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Introduction

Let C be a complex algebraic cone, provided with an action of a compact Lie
group K. The symplectic form of the ambient complex Hermitian space in-
duces on the regular part of C a symplectic form. Let k be the Lie algebra of
K. Let f : C → k∗ be the Mumford moment map, that is f(v)(X) = i(v,Xv),
for X ∈ k and v ∈ C. The space R(C) of regular functions on C is a semi-
simple representation of K. In this article, with the help of the moment
map, we give some quantitative informations on the decomposition of R(C)
in irreducible representations of K. For λ a dominant weight, let m(λ) be
the multiplicity of the representation of highest weight λ in R(C). Then, if
the moment map f : C → k∗ is proper, multiplicities m(λ) are finite and with
polynomial growth in λ. Furthermore, the study of the pushforward by f
of the Liouville measure gives us an asymptotic information on the function
m(λ) . For example, in the case of a faithful torus action, the pushforward of
the Liouville measure by the moment map is a locally polynomial homoge-
neous function `(λ) on the polyhedral cone f(C) ⊂ t∗, while the multiplicity
function m(λ) for large values of λ is given by the restriction to the lattice
of weights of a quasipolynomial function, with highest degree term equal to
`(λ). If O is a nilpotent orbit of the coadjoint representation of a complex
Lie group G, we show that the pushforward on k∗ of the G-invariant measure
on O is the same that the pushforward of the Liouville measure on O associ-
ated to the symplectic form of the ambient complex vector space. Thus, this
establishes for the case of complex reductive groups the relation, conjectured
by D. Vogan, between the Fourier transform of the orbit O with multiplicities
of the ring of regular functions on O.

1



Consider a complex vector space V of complex dimension ` with an action
of a compact Lie group K. Let k be the Lie algebra of K. Let C be a closed
irreducible complex algebraic cone contained in V of complex dimension d
and invariant under the action of K. The ring R(C) of regular functions on
C is a semi-simple representation of K.

Consider on the complex vector space V a K-invariant Hermitian form h.
This determines a symplectic 2-form Ω(dv, dv) = −2=h(dv, dv) on V and a
moment map f : V → k∗ given by f(v)(X) = ih(v,Xv) for v ∈ V and X ∈ k.
By restriction, the symplectic 2-form Ω determines a symplectic form on the
regular part of C. If the restriction to C of the moment map f : C → k∗

is proper, then the representation of K in R(C) is trace class. According to
the general philosophy of quantization, the quantized space Q(C) associated
to the symplectic space C “is” the space of holomorphic functions on C.
We should then obtain a character formula for the representation of K in
R(C) in terms of the symplectic data. As C is not smooth, such a formula
is not easy to state and we will only obtain an asymptotic estimate. (In case
C − {0} is smooth, this estimate would indeed follow from the equivariant
Riemann-Roch formula as stated in [2]). Let dβC be the Liouville measure
on C and let f∗(dβC) be the Radon measure on k∗ which is the pushforward
of dβC by the moment map. We prove the following theorem.

Theorem 1 Assume that the restriction to C of the moment map f : C → k∗

is proper. Then R(C) is a trace class representation of K. The limit when
t tend to 0 of the generalized functions tdTr(R(C))(exp tX) of X ∈ k exists.
Furthermore, we have the equality of generalized functions on k:

lim
t→0

tdTr(R(C))(exp tX) =

∫

C

e−i(f(v),X)dβC(v) =

∫

k∗
e−i(ξ,X)f∗(dβC)(ξ).

Let us indicate the proof. We denote by Ω(X) the equivariant symplectic
form of V . The above integral can be written (−2iπ)−d

∫

C
e−iΩ(X). It is

not difficult to prove that detV (X) TrR(C)(expX) is an analytic function
on k. Furthermore, if the action of K in V is such that detV (X) 6= 0, then
limt→0 t

d detV (X) TrR(C)(exp tX) is (up to multiplication by a constant)
equal to the Joseph polynomial J(C)(X) defined in [4]. We then use Ross-
mann’s integral formula ([8], see also [11]) for J(C)(X) in function of the
equivariant Thom class of V . Thus the main technical tool is Lemma 14
which compares on a Hermitian space V the equivariant closed form e−iΩ(X)

and the equivariant Thom form.
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Let G be a real semi-simple connected Lie group with finite center. Let
g be the Lie algebra of G. Let K be a maximal compact subgroup of G.
Let g = k ⊕ p be the Cartan decomposition of g. We consider a nilpotent
orbit O of G in g∗ of dimension 2d. Consider the Kirillov symplectic form

σO on O. The corresponding Liouville measure βO = (2π)−d
σdO
d!

is a tempered
measure on O and we can then define the G-invariant generalized function
FO of X ∈ g by

FO(X) =

∫

O

e−i(f,X)dβO(f).

This generalized function FO has a restriction to k.
On the other hand, consider the nilpotent orbit c(O) of KC in pC associ-

ated to O by Kostant-Sekiguchi correspondence. Then the closure C(O) of
c(O) is a closed K-invariant complex cone in pC of dimension d. The repre-
sentation of K in the ring R(C(O)) of regular functions on C(O) is a trace
class representation of K.

Vogan conjectured the following equality of generalized functions on k.
For X ∈ k:

FO(X) = lim
t7→0

tdTrR(C(O))(exp tX).

When G is complex, the closure O of the orbit O is isomorphic to the
complex cone C(O). Thus, using a simple deformation argument between σO
and the symplectic form on O induced from a K-invariant Hermitian form
on g, we show that Vogan’s conjecture follows from Theorem 1.

Theorem 2 Vogan’s conjecture holds if G is a complex semi-simple Lie
group.

Recall ([12]) that, when G is any real reductive group, there is a K-
invariant diffeomorphism from O to c(O). Thus Vogan’s conjecture would
follow immediately from Theorem 1 if a K-invariant symplectic diffeomor-
phism between (O, σO) and c(O) equipped with the symplectic structure
induced from the Hermitian structure of pC would exist. Such a symplectic
diffeomorphism is easily seen to exist in the case of minimal orbits. Thus
Vogan’s conjecture holds also for minimal orbits. This was already obtained
by D. King [6] by direct calculations of both terms of Vogan’s conjectural
equality. We do not know if such a symplectic diffeomorphism exists in gen-
eral. In fact we would only need a reasonable homotopy between these two
symplectic structures to prove Vogan’s conjecture. Several cases of Vogan’s
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conjecture have been proved by D. King in [5], [6]. We hope our presentation
shows that Vogan’s conjecture is very natural.

The author wishes to thank the referee for useful remarks.

