{\log a b c}{\log \operatorname{Rad}(a b c)} .
$$

Here are the two largest known values for $\varrho(a b c)$ ，found by A．Nitaj．

$a+b$	$=c$	$\varrho(a, b, c)$
$13 \cdot 19^{6}+2^{30} \cdot 5$	$=3^{13} \cdot 11^{2} \cdot 31$	$4.41901 \ldots$
$2^{5} \cdot 11^{2} \cdot 19^{9}+5^{15} \cdot 37^{2} \cdot 47$	$=3^{7} \cdot 7^{11} \cdot 743$	$4.26801 \ldots$

On March 19，2003， $47 a b c$ triples were known with $0<a<b<c, a+b=c$ and $\operatorname{gcd}(a, b)=1$ satisfying $\varrho(a, b, c)>4$ ．

5

http：／／www．math．leidenuniv．nl／～desmit／abc／ace an

عبدالرحمان نتّاج
https：／／nitaj．users．lmno．cnrs．fr／abc．html
THE ABC CONJECTURE HOME PAGE
ABC

theice
－Dixelcaniectars
－Gomeratianise
－Thils
The Dis

Nix condaku unitas mew

－Batiounta
34／120

Escher and the Droste effect

http：／／escherdroste．math．leidenuniv．nl／

ABC@home is an educational and non-profit distributed computing project finding abc-triples related to the $A B C$ conjecture.

The $A B C$ conjecture is currently one of the greatest open problems in mathematics. If it is proven to be true, a lot of other open problems can be answered directly from it.

The $A B C$ conjecture is one of the greatest open mathematical questions, one of the holy grails of mathematics. It will teach us something about our very own numbers.

Fermat's last Theorem for $n \geq 6$ as a consequence of the $a b c$ Conjecture

Assume $x^{n}+y^{n}=z^{n}$ with $\operatorname{gcd}(x, y, z)=1$ and $x<y$. Then $\left(x^{n}, y^{n}, z^{n}\right)$ is an $a b c$-triple with

$$
\operatorname{Rad}\left(x^{n} y^{n} z^{n}\right) \leq x y z<z^{3}
$$

If the explicit $a b c$ Conjecture $c<\operatorname{Rad}(a b c)^{2}$ is true, then one deduces

$$
z^{n}<z^{6}
$$

hence $n \leq 5$ (and therefore $n \leq 2$).

Fermat's Last Theorem $x^{n}+y^{n}=z^{n}$ for $n \geq 6$
Pierre de Fermat
Andrew Wiles
1601-1665 1953 -

Solution in 1994

Square, cubes...

- A perfect power is an integer of the form a^{b} where $a \geq 1$ and $b>1$ are positive integers.
- Squares :
$1,4,9,16,25,36,49,64,81,100,121,144,169,196, \ldots$
- Cubes:
$1,8,27,64,125,216,343,512,729,1000,1331, \ldots$
- Fifth powers :
$1,32,243,1024,3125,7776,16807,32768, \ldots$

Perfect powers

$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125$,
$128,144,169,196,216,225,243,256,289,324,343$,
$361,400,441,484,512,529,576,625,676,729,784, \ldots$

Neil J. A. Sloane's encyclopaedia
http://oeis.org/A001597

Two conjectures

Subbayya Sivasankaranarayana Pillai
Eugène Charles Catalan (1814-1894)
(1901-1950)

- Catalan's Conjecture : In the sequence of perfect powers,

8,9 is the only example of consecutive integers.

- Pillai's Conjecture : In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.

Nearly equal perfect powers

- Difference 1 : $(8,9)$
- Difference 2 : $(25,27), \ldots$
- Difference $3:(1,4),(125,128), \ldots$
- Difference $4:(4,8),(32,36),(121,125), \ldots$
- Difference $5:(4,9),(27,32), \ldots$

Pillai's Conjecture :

- Pillai's Conjecture : In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.
- Alternatively : Let k be a positive integer. The equation

$$
x^{p}-y^{q}=k,
$$

where the unknowns x, y, p and q take integer values, all ≥ 2, has only finitely many solutions (x, y, p, q).

Results
P. Mihăilescu, 2002.

Catalan was right: the equation $x^{p}-y^{q}=1$ where the unknowns x, y, p and q take integer values, all ≥ 2, has only one solution $(x, y, p, q)=(3,2,2,3)$.

Previous work on Catalan's Conjecture

Maurice Mignotte

Yuri Bilu

Pillai's conjecture and the $a b c$ Conjecture

There is no value of $k \geq 2$ for which one knows that Pillai's equation $x^{p}-y^{q}=k$ has only finitely many solutions.

