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[Q,R] = 0 AND KOSTANT PARTITION FUNCTIONS

A. SZENES AND M. VERGNE

1. THE THEOREM

Let M be a compact manifold endowed with an almost complex struc-
ture J € TEnd(TM). We denote by IM the complex vector bundle of
+i-eigenspaces of acting on ™ ® C, and by T’M the bundle of-i-
eigenspaces af. Then we have the splittingM® C = T'M @ T'M. If M
is a complex manifold endowed with an Hermitian metric, tiéiM may
be identified with theomplex tangent bundlevhile T'M with thecomplex
cotangent bundlef M. Informally, we will use this terminology even when
M has only an almost complex structure.

To every complex vector bund@& — M over M one can associate an
integer as follows (cf.[{2)). Set the notati®}(M,E) = [(A*(T'M)* ® &)
for the anti-holomorphic dierential forms with values i&, and consider
the twisted Dolbeault-Dirac operator [5]

Dg : Q5*Y(M, &) — Q3%(M, &).

This is a first-order elliptic dferential operator, and its “virtual space of
solutions” is well-defined as a formalfterence of two finite-dimensional
vector spaces:

Q) Q(M, &) = Ker(Dg) © CokerDg).
The dimension of this virtual vector space is defined to berttegjer
(2) dimQ(M, &) = dimKer(Dg) — dim CokerDg).

This number may be computed by the Atiyah-Singer index fdamu
3) dimQ(M, &) = f ch(&) Todd(T’ M);
M

here ch€) is the Chern character éf and Todd(?M) is the Todd class of
M.

Now assume that a compact, connected Lie gi@grts compatibly on
the manifoldM and the bundl€, and preserves the almost complex struc-
tureJ. ThenQ(M, &) becomes a virtual representation@&fwhose charac-
ter we denote bys.

To make this more explicit, we introduce the following naiatfor the
Lie data:

e Denote byT the maximal torus o6, and
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e by g andt the Lie algebras o andT, respectively;

o we will identify t* with the T-invariant subspace af* under the
coadjoint action.

e Let A stand for the weight lattice of thought of as a subspace of
t*.

¢ We will use the notatioe, for the charactef — C* corresponding
to 1 € A, and writet! for the value of this character drin T. Thus
we havee,(t) = t' fort € T, and alsot' = %X if X € t and
t = exp(X).

e Denote the set of roots @ by R; these split into a positive and a
negative parth = R* UR".

¢ Write dt for the Haar measure oh satisfyingfT dt=1.

Further, forX € g, we denote by X the vector field

d
VX:M—>TM, VX:qgqe d—te-tthzo

on M induced by thé&-action.

Atiyah-Bott-Segal-Singer [2,] 3, 4] give a fixed point forraubr yg(t).
The Fourier transfornfyg of ys is then a function with finite support on
A; its value

Fre(l) = f e e dt
T

is an integer, called thaultiplicity of the weight1 in ys. Itis then possible
to expressFys(4) in terms of partition functions, the first example of such
an expression being Kostant’s formula for the multipli@fya weightA in
a finite dimensional representation of a compact Lie grougeiims of the
number of ways a weight can be expressed as a sum of positite ro

Our focus will be the calculation of the dimension of thenvariant part
Q(M, )¢ of Q(M, &), obtained by taking-invariants on the right hand side
of (@):

Q(M, &)° = Ker(Dg)® e CokerDg)°.

According to the Weyl character formula, this integer maygkpressed via
the multiplicities as follows

(4) dimQ(M, &)° = f ]—[ (1-e,)xedt.
T et~
Consider an equivariant line bundfsoverM, endowed with &-invariant
Hermitian structure and an Hermitian connect@n Then the curvature
V2 will be equal to-iQ, whereQ is a closed real 2-form oM. The G-
invariant connectiorV determines &-equivariant map, thenoment map
us : M — g* by the formula:

(5) i, X) = Lx = Vyx,

wherelLy is the Lie derivative acting on the sections£f Observe that if
p € M is a fixed point of theT -action, therug(p) is int* c g*, moreover,
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uc(p) is exactly theT -weight of the fibet,. Differentiating[(b), we obtain
the key equality

(6) (duc, X) + Q(VX ) = 0.

The space'(0)/G is called thereduced spacef M with respect tdG.
The philosophy ofjuantization commutes with reducti¢or [Q,R]=0 for
short) is that the virtual spad®(M, & ® £X)¢ may be identified with the
virtual space of solutions of a Dirac operator associatestector bundle
of the form80®£'(‘, on the reduced spagg’(0)/G. This idea was introduced
in [10] in the form of a precise conjecture (cf. Theorlegm 6, Hreddiscussion
below). If u5'(0)/G is smooth, then, using the conjecture and applying the
Atiyah-Singer formula[(B8) to the bundi§, ® £, we can conclude that
dimQ(M, & ® LX) depends polynomially ok. This polynomiality thus is
a key manifestation of the [Q,RD principle, and it will be our main object
of study in this article.

This reduction principle comes from considering the sgezage when
M is a complex projectiv€&s-manifold, £ is the ample bundle, anfl is a
holomorphic vector bundle oM. Then theG-action onM may be extended
to a holomorphic actio: x M — M of the complexification of the com-
pact Lie groups, and [Q,R}0 follows from the fact that (cf/ [16]) the orbit
of u'(0) by this complexified action dbc is dense ir.

Returning to the almost complex setting, where no compkxiéiction
exists, consider the case whé&e-= T is abelian. In this case, we will write
u M — t* for the moment map, omitting the ind8x A special case of
thequantization commutes with reductiprinciple then reads as follows.

Theorem 1. LetE* and&™ be T -equivariant vector bundles over the almost
complex manifold M. LeL be an equivariant line bundle with associated
moment map : M — t*. Suppose that the bund& is equivalent taS~
overu~(0). Then, for k large, the multipliciti€By s« (0) and Fyg-g+(0)

are equal.

Following Meinrenken, we give a proof of this theorenglibased on the
stationary phase principle applied to the integral fornaflg¥] for ygg o«

Example 2. Let us consider the simplest example:=\MPY(C), £ is the dual
of the tautological bundle, endowed with an action of theugi8U(2) The
maximal torus T of this group corresponds to the set of diajomatrices
in SU(2). Then we have the following table:

k ...|-4]-3[-2]-1]0]1]2]3
dim Q(L") ...|-3|-2]-1] 0]1|2|3]|4
dim Q(LN)T ...|-1] 0o|-1] of1|o[1]0
dmQ(LYSU@ | ... | o] o[-1| o|1]0|0]0O

Thus we see that
e dimQ(LY) = k + 1; itis thus a polynomial for all ke Z.
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1, if 0<kiseven
e dimQ(LNT ={-1, if0>kiseven
0, ifk odd
In particular, this is a quasi-polynomial for all k O.

o dimQ(£¥SY@ is, however, only polynomial for k 1. Note that
dim Q(£7%)SY@ is not polynomial for k> 1.

This example shows, that, in general, dptM, & ® £X)€ is not polyno-
mial for smallk. To make a stronger statement, we &db be the trivial
line bundle, and introduce a key condition gras follows.

Definition 3. Given an almost complex manifdlifl, J), we say that a line
bundle£ over M ispositiveif for an Hermitian structure, and a compatible
connectiorv on £, the corresponding curvatureiQ satisfies

@) Q(V,IV) >0 forall0#VeTyM
at every point ¢g M.
Note that in this cas® is a symplectic form oM.

Remark 4. The data of a positive line bundle is the same as that of a pre-
guantizable symplectic manifold endowed with a Kostaettiandle [12]);

this latter is a G-equivariant line bundle with first Cherrask equal to the
class ofQQ/2r. Indeed, if(M,Q) is a symplectic manifold, then we can
choose a unique (up to homotopy) positive almost complegtsiie J, and
then the Kostant property df is equivalent to the existence of a G-invariant
connection with propert{7).

Definition 5. Let = be a freez-module. A function P £ — C is quasi-
polynomialif there exists a sublatticE, c = of finite index such that for
everyd € = the function P restricted ta + =, coincides with the restriction
of a polynomial function fror& to Z,.

In particular, a functiorP : Z — C is quasi-polynomial if, for some
nonzerad € Z, the functionl — P(ld + r) is polynomial for every € Z.

Now we are ready to formulate the polynomiality statementfoich we
give a new proof. As we explain below, this is a corollary afuiés of [15].

Theorem 6. Let(M, J) be a compact, connected almost complex manifold,
endowed with the action of a connected compact Lie group & |etr be
a positive G-equivariant line bundle on M. Then

e the integer function
k — dimQ(M, £
is quasi-polynomial for k= 1, and
e this quasi-polynomial is identically zeroGf¢ ug(M).

