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1 Introduction

The purpose of this paper is to find explicit formulae for the total residue of
some interesting rational functions with poles on hyperplanes determined by
roots of type An = {(ei − ej)|1 ≤ i, j ≤ (n + 1), i 6= j}. As pointed out by
Zeilberger [Z], these calculations are mere reformulations of Morris identities
[M], where the total residue function replaces here the iterated constant
term. The proof we give of these identities follows closely (as suggested in
[Z]) Aomoto’s computation [Ao] of generalized Selberg integrals. Recall that
Selberg [Se] proved that the following integral:

Sn(k1, k2, k3) =

∫

[0,1]n

n
∏

i=1

xk1
i (1− xi)

k2

∏

1≤i<j≤n

|(xi − xj)|
k3dx

is a product of Γ functions. In this setting, k1, k2, k3 are non negative integers.
Here we will be interested in the Fourier transform of the function

Fn(k1, k2, k3)(x0, x) =
1

∏n
i=1 x

k1
i (x0 − xi)k2

∏

1≤i<j≤n(xi − xj)k3
,

more particularly on the value

sn(k1, k2, k3)(ξ) =

∫

Rn+1

eix0ξFn(k1, k2, k3)(x0, x)dx0dx

where Fn(k1, k2, k3)(x0, x) is interpreted as a boundary value of an holomor-
phic function. As shown by Jeffrey-Kirwan [JK], the value of the function
sn(k1, k2, k3)(ξ) is easily deduced from the knowledge of the total residue
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of the integrand. This reduces the problem to purely algebraic consider-
ation: ”integration ” means that we will explicitly compute the function
Fn(k1, k2, k3)(x0, x) modulo derivatives in x1, x2, . . . , xn according to the de-
composition appearing in Equation 1.

Let us give some of our motivations for calculating these total residues.
Let C(A+n ) be the cone spanned by the positive roots of An. Consider the
locally polynomial function vn on C(A+n ) obtained by convolution of all the
Heaviside functions H(α) supported on R+α, when α varies in the set of
positive roots. The value of vn at a point ξ ∈ C(A+n ) is the volume of the
polytope

P(An, ξ) = {x = (xα) ∈ Rn(n+1)/2
+ |

∑

α∈A+
n

xαα = ξ}.

The Laplace transform of the function vn is the rational function 1
∏

α∈A+
n
α
.

Thus, following Jeffrey-Kirwan, the value of the function vn at the point
ξ follows from the knowledge of the total residue of the rational function
ξn(n−1)/2
∏

α∈A+
n
α
. For ξ = (e1 − en+1), the highest root, the determination of this

residue follows from our calculation of Fn(1, 1, 1) modulo derivatives. We
refer to [BSV] and [BLV] for more details. More precisely, the general purpose
of the notes [BSV] is to explain results of Brion-Vergne [BV] on total residues
and to give examples (due to several authors), where volume or number of
integral points of flow polytopes can indeed be determined explicitly (a very
few cases) via residue calculus. These notes will be hopefully expanded in
a monograph in the future. We refer to [BLV] for description of a program
to compute number of integral points in general flow polytopes, where no
closed formula is known (in particular, a Maple program for the calculation
of Kostant partition function at any point is available on TO BE ADDED ).
Particular examples are beautiful in themselves, and also of great value on
testing programs.

For this article, we have extracted from [BSV] our own contribution on
these explicit calculations. As byproduct of the identities proven here, we give
in the notes [BSV] a new proof of a conjecture of Chan, Robbins and Yuen
[CRY], for which the volume of the polytope P(A+n , θ), where θ = (e1−en+1)
is the highest root, can be expressed as product of the first n − 1 Catalan
numbers. This number, as shown by Postnikov-Stanley [?, ?] is also the value
of Kostant partition function K(A+n−2) at the point e1 + 2e2 + 3e3 + · · · +

(n−2)en−2− (n−1)(n−2)
2

en−1 of C(A+n−2). Thus, as conjectured by Stanley and
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proved by Zeilberger, we reobtain

K(A+n )[1, 2, 3, 4, . . . , n,−
n(n+ 1)

2
] =

n
∏

i=1

2i!

i!(i+ 1)!
.

2 Total residues

We recall the basic results about the total residue function. The definition
is given in [BV] and it formalizes notions introduced in Jeffrey-Kirwan [JK].
Let V be a r-dimensional real vector space and let V ∗ be the dual vector
space. If ei is a basis of V ∗, we denote by ei the dual basis. Let ∆ ⊂ V ∗ be a
finite subset of non-zero linear forms. Each α ∈ ∆ determines an hyperplane
{x ∈ V : α(x) = 0} in V . Consider the hyperplane arrangement

H =
⋃

α∈∆

{α = 0}.