Pillai's conjecture as a consequence of the $a b c$ Conjecture : if $x^{p} \neq y^{q}$, then

$$
\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}
$$

with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q}
$$

Lower bounds for linear forms in logarithms

- A special case of my
conjectures with S. Lang for
Serge Lang
(1927-2005)
$|q \log y-p \log x|$
yields
$\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}$ with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q} .
$$

Not a consequence of the $a b c$ Conjecture

$$
\begin{aligned}
& p=3, q=2 \\
& \text { Hall's Conjecture }(1971): \\
& \text { if } x^{3} \neq y^{2}, \text { then } \\
& \left|x^{3}-y^{2}\right| \geq c \max \left\{x^{3}, y^{2}\right\}^{1 / 6}
\end{aligned}
$$

http://en.wikipedia.org/wiki/Marshall_Hall,_Jr

Let p, q be coprime integers with $p>q>2$. Then, for any
$c>0$, there exist infinitely many positive integers x, y such that

$$
0<\left|x^{p}-y^{q}\right|<c \max \left\{x^{p}, y^{q}\right\}^{\kappa}
$$

with $\kappa=1-\frac{1}{p}-\frac{1}{q}$.

Conjecture of F. Beukers and C.L. Stewart (2010)

Generalized Fermat's equation $x^{p}+y^{q}=z^{r}$
Consider the equation $x^{p}+y^{q}=z^{r}$ in positive integers (x, y, z, p, q, r) such that x, y, z relatively prime and p, q, r are ≥ 2.

If

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \geq 1
$$

then (p, q, r) is a permutation of one of

$$
\begin{gathered}
(2,2, k), \quad(2,3,3), \quad(2,3,4), \quad(2,3,5), \\
(2,4,4), \quad(2,3,6), \quad(3,3,3)
\end{gathered}
$$

and in each case the set of solutions (x, y, z) is known (for some of these values there are infinitely many solutions).

Frits Beukers and Don Zagier

For

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

10 primitive solutions (x, y, z, p, q, r) (up to obvious symmetries) to the equation

$$
x^{p}+y^{q}=z^{r}
$$

are known.

Generalized Fermat's equation

For

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

the equation

$$
x^{p}+y^{q}=z^{r}
$$

has the following 10 solutions with x, y, z relatively prime

$$
\begin{gathered}
1+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4}, \quad 7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2} \\
3^{5}+11^{4}=122^{2}, \quad 33^{8}+1549034^{2}=15613^{3} \\
1414^{3}+2213459^{2}=65^{7}, \quad 9262^{3}+15312283^{2}=113^{7} \\
17^{7}+76271^{3}=21063928^{2}, \quad 43^{8}+96222^{3}=30042907^{2} .
\end{gathered}
$$

Primitive solutions to $x^{p}+y^{q}=z^{r}$

Condition : x, y, z are relatively prime

Trivial example of a non primitive solution : $2^{p}+2^{p}=2^{p+1}$.

Exercise (Claude Levesque) : for any pairwise relatively prime (p, q, r), there exist positive integers x, y, z with $x^{p}+y^{q}=z^{r}$.

Hint :

$$
\left(17 \times 71^{21}\right)^{3}+\left(2 \times 71^{9}\right)^{7}=\left(71^{13}\right)^{5}
$$

Conjecture of Beal, Granville and Tijdeman-Zagier

The equation $x^{p}+y^{q}=z^{r}$ has no solution in positive integers (x, y, z, p, q, r) with each of p, q and r at least 3 and with x, y, z relatively prime.
http://mathoverflow.net/

Andrew Beal

Find a solution with all exponents at least 3, or prove that there is no such solution.

http://www.forbes.com/2009/04/03/
banking-andy-beal-business-wall-street-beal.html

Beal's Prize

Mauldin, R. D. - A generalization of Fermat's last theorem : the Beal Conjecture and prize problem. Notices Amer. Math. Soc. $44 \mathrm{~N}^{\circ} 11$ (1997), 1436-1437.

The prize. Andrew Beal is very generously offering a prize of $\$ 5,000$ for the solution of this problem. The value of the prize will increase by $\$ 5,000$ per year up to $\$ 50,000$ until it is solved. The prize committee consists of Charles Fefferman, Ron Graham, and R. Daniel Mauldin, who will act as the chair of the committee. All proposed solutions and inquiries about the prize should be sent to Mauldin.

Beal's Prize : $1,000,000 \$$ US

An AMS-appointed committee will award this prize for either a proof of, or a counterexample to, the Beal Conjecture published in a refereed and respected mathematics publication. The prize money - currently US $\$ 1,000,000$ - is being held in trust by the AMS until it is awarded. Income from the prize fund is used to support the annual Erdős Memorial Lecture and other activities of the Society

One of Andrew Beal's goals is to inspire young people to think about the equation, think about winning the offered prize, and in the process become more interested in the field of mathematics.
http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize

Henri Darmon, Andrew Granville

"Fermat-Catalan" Conjecture (H. Darmon and A. Granville), consequence of the $a b c$ Conjecture : the set of solutions (x, y, z, p, q, r) to $x^{p}+y^{q}=z^{r}$ with x, y, z relatively prime and $(1 / p)+(1 / q)+(1 / r)<1$ is finite.