Let us further comment on the relation between this theoraththe
original Guillemin-Sternberg conjecture [10]. One mayoat®nsult [19]
and [23] for more details and references.
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Let M be a symplectic manifold equipped with a Kostant line bunglle
If 0 is a regular value ofig, then the reduced spagg'(0)/G is a symplectic
orbifold equipped with a Kostant line bundl&. Guillemin-Sternberg for-
mulated the conjecture th@(M, £)€ may be identified t€(u:'(0)/G, Lo).

Meinrenken, in his first approach to the Guillemin-Stergbssnjecture
[13], determined the asymptotic behavior of d(M, £K)¢ for k large,
under the assumption that O is a regular value. By a “statjophase”
method (that we borrowed in part for our proof of Theofém ¥)showed
that dimQ(M, £¥)® is indeed equal to dir@(u:'(0)/G, L'(‘)) for k sufficiently
large, and that the equality holds for &lE O if G is abelian. He has thus
shown that the Guillemin-Sternberg conjecture for geneoahpact con-
nected Lie groups is equivalent to the fact that di@(M, £K)® is quasi-
polynomial ink for k > 1.

Meinrenken-Sjamaar in [15] formulated the Guillemin-8&ts#rg conjec-
ture for the case when 0 is not necessarily a regular valukeofrioment
map, and, using techniques of symplectic cutting, provedrtiore general
statement. There is also an analytic proof of this generdliGuillemin-
Sternberg conjecture by Tian and Zhang [21], and anothef pyoParadan
[17] using transversally elliptic operators. Theorem 6 oasequence of
this statement.

In the present paper, we prove that ddtM, £¥)¢ is quasi-polynomial
in k for k > 1 directly, without making the assumption that O is a regular
value of the moment map. However, we will not pursue here disk& of
identifying geometrically the quasi-polynomial di@fM, .£X).

Our main purpose is to show that this result may be obtainmd the
Atiyah-Bott fixed point formula foy -, using Theorermll as the only ana-
lytic input. The rest of the argument is based on combinatonanipula-
tions of Kostant partition functions and some simple geoimerguments
“localizing positivity”. The ideas underlying our paperiginated in the
works of Paradan [17, 18].

The paper is structured as follows: §&@ we describe the calculus of the
expansions of the terms of the Atiyah-Bott fixed point forentdr y g« US-
ing partition functions (Corollary 10), and then introd@oguasi-polynomial
characten\,[&, a] encoding the asymptotic behavior of this expansion. We
begin§3 by Paradan’s combinatorial formula decomposing a patftinc-
tion in terms of convolution products of partitions funetgin lower dimen-
sions, then we apply this formula to our geometric setup@siion[35),
which results in a decomposition gf in terms of certain characters of the
type A, enumerated by fixed-point sets of subtorilof This combinatorial
decomposition is analogous at the level of characters tastfaification
of the manifoldM using the Morse functiofju||> used by Witten[[24] to
compute intersection numbers on reduced spaces. We firesprtiof of
Theoreni 6 in§4, by studying the terms of this expansion. The crucial part
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of the argument is a “localization of positivity” result: dprosition 44. Fi-
nally, we give a quick proof of Theoremm 1 §bl. A list of notations given
in §6l helps the reader to navigate the paper.

2. HXED POINT FORMULA AND A FORMAL CHARACTER.

2.1. The Fixed Point Formula. As inthe previous section, let us start with
a connected, compact, almost complexnanifold M, and a pair &, £),
consisting of a complex equivariant vector bundle and albimedle onM.
In this section, we embark on the study of the charagtg@ndygg . Our
starting point is the Atiyah-Bott fixed point formulal [2]. Bmplify our
situation, we assume that the gebf T-fixed points inM is finite. Let us
introduce some notation for the fixed point data.

We will use the ternlist for set with multiplicities. A list® thus consists
of a set{®}, and a multiplicity functionmy, : {®} — Z.,. We will write

o Y edif Yy € {D};

o if y € ® andmy(y) > 1, then® — {y} will denote the listd with
the multiplicity of ¢ decreased by 1; ihy(¥) = 1, thend — {} will
denote the list with y removed;

e for a list® and a se, we will write ® N S for the list with un-
derlying set{®} N S and multiplicity function coinciding with that
of @ on this set; we will writed \ S for the list with underlying set
{®} \ S and multiplicity function coinciding with that ob on this
set;

e the producf],., ¢ will stand for the producf] ¢ ¥™ .

For example, for each fixed poipte F, the weights of th& -action on
&, form a list, which we will denote by',,. Let g, be the functioril — C
obtained by taking the trace of tHeaction on the fibe€,. Thus we have
gp = Zneq,pe,]. Similgrly, we denote byb, the list of T-weights of the
complex vector spac‘égM.

Without loss of generality, we can make the additional sifyiplg as-
sumption that the generic stabilizer of tleaction onM is finite; this is
equivalent to the condition th&t, spang* for all p € F. With these prepa-
rations we can state the Atiyah-Bott fixed point formula far oase: it is
an equality between two functions defined on an open and derset of
T.

8) e o

- ; [Tpea,(1— &)
Indeed, the right hand side is meaningful on the set
{teT|t’ # 1Vpe F andg € Oy},
while the left hand side is regular dn Let us see a few simple examples.

Example 7. Let M = P}(C) with the action ofJ(1) given by t(x : y) = (tx:
t-1y), and let& = £X be the kth tensor power of the dual of the tautological
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line bundle. There aré fixed points p = (1 : 0)and p = (0 : 1), and we
have
k tk k

t o
W =Gt aoe - P

=0

The graph of the functioffy is pictured below for k= 4.

L[] L] ‘1 L] L]

4 3 -2 -1 o 1 2 3 4

Example 8. Let M be the flag variety of® endowed with the action of
the groupU(3). The subgroup T= {(ty, to, t3); t1,to, t3 € U(1)} < U(3) of
diagonal matrices serves as the maximal torus in this case the weight
lattice has a canonical diagonal base& = Z6, + Z6, + Z63;. Then the
coordinate flagCe; c Ce; ® Ce, c Ce; & Ce, & Ces} is invariant under T,
and the rest of the fixed points in"™Mnay be obtained by applying to this
flag the elements of the permutations graigpn a natural manner. We will
use the notation w X3 — p, € MT for this correspondence; in particular,
the coordinate flag will be denoted by,p

Consider the line bundl€ induced from the characteft,'t3 of T. Then

Z PP
k= W % "
e (1 to/tn)(1 — ta/t)(1 — ta/ty)

weXs

where, again, w stands for the natural action &f; on the indices.

The functionFy .« (for k = 1) is depicted below on the root lattice gener-
ated by the simple roots = 6, — 8, andB = 6, — 63. The weighju;,3 of the
bundleL at p»3is 4a + 36.

. . . . . JH123
. . . . . . .
. ° ° e o ° .
. ° ° Pe-a ° .
. . o o ° . e =1
. . [ . . e =2
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2.2. The partition function. Recall thatyg is determined by its Fourier
codficientsfys : A — Z, and that this latter function has finite support in
A. Our immediate goal is to write dowhl(8) as an equality of twodtions
in the Fourier dual spad&A — Z}.

Before we proceed, we need to introduce a few basic notions.

e We denote byR(T) the set of finite integral linear combinations of
the characters,, 1 € A, and

e by R(T) the space of formal, possibly infinite, integral linear com
binations of these characters. Thus the element&(®j are in
one-to-one correspondence with the function(d) : A — Z via
0 = Y,came, € RT). We will write 79 for the functionm
in this case. Conversely, given a function we will call the cor-
responding serieg its character. If we extend the weightse A
to linear functions onc, then we can also think of the elements of
R(T) as formal series of holomorphic exponential functiong©on

e Informally, we will call§ € R(T) aquasi-polynomial charactef its
Fourier transforny ¢ : A — C is quasi-polynomial (cf. Definition
B).

Observe thaR(T) is a module oveR(T) and the set of quasi-polynomial
characters forms a linear subspacéd{ir) which is stable under multipli-
cation byR(T). In addition, elements d®(T) whose Fourier transforms are
supported on a fixed acute cone may be multiplied.

With these preparations, we are ready to introduce the Hmsiding
block of our constructions. Leb be a list of nonzero elements af We
will call X € t polarizingfor @ if (¢, X) # O for everyg € ®. For nonempty
® and polarizingX, define the partitiod = ®, U ®_ of ® into

D, ={pe®|(p,X)>0} and P_={pc D|(p,X) <0},
and introduce the formal character

(9) OOTX] = (1) [ Jeux [ | D ewx]] D e
ped_ ped_ k=0 ped, k=0
It is easy to verify that the products in this formula are megful, and
hence the serie®[® 1 X] defines an element d¥(T). We also se®[0 1
X] = 1foranyX e t.
We record a few basic properties®fd 7 X].