1 The moment map for Hermitian vector spaces

Let (V,B) be a finite dimensional symplectic vector space of dimension
2`. Consider the 1-form ω = 1

2
B(v, dv) on V and the 2-form Ω = dω =

1
2
B(dv, dv). If pj, qj are symplectic coordinates on V , then ω = 1

2

∑`
j=1(pjdqj−

qjdpj) and Ω =
∑`

j=1 dpj ∧ dqj.
Let Sp(V ) be the group of symplectic transformations of V . We denote

by s the Lie algebra of Sp(V ). The action of Sp(V ) on V is Hamiltonian.
The moment map f : V → s∗ is given , for v ∈ V , by f(v)(X) = 1

2
B(v,Xv)

for X ∈ s. Remark that f : V → s∗ is homogeneous of degree 2. If XV is the
vector field on V tangent at v to the curve (exp−εX)v, the moment map f
satisfies the equation (dξf,X) = Ω(XV , ξ) for every tangent vector ξ.

For X ∈ s, we denote by µ(X) the function on V given by µ(X)(v) =
(f(v), X) = 1

2
B(v,Xv). Let

(1) Ω(X) = µ(X) + Ω

be the equivariant symplectic form of V . It is an exact equivariant form on
V . We have

(2) Ω(X) = dXω.

Consider a complex structure J on V compatible with B, that is such
that B(Jv, Jw) = B(v, w) for all v, w ∈ V and B(v, Jv) > 0 for v 6= 0. Let
Q(v, w) = B(v, Jw). This is a Euclidean scalar product on V . The form
h = 1

2
(Q− iB) is a Hermitian form on the complex vector space (V, J). The

unitary group U(V ) is a maximal compact subgroup of Sp(V ). We denote
by u the Lie algebra of U(V ). Reciprocally, if (V, h) is a Hermitian space of
complex dimension `, we define on V the symplectic form

B(v, w) = −2Imh(v, w).

The moment map f : V → u∗ is given by

f(v)(X) = ih(v,Xv)
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for any skew hermitian transformation X of V (as X is antihermitian, the
number h(v,Xv) is purely imaginary).

Let G be a complex connected reductive Lie group acting on a complex
vector space V . We choose a maximal compact subgroup K of G and a
Hermitian K-invariant inner product ‖v‖2 on V . Thus K is a subgroup of
U(V ). Let k ⊂ u be the Lie algebra of K. The group K is a real form of G
and g = k ⊕ ik. The moment map fK : V → k∗ for the action of K on V is
simply the composition of the map f : V → u∗ with the natural restriction
u∗ → k∗. If K is understood, we again denote this map by f .

We denote by V ∗ the dual vector space of V and by S(V ∗) the symmetric
algebra of V ∗. We identify S(V ∗) with the ring of polynomial functions on
V . We write

S(V ∗) = ⊕∞n=0Sn(V
∗)

where Sn(V
∗) is the space of homogeneous polynomials of degree n.

Let C be a complex algebraic irreducible closed cone in V stable by G.
We denote by R(C) the ring of regular functions on C. An element of R(C)
is the restriction to C of a polynomial function on V , thus we will also call
an element of R(C) a polynomial function on C. We write

R(C) = ⊕∞n=0Rn(C).

We denote by R(C)G the ring of G-invariant polynomial functions on C.
The following lemma due to Mumford is a straightforward consequence

from the fact that the geometric quotient C//G constructed from the graded
algebra R(C)G can be realized as the reduced symplectic manifold f−1(0)/K.
For completeness, we give a proof of this corollary.

Lemma 3 (Mumford) The two following conditions are equivalent:
1) We have f−1(0) ∩ C = {0}.
2) We have R(C)G = C.

Proof. We show first that, when f−1(0) ∩ C = {0}, invariant polynomial
functions on V take constant values on C. Let P be a G-invariant polynomial
and let v be a point of C. Consider the level set L of P passing through v,
that is

L = {m ∈ C;P (m) = P (v)}.

Then L is a closed subset of V and is G-invariant. Take a point v0 ∈ L at
minimum distance from the origin. Thus the restriction of the function ‖v‖2
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to the G-orbit of v0 has a minimum at v0. Let Y ∈ k. We have necessarily

d

dε
‖ exp iεY · v0‖

2|ε=0 = 0

for all Y ∈ k. This gives us the relation 2i < Y · v0, v0 >= 0 for all Y ∈ k,
that is f(v0) = 0. Our condition f−1(0) ∩ C = {0} implies that v0 = 0. As
v0 is in the same level set than v, we obtain P (v) = P (v0) = P (0). Thus P
is constant on C.

Let us prove the converse. We assume that R(C)G = C and we will
deduce that f−1(0) ∩ C = {0}. Let x ∈ C be such that f(x) = 0. Let us
show that the distance of 0 to the G-orbit of x is ‖x‖. Let G = KP with
P = exp ik. By K-invariance of the Hermitian norm, it is sufficient to prove
that for all Y ∈ k, then ‖(exp iY ) · x‖2 ≥ ‖x‖2. Consider the function on the
real line R given by g(t) = ‖(exp itY ) · x‖2. As f(x)(Y ) = 0, the function
g′(t) vanishes at 0. We have g′′(0) = 2‖Y x‖2 ≥ 0. Thus g(0) = ‖x‖2 is a local
minimum for the function g(t). The same calculation shows that if g ′(a) = 0
at another value a ∈ R, then g′′(a) ≥ 0. It follows that any critical point
of g is a local minima. This obviously implies that 0 is the unique critical
point and ‖x‖2 is the absolute minimum of the function g(t). The orbit G ·x
is thus at distance ‖x‖ of 0. If x was not equal to zero, this would imply
that 0 does not belong to the closure G · x of G · x. The Zariski closure of
G · x coincides with its topological closure. Thus we could find a polynomial
P ∈ R(C) such that P = 1 on G · x and equal to 0 on 0. Averaging P under
K, we could find a G-invariant polynomial equal to 1 on G · x and 0 at 0.
Thus R(C)G would not be reduced to the constant functions.

2 Joseph polynomials

2.1 Definition of Joseph polynomial

Let T be a torus and let t be the Lie algebra of T . We denote by P ⊂ it∗ the
set of weights of T . If µ ∈ P , we denote by eµ ∈ T̂ the character of T such
that eµ(expX) = e(µ,X) for X ∈ t. We denote by R(T ) the set of virtual
characters on T . We have

R(T ) = {
∑

µ∈I

aµeµ}

6



where I is a finite subset of P and aµ ∈ Z. We consider the space R(T )−∞

of trace class virtual representations of T . We have

R(T )−∞ = {
∑

µ∈P

aµeµ}

where aµ is of at most polynomial growth. Then R(T )−∞ is a module over
R(T ).