Hint: $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$ implies $\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq \frac{41}{42}$.
1995 (H. Darmon and A. Granville) : unconditionally, for fixed (p, q, r), only finitely many (x, y, z).

Henri Darmon, Loïc Merel : $(p, p, 2)$ and ($p, p, 3$)
Unconditional results by H. Darmon and L. Merel (1997) :
For $p \geq 4$, the equation $x^{p}+y^{p}=z^{2}$ has no solution in relatively prime positive integers x, y, z.
For $p \geq 3$, the equation $x^{p}+y^{p}=z^{3}$ has no solution in relatively prime positive integers x, y, z.

Infinitely many primes are not Wieferich assuming $a b c$

Joseph H. Silverman
J.H. Silverman : if the $a b c$

Conjecture is true, given a positive integer $a>1$, there exist infinitely many primes p such that p^{2} does not divide $a^{p-1}-1$.

Nothing is known about the finiteness of the set of Wieferich primes.

Fermat's Little Theorem

For $a>1$, any prime p not dividing a divides $a^{p-1}-1$.

Hence if p is an odd prime, then p divides $2^{p-1}-1$.

Wieferich primes (1909) : p^{2} divides $2^{p-1}-1$
The only known Wieferich primes are 1093 and 3511. These are the only ones below $4 \cdot 10^{12}$.

Consecutive integers with the same radical

Notice that

$$
75=3 \cdot 5^{2} \quad \text { and } \quad 1215=3^{5} \cdot 5
$$

hence

$$
\operatorname{Rad}(75)=\operatorname{Rad}(1215)=3 \cdot 5=15
$$

But also

$$
76=2^{2} \cdot 19 \quad \text { and } \quad 1216=2^{6} \cdot 19
$$

have the same radical

$$
\operatorname{Rad}(76)=\operatorname{Rad}(1216)=2 \cdot 19=38
$$

Consecutive integers with the same radical

For $k \geq 1$, the two numbers

$$
x=2^{k}-2=2\left(2^{k-1}-1\right)
$$

and

$$
y=\left(2^{k}-1\right)^{2}-1=2^{k+1}\left(2^{k-1}-1\right)
$$

have the same radical, and also

$$
x+1=2^{k}-1 \quad \text { and } \quad y+1=\left(2^{k}-1\right)^{2}
$$

have the same radical.

Erdős - Woods Conjecture

http://school.maths.uwa.edu.au/~woods/
There exists an absolute constant k such that, if x and y are positive integers satisfying

$$
\operatorname{Rad}(x+i)=\operatorname{Rad}(y+i)
$$

for $i=0,1, \ldots, k-1$, then $x=y$.

Consecutive integers with the same radical

Are there further examples of $x \neq y$ with

$$
\operatorname{Rad}(x)=\operatorname{Rad}(y) \quad \text { and } \quad \operatorname{Rad}(x+1)=\operatorname{Rad}(y+1) ?
$$

Is-it possible to find two distinct integers x, y such that

$$
\begin{aligned}
\operatorname{Rad}(x) & =\operatorname{Rad}(y) \\
\operatorname{Rad}(x+1) & =\operatorname{Rad}(y+1)
\end{aligned}
$$

and

$$
\operatorname{Rad}(x+2)=\operatorname{Rad}(y+2) ?
$$

Erdős - Woods as a consequence of $a b c$

$$
\begin{aligned}
& \text { M. Langevin: The } a b c \\
& \text { Conjecture implies that there } \\
& \text { exists an absolute constant } k \\
& \text { such that, if } x \text { and } y \text { are } \\
& \text { positive integers satisfying } \\
& \quad \operatorname{Rad}(x+i)=\operatorname{Rad}(y+i) \\
& \text { for } i=0,1, \ldots, k-1 \text {, then } \\
& x=y
\end{aligned}
$$

Already in 1975 M. Langevin studied the radical of $n(n+k)$ with $\operatorname{gcd}(n, k)=1$ using lower bounds for linear forms in logarithms (Baker's method).

A factorial as a product of factorials
For $n>a_{1} \geq a_{2} \geq \cdots \geq a_{t}>1, t>1$ ，consider

$$
a_{1}!a_{2}!\cdots a_{t}!=n!
$$

Trivial solutions ：

$$
2^{r}!=\left(2^{r}-1\right)!2!^{r} \text { with } r \geq 2
$$

Non trivial solutions ：

$$
7!3!22!=9!, 7!6!=10!, 7!5!3!=10!, 14!5!2!=16!
$$

Saranya Nair and Tarlok Shorey：The effective $a b c$ conjecture implies Hickerson＇s conjecture that the largest non－trivial solution is given by $n=16$ ．