Lemma 9. (1) O[® 1 X] satisfieq [ e (1 — &) O[® T X] = 1.
(2) Considered as a series of holomorphic functions of the fétnwieh
A € A, the serieq[) converges absolutely in a neighborhood of
iX e te.
(3) ¥O[® T X] is supported in the pointed cone generated*iby the
setd* U (—d7).

Note that if two formal characters iR(T) absolutely converge, and co-
incide on an open set of, then they also coincide as elementdR(T). In
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particular, it follows from LemmBg]9 that in their domain ofra@rgence the
formal character®[® 1 X] are equal to the functiofi] ;< (1 - ;)" * for any
X.

This allows us to rewritd (8) as follows:

Corollary 10. We have the following equality iR(T):

(10) xe =) £0[@1X].

peF
Remark 11. The functionF¥®[® T X] : A — Z, traditionally, has been
called thepartition function since, assuming = @7, its value aiu equals
the number of ways one can wrjies a nonnegative integral linear combi-
nations of vectors fromp. In particular, the equality(1d) applied to Weyl's
formula for the characters leads to Kostants’s formula floe multiplicity
of a weight in an irreducible representation of a reductive group.

A key fact is that the Fourier transforff®[® T X], as a function om\, is
piecewise quasi-polynomial. Let us explain this in moreadet

Definition 12. Given a list® spanningt*, we will call an elemeny € t*
®-regularif it is not the linear combination of fewer thafim(t) elements
of ®.

The set ofd-regular elements form the complement of a hyperplane ar-
rangement int*, and we will use the ternp-topefor the connected compo-
nents of this set. It will be convenient to use the notafiqy) for the tope
containing theb-regular elemeng. Note that topes are open convex cones,
which are invariant under rescaling.

Lemma 13. Given® and X as above, and&-tope7, there exists a quasi-
polynomial charactes[® T X, 7] such that¥®[® T X] coincides with
FO[DTX,T]onANT.

This lemma is proved in [9] (see alsg [8]).

Example 14. Lett" = Ra, A = Za, ® = [a] and let Xe t to be the vector
satisfying(a, X) = 1. Then

O[PTX] = ) 6.
k=0

Then7 := {ta,t > O} is a tope and[® T X, T ] = Dz & The character
o[® T X, 7] is quasi-polynomial as the multiplicitfo[® T X, 7] is the
constant functiorl on Za.

2.3. The asymptotics of the character. Now we return to our geometric
setup. We continue to assume that the tofuacts on the compact al-
most complex manifold/l with a finite set of fixed points. Also, recall our
notationu : M — t* for the moment map associated to the Hermiflan
equivariant line bundle as in§1l, and the fact that fop € F, u(p) is the
weight of theT-action on the fiber,.
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Definition 15. For p € F, and a subset S- t* denote by 8 the shifted
subset S- u(p). In particular, we have/P = y — u(p) for y € t*.

The moment map gives rise to a realfine hyperplane arrangement
whose complement is the open set

(12) ﬂ {y et’|yPis CI)p-reguIal} ct.
peF

We will use the ternalcovefor the connected components of the e (11).
The alcoves are thus minimal nonempty intersections ofrémstated poly-
hedral cones™ + u(p), wherep € F, and7 is a tope ofd,. Just as in the
case of topes, we will use the notatiofC) for the alcove containing the
connected subsét of the set((111).

Remark 16. If L is a positive line bundle as in Definitian 3, the(M) is
the convex hull of the pointg p), where pe F, and the sef{(11) is contained
in the set of regular values of

Next, we define a quasi-polynomial character by formallyjaejng the
generating function for the partition functi@{®, T X] in (L0) by appro-
priately chosen corresponding quasi-polynoméB, T X, 7] (cf. Lemma
[13).

Definition 17. Given a T -equivariant vector bundé&over M, and an al-
covea cC t*, we define the formal character

(12) AJE Q] = ) gp- o[ TX T (aP)],

peF
whereaP = a — u(p).

Remark 18. Note that we omitted the dependence on X in the notation (cf.
Corollary[23).

This character acquires a geometric meaning for the sequermindles
E® L k=1,2,... (cf. Lemmd2l and Propositiéni22).

The relation of the charactey,[E, a] to symplectic reduction may be
described as follows. In the case when the moment mapM — t* is
associated to a positive line bundle (and hefes a nondegenerate 2-
form), any elemeny in an alcoven is a regular value g, and the torug
acts with finite stabilizers op~(y). Then the seti™(y)/T is an orbifold,
which does not change jf remains ina, and thus we can denote it by,.
The bundlaeS descends to an orbifold bundfe on M,, and each character
A allows us to twisE, by the associated line bundlg = u~(y) xt C, over
M.. We then consider the integer diQ(M,, E, ® L,)), which, according
to the Atiyah-Singer index formula, is a polynomial functiof A if M, is
smooth. In the general case, whighj is an orbifold, the index formula for
orbifolds ([1], see also [22]) implies that the functian- dim(Q(M,, &, ®
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L.)) is a quasi-polynomial. In this setup, the chara&gl&, a] appears as
the generating function of this quasi-polynomial:

AJE ] = Z dimQ(M,E® L,) e..
A

We will not use this interpretation in what follows.

Example 19. We return to Examplgl 7, with is associated to the dual of
the tautological bundle overC). Then there ar® alcoves

a ;=] —o0,=1[; a:=]-L1L1[; az:=]1, 09
For & the trivial bundle, we have
AJE, 1] =0;  AJE a0J(n)=1; A8 a3] =0.

Example 20. We return to Examplel 8, with associated to the line bun-
dle £. The straight lines cut the plane into alcoves. The suppbthe
multiplicity functionFy is the highlighted hexagon.

N

SinceA,[&, a] is a linear combination of quasi-polynomial characters, i
is itself quasi-polynomial. The following extension ofgtact holds.

Lemma 21. The function(4,k) — FA,[E ® L¥, a](2) is quasi-polynomial
on the latticeA x Z.

Proof. Indeed, we have
AJE® L5 0] = ) pupdl@pT X, a”].
peF

'[he statement now follows from the fact that for a formal elcdarg <
R(T), and4,v € A, we havefe,6(1) = FO(4 — ku). |
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For smallk, in particular fork = 0, A,[€ ® £L¥, a] does not have any
direct relationship withyge . Sinceg, for p € F is the trace of a finite-
dimensional representation, its multiplicity functigi,, p € F has finite
support inA. For largek, we have the following statement.

Proposition 22. Letb be a compact subset of an alcavelhen there exist
a positive integer K such that for everykK anda € kb N A, the equality

(13) FALE ® L5 a)(2) = Fiesrd(d)
holds.

Proof. Recall the notationt,, introduced for the list of weights af, at
p € F. According to[(10), we have

Freor(d) = ), ) FOIOTXI(A —n = ku(p)),

peF ne¥y

while, by Lemma21,
FALE® L5 al(2) = Y > Fol@p X, T (aP)I(A -1 - kuu(p)).

peF ne¥p

Hence, by the definition of the quasi-polynomial charaggiven in Lemma
[13, these two expressions coincide as long as for @aet andn € ¥,
we haved — n — ku(p) € 7 (aP). Since topes are invariant under rescaling,
andaP = a — u(p), we can conclude thdi (IL.3) holds if

A 7

14 Kk € a foreachp € Upr'Pp.

As the setu, ¥, is finite, for large enoughk, we will haveb —/k € a
for everyn from this set. Hencé_(14) holds for large enodgliniformly in
A € kb N A. This completes the proof. O

Corollary 23. The quasi-polynomial charactey, [&, a] does not depend on
the choice of the polarizing vector X.

Indeed, assume that the subset a in Propositiori 22 contains an open
setU, and observe that the set of pai&t] satisfying the conditionn >
K, & € tb with K as in Proposition 22 contains a translate of the open cone
{(ry,r)ir > 0,y € U} c t* x R. According to Lemma 21FA,[&,a] is
guasi-polynomial o\ xZ, and hence the right hand side of](13) completely
determines the left hand side. SinEgsg « does not depend aX, we can
conclude that neither dog3A,[&, a].

In what follows, we will need the extension of the definitidn/o,[&, a]
to the case when the generic stabilizer of Thaction is not finite.

Definition 24. Suppose the Lie group G with Lie algelyracts on a mani-
fold M. Then for a subset € M we denote by

gc = {X eg; VXvanisheson
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the stabilizer subalgebra @f and by G the connected subgroup of G with
Lie algebragc.

