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Introduction

Let C be a complex algebraic cone, provided with an action of a compact Lie
group K. The symplectic form of the ambient complex Hermitian space in-
duces on the regular part of C' a symplectic form. Let € be the Lie algebra of
K. Let f : C' — ¥ be the Mumford moment map, that is f(v)(X) = i(v, Xv),
for X € £ and v € C. The space R(C) of regular functions on C' is a semi-
simple representation of K. In this article, with the help of the moment
map, we give some quantitative informations on the decomposition of R(C')
in irreducible representations of K. For A a dominant weight, let m(\) be
the multiplicity of the representation of highest weight A in R(C'). Then, if
the moment map f : C' — £ is proper, multiplicities m(\) are finite and with
polynomial growth in A. Furthermore, the study of the pushforward by f
of the Liouville measure gives us an asymptotic information on the function
m(A) . For example, in the case of a faithful torus action, the pushforward of
the Liouville measure by the moment map is a locally polynomial homoge-
neous function ¢(A) on the polyhedral cone f(C) C t*, while the multiplicity
function m(\) for large values of A is given by the restriction to the lattice
of weights of a quasipolynomial function, with highest degree term equal to
¢(N). If O is a nilpotent orbit of the coadjoint representation of a complex
Lie group G, we show that the pushforward on €* of the G-invariant measure
on O is the same that the pushforward of the Liouville measure on O associ-
ated to the symplectic form of the ambient complex vector space. Thus, this
establishes for the case of complex reductive groups the relation, conjectured
by D. Vogan, between the Fourier transform of the orbit O with multiplicities
of the ring of regular functions on O.



Consider a complex vector space V of complex dimension ¢ with an action
of a compact Lie group K. Let € be the Lie algebra of K. Let C' be a closed
irreducible complex algebraic cone contained in V' of complex dimension d
and invariant under the action of K. The ring R(C) of regular functions on
C is a semi-simple representation of K.

Consider on the complex vector space V' a K-invariant Hermitian form h.
This determines a symplectic 2-form Q(dv,dv) = —2Sh(dv, dv) on V and a
moment map f : V — € given by f(v)(X) = ih(v, Xv) forv e V and X € .
By restriction, the symplectic 2-form €2 determines a symplectic form on the
regular part of C. If the restriction to C' of the moment map f : C' — £*
is proper, then the representation of K in R(C) is trace class. According to
the general philosophy of quantization, the quantized space Q(C') associated
to the symplectic space C' “is” the space of holomorphic functions on C.
We should then obtain a character formula for the representation of K in
R(C) in terms of the symplectic data. As C' is not smooth, such a formula
is not easy to state and we will only obtain an asymptotic estimate. (In case
C — {0} is smooth, this estimate would indeed follow from the equivariant
Riemann-Roch formula as stated in [2]). Let df¢ be the Liouville measure
on C' and let f.(dfBc) be the Radon measure on €* which is the pushforward
of dBc by the moment map. We prove the following theorem.

Theorem 1 Assume that the restriction to C' of the moment map f : C' — €
is proper. Then R(C) is a trace class representation of K. The limit when

t tend to 0 of the generalized functions t Tr(R(C))(exptX) of X € € exists.
Furthermore, we have the equality of generalized functions on €:

lim t¢ Tr(R(C))(exp tX) = / e~ U)X 460 (v) = / e O [ (dBe)(€).
C

t—0 e

Let us indicate the proof. We denote by Q(X) the equivariant symplectic
form of V. The above integral can be written (—2ir)~? [, e ). It is
not difficult to prove that dety (X)Tr R(C)(exp X) is an analytic function
on £. Furthermore, if the action of K in V' is such that dety (X) # 0, then
lim; ot dety (X) Tr R(C)(exptX) is (up to multiplication by a constant)
equal to the Joseph polynomial J(C)(X) defined in [4]. We then use Ross-
mann’s integral formula ([8], see also [11]) for J(C)(X) in function of the
equivariant Thom class of V. Thus the main technical tool is Lemma 14
which compares on a Hermitian space V the equivariant closed form e~ #XX)
and the equivariant Thom form.



Let G be a real semi-simple connected Lie group with finite center. Let
g be the Lie algebra of G. Let K be a maximal compact subgroup of G.
Let g = £ @ p be the Cartan decomposition of g. We consider a nilpotent
orbit O of GG in g* of dimension 2d. Consider the Kirillov symplectic form

d
oo on O. The corresponding Liouville measure o = (27T)_dil—? is a tempered

measure on O and we can then define the G-invariant generalized function
Fp of X € g by

Fo(X) = /O e UX) 46, (f).

This generalized function Fp has a restriction to €.

On the other hand, consider the nilpotent orbit ¢(O) of K¢ in pc associ-
ated to O by Kostant-Sekiguchi correspondence. Then the closure C(O) of
c(0O) is a closed K-invariant complex cone in p¢ of dimension d. The repre-
sentation of K in the ring R(C(O)) of regular functions on C(O) is a trace
class representation of K.

Vogan conjectured the following equality of generalized functions on €.
For X e &

Fo(X) = lim t*Tr R(C(O))(exptX).

When G is complex, the closure O of the orbit O is isomorphic to the
complex cone C(O). Thus, using a simple deformation argument between o¢
and the symplectic form on O induced from a K-invariant Hermitian form
on g, we show that Vogan’s conjecture follows from Theorem 1.

Theorem 2 Vogan’s conjecture holds if G is a complexr semi-simple Lie
group.

Recall ([12]) that, when G is any real reductive group, there is a K-
invariant diffeomorphism from O to ¢(O). Thus Vogan’s conjecture would
follow immediately from Theorem 1 if a K-invariant symplectic diffeomor-
phism between (O,00) and ¢(O) equipped with the symplectic structure
induced from the Hermitian structure of p¢c would exist. Such a symplectic
diffeomorphism is easily seen to exist in the case of minimal orbits. Thus
Vogan’s conjecture holds also for minimal orbits. This was already obtained
by D. King [6] by direct calculations of both terms of Vogan’s conjectural
equality. We do not know if such a symplectic diffeomorphism exists in gen-
eral. In fact we would only need a reasonable homotopy between these two
symplectic structures to prove Vogan’s conjecture. Several cases of Vogan’s



conjecture have been proved by D. King in [5], [6]. We hope our presentation
shows that Vogan’s conjecture is very natural.
The author wishes to thank the referee for useful remarks.