Is $a b c$ Conjecture optimal ？

Let $\delta>0$ ．In 1986，C．L．Stewart and R．Tijdeman proved that there are infinitely many $a b c$－triples for which

$$
c>R \exp \left((4-\delta) \frac{(\log R)^{1 / 2}}{\log \log R}\right)
$$

Better than $c>R \log R$ ．

Erdős Conjecture on $2^{n}-1$

In 1965，P．Erdős conjectured that the greatest prime factor $P\left(2^{n}-1\right)$ satisfies

$$
\frac{P\left(2^{n}-1\right)}{n} \rightarrow \infty \quad \text { when } \quad n \rightarrow \infty
$$

In 2002，R．Murty and S．Wong proved that this is a consequence of the $a b c$ Conjecture．
In 2012，C．L．Stewart proved Erdős Conjecture（in a wider context of Lucas and Lehmer sequences）：

$$
P\left(2^{n}-1\right)>n \exp (\log n / 104 \log \log n)
$$

Conjectures by Machiel van Frankenhuijsen，Olivier Robert，Cam Stewart and Gérald Tenenbaum

Let $\varepsilon>0$ ．There exists $\kappa(\varepsilon)>0$ such that for any $a b c$ triple with $R=\operatorname{Rad}(a b c)>8$ ，

$$
c<\kappa(\varepsilon) R \exp \left((4 \sqrt{3}+\varepsilon)\left(\frac{\log R}{\log \log R}\right)^{1 / 2}\right)
$$

Further，there exist infinitely many $a b c$－triples for which

$$
c>R \exp \left((4 \sqrt{3}-\varepsilon)\left(\frac{\log R}{\log \log R}\right)^{1 / 2}\right)
$$

Machiel van Frankenhuijsen，Olivier Robert，Cam Stewart and Gérald Tenenbaum

In 1770，a few months before J．L．Lagrange solved a conjecture of Bachet（1621） and Fermat（1640）by proving that every positive integer is the sum of at most four squares of integers，

Waring＇s Problem

E．Waring wrote ：
＂Omnis integer numerus vel est cubus，vel e duobus，tribus，4，5， $6,7,8$ ，vel novem cubis compositus，est etiam quadrato－quadratus vel e duobus，tribus，\＆，usque ad novemdecim compositus，\＆sic deinceps＂
＂Every integer is a cube or the sum of two，three，．．．nine cubes； every integer is also the square of a square，or the sum of up to nineteen such；and so forth．Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree．

Heuristic assumption

Whenever a and b are coprime positive integers，$R(a+b)$ is independent of $R(a)$ and $R(b)$ ．

O．Robert，C．L．Stewart and G．Tenenbaum，A refinement of the abc conjecture，Bull．London Math．Soc．，Bull．London Math．Soc．（2014） 46 （6）：1156－1166．
http：／／blms．oxfordjournals．org／content／46／6／1156．full．pdf
http：／／iecl．univ－lorraine．fr／～Gerald．Tenenbaum／PUBLIC／Prepublications＿et＿publications／abc．pdf

Waring＇s functions $g(k)$ and $G(k)$

－Waring＇s function g is defined as follows：For any integer $k \geq 2, g(k)$ is the least positive integer such that any positive integer N can be written $x_{1}^{k}+\cdots+x_{s}^{k}$ ．
－Waring＇s function G is defined as follows：For any integer $k \geq 2, G(k)$ is the least positive integer s such that any sufficiently large positive integer N can be written $x_{1}^{k}+\cdots+x_{s}^{k}$ ．
J.L. Lagrange $: g(2)=4$.
$g(2) \leq 4$: any positive number is a sum of at most 4 squares :
$n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$.
$g(2) \geq 4$: there are positive numbers (for instance 7) which are not sum of 3 squares.

Lower bounds are easy, not upper bounds.

$n=x_{1}^{4}+\cdots+x_{19}^{4}: g(4)=19$
Any positive integer is the sum of at most 19 biquadrates
R. Balasubramanian, J-M. Deshouillers, F. Dress (1986).

François Dress, R. Balasubramanian, Jean-Marc Deshouillers
$g(4) \geq 19$.

We want to write 79 as sum $a_{1}^{4}+a_{2}^{4}+\cdots+a_{s}^{4}$ with s as small as possible.

Since $79<81$, we cannot use 3^{4}. Hence we can use only $2^{4}=16$ and $1^{4}=1$.

Since $79<5 \times 16$, we can use at most 4 terms 2^{4}.

Now

$$
79=64+15=4 \times 2^{4}+15 \times 1^{4}
$$

with $4+15$ terms a^{4} (namely 4 with 2^{4} and 15 with 1^{4}).

The number of terms is 19 .