The ring R∆ of rational functions with poles on H is the ring ∆−1S(V ∗)
generated by the ring S(V ∗) of polynomial functions on V , together with
inverses of the linear functions α ∈ ∆. Thus a function in R∆ can be written
as P (x)/

∏

α∈∆ α(x)
nα where P is a polynomial function on V and nα are

non negative integers. The ring R∆ has a Z-gradation by the homogeneous
degree which can be positive or negative.

We say that a subset σ of ∆ is a basic subset of ∆ if the elements α ∈ σ
form a basis of V ∗. We denote by B(∆) the set of basic subsets of ∆. For σ
a basic subset of ∆, the rational function fσ defined by

fσ(x) :=
1

∏

α∈σ α(x)
.

is called a simple fraction.
In appropriate coordinates x1, . . . , xr, the function fσ is simply 1

x1x2···xr
.

We denote by S∆ the subspace of R∆ spanned by such “simple” elements fσ .
Via the results of Orlik-Solomon, one can obtain a description of S∆ as

isomorphic to the r-cohomology group of the complement of the hyperplanes
{α = 0}.

The space S∆ is contained in the homogeneous component of degree −r
of R∆. The elements v of V act on R∆ by differentiation:

(∂(v)f)(x) :=
d

dε
f(x+ εv)|ε=0
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and we have the direct sum decomposition [BV]

(1) R∆ = S∆ ⊕ (
∑

v∈V

∂(v)R∆).

Thus we see that only simple fractions cannot be obtained as derivatives.
As a corollary of this decomposition, we can define the projection map

Tres∆ : R∆ → S∆.

Definition 1 If φ ∈ R∆, the function Tres∆φ is called the total residue of
the function φ.

Let us note the following obvious property.

Lemma 2 Assume Γ ⊂ ∆ is a subset of ∆. Then

RΓ ⊂ R∆,

SΓ ⊂ S∆.

Furthermore, if f ∈ RΓ, then Tres∆(f) belongs to SΓ and

TresΓ(f) = Tres∆(f).

Due to the preceding lemma, if φ is a rational function with poles on
the collection of hyperplanes B determined by Γ, we can compute the total
residue of φ with respect to any subset ∆ containing Γ. It will be a sum
of simple elements with denominators products of elements of Γ. Thus we
simply write Tres(φ) for the total residue of a rational function φ with poles
on a collection of hyperplanes.

We conclude this section with some remarks and examples.

Remark 3 • The total residue of a function is again a function (and
not a number).

By definition, this function can be expressed as a linear combination of
the simple fractions fσ(x).

Example: If V = Re1 is one dimensional, and ∆ = {e1}, then R∆ is
the ring of Laurent series

L = {f(x) =
∑

k≥−q

akx
k}
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(the linear form e1 is simply denoted by x, as e1(xe1) = x).

The total residue of a function f(x) ∈ L is the function a−1

x
where the

constant a−1 is the usual residue denoted Resx=0f.

• Tres vanishes on homogeneous rational functions in R∆ of degree m,
whenever m 6= −r.

• Tres vanishes on derivatives.

If f = P
∏

k αk
(P ∈ S(V ∗), αk ∈ ∆ ) has a denominator product of linear

forms αk ∈ ∆ which do not generate V ∗, then it is easy to see that f
is a derivative and the total residue of f is equal to 0.

• If ∆ does not span V ∗, then S∆ = 0.

• Elements fσ are in general not linearly independent.

Example: Let V be a 2-dimensional vector space with basis e1, e2. Let
∆ be the set

∆ = {e1, e2, (e1 − e2)}.

Then we have the linear relation

1

e1e2
=

1

e2(e1 − e2)
−

1

e1(e1 − e2)

between elements fσ1 ,fσ2 , fσ3 with σ1 = {e1, e2}, σ2 = {e1, (e1 − e2)}
and σ3 = {e

2, (e1 − e2)} basic subsets of ∆.

Example 4 Let us do a computation. Let V be a vector space with basis
e0, e1, e2 and let

∆ = {e1, e2, (e0 − e1), (e0 − e2), (e1 − e2)}.

We write x ∈ V as x = x0e0+x1e1+x2e2. Consider the following function
W3 of R∆:

W3(x0, x1, x2) =
x20

(x0 − x1)(x0 − x2)(x1 − x2)x1x2
.

Then W3 is homogeneous of degree −3. To compute the total residue of
W3(x0, x1, x2), we write x0 as a linear combination of linear forms in the
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denominator of W3, in order to reduce the degree of the denominator. For
example, writing x20 = ((x0 − x1) + x1)((x0 − x2) + x2), we obtain

W3(x0, x1, x2) =
1

(x1 − x2)x1x2
+

1

(x0 − x2)(x1 − x2)x1

+
1

(x0 − x1)(x1 − x2)x2
+

1

(x0 − x1)(x0 − x2)(x1 − x2)
.