1 The moment map for Hermitian vector spaces

Let (V,B) be a finite dimensional symplectic vector space of dimension
2(. Consider the 1-form w = $B(v,dv) on V and the 2-form Q = dw =
%B(dv, dv). If p;, g; are symplectic coordinates on V', then w = % Zﬁzl(pjdqj—
¢;dp;) and Q = 37, dp; A dg;.

Let Sp(V') be the group of symplectic transformations of V. We denote
by s the Lie algebra of Sp(V'). The action of Sp(V') on V' is Hamiltonian.
The moment map f : V — s* is given , for v € V, by f(v)(X) = +B(v, Xv)
for X € s. Remark that f : V — s* is homogeneous of degree 2. If X is the
vector field on V' tangent at v to the curve (exp —eX)v, the moment map f
satisfies the equation (d¢f, X) = Q(Xy, &) for every tangent vector &.

For X € s, we denote by p(X) the function on V' given by u(X)(v) =
(f(v),X) = 3B(v, Xv). Let

(1) QX) = p(X) + 0

be the equivariant symplectic form of V. It is an exact equivariant form on
V. We have

2) Q(X) = dxw.

Consider a complex structure J on V compatible with B, that is such
that B(Jv, Jw) = B(v,w) for all v,w € V and B(v,Jv) > 0 for v # 0. Let
Q(v,w) = B(v,Jw). This is a Euclidean scalar product on V. The form
h = %(Q —iB) is a Hermitian form on the complex vector space (V,J). The
unitary group U(V) is a maximal compact subgroup of Sp(V). We denote
by u the Lie algebra of U(V'). Reciprocally, if (V,h) is a Hermitian space of
complex dimension ¢, we define on V' the symplectic form

B(v,w) = —2Im h(v, w).
The moment map f: V — u* is given by

f(0)(X) = ih(v, Xv)
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for any skew hermitian transformation X of V' (as X is antihermitian, the
number h(v, Xv) is purely imaginary).

Let G be a complex connected reductive Lie group acting on a complex
vector space V. We choose a maximal compact subgroup K of G and a
Hermitian K-invariant inner product ||v]|? on V. Thus K is a subgroup of
U(V). Let € C u be the Lie algebra of K. The group K is a real form of G
and g = £ @ €. The moment map fx : V — & for the action of K on V is
simply the composition of the map f : V — u* with the natural restriction
u* — ¢*. If K is understood, we again denote this map by f.

We denote by V* the dual vector space of V and by S(V*) the symmetric
algebra of V*. We identify S(V*) with the ring of polynomial functions on
V. We write

S(VT) = &S (V)

where S,,(V*) is the space of homogeneous polynomials of degree n.

Let C' be a complex algebraic irreducible closed cone in V' stable by G.
We denote by R(C) the ring of regular functions on C'. An element of R(C')
is the restriction to C' of a polynomial function on V', thus we will also call
an element of R(C') a polynomial function on C'. We write

R(C) = @2 R (C).

We denote by R(C)¢ the ring of G-invariant polynomial functions on C.

The following lemma due to Mumford is a straightforward consequence
from the fact that the geometric quotient C'/ /G constructed from the graded
algebra R(C)% can be realized as the reduced symplectic manifold f~1(0)/K.
For completeness, we give a proof of this corollary.

Lemma 3 (Mumford) The two following conditions are equivalent:
1) We have f~1(0) N C = {0}.
2) We have R(C)¢ = C.

Proof. We show first that, when f~!(0) N C' = {0}, invariant polynomial
functions on V take constant values on C'. Let P be a G-invariant polynomial
and let v be a point of C. Consider the level set L of P passing through v,
that is

L={meC;P(m)=Pv)}.

Then L is a closed subset of V' and is G-invariant. Take a point vg € L at
minimum distance from the origin. Thus the restriction of the function |jv||?
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to the G-orbit of vy has a minimum at vy. Let Y € £. We have necessarily
d .
&” expieY - vg||*|emo =

for all Y € &. This gives us the relation 2¢ < Y - vg,v9 >= 0 for all Y € ¢,
that is f(vp) = 0. Our condition f~1(0) N C = {0} implies that vy = 0. As
vp is in the same level set than v, we obtain P(v) = P(vy) = P(0). Thus P
is constant on C.

Let us prove the converse. We assume that R(C)¢ = C and we will
deduce that f~1(0) N C = {0}. Let x € C be such that f(z) = 0. Let us
show that the distance of 0 to the G-orbit of z is ||z||. Let G = KP with
P = expit. By K-invariance of the Hermitian norm, it is sufficient to prove
that for all Y € ¢, then ||(expiY) - z||* > ||z||?>. Consider the function on the
real line R given by g(t) = [|(expitY) - z||>. As f(z)(Y) = 0, the function
¢ (t) vanishes at 0. We have ¢”(0) = 2||Yz||* > 0. Thus g(0) = ||z]|* is a local
minimum for the function ¢(¢). The same calculation shows that if ¢’(a) = 0
at another value a € R, then ¢”(a) > 0. It follows that any critical point
of g is a local minima. This obviously implies that 0 is the unique critical
point and ||z||? is the absolute minimum of the function ¢(¢). The orbit G -z
is thus at distance ||z| of 0. If 2 was not equal to zero, this would imply
that 0 does not belong to the closure G -z of G - z. The Zariski closure of
G - x coincides with its topological closure. Thus we could find a polynomial
P € R(C) such that P =1 on G-z and equal to 0 on 0. Averaging P under
K, we could find a G-invariant polynomial equal to 1 on GG - x and 0 at 0.
Thus R(C)% would not be reduced to the constant functions.