For ξ ∈ P , we denote by Θξ the element of R(T )−∞ given by

Θξ =
∞

∑

n=0

enξ.

Remark that

(3) (1− eξ)Θξ = 1.

Let S = {α1, α2, ..., α`} be a set of weights. We say that S is contained
in a half space if there exists X0 ∈ t such that (αj, iX0) > 0 for all αj ∈ S.
In this case we can multiply the series Θαk and still obtain an element of
R(T )−∞.

Definition 4 Let S = {α1, α2, ..., α`} be a set of weights contained in a half
space. Define

Θ(S) = Θα1
Θα2

· · ·Θα` .

Let Z+ = {0, 1, 2, 3....}. We thus have

Θ(S)(expX) =
∑

(nj)∈Z`+

e(
∑

njαj ,X).

Let M be a semi-simple T -module. We write

M = ⊕µ∈PMµ

where Mµ = {m ∈ M, t ·m = eµ(t)m}. If dimMµ is finite for all µ, we can
associate to M its formal character

ch(M) =
∑

µ

(dimMµ)eµ.
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If dimMµ is of at most polynomial growth, then we associate to M its char-
acter Tr(M) which is a generalized function on T .

Let V be a complex vector space where T acts. We write ` for the complex
dimension of V . We write ∆+ for the set of weights of T in V . We count then
with multiplicities: |∆+| = `. We assume that the set ∆+ of weights of the
action of T on V is contained in some half-space. Consider the space S(V ∗)
of polynomial functions on V . Then S(V ∗) is a trace class representation of
T . We have

Tr(S(V ∗)) =
∏

α∈∆+

Θ−α = Θ(−∆+).

Let us consider more generally a (T, S(V ∗))-module M . This means that
the module M is a semi-simple T -module and that we have compatible ac-
tions of T and S(V ∗) on M :

t · (Pm) = (t · P )t ·m.

If M is finitely generated under S(V ∗), we say that M is an admissible
(T, S(V ∗))-module.

Lemma 5 Let M be an admissible (T, S(V ∗))-module. Then M is a trace
class representation of T and there exists an element U ∈ R(T ) such that

Tr(M) = U TrS(V ∗) = UΘ(−∆+)

Proof. Indeed we can choose a resolution of M by free S(V ∗)-modules.

Let M be a (T, S(V ∗))-admissible module. Using Equation 3, we have

∏

α∈∆+

(1− e−α) Tr(M) = U =
∑

a

caeµa

with ca ∈ Z and µa a finite number of weights of T . Consider the analytic
function

X 7→
∏

α∈∆+

(1− e−(α,X)) Tr(M)(expX)

on t and its Taylor series
∑

a,n

ca
µna
n!
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at the origin. Let r be the smallest integer n such that
∑

a ca
µna
n!

is non zero.
By definition Joseph’s polynomial J(M) is the homogeneous polynomial of
degree r given by

J(M) = ir
∑

a

ca
µra
r!
.

Let C be a T -invariant complex closed cone in V of dimension d. Then
R(C) is a (T, S(V ∗))- admissible module. We write J(C) for J(R(C)). It
is easy to prove that J(C) is a polynomial of degree ` − d. Let us recall
Rossmann’s integral formula ([8]) for J(C). We choose on V a T -invariant
Hermitian inner product. Then V is an oriented Euclidean space and we can
construct an equivariant Thom class [aV ] of V . By definition, a representative
aV of [aV ] is a SO(V )-equivariant differential form on V compactly supported
on V and such that

∫

V
aV (X) = 1 for all X ∈ so(V ). The total equivariant

degree of aV is equal to 2`. Thus aV (X) =
∑

a Pa(X)ωa where Pa(X) are
homogeneous polynomials of degree pa and ωa are differential forms with
compact support on V of exterior degree 2`−2pa. Let C

′ be the regular part
of C. This is a smooth manifold and by Lelong integrability’s theorem of
algebraic cycles,

∫

C′ ωa is convergent. We write this integral simply as
∫

C
ωa.

We always choose as orientation on the regular part of C the orientation given
by the complex structure. We can thus define

∫

C
aV (X) =

∑

a Pa(X)
∫

C
ωa.

If C is of pure complex dimension d, this is a homogeneous polynomial of
degree ` − d. Furthermore, this polynomial is independent of the choice of
the representative aV of the Thom class. The following proposition is proved
in [11]. It follows easily from Rossmann’s formula for J(C) .

Proposition 6 Let C be a cone of pure dimension d. We have

J(C)(X) = (−1)d(2π)`−d
∫

C

aV (X).

2.2 Asymptotic formulas for multiplicities. The case

of a Torus.

Let T be a torus. We introduce some generalized functions on T and t.
Let ξ be a non zero element of t∗ and let θξ be the generalized function

on t given by

θξ(X) =

∫ ∞

0

ei(tξ,X)dt.
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If S = {ξ1, ξ2, ..., ξ`} is a finite subset of elements of t∗ contained in a half-
space, the product of the generalized functions θξk is well defined.

Definition 7 Let S = {ξ1, ξ2, ..., ξ`} be a finite subset of elements of t∗ con-
tained in a half-space. Define

θ(S) = θξ1θξ2 · · · θξ` .

We thus have

θ(S)(X) =

∫

R`+

ei(
∑

yjξj ,X)dy1dy2 · · · dy`.

The function θ(S) is homogeneous of degree −`: if t is a positive real number,
θ(S)(tX) = t−`θ(S)(X) for X ∈ t. If X0 ∈ it is such that i(ξ,X0) < 0 for all
ξ ∈ S, then we have in the space of generalized functions on t the equality:
θ(S)(X) = limε→0+

∏

ξ∈S i(ξ,X + εX0)
−1.

Assume ∆+ = {α1, α2, ..., α`} is a subset of weights of T contained in a
half space. We can then define the generalized function Θ(∆+) as well as
the generalized function θ(−i∆+) on t. Let t > 0. We can consider the
generalized function X 7→ Θ(∆+)(tX).

Lemma 8 Let ∆+ be a set of weights of T contained in a half space with
cardinal `. Let t be a real positive number. Then, in the space of generalized
functions on t, we have the equality

lim
t→0

t`Θ(∆+)(exp tX) = θ(−i∆+)(X).

Proof. Let

j∆+(X) =
∏

α∈∆+

1− e−α(X)

α(X)
.

Then j∆+(X) is analytic and we have Θ(∆+)(X)j∆+(X) = θ(−i∆+)(X).
The function θ(−i∆+) is homogeneous of degree −`, while j∆+(tX) tends to
1 when t tends to 0. Thus

lim
t→0

t`Θ(∆+)(exp tX) = lim
t→0

t`Θ(∆+)(exp tX)j∆+(tX).