The first and last fractions have denominators with linearly dependent
forms, so that their total residue is zero and we obtain:

Tres(W3(x)) =
1

(x0 − x1)(x1 − x2)x2
+

1

(x0 − x2)(x1 − x2)x1
.

More precisely, in the direct sum decomposition,

R∆ = S∆ ⊕ (∂x0R∆ + ∂x1R∆ + ∂x2R∆),

we have,

W3(x0, x1, x2)− Tres(W3(x)) = U3(x0, x1, x2),

with

U3(x0, x1, x2) = −∂x1

x0 − 2x2
x2(x0 − x2)(x1 − x2)

− ∂x2

x0 − 2x1
x1(x0 − x1)(x1 − x2)

.

We conclude this section with the following obvious property.

Lemma 5 Assume that V = V1 ⊕ V2 and ∆ = ∆1 ∪∆2, with ∆i ⊂ Vi, then

R∆ = R∆1 ⊗R∆2 ,

S∆ = S∆1 ⊗ S∆2 .

If φ = φ1φ2 with φ1 ∈ R∆1 , φ2 ∈ R∆2, then

Tres(φ) = Tres(φ1)Tres(φ2).
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3 Morris identities for Ar+1

Consider a (r+2) dimensional real vector space, with basis e0, e1, e2, . . . , er, er+1.
We denote by Ar+1 the root system of SL(r + 2). We realize it as the col-
lection of elements (ei − ej) with 0 ≤ i ≤ r + 1, 0 ≤ j ≤ r + 1, and i 6= j.
In particular the vector space Er+1 spanned by the elements (ei − ej) has
dimension r + 1. We write

Π = {(e0 − e1), (e1 − e2), . . . , (er − er+1)}

for the system of simple roots defined by Ar+1. Then

fΠ =
1

(e0 − e1)(e1 − e2) · · · (er − er+1)

is an element of SAr+1 (in particular is homogeneous of degree −(r + 1)).
In fact the following proposition shows that the dimension of SAr+1 is

(r + 1)! and a particularly nice basis of SAr+1 is given by the elements

fw = w · fΠ = w ·
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)(er − er+1)

where w is a permutation of {0, 1, 2, . . . , r} (the permutation w leaves (r+1)
fixed).

Proposition 6 The map from

⊕r
i=0SAr → SAr+1

given by
r
∑

i=0

fi 7→
r
∑

i=0

fi
1

(ei − er+1)

is a bijection.

Proof. If f is in SAr , then for any 0 ≤ i ≤ r, the element f 1
(ei−er+1)

is in
SAr+1 , and it is easy to see that the map above is injective.

To prove that it is surjective, observe first that for any set of elements
K ⊂ {0, . . . , r}:

∏

j∈K

1

(er+1 − ej)
=
∑

i∈K

1
∏

j∈K;j 6=i(e
i − ej)

1

(er+1 − ei)
.
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If ν is a subset of Ar, we denote by fν =
1

∏

α∈ν α
. Then

∏

j∈K

1

(er+1 − ej)
fν =

∑

i∈K

1
∏

j∈K;j 6=i(e
i − ej)

fν
1

(er+1 − ei)
.

If ν ∪{(er+1− ej), j ∈ K} is a basic subset of Ar+1, then for every i ∈ K,

ν ∪ {(ei − ej), j ∈ K, j 6= i} ∪ {(er+1 − ei)}

is a basic subset of Ar+1. The result follows.

We continue to set up the notations we need to formulate our main result.
Consider the group Σr of permutations of {1, . . . , r} and denote by ε(w) the
sign of an element w ∈ Σr.

Let 0 ≤ ` ≤ r and denote by P`,r the Σr-invariant polynomial

P`,r =
∑

w∈Σr

w · [(e1 − er+1)(e2 − er+1) · · · (e` − er+1)].

In particular

P0,r = r! Pr,r = r!
r
∏

j=1

(ej − er+1).

When r is fixed, we will write P` for P`,r, when ` > 0.
We consider the rational function given by

φr+1(`, k1, k2, k3)

=
P`

(
∏r

j=1(e
j − er+1))k1(

∏r
j=1(e

0 − ej))k2(
∏

1≤i<j≤r(e
i − ej))k3

.

In particular

φr+1(0, k1, k2, k3)

= r!
1

(
∏r

j=1(e
j − er+1))k1(

∏r
j=1(e

0 − ej))k2(
∏

1≤i<j≤r(e
i − ej))k3

.