2 Joseph polynomials

2.1 Definition of Joseph polynomial

Let T be a torus and let t be the Lie algebra of 7. We denote by P C it* the
set of weights of T'. If u € P, we denote by ¢, € T the character of T such
that e,(exp X) = e®X) for X € t. We denote by R(T) the set of virtual
characters on 7. We have

R(T) = (Y aen)

nel



where [ is a finite subset of P and a, € Z. We consider the space R(T)~>°
of trace class virtual representations of 7. We have

R = {3 a,e,)

pnepr

where a, is of at most polynomial growth. Then R(7")~>° is a module over
R(T).
For £ € P, we denote by O the element of R(T")~* given by

@5 = Z Eng-
n=0
Remark that
(3) (1—ee)Oe = 1.

Let S = {ay,aq,...,az} be a set of weights. We say that S is contained
in a half space if there exists X, € t such that (a;,iXo) > 0 for all a; € S.

In this case we can multiply the series ©,, and still obtain an element of
R(T)~=.

Definition 4 Let S = {1, ag, ..., ap} be a set of weights contained in a half
space. Define
O(S) = 04,04, - O,

-
Let Z, ={0,1,2,3....}. We thus have

O(S)(exp X) = Z e i X)

(’nj)EZi
Let M be a semi-simple T-module. We write
M = &uepM,

where M, = {m € M,t-m = e,(t)m}. If dim M, is finite for all x, we can
associate to M its formal character

ch(M) = Z(dim M,)e,.

I
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If dim M), is of at most polynomial growth, then we associate to M its char-
acter Tr(M) which is a generalized function on 7.

Let V' be a complex vector space where T" acts. We write £ for the complex
dimension of V. We write A™ for the set of weights of T'in V. We count then
with multiplicities: |A*| = ¢. We assume that the set AT of weights of the
action of T"on V' is contained in some half-space. Consider the space S(V*)
of polynomial functions on V. Then S(V*) is a trace class representation of
T. We have

Tr(S(V*) = [] ©-a =0(-A%).
aEAT

Let us consider more generally a (7', S(V*))-module M. This means that
the module M is a semi-simple T-module and that we have compatible ac-
tions of 7" and S(V*) on M:

t-(Pm)=(t-P)t-m

If M is finitely generated under S(V*), we say that M is an admissible
(T, S(V*))-module.

Lemma 5 Let M be an admissible (T, S(V*))-module. Then M is a trace
class representation of T and there exists an element U € R(T) such that

Tr(M) =UTr S(V*) = UB(-A™T)
Proof. Indeed we can choose a resolution of M by free S(V*)-modules. &

Let M be a (T, S(V*))-admissible module. Using Equation 3, we have

H (1—e_o)Tr(M)=U = aneua

acAt

with ¢, € Z and p, a finite number of weights of 7. Consider the analytic
function
X — H ~@XN Tr (M) (exp X)
acAt

on t and its Taylor series
Hq

n!
a,n



at the origin. Let r be the smallest integer n such that ) ca% is non zero.
By definition Joseph’s polynomial J(M) is the homogeneous polynomial of
degree r given by

Let C' be a T-invariant complex closed cone in V' of dimension d. Then
R(C) is a (T, S(V*))- admissible module. We write J(C) for J(R(C)). It
is easy to prove that J(C) is a polynomial of degree ¢ — d. Let us recall
Rossmann’s integral formula ([8]) for J(C'). We choose on V' a T-invariant
Hermitian inner product. Then V is an oriented Euclidean space and we can
construct an equivariant Thom class [ay | of V. By definition, a representative
ay of [ay] is a SO(V)-equivariant differential form on V' compactly supported
on V and such that [, ay(X) =1 for all X € so(V). The total equivariant
degree of ay is equal to 2¢. Thus ay(X) = Y, Pu(X)w, where P,(X) are
homogeneous polynomials of degree p, and w, are differential forms with
compact support on V' of exterior degree 2¢ —2p,. Let C’ be the regular part
of C'. This is a smooth manifold and by Lelong integrability’s theorem of
algebraic cycles, [, o Wa 1s convergent. We write this integral simply as /. o Wa-
We always choose as orientation on the regular part of C' the orientation given
by the complex structure. We can thus define [, ay(X) = >, Pa(X) [, wa.
If C' is of pure complex dimension d, this is a homogeneous polynomial of
degree ¢ — d. Furthermore, this polynomial is independent of the choice of
the representative ay of the Thom class. The following proposition is proved
in [11]. It follows easily from Rossmann’s formula for J(C') .

Proposition 6 Let C' be a cone of pure dimension d. We have

IO = (~1'en) [ ar(x).
C
2.2 Asymptotic formulas for multiplicities. The case
of a Torus.
Let T be a torus. We introduce some generalized functions on 7" and t.

Let £ be a non zero element of t* and let 6¢ be the generalized function
on t given by

0:(X) = / e X) gt
0



If S ={&,&,...,&} is a finite subset of elements of t* contained in a half-
space, the product of the generalized functions 0, is well defined.

Definition 7 Let S = {1, s, ..., &} be a finite subset of elements of t* con-
tained in a half-space. Define

0(S) = O, 0c, - - - O,

We thus have

0(S)(X) = / =W X dyydy, - - - dy,.

£
]R+

The function 0(S) is homogeneous of degree —¢: if ¢ is a positive real number,
0(S)(tX) =t*0(S)(X) for X € t. If X, € it is such that i(£, X,) < 0 for all
¢ € S, then we have in the space of generalized functions on t the equality:
0(S)(X) = lim o+ [eeg (€, X +eXo) .

Assume AT = {ay,ag, ..., aq} is a subset of weights of T contained in a
half space. We can then define the generalized function ©(A™) as well as
the generalized function 6(—iA*) on t. Let ¢ > 0. We can consider the
generalized function X — O(AT)(tX).