But we have

t`Θ(∆+)(exp tX)j∆+(tX) = t`θ(−i∆+)(tX) = θ(−i∆+)(X).

10



The same proof shows that the map t→ Θ(∆+)(exp tX) has an asymptotic
expansion when t tends to 0 in the space of generalized functions on t.

Let T be acting on a complex vector space V of dimension `.

Proposition 9 Let M be an admissible (T, S(V ∗))-module. Let r be the
degree of Joseph polynomial J(M). Then

Θ(M)(X) = lim
t7→0

t`−r Tr(M)(exp tX)

exists in the space of generalized functions on t and we have

Θ(M)(X) = i−rJ(M)(X)θ(i∆+)(X).

Proof. We use the formula Tr(M)(expX) = U(expX)
∏

α∈∆+ Θ−α(expX)
of Lemma 5. It is clear that, if r is the degree of Joseph polynomial,
t−rU(exp tX) has a limit when t tends to 0 equal to i−rJ(M)(X). Thus
t`−rU(exp tX)

∏

α∈∆+ Θ−α(exp tX) has a limit when t tends to 0 given by
the formula above.
Let C be a T -invariant complex cone in V of complex dimension d. The
degree of the Joseph polynomial J(C) is equal to ` − d. We write Θ(C) for
Θ(R(C)). Thus we obtain the following proposition.

Proposition 10 Let C be a T -invariant complex cone in V of complex di-
mension d. Then

Θ(C)(X) = lim
t→0

tdTr(R(C))(exp tX) = i−(`−d)θ(i∆+)(X)J(C)(X).

Using the integral formula for J(C), we may rewrite this as

Θ(C)(X) = (−1)d(−2iπ)(`−d)θ(i∆+)(X)

∫

C

aV (X).

It will be more elegant to rewrite this formula in terms of the equivariant
symplectic form of V . We will do this in Proposition 16 in the next section.

3 Asymptotic formulas for multiplicities

Consider a complex vector space V of complex dimension ` with an action of
a reductive complex Lie group G. Let C be a closed complex algebraic cone
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invariant under the action of G. We fix a maximal compact subgroup K of
G and choose a K-invariant hermitian form h on V . Thus K is a subgroup
of U(V ). We identify K̂ with dominant weights. We denote by k the Lie
algebra of K. We denote by R(C) the space of regular functions on C and
write the isotypic decomposition of R(C)

R(C) =
∑

λ∈K̂

R(C)λ.

If all the spacesR(C)λ are finite dimensional and satisfy the growth condition:
there exists a positive constant v and an integer N such that dim(R(C)λ) ≤
v(1 + ‖λ‖2)N , then the space R(C) is a trace class representation of K.
In particular the series

∑

λTrR(C)λ(expX) defines a generalized function of
X ∈ k. We denote this function simply as Tr(R(C))(expX).

Recall that we can consider V as a symplectic space with symplectic form
B = −2=h. We can thus consider the equivariant symplectic form Ω(X) on
V given by formula 1.

Theorem 11 Let V be a Hermitian vector space and let K be a closed sub-
group of U(V ). Let C ⊂ V be a closed K-invariant complex cone of pure
dimension d. Assume that the restriction to C of the moment map f : C → k∗

is proper. Then R(C) is a trace class representation of K. Furthermore, we
have the equality of generalized functions on k:

lim
t→0

tdTr(R(C))(exp tX) = (−2iπ)−d
∫

C

e−iΩ(X).

In this formula, the orientation on the regular part of C is given by its
complex structure.

Before proving this theorem, let us start to explain the meaning of the
generalized function

∫

C
e−iΩ(X).

Lemma 12 Suppose the moment map f induces a proper map f : C → k∗.
Then, if φ is a test function on k, the differential form

∫

k
e−iΩ(X)φ(X)dX is

integrable on C.

Proof. Consider the maximum c > 0 of ‖v‖2 on the compact set {v; ‖f(v)‖ =
1} ∩ C. By homogeneity, we deduce then that for v ∈ C

(4) c‖f(v)‖ ≥ ‖v‖2.
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If φ is a compactly supported C∞ function on k, we denote by φ̂ the function
on k∗ given by φ̂(f) =

∫

k
e−i(f,X)φ(X)dX. Then

∫

k
e−iΩ(X)φ(X)dX is a form

on V given by

∫

k

e−iΩ(X)φ(X)dX = (

∫

V

e−i(f(v),X)φ(X)dX)e−iΩ = φ̂(f(v))
∑̀

k=0

(−i)k
Ωk

k!

and the function v 7→ φ̂(f(v)) is rapidly decreasing on C by the above es-
timate (4). By Lelong’s theorem on integrability on algebraic varieties, the

restriction to the regular part of C of φ̂(f(v))Ω
d

d!
is integrable. We thus can

define a generalized function
∫

C
e−iΩ(X) by the formula

∫

k

(

∫

C

e−iΩ(X))φ(X)dX =

∫

C

(

∫

k

e−i(f(v),X)φ(X)dX)e−iΩ =

∫

C

φ̂(f(v))(−i)d
Ωd

d!
.

Proposition 13 The restriction of the moment map f : C → k∗ is proper if
and only if the representation R(C) is trace class. Furthermore, if f : C → k∗

is proper, the map t 7→ Tr(R(C))(exp tX) has an asymptotic expansion when
t tends to 0.

Proof. We prove first that if f is proper, the representation R(C) is
trace class. As f is homogeneous, the fact that f is proper on C is equivalent
to the condition that C ∩ f−1(0) is 0. By Mumford’s lemma (Lemma 3),
we first see that all homogeneous invariant polynomials P ∈ Rn(C)G with
strictly positive homogeneous degree n vanishes on C. Let T be a maximal
torus of K and let B be a Borel subgroup of G containing T . Let U be
the unipotent subgroup of B. Consider R(C)U . It is a representation space
for T . If n(λ) is the multiplicity of the representation of K with dominant
weight λ in R(C), then n(λ) is also the multiplicity of the weight λ in R(C)U .
Furthermore R(C)U is finitely generated. Indeed, the algebra R(C)U is iso-
morphic to the ring of G-invariant regular functions of the G-variety G×U C.
Denote by P (R(C)U) ⊂ it∗ the set of weights occurring in the representation
of T in R(C)U . By the previous discussion, all weights µ ∈ P (R(C)U) are
non zero. This implies that there exists X0 ∈ t such that i(µ,X0) > 0 for all
µ ∈ P (R(C)U): if P (R(C)U) was not contained in a half space, there would
be positive rational numbers rj such that 0 =

∑

j rjµj where µj ∈ P (R(C)U).
By finding a common denominator, we see that 0 would necessarily belong
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to P (R(C)U). We now choose a finite set I of generators fa for R(C)U with
a ∈ I. The weight µa of fa satisfies iµa(X0) > 0. The space R(C)U is a mod-
ule over the polynomial ring C[Xa] where Xa acts by multiplication by fa.
The representation of T in the ring C[Xa] is trace class. Thus the represen-
tation in the quotient R(C)U is also trace class. It follows that multiplicities
n(λ) of representations with dominant weight λ occurring in R(C) are of
at most polynomial growth. Conversely, if R(C) is trace class, this implies
necessarily that R(C)G = C as otherwise the trivial representation will occur
with infinite multiplicity. This in turns by Mumford’s lemma implies that
f−1(0) ∩ C = {0}.