Here, k1, k2 and k3 are non negative integers, so that φr+1(`, k1, k2, k3)

is an element of RAr+1 of homogeneity degree `− (k1 + k2)r − k3
r(r−1)
2

. If k3
is odd, this function is anti-invariant under the group Σr of permutations of
{1, . . . , r}. If k3 is even, this function is invariant.
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Remark 7 If k1 ≥ 1 then

φr+1(r, k1, k2, k3) = φr+1(0, k1 − 1, k2, k3).

Let k1, k2, k3 ≥ 0, 0 ≤ ` ≤ r. Let D = (k1 + k2)r + k3
r(r−1)
2

− `.
Then the function

F(r, `, k1, k2, k3) = (e0 − er+1)D−(r+1)φr+1(`, k1, k2, k3)

is of homogeneity degree equal to −(r + 1).
The functions F are the ones of which we are interested in computing the

total residue.
In particular the function

(2) Wr+1 =
1

r!
(e0 − er+1)r(r+1)/2φr+1(0, 1, 1, 1) =

(e0 − er+1)r(r+1)/2
∏

0≤i<j≤r+1(e
i − ej)

is the one that is needed to compute the volume of the Chan Robbins Yuen
polytope, that is the volume of the polytope

P(Ar+1, (e
0 − er+1)) = {x = (xα) ∈ R(r+1)(r+2)/2

+ |
∑

α∈A+
r+1

xαα = (e0 − er+1)}.

As in the calculations of generalized Selberg integrals, total residues of the
functions F(r, `, k1, k2, k3) satisfy inductive formulae. The intermediate func-
tions F(r, `, k1, k2, k3) allows us to reduce the calculation of F(r, 0, k1, k2, k3),
modulo derivatives, to the calculation of F(r − 1, 0, k1, k2, k3).

Let us explain our strategy, which follows closely Aomoto [?]. In the
following, we use xi instead of ei, etc... as it is a more familiar notation
for computing derivatives. Write Denom = (

∏r
j=1(xj − xr+1))

k1(
∏r

j=1(x0 −

xj))
k2(
∏

1≤i<j≤r(xi − xj))
k3 so that P`

Denom
= φr+1(`, k1, k2, k3). We want to

compute P`/Denom modulo derivatives. Thus we introduce derivatives of
functions of the form Q/Denom where Q is a polynomial of degree ` + 1.
By Leibniz rule, we need to apply derivations to Q and 1/Denom. Applying
derivations to 1/Denom would a priori increase the degree of the denomina-
tor. But, luckily, we will see that the additional factors of the denominator
will be cancelled by antisymmetrisation of the numerator. Finally under
differentiation and antisymmetrisation, we will see that a function Q/Denom
leads to a function Q′/Denom, where Q′ is a polynomial of degree `. Care-
fully choosing Q in function of P` allows us to obtain recurrence formulae.
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The function W3 is the function considered in Example 4 of Section 2
(where we have set er+1 = 0). In particular, we see that, in general, the
function Wr+1 is not in the space SAr+1 . However, its projection on SAr+1 is
particularly nice. As a consequence of the more general identities proved in
Theorem 8 the following holds

(3) Tres(
(e0 − er+1)r(r+1)/2
∏

0≤i<j≤r+1(e
i − ej)

) =
r−1
∏

i=1

(2i)!

i!(i+ 1)!

∑

w∈Σr

ε(w)w · fΠ

The reformulation of Morris identities we were speaking of in the intro-
duction are the content of the following theorem.

Theorem 8 Let k1, k2, k3 ≥ 0, 0 ≤ ` ≤ r. Let D = (k1+ k2)r+ k3
r(r−1)
2
− `.

Then the function (e0 − er+1)D−(r+1)φr+1(`, k1, k2, k3) is of homogeneity
degree equal to −(r + 1), and we have

• If k3 is odd,

Tres((e0 − er+1)D−(r+1)φr+1(`, k1, k2, k3))

= Cr+1(`, k1, k2, k3)[
∑

w∈Σr

ε(w)w.fΠ].

• If k3 is even,

Tres((e0 − er+1)D−(r+1)φr+1(`, k1, k2, k3))

= Cr+1(`, k1, k2, k3)[
∑

w∈Σr

w.fΠ].

The constants Cr+1(`, k1, k2, k3) are determined uniquely by the relations:

• for 1 ≤ ` ≤ r,

(k1 + k2 − 2 +
k3
2
(2r − `− 1))Cr+1(`, k1, k2, k3)

= (k1 − 1 +
k3
2
(r − `))Cr+1(`− 1, k1, k2, k3).
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•
Cr+1(r, k1, k2, k3) = Cr+1(0, k1 − 1, k2, k3).

• If r > 1,
Cr+1(r − 1, 1, k2, k3) = Cr(0, k3, k2, k3).

•
Cr+1(0, k1, k2, k3) = Cr+1(0, k2, k1, k3).

•
Cr+1(0, 1, 1, 0) = r!.