Lemma 8 Let A1 be a set of weights of T contained in a half space with
cardinal €. Let t be a real positive number. Then, in the space of generalized
functions on t, we have the equality

lim t“O(AT) (exptX) = O(—iAT)(X).

t—0

Proof. Let
1 —e &

a0 = 11 =35

aEAT
Then ja+(X) is analytic and we have O(AT)(X)ja+(X) = 0(—iAT)(X).
The function #(—iA™) is homogeneous of degree —¢, while ja+(tX) tends to
1 when ¢ tends to 0. Thus

lim t‘O(AT) (exptX) = %iné t'O(AT) (exp tX)ja+ (tX).

t—0

But we have

t'O(AT) (exptX)ja+ (tX) = t0(—iAT)(tX) = 0(—iAT)(X).
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|
The same proof shows that the map t — ©(A™)(exptX) has an asymptotic
expansion when ¢ tends to 0 in the space of generalized functions on t.
Let T be acting on a complex vector space V' of dimension /.

Proposition 9 Let M be an admissible (T, S(V*))-module. Let r be the
degree of Joseph polynomial J(M). Then

O(M)(X) = lim " Tr(M)(exp tX)

t—0

exists in the space of generalized functions on t and we have
O(M)(X) =i "J(M)(X)0(EAT)(X).

Proof. We use the formula Tr(M)(exp X) = U(exp X) [ [ ca+ O—alexp X)
of Lemma 5. It is clear that, if r is the degree of Joseph polynomial,
t7"U(exptX) has a limit when ¢ tends to 0 equal to ¢~"J(M)(X). Thus
tU(exptX) [T,ca+ ©—a(exptX) has a limit when ¢ tends to 0 given by
the formula above. &

Let C' be a T-invariant complex cone in V' of complex dimension d. The
degree of the Joseph polynomial J(C') is equal to ¢ — d. We write ©(C') for
©(R(C)). Thus we obtain the following proposition.

Proposition 10 Let C' be a T-invariant complex cone in V' of complex di-
mension d. Then

O(0)(X) = lim t* Te(R(C)) (exp tX) = i~ DoAY (X)J(C)(X).

t—0

Using the integral formula for J(C'), we may rewrite this as

O(C)(X) = (~1)U(~2im) V(AT (X) /C ay (X).

It will be more elegant to rewrite this formula in terms of the equivariant
symplectic form of V' . We will do this in Proposition 16 in the next section.

3 Asymptotic formulas for multiplicities

Consider a complex vector space V' of complex dimension ¢ with an action of
a reductive complex Lie group G. Let C' be a closed complex algebraic cone
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invariant under the action of G. We fix a maximal compact subgroup K of
G and choose a K-invariant hermitian form h on V. Thus K is a subgroup
of U(V). We identify K with dominant weights. We denote by ¢ the Lie
algebra of K. We denote by R(C') the space of regular functions on C' and
write the isotypic decomposition of R(C')

R(C)=>_ R(C)x

AeK

If all the spaces R(C'), are finite dimensional and satisfy the growth condition:
there exists a positive constant v and an integer N such that dim(R(C),) <
v(1 + [|AII®)Y, then the space R(C) is a trace class representation of K.
In particular the series ), Trp(c), (exp X) defines a generalized function of
X € t. We denote this function simply as Tr(R(C'))(exp X).

Recall that we can consider V' as a symplectic space with symplectic form
B = —23h. We can thus consider the equivariant symplectic form Q(X) on
V' given by formula 1.

Theorem 11 Let V' be a Hermitian vector space and let K be a closed sub-
group of U(V). Let C C V be a closed K-invariant complex cone of pure
dimension d. Assume that the restriction to C of the moment map f : C' — €*
is proper. Then R(C) is a trace class representation of K. Furthermore, we
have the equality of generalized functions on €:

t—0

lim ¢ Tr(R(C))(exptX) = (—2i7r)_d/ce_m(x).

In this formula, the orientation on the regular part of C' is given by its
complex structure.
Before proving this theorem, let us start to explain the meaning of the

generalized function |, c e X))

Lemma 12 Suppose the moment map f induces a proper map [ : C — €*.
Then, if ¢ is a test function on €, the differential form fée_iQ(X)gb(X)dX is
integrable on C.

Proof. Consider the maximum ¢ > 0 of ||v||? on the compact set {v; || f(v)]| =

1} N C. By homogeneity, we deduce then that for v € C
(4) cllf @)l = [lv]l*.
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If ¢ is a compactly supported C* function on €, we denote by QAﬁ the function
on & given by ¢(f) = [, "Vp(X)dX. Then [,e ™ ¥p(X)dX is a form
on V given by

003X = ([ UODG0aX)E = b1 Y (-

and the function v — ¢(f(v)) is rapidly decreasing on C' by the above es-
timate (4). By Lelong’s theorem on integrability on algebraic varieties, the
restriction to the regular part of C' of gb(f( )L is integrable. We thus can

d!
define a generalized function f e X

) by the formula
¢ Jo
|

Proposition 13 The restriction of the moment map f : C' — ¥ s proper if
and only if the representation R(C') is trace class. Furthermore, if f : C' — €
is proper, the map t — Tr(R(C))(exptX) has an asymptotic expansion when
t tends to 0.