In particular, Ty, is theconnected componeat the generic stabilizer of
M containing the identity element, angl c t is the Lie algebra offy.
Then for everyp € F, the weightsb, span the annihilatay, c t*.

Clearly, the grouply acts on each of the fibe&,;, g € M, and since
M is connected, this representation does not depergd bmparticular, for
two fixed pointsp andq in F, the weightsu(p) andu(q) of T differ by an
element ofty,. Thus the &ine-linear subspace

(15) Aw = p(p) + ty
of t* does not depend op € F. Note that according to equatidn (6), the
imageu(M) is contained iMy.

Now we can repeat the definitioris {11) ahdl(12) witiheplaced byty,.
More precisely, we consider the open sefjpnconsisting of those elements
y for whichyP € ty, is ®p-regular for anyp € F. An alcovea is a connected
component of this open set. For an alcayave denote by (aP) the @,-
tope inty, containinga®. The formal charactet,[&, a] may be defined by
equation[(IR). The multiplicity functioffA,[&, a] is then supported on a
finite number of translates (by vectors from thesgg{¥,}) of ty, N A, and
it is quasi-polynomial on each translate.

Denote byC, the trivial line bundle oveM endowed with the actios,
of T. As an immediate consequence of the decomposition

(16) &= @ Ci®(E®C_ )™,
AeA/ANtYy
one has the explicit formula
17) A& = ) eAlEeC )™,
AeA/ANEY,

where the sum is understood as taken over any system of espagses
of the quotient. Note that this formula expresses the foriiraharacter
A,[E, a] through quasi-polynomial characters for the tof/s = T/Tw,
which acts orM with generic finite stabilizer.

We have the following simple corollary df{1L7):

Lemma 25. If for somea € A, the multiplicity FA,[E, a](2) is not zero,
then the restriction oft to ty, is a weight of the representation of,Ton a
fiber of&.

We end this section with a comment on the situation, wheregfifiee
spaceAy given by equation[(15) is linear, i.e. passes through thgirori
This is equivalent to the condition that, acts trivially on the fibers of’,
i.e. LisaT/Ty-line bundle.

Lemma 26. LetE be a T-bundle, and’ be a T/ Ty-line bundle on M. Then
k> FA[E® L% a](0) is a quasi-polynomial function of k.
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Proof. Applying (I17) to the bundl&€ ® £X, and using the condition o4,
we obtain the equality

AJE® L5, a)(0) = A [E™ ® L, a](0).

SinceE™ is aT/Ty-equivariant vector bundle, we can repldcey T/Ty.
According to Lemma21FA, [E™®LX, a](4) is quasi-polynomial ind, k) €
(i N A) X Z, and henceA,[E™ ® L¥, a](0) is a quasi-polynomial function
of k. m|

3. DECOMPOSITION OF PARTITION FUNCTIONS

3.1. The decomposition formula. In this section, we prove a decomposi-
tion formula for the generating functia®[® T X] of the partition function
introduced in[(®). This formula is due to Paradan [18], andliit serve as
the combinatorial engine of our proof of Theorem 6.

Definition 27. Given a list® of weights inA c t*, introduce the set of
®-rational subspaces

RS(P) = {S c t' linear, ®N S spans &
This is the set of linear subspaceso$panned by some subsetaf
Remark 28. 1. Note thaf0} € RS(®), andt* € RS(®) if ® spanst™.

2. Comparing this definition to Definitidn 112, we see that albbspaces
S € RS(D), except for S= t*, consist of nonregular elements.

Now, fix a positive definite scalar product-j on t*, and denote by
v +— v* the induced linear bijection betweehandt. For each rational
subspacé& € RS(®) andy € t*, introduce the notatioms for the orthog-
onal projection ofy onto S, andYs, for the vector {s — y)* € t (see the
diagram below).

Ys,

0 Ys S

Finally, recall from Lemma_13 that, on®&-tope7, the partition function
FO[D 7 X] coincides with a quasi-polynomi&@s[® T X, 7] : A — Z. It
is thus natural to compare the two functions at all pointa ofAs we will
see, the dference may be expressed as a sum of (convolution) products of
partition functions and quasi-polynomials coming from &vdimensional
systems.
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Proposition 29. (Paradan) Letd be a list of vectors im\, and let X be a
polarizing vector for®d (see the definition dd in (9)). Assume thay € t*
is such that for every & RS(®), the projectionys € S is(® N S)-regular,
while the orthogonal componengYis polarizing for®\S. Then

(18)  O[@TX]= ) O[d\S1Ys,] - 5[® N STX T (ys)].
SERS(D)

Observe that if-y is in the dual cone to the cone generatedboyy —®-,
then all the terms but the one correspondin&te {0} vanish, and hence,
in this case, the identity (18) is tautological.

Example 30.Lett* = Ra, A = Za, ® := [a] and set Xe t to be the vector
satisfying{a, X) = 1. Then

O[®1TX] = Z B
k=0

The setRS(d) has two elements: S {0} and S=t*.
If we lety = ta for some t> 0, then on the right hand side ¢fL8) we
have
¢ S[OTX T (¥s)] = 2kez & for S =1, and
® O[®TYs,] = - Yi0€ ke, fOr S={0}.
Then formula(18) reads:

O[O TX] =6[PTX T (ys)] + O[O TYs,].

Proof of Proposition 29 Replacingy by its orthogonal projection on the
subspace generated by we may assume thatis spanned byb.

Observe that for each term on the right hand side_of (18), theiér
transform restricted to a tope df is quasi-polynomial. We show that the
Fourier transforms of the two sides 6f {18) coincide.

We start by showing that the Fourier ¢heients of the two sides coincide
on the tope7 (y). The term corresponding t& = t* is 6[® T X, T (¥)],
whose Fourier cdécients coincide with those a®[® 7 X] on the tope
7 (y). For anyS € RS(®) different fromt*, by construction, the Fourier
transform of the corresponding ter@{®\S 7 Ys,] - )[® NS T X T (ys)]
is a function onA supported on the subsgt; (1,Ys,) > 0} (cf. Lemma
@). Since(y,Ys,) = —lys — y> < 0, we see that this function vanishes on
a conic neighborhood of the half life"y. This implies that the Fourier
codficients of all these terms vanish on all 61{y), and thus indeed, the
Fourier codicients of the two sides of (18) coincide @r{(y).

To extend the equality of Fourier cieients to the rest oA\, we use
induction on the number of elementsdn If ® is empty, then both sides are
equal to 1. Now pick an elemetite ®, and conside®’ = ® — {¢} (cf. the
beginning of§2 for our conventions). Clearly (e,)-@[® T X] = O[®’ 1 X].

If we restrict the Fourier transform of this equation to ad@p we obtain

(1-6)0[@TXT)] =6[D'TXT']
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if @' generatey and7’ is the tope ofd containing7", while
(1-€)o[@TX,7)] =0

if ®" does not generaté.

We multiply both sides of (18) by (% e,), and compare the results. On
the left hand side, we end up wi[®’ T X]. For a term on the right hand
side corresponding t& € RS(®), we separate 3 cases:

1.4 ¢ S: Inthis caseS € RS(®?’), PNS=d" NnSand
(1-¢) - O[®\STYs,] =0O[D'\STYs,].
Thus, after multiplication by (+ e,), we end up with the term
(19) O[O'\STYs,] - 6[®" NSTX T (ys)l.

2.¢€S,andS € RS(?’): In this caseP\S = &’'\S while (® N S) —
{¢p} = @' NS, which implies that

(1-€) [P NSTX T (ys)] = 6[®" NSTX T (ys)l-

Thus we end up with the term (19) again.
3.¢€S,andS ¢ RS(?’): In this case,

(1- &) S[®NSTX T(ys)] = 0.

Thus multiplying the right hand side df ([18) by {le;) has the &ect of
replacing® by @’. Using the inductive assumption, we can conclude that
after multiplying both sides of (18) by (& e;) for any¢ € ®, we obtain
an identity. As® spanst*, this implies that the Fourier céeients of the
difference of the two sides of (118) form a periodic function wiglspect
to the sublattice of finite index iA generated byb. Since we also know
that these cd@cients vanish o (y), they must vanish on all ok. This
completes the proof. O

3.2. Paradan’s decomposition of a character.In this paragraph, we sub-
stitute the decomposition_(IL8) into formula10), and thed &« geometric
interpretation of the resulting expression.