Let us see that t 7→ Tr(R(C))(exp tX) has an asymptotic expansion in t,
when t tends to 0. We see by Lemma 5 that the character of the represen-
tation of T in R(C)U is of the form BΘ(−S) where B ∈ R(T ) and S is the
finite set µa. Thus we see as in the proof of Lemma 8 that the generalized
function of Y ∈ t given by TrR(C)U(exp tY ) has an asymptotic expansion
in the space of generalized function on t when t tends to 0.

LetW be the Weyl group and let R+ be a positive root system. Weyl inte-
gration formula implies that there is an isomorphism A between K-invariant
generalized functions on k andW -anti-invariant generalized functions on t. If
θ is a K-invariant generalized function on k and φ a K-invariant test function
on k:

∫

k

θ(X)φ(X)dX = vol(K/T )|W |−1
∫

t

A(θ)(Y )(
∏

α∈R+

α(Y ))φ(Y )dY

where vol(K/T ) is the volume of K/T for the K-invariant invariant measure
compatible with dX/dY . Let (δ(t)θ)(X) = θ(tX). If N is the cardinal of
R+, then Aδ(t) = t−Nδ(t)A. Consider the generalized function r(C)(X) =
TrR(C)(expX) in a neighborhood of 0 in k. Thus it is sufficient to prove
that δ(t)A(r(C)) has an asymptotic expansion when t tends to 0. Weyl’s
character formula implies the equality of generalized functions of Y ∈ t

(−1)N
∏

α∈R+

e(α,Y )/2 − e−(α,Y )/2

α(Y )
A(r(C))(Y ) =

∑

w∈W

ε(w)e(wρ,Y )TrR(C)U(expwY ).

Thus A(r(C))(tY ) has an asymptotic expansion when t tends to 0.

Consider on V the Euclidean scalar product given by the real part of
the Hermitian form h and the orientation given by its complex structure.

14



Thus V is an oriented Euclidean space, and we can construct a representa-
tive aV (X) of the S0(V )-equivariant Thom class [aV ] of V . The equivariant
form e−iΩ(X) is a Sp(V )-equivariant closed form on V . The intersection of
the groups SO(V ) and Sp(V ) is the unitary group U(V ). Thus both forms
aV (X) and e−iΩ(X) can be considered as closed U(V )-equivariant differential
forms on V . The main tool in proving Theorem 11 is to compare these two
U(V )-equivariant forms. The Lie algebra of U(V ) is denoted by u. Let us
write Mathai-Quillen [7] representative aV of [aV ]. It is a rapidly decreas-
ing representative instead of a compactly supported representative. We use
notations of [3], Formulae (13)-(21).

The space V is of real dimension 2`. Define, for X ∈ so(V ), the following
even element of the Z/2Z graded algebra A(V )⊗ ΛV

(5) fV (X) = −‖x‖2 + dx+ τ(X),

In orthonormal coordinates x1, x2, ...., x2`,

fV (X) = −
∑

i

x2i +
∑

i

dxiei +
1

2

∑

i<j

(Xei, ej)ei ∧ ej.

Consider the Berezin integral T : A(V )⊗ΛV → A(V ): For α ∈ A(V )⊗ΛV ,
the element T (α) ∈ A(V ) is such that T (α)e1∧ e2∧· · ·∧ e2` is the projection
of α on A(V ) ⊗ Λ2`V . Define aV (X) = (−π)−`T (efV (X)). (In the notations
of [3] , Formula (16)), this is the form uψ,V , with ψ(t) = (−π)−`et). Then
aV (X) is a representative of the equivariant Thom class of V . We have

(6) aV (X) = (−π)−`e−‖x‖
2

T (exp
∑

i

dxiei +
1

2

∑

i<j

(Xei, ej)ei ∧ ej)

= (−π)−`e−‖x‖
2

∑

I;‖I‖even

PI(X/2)dxI′

where, for a subset I of cardinal |I| even, PI is an homogeneous polynomial
on so(V ) of degree (|I|/2) which coincides up to sign with the Pfaffian of the
matrix XI = {(Xei, ej)ij∈I} and I ′ is the set of complementary indices.

Let us consider t ∈ R and t > 0. We consider fV (t,X) = −t2‖x‖2 +
tdx+ τ(X). Consider the closed equivariant form at,V defined by at,V (X) =
(−π)−`T (efV (t,X)). This is still an equivariant closed form on V . When

t→ 0, then at,V (X) tends to the constant function (−2π)−` det1/2V,o (X). Here

15



det
1/2
V,o (X) is a square root of the determinant of the transformation X ∈

so(V ) determined by the orientation of V .
We have ([3], Equation (20))

(7)
d

dt
T (efV (t,X)) = dX(T (xe

fV (t,X)).

We thus have the transgression formula for X ∈ so(V )

(8) aV (X)− (−2π)−`
1/2

det
V,o

(X) = dXβ(X)

with

β(X) = (−π)−`
∫ 1

0

e−t
2‖x‖2T ((

∑

i

xiei)(exp
∑

i

tdxiei+
1

2

∑

i<j

(Xei, ej)ei∧ej)).

Thus β(X) is of the form

(−π)−`
∑

I,j,|I|even,j /∈I

φI,j(x)PI(X/2)xjdxK

whereK is the complementary subset to I∪{j} and φI,j(x) =
∫ 1

0
e−t

2‖x‖2t|K|dt.
Note in particular that φI,j is a C

∞-function on V which is uniformly bounded
on V and that its partial derivatives are of at most polynomial growth.

Lemma 14 For X ∈ u, we have

aV (X) = (−2π)−`(
1/2

det
V,o

X)e−iΩ(X) + (dXν)(X).

Furthermore, if φ is a compactly supported C∞-function on u, then
∫

u
ν(X)φ(X)dX

is a rapidly decreasing form on V .

Proof. Consider Formula 8 . Thus we have for X ∈ u ⊂ so(V ),

aV (X)e−iΩ(X) − (−2π)−`
1/2

det
V,o

(X)e−iΩ(X) = dX(β(X)e−iΩ(X)).