• If k1 or k2 = 0,
Cr+1(`, k1, k2, k3) = 0.

Constants Cr+1(`, k1, k2, k3) will be explicitly determined as a product of
Γ factors in corollaries 10 and 11.

Remark 9 The function (e0 − er+1)D−(r+1)φr+1(`, k1, k2, k3) is invariant or
anti-invariant under the group Σr depending on the parity of k3, then its
total residue must be an element of SAr+1 which is invariant or anti-invariant
by Σr. There are (r+1) linearly independent such functions. Let us consider
the basis w · fΠ of SAr+1 with w a permutation of {0, 1, 2, . . . , r}. For homo-
geneity reasons, it is easy to see that the component of the total residue
of F(r, `, k1, k2, k3) on w · fΠ is equal to 0 unless the permutation w of
{0, 1, . . . , r} fixes 0, thus the total residue of F(r, `, k1, k2, k3) belongs to
the vector space spanned by elements fw with w ∈ Σr , and the total residue
of the function

(e0 − er+1)D−(r+1)φr+1(`, k1, k2, k3))

is proportional to either [
∑

w∈Σr
ε(w)w.fΠ] or [

∑

w∈Σr
w.fΠ]. The calculation

of the constant of proportionality is thus equivalent to the Morris iterated
constant term identity. However, we will give here a direct proof.

The recurrence formula above determines entirely the constants

Cr+1(`, k1, k2, k3).
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Indeed, we first check that constants Cr+1(`, k1, k2, 0) are uniquely deter-
mined by the recurrence relations above. The first one reads, for 1 ≤ ` ≤ r,

(k1 + k2 − 2)Cr+1(`, k1, k2, 0) = (k1 − 1)Cr+1(`− 1, k1, k2, 0).

The second reads

Cr+1(r, k1, k2, 0) = Cr+1(0, k1 − 1, k2, 0).

So if k1 > 1, we can increase ` to ` = r, using the first relation. Using the
second relation, we decrease k1 to k1 − 1. Thus, using alternatively one and
two, we compute Cr+1(`, k1, k2, 0) from the value of Cr+1(0, 1, k, 0). By the
symmetry relation (relation 4), we can also assume k2 = 1. We are finally
reduced to Cr+1(0, 1, 1, 0). Its value is given by the relation 5.

Assume now that k3 > 0. Similarly in the first relation, if k1 > 1, the
constant (k1− 1) + k3

2
(r− `) is strictly positive, so if k1 > 1, we can increase

` to ` = r, then using the second relation, we decrease k1 to k1 − 1. We
thus may determine the constant Cr+1(`, k1, k2, k3) from Cr+1(0, 1, k2, k3). If
k1 = 1, the first relation reads:

(k2 − 1 +
k3
2
(2r − `− 1))Cr+1(`, k1, k2, k3)

= (
k3
2
(r − `))Cr+1(`− 1, k1, k2, k3).

Thus, if r > 1, we can increase ` up to (r−1), using this relation. Then using
the third, we decrease r+1 to r. In conclusion we determine Cr+1(`, k1, k2, k3)
from the value of the constants C2(`, k1, k2, k3). But if r = 1, there is no factor
corresponding to k3, so that C2(`, k1, k2, k3) = C2(`, k1, k2, 0), value that we
have determined previously.

Corollary 10 Assume r > 1.

• If k3 > 0, or if k1 + k2 > 2, then for 1 ≤ ` ≤ r,

Cr+1(`, k1, k2, k3) =
∏̀

j=1

k1 − 1 + (r − j)k3

2

k1 + k2 − 2 + (2r − j − 1)k3

2

Cr+1(0, k1, k2, k3).
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• If k1 + k2 ≥ 2,

Cr+1(0, k1, k2, k3) = r!
r−1
∏

j=0

Γ(1 + k3

2
)Γ(k1 + k2 − 1 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k1 + j k3

2
)Γ(k2 + j k3

2
)
.

Corollary 11 We have

•

Cr+1(`, 1, 1, 1) =
∏̀

j=1

(r − j)

(2r − j − 1)
Cr+1(0, 1, 1, 1).

•

Cr+1(0, 1, 1, 1) = r!
r−1
∏

i=1

Ci,

where Ci =
(2i)!

i!(i+1)!
is the i-th Catalan number.

•

Cr+1(0, k, 1, 1) = r!
r+k−3
∏

i=k−1

1

2i+ 1

(

r + k + i− 1

2i

)

.

•

Cr+1(`, k, 1, 1) =
∏̀

j=1

2(k − 1) + (r − j)

2(k − 1) + (2r − j − 1)
Cr+1(0, k, 1, 1).

The second corollary is of course a consequence of the first, using several
times the duplication formula for the Gamma function, but it is somewhat
easier to use directly the recurrence formulas in k1, k2, k3, with k3 = 1, k2 = 1
as the value of k2, k3 remains constant and equal to 1, through the recurrence.