Note that while performing this substitution, we have theettom of
varying the vectoy in (18) depending on the fixed poipt We take advan-
tage of this possibility, by shifting by u(p) for p € F, and thus replacing

v by the vectory® =y — u(p).
With this choice, we obtain

(20)  xe=), > &-O[P\S1Ysy] - 5[0y NSTX T ().
peF SeRS(®p)

Now we turn to the geometric meaning of this sum. Recall thah € t
defines a vector fielsf X on M; this vector field vanishes on the fixed point
setF.
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Definition 31. For p € F and Se RS(®,), denote by Qp, S) the connected
component of the set

MS™ = {me M|V X(m) = 0 for every Xe S*}

which contains p. LeEPC(M) stand for the set of all connectéided point
componentsC(p, S) obtained this way:

FPCM) = {C(p,S)Ip e F, S € RS(Dp)}.

Observe that the sél1S” is also the fixed point set of the subtorusTof
with Lie algebraS+.

Lemma 32. For p € F and S € RS(®p), consider Gp,S) € FPCM).
Then

(1) the set @p, S) is a smooth, T-invariant submanifold of M,

(2) the Lie algebra of the generic stabilizgy, sy of C(p, S) in t is ex-
actly S*, and

(3) forqe C(p,S) N F, we have S RS(D,) and (g, S) = C(p, S).

Proof. Recall the basic fact that a torus action on a manifold canrbe |
earized near a fixed point. It is ficient then to verify these statements in
a linear model. LeV be a vector space with a line@raction, with a list
of weights¥, and letS € RS(¥). Then the set of points stabilized by the
torus exp§+) is the direct sum of all eigenspaces\oivhose weight is in
S. This easily implies all three statements.

O

It follows then that there is a one-to-one correspondence
{(p,S)IpeF, SeRS(Pp)} « {(p,C)IC e FPCM), pe CNF},

and hence we can regroup the terms of the sufn in (20) accdalihg fixed
point componen€C to which it corresponds. To write down the resulting
formula, we need to introduce new notation for the veciersindYs,, in
terms of the compone@.

The manifoldC inherits aT -invariant almost complex structure, and the
set of weights of the fiber of the complex vector buntl€ atp e Cn F
is @, N tZ. Consider thd -equivariant line bundlec on C obtained as the
restriction of £ to C, and recall from[(I5) the definition of theéfime space
Ac

Using our scalar product, we decompadse tc @t;. If pandge CnF,
thenu(p) — u(q) belongs tag, thus the projection(p) — ¥)«c) of u(p) — v
to t(C) does not depend op € C N F. This is the polarizing vector in any
term of the sum in[(20) associated to the compoznt

Using this observation, we introduce the following notasio

Definition 33. From now on, we will write/¢ for the orthogonal projection
of y on the gfine space A We introduce the notation

Yo & w(P) = Yic) =vc—v
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for the polarizing vector in(C), omitting the dependence on

Regrouping the terms of (R0), and using these notations,bterothe
formula

(21) xe = Z Z gp - O[Dp\tz 1 Ye] - 6[Pp Nt TX T (ve — u(p))].
CeFPCM) peCnF
Recall thata(yc) stands for the alcove containing. We claim that the
term

Ac = Z p - O[DL\ETYc] - 6[@p NETX T (yc — u(p))]

peCnF

has the formA,[Ec, a(yc)] for an infinite-dimensional bundléc overC,
whose fiber at the fixed poimthas charactes;, - @[ \tzTYc].

This bundle may be constructed as follows. The bukdle= T'M/TC
is a T-equivariant complex bundle o8, whoseTc-weights are constant
alongC; denote the set of theJe -weights bydc. These weights thus may
be obtained by restricting, \ t; to tc for anyp € Cn F. Now, we can
split ®¢ into the disjoint uniond{ U @ according to the sign of the value
of the weights on the polarizing vect¥¢ € tc, and we obtain a direct sum
decomposition oKC in KC = KC, @ KC_, whereKC, andKC_ are the
subspaces generated by eigenvectorbcoivith weights from®df anddg,
respectively.

Then, recalling the definition of the formal characBfrom (9), we ob-
tain the following statement.

Lemma 34. Define the infinite-dimensional T -equivariant virtual biand
(22)  S'(KCTYe) = (-1)*™C- detKC") @ (P S™(KC: @ KC,)
m=0

over C, whereSI™ (V) stands for the mth symmetric tensor product of the
vector space V, andet(V) for its top exterior product. The fibers of this
bundle over points of C form acfrepresentation with finite multiplicities,
moreover, for pe C N F, the T-character of the fibeS*(KC T Y¢), is
O[p\ T Ye].
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Denote by&c the restriction of€ to C. Then the combination of the
fixed point formula with Paradan’s decomposition leads ® fibllowing
statement.

Proposition 35(Paradan) Lety be a generic point in*. Then we have the
following equality inR(T):

(23) xe= ), Al ®S(KCTYe),alye)l:
CeFPCM)

If C consists of a single fixed poimt € F, then the corresponding term
iS ep - B[, T (u(p) — ¥)*]. Itis reassuring to compare this {0 {10), which
contains a simila®-term functions but oriented filerently. According to
Lemmd® (1), the two terms, interpreted as generalized ifumst coincide
onthesefte T; t’ # 1V¢ € p}.

We also observe that these are the only terms which corrdgp@mooth
functions on some open setsf all the other terms correspond to gener-
alized functions supported in positive-codimensionatstlf T. One can
think of this formula then as a refinement of the Atiyah- Botifiula [8).

Remark 36.

(1) The alcoven(yc) is an open set in A= u(p) + tg when pe C.

(2) The moment map : M — t* of the line bundle: satisfies equation
(@), and this implies that(C) is contained in the fine space A
Moreover, if £ is a positive line bundle as in Definition 3, the(C)
is the convex hull of the finite sgi(p); p € C N F}.

(3) Proposition[52 implies the vanishing of those the terms efsilim
in (23)which corresponding to a fixed point component C satisfying
a(yc) & u(C).

(4) We note that the terms of the sfi8) are not quasi-polynomial.
Rather, the term corresponding to the fixed point componeist C
guasi-polynomial along each element an infinite set of lineans-
lates oftz c t*.

(5) When C= M, then the term of the su(@3) reduces ta\,[E, a(y)],
which is an actual quasi-polynomial character (cf. Lenim&apil
Propositior 22).

Example 37.In Examplé T, the elementsiePC(M) are easy to list:
FPCM) :={M, p*,p}.

If we considery = 0, the corresponding decompositionygf reads as fol-
lows:

T4+t 2+ 1+ 2+t = th"—tGth"—t‘GZt‘z".
kezZ k=0 k=0
Example 38. In Example 8 (see also Examplel 20), the set of fixed point
component&PC(M) consists of the following elements:
e the complex 3-dimensional manifold M itself,
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¢ the6 fixed points p, w € X3, corresponding to the vertices of the
highlighted hexagon. The corresponding values of the mbmap,
are as follows:

H123 = 4a + 3B, iz = —a + 36, iz = da + 3,

Ha21 = —3a — 4B, uz31 = =3 + B, Uz = —a — 48

e 9components isomorphic B¥(C), whose images are intervals which
span the 9 lines on the picture below. Each of these compsnent
tains precisely two fixed points; we will use the notatigmpCpy]
for the component containing the fixed poinfgpd @y, andé{uy, tw)
for the corresponding line.

For example, the fixed point componenpss, po13] may be de-
scribed as the set of flags of the form

CvcCedCe c CeCe @ Ces.
The stabilizer group of this submanifold{{s, t, u); t,u e U(1)}.

a(Xo)
({1123, 213 o(xe)

Hi12
{1132, H231)

A\ o

{1123, H132)

{123, U321)

Thus decompositio@3) of the charactery, involves16 formal char-

acters. On each of the alcoves, each of these terms gives oigrzomial
function. Clearly, these polynomials need to add up to O ialanve which
is not in the support of ys. The support offyg, which is the convex hull
of the pointsu(pw), W € X3, is the highlighted hexagon on the diagram.

We will consider two such cases: the alcaN®,) containing the point

Xo = 7Ta + 5B, and the alcove(x;) containing the point x= 11a + 58. We
will express an element € A in the basis of simple rootst = kya + k3.
The multiplicity functiornFy , thus is a function ofky, k), with ki, k, € Z.

We begin with(Xp). In fact, because of the support conditions, only the

following 6 fixed point components contribute:

e C = M contributes the constant function(;, k,) = 3.
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e The term corresponding to € p;23iS

Aprzs = ~€uizs€asp(ap) - Z% Z% Za«%ﬁ)

The Fourier transform of this character restricteddog) N A is the
function f(ky, ko) = —(ko — 4).
e The term corresponding to € C[p123, P132] IS

AC[Plzsaplsz] = CusQat(@p) Z% Z G - Z S(@+p)-

kezZ

The Fourier transform of this character restricted d(x) N A is
fa(ke, k2) = (k1 - 5).
e The term corresponding to € C[p123, P21 IS

AC[Plzs po1d = Cu12s€B++B) Z G - Z &g - Z S(+p)-

kezZ k=0
The Fourier transform of this character restricted d(xg) N A is

fa(ke, ko) = (k2 — 4).
e The term corresponding to € C[p13z, P231] IS

C = ~C€u5&ap) - Z S - Z S - Z S(ap)-

keZ

The Fourier transform of this character restricted to ofx) N A
fs(ke, ko) = —(kz — 1).
e The term corresponding to € C[p123, P321]

—€u1236 - ZeK((Hﬁ)) Z% Ze—

kezZ

The Fourier transform of this character restricteddoA is fg(ky, ko) =
—(ky — ko, — 1).