Proof. We prove first that if f is proper, the representation R(C') is
trace class. As f is homogeneous, the fact that f is proper on C' is equivalent
to the condition that C' N f~1(0) is 0. By Mumford’s lemma (Lemma 3),
we first see that all homogeneous invariant polynomials P € R, (C)¢ with
strictly positive homogeneous degree n vanishes on C'. Let T be a maximal
torus of K and let B be a Borel subgroup of G containing 7. Let U be
the unipotent subgroup of B. Consider R(C)Y. It is a representation space
for T. If n()) is the multiplicity of the representation of K with dominant
weight X in R(C), then n()) is also the multiplicity of the weight X in R(C)V.
Furthermore R(C)V is finitely generated. Indeed, the algebra R(C)Y is iso-
morphic to the ring of G-invariant regular functions of the G-variety G xy C'.
Denote by P(R(C)Y) C it* the set of weights occurring in the representation
of T in R(C)Y. By the previous discussion, all weights u € P(R(C)Y) are
non zero. This implies that there exists Xy € t such that i(u, Xo) > 0 for all
€ P(R(C)Y): if P(R(C)Y) was not contained in a half space, there would
be positive rational numbers r; such that 0 = > r;u; where p; € P(R(C)Y).
By finding a common denominator, we see that 0 would necessarily belong
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to P(R(C)Y). We now choose a finite set I of generators f, for R(C)Y with
a € I. The weight i, of f, satisfies ij,(Xo) > 0. The space R(C)Y is a mod-
ule over the polynomial ring C[X,] where X, acts by multiplication by f,.
The representation of 7" in the ring C[X,] is trace class. Thus the represen-
tation in the quotient R(C)Y is also trace class. It follows that multiplicities
n(A) of representations with dominant weight A occurring in R(C') are of
at most polynomial growth. Conversely, if R(C) is trace class, this implies
necessarily that R(C)¢ = C as otherwise the trivial representation will occur
with infinite multiplicity. This in turns by Mumford’s lemma implies that
H0)ncC = {0}.

Let us see that t — Tr(R(C))(exptX) has an asymptotic expansion in ¢,
when ¢ tends to 0. We see by Lemma 5 that the character of the represen-
tation of T in R(C)Y is of the form BO(—S) where B € R(T) and S is the
finite set p,. Thus we see as in the proof of Lemma 8 that the generalized
function of Y € t given by Tr R(C)Y(exptY’) has an asymptotic expansion
in the space of generalized function on t when ¢ tends to 0.

Let W be the Weyl group and let R* be a positive root system. Weyl inte-
gration formula implies that there is an isomorphism A between K-invariant
generalized functions on € and IW-anti-invariant generalized functions on t. If
6 is a K-invariant generalized function on £ and ¢ a K-invariant test function
on &

Jeoseaax =vol/mywl [aow) IT atv)ey

¢ t a€ERt

where vol(K /T is the volume of K /T for the K-invariant invariant measure
compatible with dX/dY. Let (6(t)0)(X) = 6(tX). If N is the cardinal of
R*, then A§(t) = t~NV§(t)A. Consider the generalized function 7(C)(X) =
Tr R(C)(exp X) in a neighborhood of 0 in €. Thus it is sufficient to prove
that 6(t)A(r(C)) has an asymptotic expansion when ¢ tends to 0. Weyl’s
character formula implies the equality of generalized functions of Y € t

SO

a€R*

p(@Y)/2 _ p—(aY)/2

a(Y)

A(r(C)(Y) = Z e(w)e™”Y) Tr R(C)Y (exp wY').

Thus A(r(C))(tY) has an asymptotic expansion when ¢ tends to 0. &

Consider on V' the Euclidean scalar product given by the real part of
the Hermitian form h and the orientation given by its complex structure.

14



Thus V' is an oriented Euclidean space, and we can construct a representa-
tive ay (X)) of the SO(V')-equivariant Thom class [ay] of V. The equivariant
form e=**X) is a Sp(V)-equivariant closed form on V. The intersection of
the groups SO(V') and Sp(V) is the unitary group U(V). Thus both forms
ay(X) and e **X) can be considered as closed U(V)-equivariant differential
forms on V. The main tool in proving Theorem 11 is to compare these two
U(V)-equivariant forms. The Lie algebra of U(V') is denoted by u. Let us
write Mathai-Quillen [7] representative ay of [ay]. It is a rapidly decreas-
ing representative instead of a compactly supported representative. We use
notations of [3], Formulae (13)-(21).

The space V is of real dimension 2¢. Define, for X € so(V'), the following
even element of the Z /27 graded algebra A(V) @ AV

(5) fr(X) = —|lz]* + dx + 7(X),
In orthonormal coordinates x1, o, ...., Toy,
1
fv(X) = — ZZ‘? -+ Z d:ciei —+ 5 Z(Xei, ej)ei N €j.
i i i<j

Consider the Berezin integral T : A(V) @ AV — A(V): Fora € A(V)® AV,
the element T'(a) € A(V) is such that T'(a)e; Aeg A -+ Aeg is the projection
of a on A(V) ® A*V. Define ay(X) = (—7)~‘T(e/v¥)). (In the notations
of [3] , Formula (16)), this is the form wu,,y, with ¢(t) = (—m)~*¢"). Then
ay(X) is a representative of the equivariant Thom class of V. We have

(6) ay(X) = (_W)—ze—\lmIFT(exp Z dz,e; + % Z(Xei, e;j)e; N ej)

i<j

_ (_ﬂ_)ffe*HﬂUHz Z P](X/Q)dxl’

L;||I]| even

where, for a subset I of cardinal || even, P; is an homogeneous polynomial
on s0(V') of degree (]7]/2) which coincides up to sign with the Pfaffian of the
matrix X; = {(Xe;, e;)ijer} and I’ is the set of complementary indices.

Let us consider t € R and ¢ > 0. We consider fy(t,X) = —t?||z||* +
tdx + 7(X). Consider the closed equivariant form a;y defined by a;v(X) =
(—m) =T (efvX)). This is still an equivariant closed form on V. When

t — 0, then a;(X) tends to the constant function (—2m)~* det%/{f(X). Here

15



det%/{z(X ) is a square root of the determinant of the transformation X €
50(V') determined by the orientation of V.
We have ([3], Equation (20))

d
(7) ET(er(t’X)) = dx (T(xe’v X)),

We thus have the transgression formula for X € so(V)

1/2

(8) ay(X) — (=2m)~ ﬁl/e}(X) = dxp(X)
with
B(X) = (_W)e/o 67t2||x||2T((Z xiei)(epotdaEiepL% Z(Xei,ej)ei/\ej)).