Let us first verify the corollaries , assuming Theorem 8.
To verify the first corollary, we verify the recurrence relations. The first

being obvious, we check the second:

Cr+1(r, k1, k2, k3) = Cr+1(0, k1 − 1, k2, k3).

We write
Cr+1(r, k1, k2, k3)
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= r!
r
∏

j=1

k1 − 1 + (r − j)k3

2

k1 + k2 − 2 + (2r − j − 1)k3

2

×
r−1
∏

j=0

Γ(1 + k3

2
)Γ(k1 + k2 − 1 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k1 + j k3

2
)Γ(k2 + j k3

2
)
.

In the first product, we change j in (r− j), in the second we use Γ(z + 1) =
zΓ(z) and we obtain:

r!
r−1
∏

j=0

k1 − 1 + j k3

2

k1 + k2 − 2 + (r + j − 1)k3

2

Γ(1 + k3

2
)(k1 + k2 − 2 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)(k1 − 1 + j k3

2
)

×
r−1
∏

j=0

Γ(k1 − 1 + k2 − 1 + (r + j − 1)k3

2
)

Γ(k1 − 1 + j k3

2
)Γ(k2 + j k3

2
)

= Cr+1(0, k1 − 1, k2, k3).

We verify the third condition.
We write

Cr+1(r − 1, 1, k2, k3)

= r!
r−1
∏

j=1

(r − j)k3

2

k2 − 1 + (2r − j − 1)k3

2

r−1
∏

j=0

Γ(1 + k3

2
)Γ(k2 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(1 + j k3

2
)Γ(k2 + j k3

2
)

= r!
r−1
∏

j=1

(r − j)k3

2

k2 − 1 + (2r − j − 1)k3

2

r−1
∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

×Γ(k2 + (r − 1)
k3
2
)
r−1
∏

j=1

Γ(k2 + (r + j − 1)k3

2
)

Γ(1 + j k3

2
)

In the first product, we change j in (r− j), in the last we use Γ(z +1) =
zΓ(z), and we obtain after simplification that Cr+1(r − 1, 1, k2, k3) is equal
to

r!
r−1
∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)
Γ(k2 + (r − 1)

k3
2
)

14



×

r−1
∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

= r!
r−2
∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

Γ(1 + k3

2
)

Γ(1 + r k3

2
)

r−1
∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

= (r−1)!
r−2
∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

Γ(k3

2
)

Γ(r k3

2
)

r−1
∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

while

Cr(0, k3, k2, k3) = (r − 1)!
r−2
∏

j=0

Γ(1 + k3

2
)Γ(k3 + k2 − 1 + (r − 1 + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k3 + j k3

2
)Γ(k2 + j k3

2
)

.

= (r − 1)!
r−2
∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

r−2
∏

j=0

Γ(k2 − 1 + (r + j)k3

2
)

Γ((j + 2)k3

2
)

It remains to verify

Γ(k3

2
)

Γ(r k3

2
)

r−1
∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

=
r−2
∏

j=0

Γ(k2 − 1 + (r + j)k3

2
)

Γ((j + 2)k3

2
)

.

which is true.
The remaining properties are obvious.
We now prove Theorem 8 by induction on r.

Proof. If k1 = 0, the remaining roots (ei − ej) occurring in the denom-
inator of φr+1(`, 0, k2, k3) are contained in the hyperplane

∑r
i=0 e

i = 0. So
the total residue of φr+1(`, 0, k2, k3) is 0. The same argument shows that
φr+1(`, k1, 0, k3) is 0 .

We thus may assume that k1, k2 > 0. We first show that the function (e0−
er+1)φr+1(` − 1, k1, k2, k3) is proportional to the function φr+1(`, k1, k2, k3)
modulo

∑r
i=1 ∂iRAr+1 . Thus the functions (e

0−er+1)D−(r+1)φr+1(`−1, k1, k2, k3)
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and (e0− er+1)D−rφr+1(`− 1, k1, k2, k3) will be proportional too, modulo the
vector space

∑r
i=1 ∂iRAr+1 , their total residues will be proportional and we

will get the first recursive relations for the constant Cr+1.
We write U = (

∏r
j=1(xj − xr+1))

−k1(
∏r

j=1(x0 − xj))
−k2(

∏

1≤i<j≤r(xi −

xj))
−k3 so that P`U = φr+1(`, k1, k2, k3).
Consider Q`+1 = (x0− x1)(x1− xr+1)(x2− xr+1) · · · (x`− xr+1). This is a

polynomial of degree `+1. As in Aomoto, the strategy consists in computing
derivatives of Q`+1U followed by antisymetrization. We will obtain a function
of the formQ′`U , whereQ′` is a polynomial of degree `. The functionQ′` will be
expressed in function of P` and P`−1. This will imply the wanted recurrence
relation, as by definition Q′`U is zero modulo derivatives.