Now, it remains to observe that the sum of all these coniobstvan-
ishes:

f1+ f2+ f3+ f4+ f5+ f6 = 3—(k2—4)+(kl—5)+(k2—4)—(k2—1)—(k1—k2—1) =0

On the alcove(x,), the calculation is quite similar. One still has the con-
tributions f, f,, fs, fs4, s, f5, and there are 2 additional terms: one coming
from the fixed point @,, and the other from {p13,, p321]. The first contri-
butions restricted to this alcove fk; — ky) — 6, while the second is the same
expression with opposite sign. Thus we h8wontributions adding up to
0.
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4, QJASI-POLYNOMIAL BEHAVIOR OF MULTIPLICITIES

4.1. Decomposition of aG-character. Returning to the setup dfll, we
consider a compact connected Lie grdbipcting compatibly on an almost
complex manifoldv, bundlesS and £ and the connectioN on L.

Let T be the maximal torus d&. Our first goal is to understand what
formula [23) tells us about di(M, & ® LX)®. Let W be the Weyl group
of G, and choose a triangular decompositien= t- ® n* & n~ of the com-
plexification of the Lie algebrgof G. This choice induces a splitting of the
roots ofG into positive and negative oneB:= R*UR~, whereR* is the list
of weights of T onn*; it also provides us with the subskf,» ¢ A of dom-
inant weights, which serve as a fundamental domain oftheaction on
A c t*. Then the irreducible characteys : T — C of G are parametrized
by/l € Adom-

Remark 39. As observed by Atiyah-Bott, the Weyl character formula
S
Xa =
! W;V“G [Toen-(1 - €wo)

is the Atiyah-Bott formula fodim Q(G- 4, £,) associated to the line bundle
L, = G xg, C, on the coadjoint orbit G A.

We consider th&s-equivariant moment maps : M — g* satisfying
equation[(b). Then the map obtained as the composition @f with the
restrictiong” — t*, serves as a moment map for thection.

Now our characteyg, « € R(T) may be expressed in a unique way as a
finite linear combination of irreducible charactgrs 1 € Agom. In partic-
ular, the sought after quantitg)(auk dg = dimQ(M, & ® LX¢ is exactly
the codficient of the trivial character in the decompositionygf, .« as a
linear combination of irreducible characters. To obtaireaplicit formula
for this multiplicity, we observe that the Weyl charactemfwla fory, may
be stated in the following way:

Lemma 40. Introduce the element

we = ]_[(1— e,) € R(T).
aeR~
Then fordy, 1, € Agom, W€ have
1if A4 = Ay,
1) =
Faexa(12) {O otherwise
Applying this to our situation witli = 0, we obtain the formula
dimQ(M, &)° = Fwexe(0).

Now we make the formal observation that multiplyipgby ws amounts to
tensoring& by the trivial super-bundle oveM with fiber An™ = A®*W~ 6
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A%~ endowed with the standard (adjoifaction. This leads to the fol-
lowing formula:

(24) dimQ(M, &® L9° = xeenn-(0).
Now Propositiofi 36 combined with Remarkl 36 (3) implies

Corollary 41. For any integer k, we have

(25)

dimQ(M, E&.LX)° = Z FA, [ac ® LLE® AT ® S*(KCTYe), a(yc)] (0),
CeFPCM)

and those terms for whicj ¢ u(C) vanish.

It turns out that one can significantly strengthen the coonlibnC under
which the corresponding term in_(25) vanishes. get t & g be theT-
invariant decomposition af with q = [t, g]. This induces a decomposition
g" =t" @ q" which, in turn, givesus a mgp : M — ¢* satisfying

pe(m) = p(m) & p, (M).
Now introduce the notation Slicl) = u;1(0). The set Slice{l) is aT-
space, and on Slick{), the mapug coincides withu. Also, note that any
G-orbit in M intersects Slicel).

Theorem 42(Paradan) Lety be generic in*, and Ce FPCM) be a fixed
point component. Then the term

(26) Ay |Ec ® LE® An” @ S*(KCTYe), alye)|
in (25) vanishes unless

vc € u(C n Slice(M)).
Proof. Recall that for a Hermitian vector spakkthe formula

(27) cV):wP VAw-V]iw, VeH, weAH,

defines the Ciford action ofH on the exterior algebra dfl, i.e. a linear
mapH — End(\H). A simple computation shows thefv)? = —||v|? - id,
and hence(v) is an isomorphism whenever# 0.

Now assume that the inverse image(yc) does not intersect Slick() N
C. Then, for anyg € C such thatu(qg) = yc, the component, (q) does
not vanish, and hence the map ¢] ~ [g, c(u.(Q))w] is a T-equivariant
bundle-mapC x A®®*m~ — C x A%~ which is an isomorphism over
u X(yc) N C. Now, using Proposition 52, we can conclude that the terth (26
vanishes. O

4.2. The main result. At this point, we impose the condition of positivity
on our line bundle£. Recall that this means that the curvature of the con-
nectionV on £ is of the form-iQ, where the closed 2-form2 is such that
the quadratic fornV — Qq(V, JV) is positive definite at each poigte M.
Note that this condition, in particular, implies thatis symplectic.

Now we turn to the proof of Theoreh 6, which we repeat here ééerr
ence.
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Theorem 43.Let(M, J) be a compact, connected almost complex manifold,
endowed with the action of a connected compact Lie group & |etr be
a positive G-equivariant line bundle on M. Then

¢ the integer function
k — dimQ(M, £¢

is quasi-polynomial for k= 1, and
e this quasi-polynomial is identically zeroGf¢ ug(M).

Proof. Let y be a regular element af. ForC € FPCM), we retain the
notationyc andYc from Definition[33. Then, according to Theorém 42, we
have

(28) dimQ(M, £4¢ = Z FA| L ® A ® S (KCTYe), alyc)| (0).
C

where{C € FPCM); yc € u(C n Slice(M))}.

First, consider the terms of this sum correspondingGte FPCM) for
which the dfine-linear subspaci: defined in[(15) passes through the ori-
gin: 0 € Ac. Lemmd_26 shows that in this case, the function

k- A, | L@ An™ @ S*(KCTYe), a(yc)| (0)

is a quasi-polynomial function &. Furthermore, if 0= Ac but 0¢ ug(M),
then fory suficiently close to 0, the orthogonal projectiga of y to Ac is
also close to 0, and thyg ¢ u(CnSlice(M)) c ug(M). Hence, according to
Theoreni 4R, the term of (28) corresponding to sGch FPC(M) vanishes.

Now, both assertions of Theordm|43 will follows if we showttHar y
chosen sficiently near O andét > 1, the term on the right hand side 6f (28)
corresponding t&€ € FPCM) with 0 ¢ Ac vanishes.

Indeed, consider a fixed point componén¢ FPCM) for which 0¢ Ac,
i.e. for which the stabilizetc acts nontrivially on the fibers of the line
bundleLc , and lety € t* be a generic element, for which there iga C
satisfyingu. () = 0 andu(q) = yc.

Assume,ad absurdumthat the zero weight occurs with nonzero multi-
plicity in the T-module

AL @ A ® ST (KCT o). alyc)|-

According to Lemma 25, this implies that the representatibc on the
fiber of the bundlef* ® An™ ® S*(KC 1 Yc) at some point ofC contains
the trivial weight. This implies that at every poigte C the Lie algebra
elementY;: € tc annihilates a nonzero vector in the fiber

(29) L@ A @ S (KCTYe))q-

To find a contradiction, we will give a positive lower boundtbe eigen-
values ofYc on this space for an appropriately chosenLet us consider
the eigenvalues ofc on each of the 3 tensor factors:
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e The eigenvalug(L¥) of Y acting onL¥ is equal tok(u(a), Yc) =
k{ye, Yc).

e The eigenvalues ofc on An~ are parametrized by subséts R~ of
the negative roots: we have the expressiom™, 1) = 3 (@, Yc)
for the corresponding eigenvalues.

e Finally, recall from the discussion before Lemma 34 thetsptj
Oc = O U O of the tc-weights of the conormal bundl€C ac-
cording to the sign of their value ovt.. It follows then that all
eigenvalues oY onSIM(KC* @KC, ), are nonnegative, and hence,
according to[(Z2R), all eigenvaluest4f onS*(KC 1 Y¢) are bounded
from below by the eigenvalue &t on AKC*:

(30) YNKC?) = = > (1. o).

nedg

Hence, to prove that; does not annihilate vectors in the vector space
(29), it sufices to show that for some regubae t*,

(31) V(L) + y(AnT, 1) + Y(AKC?) > 0 for everyl c R™.