Now, by Formula 2, we have also aV (X)(e−iΩ(X)−1) = dX(aV (X)ω( e
−idXω−1
dXω

)).

Finally we have aV (X)− (−2π)−` det1/2V,o Xe
−iΩ(X) = dXν with

(9) ν(X) = β(X)e−iΩ(X) − aV (X)ω(
e−idXω − 1

dXω
).
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The function e−ix−1
x

is uniformly bounded on R. It is then easy to see that the

form aV (X)ω( e
−idXω−1
dXω

) is rapidly decreasing for all X ∈ u while β(X)e−iΩ(X)

is rapidly decreasing when integrated against a test function on u.
Example

Let T = {eiθ; θ ∈ R} be the circle group. We denote by J the basis of
the Lie algebra t of T such that exp(θJ) = eiθ. Let V = R2 with coordinates
(x1, x2). Let T acting on V = R2 by rotations so that JV = x2∂x1

− x1∂x2
.

We note ‖x‖2 = x21 + x22. We have

aV (θJ) = π−1e−‖x‖
2

(−θ/2 + dx1 ∧ dx2)

while
e−iΩ(θJ) = e−iθ‖x‖

2/2(1− idx1 ∧ dx2).

Remark that on V − {0}, we have aV (θJ) = (dtν1)(θJ) with

ν1(θJ) = (2π)−1
e−‖x‖

2

‖x‖2
(x2dx1 − x1dx2)

Similarly (2π)−1θe−iΩ(θJ) = −(dtν2)(θJ) with

ν2(θJ) = (2π)−1
e−iθ‖x‖

2/2

‖x‖2
(x2dx1 − x1dx2).

The above transgression formula reads

aV (θJ) + (2π)−1θe−iΩ(θJ) = (dtν)(θJ)

with

ν(θJ) = ν1(θJ)− ν2(θJ) = (2π)−1
e−‖x‖

2

− e−iθ‖x‖
2/2

‖x‖2
(x2dx1 − x1dx2)

well defined on V and which obviously satisfies the property stated in Lemma
14.

Lemma 15 Let C ⊂ V be a K-invariant closed complex cone. Assume the
restriction f : C → k∗ is a proper map. We have the equality:

(−2π)−`
1/2

det
V,o

(X)

∫

C

e−iΩ(X) =

∫

C

aV (X).
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Proof. In the notations of the preceding lemma, the difference

∫

C

aV (X)− (−2π)−`
1/2

det
V,o

(X)

∫

C

e−iΩ(X)

is equal to
∫

C
(dgν)(X)φ(X)dX. As C is a cycle by Lelong’s theorem, this

last integral is equal to 0 and we obtain the equality in the lemma.
We first prove Theorem 11 in the case of a torus.

Proposition 16 Let T be a torus acting on V such that all weights of T are
contained in a half-space. Let C be a T -invariant closed complex cone in V
of complex dimension d. Then

lim
t→0

tdTrR(C)(exp tX) = Θ(C)(X) = (−2iπ)−d
∫

C

e−iΩ(X).

Proof. Let ∆+ be the set of weights of T in V . Let X0 ∈ it such that
(α,X0) > 0 for all α ∈ ∆+. Let ε a small positive number. By Proposition
10, we have

Θ(C)(X) = i−(`−d) lim
ε→0+

∏

α∈∆+

(α,X + εX0)
−1J(C)(X + εX0).

We use now Proposition 6 and we obtain

J(C)(X + εX0) = (−1)d(2π)l−d
∫

C

aV (X + εX0).

If v =
∑

α∈∆+ vα is the decomposition of v ∈ V in eigenvectors of weights
α, we have f(v)(X + εX0) = i < v, (X + εX0)v >= −i

∑

α∈∆+ α(X +
εX0)‖vα‖

2. As α(X) is imaginary and α(X0) > 0, the function eif(v)(X+εX0)

is rapidly decreasing on V and we have

∫

C

e−iΩ(X) =

∫

C

e−if(v)(X)(−i)dΩd/d! = lim
ε→0+

∫

C

e−iΩ(X+εX0).

Using notations of Lemma 14, we have

aV (X + εX0)− (−2π)−`
1/2

det
V,o

(X + εX0)e
−iΩ(X+εX0) = (dgν)(X + εX0)
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where ν is given by Formula 9. The function eiz−1
z

is uniformly bounded
when z varies in the upper-half plane. Thus ν(X+εX0) is rapidly decreasing
on V . Thus we obtain

−1/2

det
V,o

(X + εX0)

∫

C

aV (X + εX0) = (−2π)−`
∫

C

e−iΩ(X+εX0).

We have

(10)
1/2

det
V,o

(X + εX0) = (−i)`
∏

α∈∆+

(α,X + εX0).

Thus, taking limits when ε tends to 0, we obtain the formula above.
We now prove Theorem 11.
Proof. Assume first that the compact group K contains the group

S1, where S1 = {eiθI} is the center of U(V ). Let T be a maximal torus of
K. Then the action of T on C is such all weights are contained in a half
space. We then know that R(C) is a trace class representation of T . Thus
the formula

lim
t→0

tdTr(R(C))(exp tX) = (−2iπ)−d
∫

C

e−iΩ(X)

is valid in the space of generalized functions on t. A fortiori it is valid in
the space of generalized functions on k. If K does not contain S1, we can
consider the group K̃ generated by K and S1. We obtain the equality

lim
t→0

tdTr(R(C))(exp tX) = (−2iπ)−d
∫

C

e−iΩ(X)

as a generalized functions on k̃.
Under our hypothesis that f is proper on C, the generalized function

∫

C
e−iΩ(X) restricts to k as well as Tr(R(C))(expX). Furthermore the func-

tion Tr(R(C))(exp tX) has an asymptotic expansion as a generalized function
on k. Calculation of Proposition 13 shows that this asymptotic expansion is
the restriction to k of the asymptotic expansion of Tr(R(C))(exp tX) for
X ∈ k̃. By restricting to k, we obtain our theorem.

4 Applications to Nilpotent Orbits

Let G be a real semi-simple connected Lie group with finite center. Let g

be the Lie algebra of G. Let K be a maximal compact subgroup of G. Let
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g = k⊕ p be the Cartan decomposition of g. Consider a nilpotent orbit O of
G in g∗ of dimension 2d. Consider the Kirillov symplectic form σO on O with
associated Liouville measure dβO. The action of G on (O, σO) is Hamiltonian
and the moment map is the canonical injection. We denote by σO(X) the
equivariant symplectic form of the orbit. It is homogeneous of degree 1 with
respect to homotheties. Define the G-invariant generalized function FO of
X ∈ g given by

FO(X) =

∫

O

e−i(f,X)dβO(f) = (−2iπ)−d
∫

O

e−iσ0(X).