We compute:

∂1[(x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)U ]

This is equal to

−(1− k2)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)U

+(1− k1)(x0 − x1)(x2 − xr+1) · · · (x` − xr+1)U

−k3(x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)
r
∑

j=2

1

x1 − xj
U.

Using (x0 − x1) = (x0 − xr+1) + (xr+1 − x1), this is also equal to

= (k1 + k2 − 2)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)U

+(1− k1)(x0 − xr+1)(x2 − xr+1) · · · (x` − xr+1)U

−k3(x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)
r
∑

j=2

1

x1 − xj
U.

Assume first that k3 is odd, so that U is anti-invariant by the group Σr.
Let us antisymmetrize over permutations. We obtain

∑

w∈Σr

ε(w)w · (∂1((x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)U)) =

(k1 + k2 − 2)P`U + (1− k1)(x0 − xr+1)P`−1 U

16



−k3
∑

w∈Σr

w ·

(

(x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)
r
∑

j=2

1

x1 − xj

)

U.

To compute
∑

w∈Σr
w·((x0−x1)(x1−xr+1)(x2−xr+1) · · · (x`−xr+1)

1
x1−xj

),

we first sum over the transposition (j, 1).
If 2 ≤ j ≤ `, we use

(x0 − x1)(x1 − xr+1)(xj − xr+1)

x1 − xj
+

(x0 − xj)(xj − xr+1)(x1 − xr+1)

xj − x1

= −(x1 − xr+1)(xj − xr+1).

If j > `, we use

(x1 − xr+1)(x0 − x1)

x1 − xj
+

(xj − xr+1)(x0 − xj)

xj − x1

= (x0 − x1) + (xr+1 − xj) = (x0 − xr+1) + (xr+1 − x1) + (xr+1 − xj).

We obtain that

2
∑

w∈Σr

w · ((x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (x` − xr+1)
r
∑

j=2

1

x1 − xj
)

is equal to

(−(`− 1)− 2(r − `))P` + (x0 − xr+1)(r − `)P`−1.

Thus finally, we obtain

∑

w∈Σr

ε(w)w·(∂1((x0−x1)(x1−xr+1)(x2−xr+1) · · · (x`−xr+1)φr+1(0, k1, k2, k3)) =

(k1 + k2 − 2 +
k3
2
(2r − `− 1))φr+1(`, k1, k2, k3)

+(x0 − xr+1)(−k1 + 1−
k3
2
(r − `))φr+1(`− 1, k1, k2, k3).

If k3 is even, we also obtain

∑

w∈Σr

w ·(∂1((x0−x1)(x1−xr+1)(x2−xr+1) · · · (x`−xr+1))φr+1(0, k1, k2, k3)) =
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(k1 + k2 − 2 +
k3
2
(2r − `− 1))φr+1(`, k1, k2, k3)

+(x0 − xr+1)(−k1 + 1−
k3
2
(r − `))φr+1(`− 1, k1, k2, k3).

Thus we see that

(x0 − xr+1)φr+1(`− 1, k1, k2, k3) is proportional to φr+1(`, k1, k2, k3),

modulo derivatives with respect to x1, x2,. . . , xr. In particular the total
residue of the function (x0 − xr+1)

D−(r+1)φr+1(`, k1, k2, k3) is proportional to
the total residue of the function (x0 − xr+1)

D−(r+1)+1φr+1(` − 1, k1, k2, k3).
This proves the first property.

We proceed to the proof of the second property. We return to the notation
xi = ei.

To avoid confusion in the following argument we will write explicitly the
dependence by the parameters ofD, that is we will write, whenever necessary,

D = DAr+1(`, k1, k2, k3) = (k1 + k2)r + k3
r(r − 1)

2
− `.

We now compute the total residue of

(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

with D = DAr+1(r − 1, 1, k2, k3) = (1 + k2)r + k3
r(r−1)
2

− (r − 1) .
We have:

r!(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

= (e0 − er+1)D−(r+1)
Pr−1

(e1 − er+1)(e2 − er+1) · · · (er − er+1)
φr+1(0, 0, k2, k3).

with

Pr−1
(e1 − er+1)(e2 − er+1) · · · (er − er+1)

∑

w∈Σr
w · [(e1 − er+1)(e2 − er+1) · · · (er−1 − er+1)]

(e1 − er+1)(e2 − er+1) · · · (er − er+1)

= (r − 1)!
r
∑

j=1

1

(ej − er+1)
.
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Consider the subgroup Cycr generated by the circular permutation of
1, . . . , r. Then

r
∑

j=1

1

(ej − er+1)
=

∑

w∈Cycr

w ·
1

(er − er+1)
.