Evaluations of $g(k)$ for $k=2,3,4, \ldots$

$g(2)=4$	Lagrange	1770
$g(3)=9$	Kempner	1912
$g(4)=19$	Balusubramanian,Dress,Deshouillers	1986
$g(5)=37$	Chen Jingrun	1964
$g(6)=73$	Pillai	1940
$g(7)=143$	Dickson	1936

Let $k \geq 2$. Select $N<3^{k}$ of the form $N=2^{k} q-1$. Since $N<3^{k}$, writing N as a sum of k-th powers can involve no term 3^{k}, and since $N<2^{k} q$, it involves at most ($q-1$) terms 2^{k}, all others being 1^{k}; so the mot economical way of writing N as a sum of k-th powers is

$$
N=(q-1) 2^{k}+\left(2^{k}-1\right) 1^{k}
$$

which requires a total number of $(q-1)+\left(2^{k}-1\right)$ terms.
The largest value is obtained by taking for q the largest integer with $2^{k} q<3^{k}$. Since $(3 / 2)^{k}$ is not an integer, this integer q is $\left\lfloor(3 / 2)^{k}\right\rfloor$ (quotient of the division of 3^{k} by 2^{k}).

The ideal Waring's "Theorem" : $g(k)=I(k)$

Recall

$$
I(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2 .
$$

Conjecture (C.A. Bretschneider, 1853) : $g(k)=I(k)$ for any $k \geq 2$.
Divide 3^{k} by 2^{k} :

$$
3^{k}=2^{k} q+r \quad \text { with } \quad 0<r<2^{k}, \quad q=\left\lfloor(3 / 2)^{k}\right\rfloor
$$

The remainder $r=3^{k}-2^{k} q$ satisfies $r<2^{k}$. A slight improvement of this upper bound would yield the desired result. L.E. Dickson and S.S. Pillai proved independently in 1936 that $g(k)=I(k)$, provided that $r=3^{k}-2^{k} q$ satisfies

$$
r \leq 2^{k}-q-2 \quad \text { with } \quad q=\left\lfloor(3 / 2)^{k}\right\rfloor .
$$

For each integer $k \geq 2$, define
$I(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2$.
Then $g(k) \geq I(k)$.
(J. A. Euler, son of Leonhard
Euler).

Mahler's contribution

- The estimate

$$
r \leq 2^{k}-q-2
$$

is valid for all sufficiently large k.

Hence the ideal Waring's Theorem

$$
g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2
$$

holds for all sufficiently large k.

S. David : the estimate

$$
r \leq 2^{k}-q-2
$$

for sufficiently large k follows from the $a b c$ Conjecture.
S. Laishram : the ideal Waring's Theorem
$g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2$ follows from the explicit $a b c$ Conjecture.

Alan Baker: explicit abc Conjecture (2004)

Let (a, b, c) be an $a b c$-triple.
Then

$$
c \leq \frac{6}{5} R \frac{(\log R)^{\omega}}{\omega!}
$$

with $R=\operatorname{Rad}(a b c)$ the radical of $a b c$ and $\omega=\omega(a b c)$ the number of distinct prime factors of $a b c$.

$$
c \leq \kappa R \frac{(\log R)^{\omega}}{\omega!}
$$

Shanta Laishram and Tarlok Shorey

The Nagell-Ljunggren
equation is the equation

$$
y^{q}=\frac{x^{n}-1}{x-1}
$$

in integers $x>1, y>1$,

$$
n>2, q>1
$$

This means that in basis x, all the digits of the perfect power y^{q} are 1 .
If the explicit $a b c$-conjecture of Baker is true, then the only solutions are

$$
11^{2}=\frac{3^{5}-1}{3-1}, \quad 20^{2}=\frac{7^{4}-1}{7-1}, \quad 7^{3}=\frac{18^{3}-1}{18-1}
$$

The $a b c$ conjecture for number fields (continued)
Survey by J. Browkin.

Jerzy Browkin (1934-2015)

The $a b c$ - conjecture for Algebraic Numbers Acta Mathematica Sinica, Jan., 2006, Vol. 22, No. 1, pp. 211-222

The $a b c$ conjecture for number fields
P. Vojta (1987) - variants due to D.W. Masser and K. Győry

Mordell's Conjecture (Faltings's Theorem)

Using an effective extension of the $a b c$ Conjecture for a number field, N . Elkies deduces an effective version of Faltings's Theorem on the finiteness of the set of rational points on an algebraic curve of genus ≥ 2 over the same number field.

http://www.math.harvard.edu/~elkies/

The $a b c$ conjecture for number fields

Andrea Surroca
A. Surroca, Méthodes de transcendance et géométrie diophantienne, Thèse, Université de Paris 6, 2003.

Siegel's zeroes (A. Granville and H.M. Stark)

The uniform $a b c$ Conjecture for number fields implies a lower bound for the class number of an imaginary quadratic number field, and K. Mahler has shown that this implies that the associated L-function has no Siegel zero.