Thus G(X) is of the form
(=) > (@) P(X/2)zsduk

1j,|I|even,j &1

where K is the complementary subset to IU{j} and ¢ ;(z) = f01 e Plel? Kl gg.
Note in particular that ¢; ; is a C°°-function on V' which is uniformly bounded
on V and that its partial derivatives are of at most polynomial growth.
Lemma 14 For X € u, we have
1/2 ,
ay(X) = (—27?)_€((%/et X)e ) 4 (dyv)(X).

Furthermore, if ¢ is a compactly supported C*°-function onu, then [ v(X)p(X)dX
1s a rapidly decreasing form on V.
Proof. Consider Formula 8 . Thus we have for X € u C so(V),

. 1/2 . '
av (X)e—zQ(X) _ (—27T)_£ (%/et(X)e—zQ(X) =dy (ﬁ(X)e—zQ(X)).

Now, by Formula 2, we have also ay (X )(e”*X) —1) = dX(aV(X)w(%)).
Finally we have ay (X) — (=27)~* det%,{s Xe X)) = dxv with

efide —1

(9) v(X) = B(X)e ) —ay (X)w( )-

de

16



The function e_xﬁ is uniformly bounded on R. It is then easy to see that the
form aV(X)w(e_Z;j:w_l) is rapidly decreasing for all X € u while B(X)e ")

is rapidly decreasin‘,:g when integrated against a test function on u.
Example
Let T = {e?;0 € R} be the circle group. We denote by J the basis of
the Lie algebra t of T such that exp(6.J) = €. Let V = R? with coordinates
(w1, 7). Let T acting on V = R? by rotations so that Jy = x90,, — 210,,.
We note ||z||* = 2% + x3. We have

ay (0J) = 7 e 1P (—0/2 + day A day)
while ‘ '
e=NOD) — o= ONEIP2 (1 _ jdxy A dy).

Remark that on V' — {0}, we have ay(8J) = (dwy)(0J) with
o—lell?

V1(6J> = (27T)7lw(l'2dfﬂ1 — xldfﬂg)

Similarly (27)~'0e=**%) = —(dw,)(0.J) with
o—idllall?/2

]2

vy (0J) = (2m) 7"

(Igdl’l — l‘ldl’g).

The above transgression formula reads
ay (0.J) + (2m) 10~ = (dw)(6.])

with
_ 2 s 2
e lzlI* _ o—i6llx(|?/2

12

v(0J) =11(0J) —11(0J) = (27) (xodzy — x1d2o)

well defined on V' and which obviously satisfies the property stated in Lemma
14.

Lemma 15 Let C C V be a K-invariant closed complex cone. Assume the
restriction f : C' — € is a proper map. We have the equality:

(—2m)~* det(X) /C =120 _ /C av(X).

V,o

17



Proof. In the notations of the preceding lemma, the difference

/C av(X)—(—zw)*éfﬁ(X) /C —iUX)

Vo

is equal to [, (dgv)(X)p(X)dX. As C is a cycle by Lelong’s theorem, this
last integral is equal to 0 and we obtain the equality in the lemma. 1
We first prove Theorem 11 in the case of a torus.

Proposition 16 Let T be a torus acting on V' such that all weights of T are
contained in a half-space. Let C be a T-invariant closed complex cone in V
of complex dimension d. Then

lim ¢4 Tr R(C) (exp £X) = O(C)(X) = (~2im) /C £=i20%),

Proof. Let AT be the set of weights of T in V. Let X, € it such that
(a, Xo) > 0 for all @« € AT, Let e a small positive number. By Proposition
10, we have

O(C)(X) =i~*9 lim (o, X + €Xo) M T(C) (X + eXy).
- acAt

We use now Proposition 6 and we obtain
J(C)(X + EX()) = (—1)d(2ﬂ')l_d/ CL\/(X + €X0).
c

If v =) ca+ Vo is the decomposition of v € V' in eigenvectors of weights
o, we have f(v)(X + €Xo) = i < v, (X + eXo)v >= —i)  cav (X +
eXo)|lvall?. As a(X) is imaginary and a(Xy) > 0, the function e/ (?)(X+eXo)
is rapidly decreasing on V' and we have

/eiQ(X) :/eif(v)(X)(_i>de/d! — lim eI UX+eXo)
c c

e—0t Jo

Using notations of Lemma 14, we have

1/2 ,
ay (X + eXo) — (—2m)~" det(X + €Xo)e M) = (dw) (X + e Xo)

18



where v is given by Formula 9. The function eiz—’l is uniformly bounded

when z varies in the upper-half plane. Thus v(X + €X0> is rapidly decreasing
on V. Thus we obtain
—1/2

det (X + 6Xo)/ ay (X + eXp) = (—QW)—Z/ ¢ —iQ(X+eXo)
,0 C C

We have
1/2 N
(10) d;}(X +eXo) = (=) [ (o X + €Xo).

acAt

Thus, taking limits when € tends to 0, we obtain the formula above. §

We now prove Theorem 11.

Proof.  Assume first that the compact group K contains the group
St where St = {e?} is the center of U(V). Let T be a maximal torus of
K. Then the action of T on C is such all weights are contained in a half
space. We then know that R(C) is a trace class representation of 7. Thus
the formula

lim ¢/ Tr(R(C)) (exp £X) = (—2im) / £—i9X)
- C

is valid in the space of generalized functions on t. A fortiori it is valid in
the space of generalized functions on €. If K does not contain S 1 we can
consider the group K generated by K and S'. We obtain the equality

lim ¢4 Tr(R(C)) (exp 1) = (~2i) /C ¢—2X)
as a generalized functions on .