Denote bysc the projection of the origin onté¢. Naturally, fory near
the origin, the pointyc will be close toBc. Also, for suchy, under the
identification oft with t*, the vectorYc will be close toBc. This implies
that fory near the origin

(32) V(L) = Kiye, Ye) ~ k(B Be) = KlBell > 0.
By the definition ofd, all terms of the sum i (30) are also positive. Thus
our worry is the set of negative terms which could appeg(Aam—, 1): these
correspond tar € R~ for which (a, Yc) < 0. Again, by continuity, for
v in a small neighborhood of the origin, for such a ragtthere are two
possibilities:

e either Bc,a) =0,

e or the three numberg, Yc), (Bc, @), and §c, @) are all negative.

When {3, @) = 0, then fory sufficiently close to the origin i, the sum

V(L + D e Yoy @ e %, (Be,@) = 0)

remains positive.

If (@, Yc), (Bc, @), (yc, @) < 0, theny(Aan~, 1) needs to be neutralized us-
ing the summands of(AKC*) in (3d). To prove that indeedAn~, 1) +
y(AKC*) > 0, it will be suficient to show that all such roots appear as
weights of KC. More precisely, it is sfficient to show, that whenever
a € R and @, a) < 0, thena restricted tac is a weight ofKC.

Proposition 44. Let (M, Q, J) be a positive symplectic G-manifold. Let
g € M be a point such thatg(q) = u(q), i.e. u.(q) = 0. Then the list of
complex weights of the stabilizer groupii T4M with respect to the almost
complex structure J contains the the list of restricted \wisg

(33) [olte; @ € R, (u(9), @) > O].
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Proof. As usual, we use the notatidnX(q) for the tangent vector in M
corresponding tX € g under thes-action onM. Sinceug is G-equivariant,
we have

aq = {X € g; VX(Q) = 0} C gy = {X € g; ad X(u())) = O}

for the stabilizer Lie subalgebras. Thus under the cormedpoceX —
VX(9), the G,q-invariant complemeng.;, of g, in g maps injectively
into TyM. We will look for our weights[(38) among the weights of this
image.

Our first observation is that by contracting the equattg, X)+:(VX)Q =
0 byVZ, and using th&-equivariance ofig, we can identify the symplectic
form on this image. We obtain

(34) Qo(VX VZ) = (uc(a). [X. Z])

for X,Z € g. Sinceug(q) = u(qg), using the structure of reductive Lie
algebras, we can conclude that this antisymmetric fornricésto a non-
degenerate form o¥g,, € TqM.

Let us summarize our situation: we have a real vector spgbé én-
dowed with an action of a toruk,, a T-invariant symplectic forn2 and
a Ty-invariant positive complex structue We have alg-invariant sym-
plectic subspace/g/j(q) c TyM, which is, however, not necessarily in-
variant under the complex structude Finally, we know theT,-weights
of the spaceVg,, ® C: in our case this is the set of restricted weights
{altg; @ € R, (u(q), @) # 0}. Our goal is to find out which of these weights
appear as weights of the complex vector spagdA(D).

The following lemma, which is a simple exercise in linearedin, gives
us the answer:

Lemma 45. Let W be a real vector space on which a torus groypakts,
and assume that W is endowed with an invariant symplectia &5, and
an invariant complex structure,d satisfying

(35) Qw(X, IwX) > 0forall 0+ X e W,

Let @ be a Ty-weight, and let Ze t\ be such thata,Z) # 0. Then the
multiplicity of @ in the complex vector spag®\/, Jy) equals to half of the
number of positive eigenvalues of the quadratic form

X

Q(X,Z-X)on(W, dW_,) N W,
(a,Z)

where W is thea weight-space of V@ C.

This lemma has the following corollaries:

Corollary 46. (1) GivenQy on W, the complex eigenvalues gf With
respect to those complex structurggshtisfying(35) do not depend
on Jy. Thus we can speak of tegmplecticT,y-weightsof W.
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(2) If W c W is a Ty-invariant symplectic subspace, then the symplec-
tic weights of W form a sublist of the list of symplectic weights of
W.

(3) In the special case when the quadratic form—X Q(X,Z - X) is
positive definite, all symplectic weightof W satisfa, Z) > 0.

Now we apply Lemm& 45 and its corollaries to our situatddh= T4M,
W = ngl(q) andTy = T4, and we can conclude that the symplectic weights
of ngl(q) form a subset of the symplectic weights ofM. Now we observe
that the naturaly-action oanj(q) extends to an action afvia the formula
Z - VX = V[Z X], and hence, using this action, we can try to verify the
condition in Corollary 45 (3) for & € t not necessarily ity

Denote byZ, the element of which corresponds t@(q) under our chosen

inner product; thus we have

(a,Zg) = (u(9), @) and{u(q), Y) = (Z3,Y) foraet’, Yet.

The weights of the spaogj(q) ® C then may be listed as the subsgete
R; (@, Zy) # 0}, and hence, according to Corolldryl 46, Proposifion 44 will
follow if we show that the quadratic form

X > Qq(VX Zg- VX)

is positive definite orgjl(q) = 921' This is indeed the case: usingl34), we see
that forX e géq we have

Qq(VX Zg:VX) = (@), [X [Zg, X]]) = (Zo, [X, [Ze, X)) = ([Z X]. [Zg, X]).

This last expression is positive for 8 X ¢ géq and this completes the
proof. m|

This ends our proof of Theorem143. To recapitulate, we haveseh
a genericy € t* near the origin, and considered a fixed point component
C € FPCM) such that 0 Ac; we needed to show that the corresponding
contribution to [(28) vanishes. In view of Theorém 42, we doassume
that there is &) € C satisfyingu,(q) = 0 andu(q) = yc, whereyc is the
projection ofy on to the #ine subspacéc c tc. Using simple estimates
we reduced this vanishing to the inequality](31) on the eigkres of an
elementYc € t on a certain vector space associate€CtoThe first term
on the left hand side of this inequality is positive and bathdway from
zero according td(32). A quick calculation then shows thatdum of the
last two terms is nonnegativefiir|tc € R™; (yc,a) < 0} is a subset of the
tc-weight of KC; this last statement is the content of Propositioh 44.0

5. THE ASYMPTOTIC RESULT IN THE TORUS CASE

The purpose of this last section is to give a proof of a versiofheorem
[Il. This result was also first proved by Meinrenken.
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Theorem 47.Let M be a compact almost complex T manifaltia T-
equivariant line bundle over M, with moment mapLetE = E* @ & be a
super-bundle. If for some € t*, the T-equivariant bundleS* and&™ are
isomorphic onu~(y), then there is a neighborhoddof y and K > 0 such
that Fygsrx(1) = 0for k > K anda € kb N A.

Proof. As Fxes«(1) is an integer, it will be sfiicient to show that there is
a neighborhood of y and a constant such thak|Fygs (1) < C when
k > 1 andA € kb.

We choose a neighborhoadof y such that the vector bundlés and
& are isomorphic over(a) and choos® a compact neighborhood ¢f
contained in.

Let us begin with the Atiyah-Bott fixed point formuld (8);

Su(p)€p
36 Kk = —_—.
( ) X&sL ; H¢e®p(1 _ e¢)

According to our hypothesis that tAieequivariant vector bundl&s" and
&~ are isomorphic op~*(a), we haves, = ep — &, = 0if u(p) € a. Denote
by F’ the set ofp € F such thaj(p) ¢ a. Then we have

~ €u(p) (D) ()
@) TreerW= [ e 2 Moo @

To estimate this integral, we would like to exchange the sation and
the integration in this formula. However, the terms of thensare singular
expressions, and thus we can only estimate the part of ttagral where
the terms of the sum are bounded.