Thue-Siegel-Roth Theorem (Bombieri)

Using the $a b c$ Conjecture for number fields, E. Bombieri (1994) deduces a refinement of the Thue-Siegel-Roth Theorem on the rational approximation of algebraic numbers

$$
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2+\varepsilon}}
$$

where he replaces ε by

$$
\kappa(\log q)^{-1 / 2}(\log \log q)^{-1}
$$

where κ depends only on the algebraic number α.

Paul Vojta

Vojta stated a conjectural inequality on the height of algebraic points of bounded degree on a smooth complete variety over a global field of characteristic zero which implies the abc Conjecture.

Further consequences of the $a b c$ Conjecture

－Erdős＇s Conjecture on consecutive powerful numbers．
－Dressler＇s Conjecture ：between two positive integers having the same prime factors，there is always a prime（Cochrane and textcolormacouleurDressler 1999）．
－Squarefree and powerfree values of polynomials（Browkin，Filaseta， Greaves and Schinzel，1995）．
－Lang＇s conjectures ：lower bounds for heights，number of integral points on elliptic curves（Frey 1987，Hindry Silverman 1988）．
－Bounds for the order of the Tate－Shafarevich group（Goldfeld and Szpiro 1995）．
－Greenberg＇s Conjecture on Iwasawa invariants λ and μ in cyclotomic extensions（Ichimura 1998）．
－Lower bound for the class number of imaginary quadratic fields
（Granville and Stark 2000），hence no Siegel zero for the associated L－function（Mahler）．
－Fundamental units of certain quadratic and biquadratic fields
（Katayama 1999）．
－The height conjecture and the degree conjecture（Frey 1987，Mai and Murty 1996）

A consequence of the n－Conjecture

Open problem ：for $k \geq 5$ ，no positive integer can be written in two essentially different ways as sum of two k－th powers．

It is not even known whether such a k exists．
Reference ：Hardy and Wright ：§21．11

For $k=4$（Euler）：

$$
59^{4}+158^{4}=133^{4}+134^{4}=635318657
$$

A parametric family of solutions of $x_{1}^{4}+x_{2}^{4}=x_{3}^{4}+x_{4}^{4}$ is known Reference ：http：／／mathworld．wolfram．com／Diophant ineEquation4thPowers．html

The n－Conjecture

Nils Bruin，Generalization of the ABC－conjecture，Master Thesis，Leiden University， 1995.
http：／／www．cecm．sfu．ca／ ～nbruin／scriptie．pdf

Let $n \geq 3$ ．There exists a positive constant κ_{n} such that，if x_{1}, \ldots, x_{n} are relatively prime rational integers satisfying $x_{1}+\cdots+x_{n}=0$ and if no proper subsum vanishes，then

$$
\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} \leq \operatorname{Rad}\left(x_{1} \cdots x_{n}\right)^{\kappa_{n}}
$$

？Should hold for all but finitely many $\left(x_{1}, \ldots, x_{n}\right)$ with $\kappa_{n}=2 n-5+\epsilon$ ？

$a b c$ and meromorphic function fields

Nevanlinna value distribution theory．
Recent work of Hu，Pei－Chu，Yang，Chung－Chun and P．Vojta．

$A B C$ Theorem for polynomials

Let K be an algebraically closed field. The radical of a monic polynomial

$$
P(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{a_{i}} \in K[X]
$$

with α_{i} pairwise distinct is defined as

$$
\operatorname{Rad}(P)(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in K[X]
$$

The radical of a polynomial as a gcd

The common zeroes of

$$
P(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{a_{i}} \in K[X]
$$

and P^{\prime} are the α_{i} with $a_{i} \geq 2$. They are zeroes of P^{\prime} with multiplicity $a_{i}-1$. Hence

$$
\operatorname{Rad}(P)=\frac{P}{\operatorname{gcd}\left(P, P^{\prime}\right)}
$$

$A B C$ Theorem for polynomials

$A B C$ Theorem (A. Hurwitz,
W.W. Stothers, R. Mason).

Let A, B, C be three relatively prime polynomials in $K[X]$ with $A+B=C$ and let $R=\operatorname{Rad}(A B C)$. Then

$$
\begin{gathered}
\max \{\operatorname{deg}(A), \operatorname{deg}(B), \operatorname{deg}(C)\} \\
<\operatorname{deg}(R) .
\end{gathered}
$$

Adolf Hurwitz (1859-1919)

This result can be compared with the $a b c$ Conjecture, where the degree replaces the logarithm.

Proof of the $A B C$ Theorem for polynomials

Now suppose $A+B=C$ with A, B, C relatively prime.
Notice that

$$
\operatorname{Rad}(A B C)=\operatorname{Rad}(A) \operatorname{Rad}(B) \operatorname{Rad}(C)
$$

We may suppose A, B, C to be monic and, say, $\operatorname{deg}(A) \leq \operatorname{deg}(B) \leq \operatorname{deg}(C)$.