Assume k3 odd. Thus

r!

(r − 1)!
φr+1(r − 1, 1, k2, k3) = [

∑

w∈Cycr

w ·
1

(er − er+1)
]φr+1(0, 0, k2, k3)

=
∑

w∈Cycr

ε(w)w · [
1

(er − er+1)
φr+1(0, 0, k2, k3)]

as φr+1(0, 0, k2, k3) is anti-invariant under Σr.
Remark that:

φr+1(0, 0, k2, k3) = r
1

(e0 − er)k2
φr(0, k3, k2, k3)

so that

(e0 − er+1)D−(r+1)
1

(er − er+1)
φr+1(0, 0, k2, k3)

= r(e0 − er+1)D−(r+1)
1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3).

It follows that we have

(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

=
∑

w∈Cycr

ε(w)w · [(e0 − er+1)D−(r+1)
1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)].

We now use Lemma 5 to compute the total residue of the last term in the
equality.

We write the vector space Er+1 as Er ⊕ R(er − er+1), and we consider
∆′ = Ar ∪ {(e

r − er+1)}
Using the decomposition (e0 − er+1) = (er − er+1) + (e0 − er), we write
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(e0 − er+1)D−(r+1) =
∑

i≥0,j≥0,i+j=D−(r+1)

cij(e
r − er+1)i(e0 − er)j.

Thus

(e0 − er+1)D−(r+1)
1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)

=
∑

i≥0,j≥0,i+j=D−(r+1)

cij
(er − er+1)i

(er − er+1)

(e0 − er)j

(e0 − er)k2
φr(0, k3, k2, k3)

belongs to the vector space R{(er−er+1)} ⊗ RAr and we can easily compute
the total residue using Lemma5, as well as the obvious calculation for a one
dimensional space. Precisely

Tres[(e0 − er+1)D−(r+1)
1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)]

=
∑

i≥0,j≥0,i+j=D−(r+1)

cijTres(
(er − er+1)i

(er − er+1)
)

×Tres[
(e0 − er)j

(e0 − er)k2
φr(0, k3, k2, k3)].

Only the term i = 0 gives a non zero residue, so we obtain

Tres[(e0 − er+1)D−(r+1)
1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)]

=
1

(er − er+1)
Tres[(e0 − er)D−(r+1)−k2φr(0, k3, k2, k3)].

Now

D− (r+1)−k2 = DAr+1(r−1, 1, k2, k3)− (r+1)−k2 = DAr(0, k3, k2, k3)−r.

So we obtain

Tres[(e0 − er+1)D−(r+1)
1

(er − er+1)
(e0 − er)k2φr(0, k3, k2, k3)]
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=
1

(er − er+1)
Tres[(e0 − er)DAr (0,k3,k2,k3)−rφr(0, k3, k2, k3)].

We apply induction hypothesis on r. We have

Tres[(e0 − er)DAr (0,k3,k2,k3)−rφr(0, k3, k2, k3)]

= Cr(0, k3, k2, k3)
∑

w′∈Σr−1

ε(w′)w′ · [
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)
].

By Formula 3, as the total residue commutes with the action of W , we
obtain:

Tres(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

= Cr(0, k3, k2, k3)
∑

w∈Cycr

ε(w)w · [
1

(er − er+1)
]

×
∑

w′∈Σr−1

ε(w′)w′ · [
1

(e0 − e1) · · · (er−1 − er)
].

But

∑

w∈Cycr

ε(w)w · [
1

(er − er+1)
]
∑

w′∈Σr−1

ε(w′)w′ · [
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)
]

=
∑

ww′∈CycrΣr−1=Σr

ε(ww′)ww′ · [
1

(er − er+1)

1

(e0 − e1)(e1 − e2) · · · (er−1 − er)
]

=
∑

w∈Σr

ε(w)w.fΠ.

Thus we obtain the second relation. The case k3 even is completely
analogous, so the proof of the first and second relation is complete. The
symmetry property in k1, k2 is obvious.

Let us check
Cr+1(0, 1, 1, 0) = r!.

More precisely, we have the following exact formula (without projection
on S∆).
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Lemma 12
(e0 − er+1)(r−1)

∏r
i=1(e

0 − ei)(ei − er+1)
=
∑

w∈Σr

w · fΠ.

Indeed, by reduction to the same denominator, the right hand side can
be written as

P
∏r

i=1(e
0 − ei)(ei − er+1)

∏

1≤i<j≤r(e
i − ej)

From invariance consideration, P has to be anti-invariant under Σr , so
is divisible by

∏

1≤i<j≤r(e
i − ej). From degree consideration, we obtain the

desired equality, and Cr+1(0, 1, 1, 0) = r!.
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