On the other hand, consider the closure C(O) of the nilpotent orbit c(O) of
KC in pC associated to O by Kostant-Sekiguchi correspondence [10].

Vogan’s conjecture is the equality of generalized functions of X ∈ k:

FO(X) = lim
t7→0

tdTrR(C(O))(exp tX).

Let us sketch first an heuristic argument to explain why it is natural to expect
this equality in the context of equivariant cohomology.

We denote by κ the Killing form on g. We identify g and g∗ by κ. Consider
on k and p the Euclidean scalar products such that κ(ξ0 + ξ1, ξ0 + ξ1) =
‖ξ1‖

2−‖ξ0‖
2 for ξ0 ∈ k and ξ1 ∈ p. The space pC is a Hermitian vector space

where K acts unitarily. Let us denote by Ωp the corresponding symplectic
form. If ξ = ξ1 + iξ2 ∈ pC, then Ωp = κ(dξ1, dξ2). It is easy to see that the
moment map f : pC → k∗ is given by f(ξ1 + iξ2) = −[ξ1, ξ2] for ξ1, ξ2 ∈ p.
Let NC be the nilpotent cone in gC. Remark that when ξ = ξ1 + iξ2 is in
the nilpotent cone NC ∩ pC of pC and not equal to 0, then f(ξ) is not zero.
Indeed ξ1 and ξ2 are semi-simple elements of g and if [ξ1, ξ2] was equal to 0,
then ξ1 + iξ2 would be semi-simple. Thus f restricts to a proper map from
C(O) to k∗. By Theorem 11 limt7→0 t

dTrR(C(O))(exp tX) has a limit when
t tends to 0 and we have

lim
t7→0

tdTrR(C(O))(exp tX) = (2iπ)−d
∫

C(O)

e−iΩp(X).

We know ([12]) that there is a K-invariant diffeomorphism R : c(O)→ O
which commutes with the homotheties. By change of coordinates

FO(X) = (−2iπ)−d
∫

c(O)

e−iR
∗σO(X).
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Consider the 1-form ω on pC given by ω = 1
2
(κ(ξ1, dξ2) − κ(ξ2, dξ1)) so that

Ωp(X) = dXω. We may consider for s a positive number and X ∈ k

F (s)(X) = (−2iπ)−d
∫

c(O)

e−iR
∗σO(X)−isdXω.

As the K- equivariant cohomology class of R∗σO(X) + sdXω remains con-
stant, this integral should be independent of s. Consider now the homothety
δ(s)(ξ) = s−1/2ξ. We obtain

F (s)(X) = (−2iπ)−d
∫

c(O)

e−iδ(s)R
∗σO(X)−isδ(s)dXω.

We have δ(s)(R∗σO(X)) = s−1/2(R∗σO(X)) while sδ(s)dXω = dXω as ω is
homogeneous of degree 2. Thus

F (s)(X) = (−2iπ)−d
∫

c(O)

e−is
−1/2R∗σO(X)−idXω.

Assume that, as we wish, F (s) is independent of s. Taking the limit when s
tends to∞ we obtain FO(X) = F (0)(X) = F (∞)(X) = (−2iπ)−d

∫

c(O)
e−iΩp(X).

Vogan’s conjecture now follows from Theorem 11.
The main difficulty is thus to prove that indeed F (s)(X) is independent

of s. This is equivalent to prove a Stokes formula on c(O). This obviously
requires some care as c(O) is an open subset of C(O) and I do not know how
to prove this fact in general.

Proposition 17 If G is a complex Lie group, then Vogan’s conjecture is
true.

Proof. In this case we have g = k⊕ik. The space p is equal to ik. We identify
g to the Hermitian space pC. Thus O is equipped with two K-invariant
symplectic forms: the Kirillov symplectic form σO and the restriction to O
of the symplectic form Ωp of the Hermitian space pC. Let ω = 1

2
(κ(ξ1, dξ2)−

κ(ξ2, dξ1)). If ξ = ξ1 + iξ2 ∈ O, the moment map for the symplectic form σO
is ξ 7→ ξ1, while the moment map for the symplectic form Ωp is ξ 7→ −[ξ1, ξ2].
If f(s)(ξ1+iξ2) = ξ1−s[ξ1, ξ2], remark that ‖f(s)(ξ)‖2 = ‖ξ1‖

2+s2‖[ξ1, ξ2]‖
2,

so that for all s ∈ R

(11) ‖f(s)(ξ)‖2 ≥ ‖ξ1‖
2
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Introduce
(12)

F (s)(X) = (−2iπ)−d
∫

O

e−iσO(X)−isΩp(X) = (−2iπ)−d
∫

O

e−iσO(X)−isdXω.

We will soon see that this is indeed well defined as a generalized function for
all s ∈ R. We have

∫

k

F (s)(X)φ(X)dX = (2π)−d
1

d!

∫

O

φ̂(f(s))(σO + sΩp)
d.

In particular we need to prove that (σO + sΩp)
d defines a tempered mea-

sure on O. This is easy to see using Rao’s explicit description [9] of σO that
we recall. We choose a Kostant three dimensional algebra (H,X, Y ) such
that Y ∈ O, H ∈ p and (X − Y ) ∈ k. We consider the stabilizer G(H)
of H. Let gj be the subspace of g where adH acts with eigenvalue j. The
Lie algebra of G(H) is g0. Let n+ =

∑

j>0 gj and n− =
∑

j<0 gj. Then
g = n− ⊕ g0 ⊕ n+ is a parabolic decomposition of g. Let N be the subgroup
of G with Lie algebra n+. Let Q = G(H)N be the parabolic subgroup of G
with Lie algebra q = g0 ⊕ n+. We have g(Y ) ⊂ q. The cotangent bundle
T ∗(G/Q) can be identified with G ×Q n+ via the Killing form. We write
Vk =

∑

i≥k gi. The space V2 is a representation space for Q. We can then
form the complex vector bundle V = G×QV2 over the compact manifold G/Q
and V is a sub-vector bundle of T ∗(G/Q). The closure of the orbit O is equal
to G(V2). Furthermore the map p : G×Q V2 → O is an isomorphism over O.
As O is a nilpotent orbit, Kirillov form is exact on O. Indeed, consider the
invariant 1-form ωO on O such that ωO((exp εJ) · f) = κ(J, f) for all J ∈ g

and f ∈ O. This is well defined as κ(J, f) vanishes if J ∈ g(f). The form
ωO is such that σO = d(ωO). Consider now on the subspace V = G ×Q V2
of T ∗(G/Q) the restriction ω̃G/Q of the canonical 1-form ωG/Q of T ∗(G/Q).
It is easy to see that p∗ωO = ω̃G/Q|p−1(O). Indeed we need only to verify
this equality at the point [e, Y ] and for vector fields JT ∗(G/Q) generated by
the G-action of J ∈ g. We have p∗ωO(JT ∗(G/Q))(e,Y ) = κ(Y, J). We have
also ω̃G/Q(JT ∗(G/Q))(e,Y ) = κ(Y, J). Thus we see that the inverse image of
σO under the map p∗ coincides with the restriction σ̃G/Q to p−1(O) of the
canonical symplectic form σG/Q = dωG/Q of T ∗(G/Q).