Write

$$
A+B=C, \quad A^{\prime}+B^{\prime}=C^{\prime}
$$

and

$$
A B^{\prime}-A^{\prime} B=A C^{\prime}-A^{\prime} C .
$$

Proof of the $A B C$ Theorem for polynomials
Recall $\operatorname{gcd}(A, B, C)=1$ ．Since $\operatorname{gcd}\left(C, C^{\prime}\right)$ divides
$A C^{\prime}-A^{\prime} C=A B^{\prime}-A^{\prime} B$ ，it divides also

$$
\frac{A B^{\prime}-A^{\prime} B}{\operatorname{gcd}\left(A, A^{\prime}\right) \operatorname{gcd}\left(B^{\prime} B^{\prime}\right)}
$$

which is a polynomial of degree

$$
<\operatorname{deg}(\operatorname{Rad}(A))+\operatorname{deg}(\operatorname{Rad}(B))=\operatorname{deg}(\operatorname{Rad}(A B))
$$

Hence

$$
\operatorname{deg}\left(\operatorname{gcd}\left(C, C^{\prime}\right)\right)<\operatorname{deg}(\operatorname{Rad}(A B))
$$

and
$\operatorname{deg}(C)<\operatorname{deg}(\operatorname{Rad}(C))+\operatorname{deg}(\operatorname{Rad}(A B))=\operatorname{deg}(\operatorname{Rad}(A B C))$.
http：／／www．kurims．kyoto－u．ac．jp／
～motizuki／top－english．html

Shinichi Mochizuki

INTER－UNIVERSAL
TEICHMÜLLER THEORY
IV ：
LOG－VOLUME
COMPUTATIONS AND
SET－THEORETIC
FOUNDATIONS
by
Shinichi Mochizuki

Papers of Shinichi Mochizuki

－General Arithmetic Geometry
－Intrinsic Hodge Theory
－p－adic Teichmüller Theory
－Anabelian Geometry，the Geometry of Categories
－The Hodge－Arakelov Theory of Elliptic Curves
－Inter－universal Teichmüller Theory

Thoustive
To Prospectin

Shinichi Mochizuki

[1] Inter-universal Teichmüller Theory I: Construction of Hodge Theaters. PDF
[2] Inter-universal Teichmüller Theory II Hodge-Arakelov-theoretic Evaluation. PDF
[3] Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-theta-lattice. PDF
[4] Inter-universal Teichmüller Theory IV: Log-volume Computations and Set-theoretic Foundations. PDF
http://www.kurims.kyoto-u.ac.jp/
~motizuki/top-english.html

```
Inter-universal Teichmuller Theory
11) Inter-universal Teichmuller Theory: Construction of Hodge Theaters. PDF NEW II (2017-08-18)
[2] Inter-universal Teichmuller Theory It Hodge-Arakelov-theoretic Evaluation. PDF NEW || (2017-08-18)
[3] Inter-universal Teichmuller Theory Ill:Canonical Spittings of the Log-theta-lattice. PDF NEW II (2017-11-01)
44] Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations. PDF
    NEW II (2017-11-01)
```

In August 2012, Shinichi Mochizuki released a series of four preprints announcing a proof of the $a b c$ Conjecture.

When an error in one of the articles was pointed out by Vesselin Dimitrov and Akshay Venkatesh in October 2012, Mochizuki posted a comment on his website acknowledging the mistake, stating that it would not affect the result, and promising a corrected version in the near future. He proceeded to post a series of corrected papers of which the latest dated November 2017.
ttps://www.maths.nottingham.ac.uk/personal/ibf/files/symcor.iut.html

Workshop on IUT Theory of Shinichi Mochizuki, December 7-11 2015

CMI Workshop supported by Clay Math Institute and Symmetries and Correspondences

Organisers : Ivan Fesenko, Minhyong Kim, Kobi Kremnitzer Finding the speakers and the program of the workshop : Ivan Fesenko

CMI Workshop supported by Clay Math Institute and Symmetries and Correspondences

The work（currently being refereed）of SHINICHI MOCHIZUKI on inter－universal Teichmüller theory（also known as arithmetic deformation theory）and its application to famous conjectures in diophantine geometry became publicly available in August 2012．This theory，developed over 20 years，introduces a vast collection of novel ideas，methods and objects．Aspects of the theory extend arithmetic geometry to a non－scheme－theoretic setting and，more generally，have the potential to open new fundamental areas of mathematics．
The workshop aims to present and analyse key principles， concepts，objects and proofs of the theory of Mochizuki and study its relations with existing theories in different areas，to help to increase the number of experts in the theory of Mochizuki and stimulate its further applications．

Participants

[^1]
Speakers

Shinichi Mochizuki will answer questions during skype sessions of the workshop．He also responds directly to emailed questions．

Invited speakers：Oren Ben－Bassat，Weronika Czerniawska， Yuichiro Hoshi，Ariyan Javanpeykar，Kiran Kedlaya，Robert Kucharczyk，Ulf Kühn，Lars Kuehne，Emmanuel Lepage， Chung Pang Mok，Jakob Stix，Tamás Szamuely，Fucheng Tan， Go Yamashita，Shou－Wu Zhang．