Under our hypothesis that f is proper on C, the generalized function

e~ SUX) restricts to € as well as Tr(R(C))(exp X). Furthermore the func-
tion Tr(R(C))(exp tX) has an asymptotic expansion as a generalized function
on £. Calculation of Proposition 13 shows that this asymptotic expansion is
the restriction to £ of the asymptotic expansion of Tr(R(C))(exptX) for
X et By restricting to £, we obtain our theorem. §

4 Applications to Nilpotent Orbits

Let G be a real semi-simple connected Lie group with finite center. Let g
be the Lie algebra of G. Let K be a maximal compact subgroup of GG. Let
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g = €D p be the Cartan decomposition of g. Consider a nilpotent orbit O of
G in g* of dimension 2d. Consider the Kirillov symplectic form oo on O with
associated Liouville measure dfo. The action of G on (O, o) is Hamiltonian
and the moment map is the canonical injection. We denote by oo (X) the
equivariant symplectic form of the orbit. It is homogeneous of degree 1 with
respect to homotheties. Define the G-invariant generalized function Fp of
X € g given by

Fo(X) = [ e Xdo(s) = (~2im)* [ oot

o) o)
On the other hand, consider the closure C'(O) of the nilpotent orbit ¢(O) of
K¢ in pc associated to O by Kostant-Sekiguchi correspondence [10].

Vogan’s conjecture is the equality of generalized functions of X € ¢:
Fo(X) = lim t*Tr R(C(O))(exp tX).

Let us sketch first an heuristic argument to explain why it is natural to expect
this equality in the context of equivariant cohomology.

We denote by x the Killing form on g. We identify g and g* by x. Consider
on £ and p the Euclidean scalar products such that (& + &1,& + &) =
1€ = |I€ol|? for & € € and & € p. The space pc is a Hermitian vector space
where K acts unitarily. Let us denote by €1, the corresponding symplectic
form. If £ = & + & € pc, then Q, = k(d&y,d&y). It is easy to see that the
moment map f : pe — € is given by f(& + i) = —[&1,&)] for &1, € p.
Let N¢ be the nilpotent cone in gec. Remark that when & = & + i&; is in
the nilpotent cone N¢ N pe of pe and not equal to 0, then f(&) is not zero.
Indeed & and & are semi-simple elements of g and if [£, {&»] was equal to 0,
then & + & would be semi-simple. Thus f restricts to a proper map from
C(O) to €. By Theorem 11 limy, ot Tr R(C(O))(exptX) has a limit when
t tends to 0 and we have

lim t Tr R(C(O))(exptX) = (2i7r)_d/ e~ (X))
c(0)

t—0

We know ([12]) that there is a K-invariant diffeomorphism R : ¢(O) — O
which commutes with the homotheties. By change of coordinates

Fo(X) = (—2im)™ / e~ IR0 (X)),
¢(0)
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Consider the 1-form w on pc given by w = 3(k(&1, dés) — K(E2, d&;)) so that
Qp(X) = dxw. We may consider for s a positive number and X € ¢

F(s)(X) = (—in)_d/ o~ tR* 00 (X)—isdxw
c(0)

As the K- equivariant cohomology class of R*oo(X) + sdyw remains con-
stant, this integral should be independent of s. Consider now the homothety
5(s)(€) = s71/2¢. We obtain

F(s)(X) = (—22'71')_‘1/ e~ i0(s) R0 (X)—isd(s)dxw
c(0)

We have §(s)(R*00(X)) = s V/2(R*0o(X)) while s0(s)dxw = dxw as w is
homogeneous of degree 2. Thus

F(s)(X) = (—2im)™* / o—is V2R 00 (X)—idxw
¢(0)

Assume that, as we wish, F'(s) is independent of s. Taking the limit when s
tends to oo we obtain Fip(X) = F(0)(X) = F(00)(X) = (—2im) ¢ o) e~ (X)
Vogan’s conjecture now follows from Theorem 11.

The main difficulty is thus to prove that indeed F'(s)(X) is independent
of s. This is equivalent to prove a Stokes formula on ¢(O). This obviously
requires some care as ¢(O) is an open subset of C'(O) and I do not know how
to prove this fact in general.

Proposition 17 If G is a complex Lie group, then Vogan’s conjecture is
true.

Proof. In this case we have g = ¢@it. The space p is equal to it. We identify
g to the Hermitian space pc. Thus O is equipped with two K-invariant
symplectic forms: the Kirillov symplectic form oo and the restriction to O
of the symplectic form €, of the Hermitian space pc. Let w = %(ﬁ(&, dés) —
K(&,d&y)). If € = & +i& € O, the moment map for the symplectic form oo
is £ — &;, while the moment map for the symplectic form €, is £ — —[&;, &)

If £(s)(§1+1&2) = & —s[&1, &), remark that [| f(s)(€)[1? = &P +5%[|[1, &[],
so that for all s € R

(11) IF )N = ll&ll®
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Introduce
(12)
F(S)(X) _ (_22-7T)—d/ e—iao(X)—ist(X) _ (—Qiﬂ)_d/ e—iao(X)—istw‘
o o

We will soon see that this is indeed well defined as a generalized function for
all s € R. We have

[P0 = @075 [ )00 + 50"

4

In particular we need to prove that (oo + s£2,)¢ defines a tempered mea-
sure on O. This is easy to see using Rao’s explicit description [9] of o that
we recall. We choose a Kostant three dimensional algebra (H, X,Y’) such
that Y € O, H € pand (X —Y) € . We consider the stabilizer G(H)
of H. Let g; be the subspace of g where ad H acts with eigenvalue j. The
Lie algebra of G(H) is go. Let n™ = > . g; and n= = >, g;. Then
g=n" @ godnt is a parabolic decomposition of g. Let N be the subgroup
of G with Lie algebra n™. Let @ = G(H)N be the parabolic subgroup of G
with Lie algebra q = go @ nt. We have g(Y) C gq. The cotangent bundle
T*(G/Q) can be identified with G xg nt via the Killing form. We write
Vi = > ;5 8i- The space V5 is a representation space for (). We can then
form the complex vector bundle V = G x gV, over the compact manifold G/Q
and V is a sub-vector bundle of 7*(G/Q). The closure of the orbit O is equal
to G(V;). Furthermore the map p : G xg Vo — O is an isomorphism over O.
As O is a nilpotent orbit, Kirillov form is exact on O. Indeed, consider the
invariant 1-form wo on O such that wo((expeJ) - f) = k(J, f) for all J € g
and f € O. This is well defined as x(J, f) vanishes if J € g(f). The form
wo is such that op = d(wp). Consider now on the subspace V = G xg Vs
of T*(G/Q) the restriction &%/ of the canonical 1-form w? of T*(G/Q).
It is easy to see that p*wo = &/ Q]p—1(o). Indeed we need only to verify
this equality at the point [e, Y] and for vector fields Jr-(q/q) generated by
the G-action of J € g. We have p*wo(Jr-(c/0))ey) = (Y, J). We have
also 04 9(Jr(c/Q))ey) = K(Y,J). Thus we see that the inverse image of
0o under the map p* coincides with the restriction #%/? to p~'(O) of the
canonical symplectic form ¢%/? = dw? of T*(G/Q).