To find this partial estimate, we proceed as follows. Consikde open
set

Treg = {g €T e¢(g) # 1V¢ € (I)p’ pe F,},
of those elementg € T for which the terms of our sum are regular, and for
eachg € Tyg pick a ballUy c t centered at Gt t such that forX € Uy,
we havegexpUg) C Treg. NOw, letpg : T — [0, 1] be an auxiliary smooth
function with compact support amexpU,), and consider the piece

(38) f pa)EA(t)esi(D) dt

of the integral in[(3I7) supported mexpUg). Pulling this integral back to
t via the mapgexp :t — T, we can estimate the absolute value[ofl (38) as
being less or equal than

pg(gexpX)) £p(gexpX))
(39) ;; I@(y(p)—/l/k,m H¢€¢)p(1 _ e'<¢,x>ei¢(g))

Note that we omitted the constant facet(P-11(qg), since it is of absolute
value 1.
Now we recall the following standard estimate from Fouriealysis.

dx|.
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Lemma 48. Let0 # n € t*, and H: t —» C be a smooth compactly
supported function. Then for every positive integer d, tieguality

femn XH(X) dX‘ Ca(H)

N
holds, where one can take

Cyq(H) = max

d
Za?] (HOQ)|;

This constant depends only on a finite number of derivati/és o

Now we return to[(39), and consider expressigp) — A/k in the expo-
nent, fori/k € b. Sinceu(p) is notina, we have the bounig(p) — A/k| >
6 > 0, which depends only on the choice of the relatively compatit C a.
Applying Lemmd. 48 to; = k(u(p) — 1/k), we obtain the following

Corollary 49. For fixed compacb c a, g € Trg and smooth function
pg - T — [0, 1] with compact support in }J the integral(38) goes to zero
faster than any power of k, uniformly ine kb.

5.1. Equivariant forms. In order to bound the rest of the integfall(37), for
eachg € T \ Treq, we will replace the Atiyah-Bott formula by an expression,
which is regular ag. Such formulas were given ih![7]; here we sketch the
setup and the relevant notions. We start with the identigymneint of T:
g=id.

For a manifoldM with aT-action, we define the algebré; (M) of equi-
variant formsas the space of smooth maps t — ['(A*T*M)T, from t to
the set of invariant dierential forms orM. As a matter of notation, we will
write a(X) for the resulting dierential form orM, anda (X, q) for the value
of this differential form ag € M.

The equivariant dferentialD : Ar(M) — Ar(M) is given by the for-
mula

Da(X) = da(X) — VXLa(X);
we haveD? = 0. Accordingly,a € Ar(M) is calledequivariantly closed
if Do = 0. The formulas in[[6] express the integrﬁ]]a :t - Cofan
equivariantly closed forna in terms of local data oM. We follow the
exposition of ([5],chapters 7,8).

Returning to our setup of-manifold M, endowed with a line bundl€
with curvatureR: = —iQ, we observe that we have already encountered
such equivariantly closed forms: indeed, equation (6) neainterpreted as
saying that the expression

(40) Re(X) = RE + Ly — Vyx = i{u, X) —iQ

the equivariant curvatureof the bundleZ, is equivariantly closed. The
equivariant curvature may be constructed for any equinabandleB over
M by choosing & -invariant connectiotV on 8 with curvatureRg. Then,
again, we can definBg(X) = Rg + Lx — Vyx which is a smooth map from
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to theT-invariant sections of the bundle of algebretd*M ® End(®B). We
can then define the equivariant forms

(41)
chg(X) = Trg [expRs(X))].  Todds(X) = dets [1 - e)l?ﬁ((—XF)QB(X))] ’

where the trace and the determinant are taken in Bnd(hese forms are
called, respectively, thequivariant Chern clasand theequivariant Todd
classof the bundleB. Note that the latter is only defined in a neighborhood
of Oet.

Applying this construction to the bundlé&s, &~ and PM, we obtain the
equivariant curvature fornRg:, Rg- andRyy, respectively. Now we make
the crucial observation, that sinée is isomorphic taS~ overu=(a), we
can assume that the corresponding connecfignsandVg- are chosen to
coincide ovep(a), and thus we have

(42) Re+(X,0) = Re-(X. @) if p(q) € a.
Now we are ready to write down the relevant formula from [Bgslso
[5],chapter 8):

Koor(€XPX) = Wlmwz e tehe: ()~ che. (9] Toddhn (4

this equality is valid forX from the neighborhoodiy of 0 € t where
Toddrw(X) is defined.

Writing chg(X) for chg+ (X) — chg-(X) and using[(40), we can rewrite this
expression as

1 o
(43)  xescx(eXpX) = P fM gX)=k che (X) Toddray (X).

Now we are proceeding quite similarly to our analysis of thig@h-Bott
formula above. We choose an auxiliary smooth funcpgn: T — [0, 1]
with compact support in ex[y) and we write

dimM/2 i

. k! .
A dimM/2 : » ok dt = —i) = J
@) @)™ [ pateOrssc@di= | IINREEC

x f p1a(€XP))EH@X ch (X, 6) Toddray (X, 6) dX
t

Now we observe that due tb (42), the factogCh g) vanishes whenever
u(q) € a, and hence we can again assume {h@f) — 1/k| > 6 for some
positive depending orb only. Since bothM and the support gbiy are
compact, we have bounds on the derivatives of the integra@@i), which

are uniform inq. Hence we can apply Lemrhal48 again to conclude that for
eachd, there is a constar@y, independent of), such that the integral over
tin (@4) is bound byC4k=2". Integrating oveM then gives us

Corollary 50. The integral{44) goes to zero faster than any negative power
of k.
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Finally, we extend these arguments tog# T, using the generalization
of the above formula given in [7, Theorem 3.23]. We first idoe the
twisted versions of our characteristic forms:sie T acts trivially onM,
then we can define the twisted Chern character

chg s(X) = Tr[sexpRs(X))] ,
and
Dy = det|1- s exp-Rs(X))],
assacts fiberwise in any -equivariant vector bundle ovéA.
Now letg € T be an arbitrary element, denote M the submanifold
fixed by g (thusg acts trivially onM?) and letNM? be the normal bundle
of M9in M. Then the formula in [7] states that

1 chyi 4(X) che g(X) Toddws (X
(45)  Xesrx(gexpX) = ziﬂdimMg/zf o )Drf;\jg(g(i() ( ).

Starting from here, the arguments are identical to those ave ¢ the
caseg = id, and hence they will be omitted.
We can summarize what we proved as follows.

Lemma 51. For g € T, let Uy be a neighborhood d@ < t such that for
X € Ugq the characteristic classeBoddys(X) and m are defined on
M9. Then for any smooth functigry : T — [0, 1] compactly supported in

gexpWUg), and anyA € kb, the integral

fT pa)e (s (t) it

goes to zero faster than any negative power of k.

Now we can easily finish the proof of the theorem. Indeed, #is s
{gexpWUy)| g € T} form an open cover of the compact toflisWe can thus
pick a finite subse® c T such thatugsgexpUg) = T. Next, we choose a
partition of unity subordinated to this cover, i.e funcsgy : T — [0, 1],

g € S such thafog is compactly supported igexpUg) and 3 gcspg = 1.
Then, fora € kb, we have

[ eiOxses®dt="Y, [ pte Orees®dt
T ges VT
Each term of the sum goes to zerokas> oo uniformly in A, and hence so
does their sum, the expression on the left hand side, whichlgfy s/«
This completes the proof of Theorém| 47.

O

Let us formulate the corollary of Theorém 47 that we used thale the
vanishing of certain quasi-polynomial characters on solemvas. Without
loss of generality we can assume thatthe infinitesimal stabilizer df in
t, is trivial.
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Proposition 52. LetE = E*®& be a super-bundle. Letc t* be an alcove.
If for somey € q, the T-equivariant bundleS* and &~ are isomorphic on
w (), thenA,[E,q] = 0.

Proof. According to Lemma~13 and Propositibn] 22, this follows frdme t
fact that for a compadt c a andk suficiently large

Aekdb =  Fyege(d) =0.

6. LIST OF NOTATIONS

¢ (M, w) — compact symplectic manifold; — vector,£ — line bundle
over M.

e TM —the tangent bundle d¥, J € End(TM) stands for a complex
structure, T and T’ denote theti eigenspaces af.

e T — compact torus group,— its Lie algebraA — weight lattice of
T, G — compact Lie group with maximal tordsand Lie algebra.

e ug : M — gandu : M — t—moment maps.

e ¥n —the Fourier transforymultiplicity function of the formal char-
acternof T.

e O[® T X] — formal character of the partition with a list of weighbs
and oriented by the vectot (cf. (9)).

e 5[® 1T X, 7]—-formal quasi-polynomial character, whose multiplicity
function coincides with that aB[® T X] on the tope/ (cf. Lemma
[13).

o A [E, a] —the asymptotic character associatedtandy (cf. Defi-
nition[17).

e G, Tc, ac, tc, generic stabilizer groups of the sub&eic M, and
their Lie algebras.

e FPC(M) — set of connected components of fixed point setslof

e &c — vector bundle restricted to the submanif@ld
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