State of the art concerning Mochizuki＇s contribution（Nov．2017）

The submitted proof is more than 500 pages long and is currently being peer－reviewed．

Ivan Fesenko estimates that the proof has been veri－ fied at least 30 times in $\S 3.1$ of the most recent updated version https：／／www．maths．nottingham．ac．uk／personal／ibf／notesoniut．pdf of his survey．

Links

Not Even Wrong
Latest on abc
Posted on December 16, 2017 by Peter Woit
http://www.math.columbia.edu/~woit/wordpress/?p=9871

The ABC conjecture has (still) not been proved
Posted on December 17, 2017 by Frank Calegari
https://galoisrepresentations.wordpress.com/2017/12/
17/the-abc-conjecture-has-still-not-been-proved/

Hector Pasten
Shimura curves and the abc conjecture
https://arxiv.org/abs/1705.09251

Poster with Razvan Barbulescu - Archives HAL

Michel Waldschmidt
On the $a b c$ conjecture and some of its consequences.
Mathematics in 21st Century, 6th World Conference, Lahore,
March 2013,
(P. Cartier, A.D.R. Choudary, M. Waldschmidt Editors),

Springer Proceedings in Mathematics and Statistics 98
(2015), 211-230.
http://www.imj-prg.fr/~michel.waldschmidt//articles/pdf/abcLahoreProceedings.pdf

[^2]
On the abc Conjecture and some of its consequences

by

Michel Waldschmidt

Université P. et M. Curie (Paris VI)
http://www.imj-prg.fr/~michel.waldschmidt/

[^0]: http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

[^1]: Participants：（Univ．Oxford），Federico Bambozzi（Univ．Regensburg），Alexander Bellinson（Univ，Chicago），
 Julio Andrade Oren Ben－Bassat（Unlv．Haifa），Brian Birch（Univ，Oxford），Francis Brown（Univ，Oxford） Martin Bridson（Univ．Oxford），Olivia Caramello（Univ．Paris 7），Brian Conrad（Stanford Univ．）， Weronika Czerniawska（Univ．Nottingham），Ishai Dan－Cohen（Univ．Duisburg－Essen）， Ivan Fesenko（Univ．Nottingham），Gerhard Frey（Univ．Duisburg－Essen），Adam Gal（Univ．Oxford）， Lena Gal（Univ．Oxford），Dorian Goldfeld（Columbia Univ．），Nigel Hitchin（Univ．Oxford），
 Yuichiro Hoshi（RIMS，Kyoto Univ．）Alexander Ivanov（Techn．Univ，München），Artur Jack Ariyan Javanpeykar（Univ，Mainz），Kiran Kedlaya（Univ．California San Diego），Minhyong Kim（Univ．Oxford）， Kobi Kremnitzer（Univ．Oxford），Robert Kucharczyk（ETH，Zurich），Ulf KOhn（Univ．Hamburg）
 Lars Kuehne（MPIM，Bonn），Laurent Lafforgue（IHES，Bures－sur－Yvette），Emmanuel Lepage（Univ．Paris 7）， Junghwan Lim（Univ．Oxford），Angus Macintyre（Univ．Oxford），Nils Matthes（Univ．Hamburg） Sergey Olbezin（Univ．Nottingham），Alexander G．Oidenziel（Utrecht Univ．），Thomas Oliver（Univ．Bristol）， Florian Pop（Univ，Pennsyivania at Philadelphia），Damian Rossler（Univ，Oxford），
 Mo iam S（Un．Rens． Thomas Scanlon（Univ．Califormia Berkeley），Francisco Simkievich（Univ．Oxford），Jakob Stix（Univ．Frankfurt）， Tamás Szamuely（Rényi Inst．Math．，Budapest），Fucheng Tan（Shanghai Cent．Math．Sc．\＆Shanghai Jiao Tong Univ．）， Dinesh Thakur（Rochester Univ．），Ulike Tillmann（Univ．Oxford），Wester van Urk（Univ．Nottingham），
 Felipe Voloch（Univ．Texas Austin），Matthew Waller（Univ．Nottingham），Andrew Wiles（Univ．Oxford）， Bora Y Yalkinoglu（Univ．Strasbourg），Go Yamashita（RIMS，Kyoto Univ．），Fernando Garcia Y Yamautí（Univ．Sao Paulo），
 Shou－Wu Zhang（Princeton Univ．），Boris Ziber（Univ，Oxford），Lorenzo lane（Univ．Edinburgh） Shou－Wu Zhang（Princeton Univ．），Boris Zilber（Univ．Oxford），Lorenzo Lane（Univ．Edinburgh）

[^2]: https://hal.archives-ouvertes.fr/hal-01626155