Consider ¥V = G xg V5. Thus V is a desingularisation of the closure of O.
If h is a function on g*, we have

|t~ [wmeerey
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In local coordinates of V = U x V;, with U an open subset of G/Q, we can
write @%/Q = Y 0'y; where ' are 1-forms on U and y; linear coordinates on
the vector space Va. Then (6%/9)% = (3. df'y; + Y, 0dy;)? is of polynomial
behaviour in y;, dy;. The base of the vector bundle V being compact, if A
is a function on g* such that the function p*h on V is rapidly decreasing in
the fiber directions, the integral f,,(p*h)(6%/9)? is convergent. The pull-back
p*w of the 1-form w on g* is also of polynomial behaviour along the fibers
of V, thus so is p*Q), = p*w. It follows that for any s € R, the integral
fv(p*h)(éG/Q + 5Q,)? is convergent. Let ¢ be a test function on ¢ Consider

the function h(s)(&) = ¢(f(s)(€)) on g*. We have

JFO@)0000X = @in) 1 [ ()92 4+ s0)
¢ AV
Let us show that the pull-back p*(h(s)) on V is rapidly decreasing on fibers.
Consider for example the fiber V5 of V. We need to analyze the behaviour
of the function & +— ng(f(s)(f)) restricted to V5. We write £ = & + i& with
£1,& € . Then as £ € V, is nilpotent, we have x(£,&) = 0. This gives
161]|% = ||€2]|? so that ||& ]| = Lv]|¢]|?. The function ¢ is a rapidly decreasing
function on #*. Inequality 11 shows that the function & — @(f(s)(€)) is
rapidly decreasing on V5. Thus F'(s) is a tempered generalized function on €.

Let us now show that F(s) is independent of s. We denote by ¢%/%(X)
the equivariant symplectic form of T*(G/Q). We still denote by w the pull
back to V of the form w on g*. We have

F(S)(X) _ (—2i7T)d/ efi&G/Q(X)fisdxw_
1%

The vector bundle V is a K-equivariant vector bundle over a compact
base. Using the same argument as in Proposition 35 of [3], we can conclude
that F(s) is independent of s. Let us recall the proof. Let a(s)(X) =
e~/ (X)misdxw  Thug a(s) is a K-equivariant closed form on V and its
cohomology class is independent of s. More precisely, we have

(13) disoz(s) = dpf3(s)

with - ‘
B(8)(X) = —iwe 07X misdxe — _i0(s)(X).
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Let ¢ be a test function on &, let a(s, ) = [, a(s, X)¢(X)dX and B(s, ¢) =
Je (s, X)p(X)dX. The forms a(s,$) and 3(s, ¢) are forms on V. We have
B(s, p) = —iwa(s, ¢). We have

Oé(S, ¢) _ /e_i&G/Q(X)_iSdXW¢(X)dX _ Qg(f(S))G_i&G/Q_ide

¢
thus we have proved that a(s, ¢) is a rapidly decreasing form on V. It follows
that (s, ¢) = —iwa(s, ¢) is also rapidly decreasing on V. We have

JFE)0000X = (~2im) [ a(s.0)

e v
Now,

[ Goatso) = [ tatsonn = [ d3(s,6)s

using Relation 13. By Stokes theorem, this is equal to 0 as (s, ¢) is rapidly
decreasing on V. This concludes the proof of the fact that F'(s)(X) is inde-
pendent of s. 1

Consider the case where g = £ & p is a real semi-simple Lie algebra. In
some other instances where we know sufficiently well a diffeomorphism of O
into ¢(O), we can conclude similarly that Vogan’s conjecture holds. Take for
example the case of a minimal nilpotent orbit O. We have O = G - Ey where
0 is the highest restricted root and Ejy a root vector for 6. Let Ey, Hy, E_4 be
a Kostant triple, with Hy € p. Then ¢(O) is the orbit of (Ep+ E_g) + 3iH,.

Lemma 18 Let £ = & + & € O, with & € € and & € p. Let a = 5| Hy|.
Then the map V (€) = a'/?||&1|| 72 4+ia®?||61]|73/%[€0, 1)) is a K -equivariant
symplectic diffeomorphism from (O, 00) to (c(O),Q24).

Proof.  Writing G = KAN we see that O = K - (RTEjp). From this
description, it is easy to see that if & = &, + & € O, the elements &, and
& generates a Lie algebra isomorphic to s[(2,R) and that V() is in ¢(O).
Indeed this is true for Ep, with V(E,) = %(Ee +E ¢)+ %z’Hg. Furthermore
for any € = &+ & € O, we have [[&, &1], &1] = a72||&1]|*¢. The moment map
for Q, is (vy, v) — —[v1, V). We see thus that the moment map for V*€, is
equal to the moment map for 0p. We thus have for all X € ¢ the equality
L(Xo)(oo — V*Q,) = 0. As orbits of K are of codimension 1, this implies
oo — V*Qp =0. 1

Corollary 19 Vogan’s conjecture is true for minimal orbits.

Proof. Indeed we have fo elroX) = fc(o) e (X) g
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