Consider V = G×Q V2. Thus V is a desingularisation of the closure of O.
If h is a function on g∗, we have

∫

O

hσdO =

∫

V

(p∗h)(σ̃G/Q)d.
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In local coordinates of V = U × V2, with U an open subset of G/Q, we can
write ω̃G/Q =

∑

i θ
iyi where θ

i are 1-forms on U and yi linear coordinates on
the vector space V2. Then (σ̃G/Q)d = (

∑

i dθ
iyi +

∑

i θ
idyi)

d is of polynomial
behaviour in yi, dyi. The base of the vector bundle V being compact, if h
is a function on g∗ such that the function p∗h on V is rapidly decreasing in
the fiber directions, the integral

∫

V
(p∗h)(σ̃G/Q)d is convergent. The pull-back

p∗ω of the 1-form ω on g∗ is also of polynomial behaviour along the fibers
of V , thus so is p∗Ωp = p∗ω. It follows that for any s ∈ R, the integral
∫

V
(p∗h)(σ̃G/Q + sΩp)

d is convergent. Let φ be a test function on k. Consider

the function h(s)(ξ) = φ̂(f(s)(ξ)) on g∗. We have

∫

k

F (s)(X)φ(X)dX = (2iπ)−d
1

d!

∫

V

p∗(h(s))(σ̃G/Q + sΩp)
d.

Let us show that the pull-back p∗(h(s)) on V is rapidly decreasing on fibers.
Consider for example the fiber V2 of V . We need to analyze the behaviour
of the function ξ 7→ φ̂(f(s)(ξ)) restricted to V2. We write ξ = ξ1 + iξ2 with
ξ1, ξ2 ∈ k. Then as ξ ∈ V2 is nilpotent, we have κ(ξ, ξ) = 0. This gives
‖ξ1‖

2 = ‖ξ2‖
2 so that ‖ξ1‖

2 = 1
2
v‖ξ‖2. The function φ̂ is a rapidly decreasing

function on k∗. Inequality 11 shows that the function ξ → φ̂(f(s)(ξ)) is
rapidly decreasing on V2. Thus F (s) is a tempered generalized function on k.

Let us now show that F (s) is independent of s. We denote by σG/Q(X)
the equivariant symplectic form of T ∗(G/Q). We still denote by ω the pull
back to V of the form ω on g∗. We have

F (s)(X) = (−2iπ)−d
∫

V

e−iσ̃
G/Q(X)−isdXω.

The vector bundle V is a K-equivariant vector bundle over a compact
base. Using the same argument as in Proposition 35 of [3], we can conclude
that F (s) is independent of s. Let us recall the proof. Let α(s)(X) =

e−iσ̃
G/Q(X)−isdXω. Thus α(s) is a K-equivariant closed form on V and its

cohomology class is independent of s. More precisely, we have

(13)
d

ds
α(s) = dkβ(s)

with
β(s)(X) = −iωe−iσ̃

G/Q(X)−isdXω = −iωα(s)(X).
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Let φ be a test function on k, let α(s, φ) =
∫

k
α(s,X)φ(X)dX and β(s, φ) =

∫

k
β(s,X)φ(X)dX. The forms α(s, φ) and β(s, φ) are forms on V . We have

β(s, φ) = −iωα(s, φ). We have

α(s, φ) =

∫

k

e−iσ̃
G/Q(X)−isdXωφ(X)dX = φ̂(f(s))e−iσ̃

G/Q−isdω

thus we have proved that α(s, φ) is a rapidly decreasing form on V . It follows
that β(s, φ) = −iωα(s, φ) is also rapidly decreasing on V . We have

∫

k

F (s)(X)φ(X)dX = (−2iπ)−d
∫

V

α(s, φ).

Now,
∫

V

d

ds
α(s, φ) =

∫

V

d

ds
(α(s, φ))[2d] =

∫

V

d(β(s, φ))[2d−1]

using Relation 13. By Stokes theorem, this is equal to 0 as β(s, φ) is rapidly
decreasing on V . This concludes the proof of the fact that F (s)(X) is inde-
pendent of s.

Consider the case where g = k ⊕ p is a real semi-simple Lie algebra. In
some other instances where we know sufficiently well a diffeomorphism of O
into c(O), we can conclude similarly that Vogan’s conjecture holds. Take for
example the case of a minimal nilpotent orbit O. We have O = G ·Eθ where
θ is the highest restricted root and Eθ a root vector for θ. Let Eθ, Hθ, E−θ be
a Kostant triple, with Hθ ∈ p. Then c(O) is the orbit of 1

2
(Eθ+E−θ)+

1
2
iHθ.

Lemma 18 Let ξ = ξ0 + ξ1 ∈ O, with ξ0 ∈ k and ξ1 ∈ p. Let a = 1
2
‖Hθ‖.

Then the map V (ξ) = a1/2‖ξ1‖
−1/2ξ1+ia

3/2‖ξ1‖
−3/2[ξ0, ξ1]) is a K-equivariant

symplectic diffeomorphism from (O, σO) to (c(O),Ωh).

Proof. Writing G = KAN we see that O = K · (R+Eθ). From this
description, it is easy to see that if ξ = ξ0 + ξ1 ∈ O, the elements ξ0 and
ξ1 generates a Lie algebra isomorphic to sl(2,R) and that V (ξ) is in c(O).
Indeed this is true for Eθ, with V (Eθ) =

1
2
(Eθ + E−θ) +

1
2
iHθ. Furthermore

for any ξ = ξ0+ ξ1 ∈ O, we have [[ξ0, ξ1], ξ1] = a−2‖ξ1‖
2ξ0. The moment map

for Ωp is (v1, v2) 7→ −[v1, v2]. We see thus that the moment map for V ∗Ωp is
equal to the moment map for σO. We thus have for all X ∈ k the equality
ι(XO)(σ0 − V ∗Ωp) = 0. As orbits of K are of codimension 1, this implies
σO − V ∗Ωp = 0.

Corollary 19 Vogan’s conjecture is true for minimal orbits.

Proof. Indeed we have
∫

O
eiσO(X) =

∫

c(O)
eiΩp(X).
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