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[Q,R] = 0 AND KOSTANT PARTITION FUNCTIONS

A. SZENES AND M. VERGNE

1. The theorem

Let M be a compact manifold endowed with an almost complex struc-
ture J ∈ ΓEnd(TM). We denote by TJM the complex vector bundle of
+i-eigenspaces ofJ acting on TM ⊗ C, and byT̄JM the bundle of−i-
eigenspaces ofJ. Then we have the splitting TM ⊗ C = TJM ⊕ T̄JM. If M
is a complex manifold endowed with an Hermitian metric, thenTJM may
be identified with thecomplex tangent bundle, while T̄JM with thecomplex
cotangent bundleof M. Informally, we will use this terminology even when
M has only an almost complex structure.

To every complex vector bundleE → M over M one can associate an
integer as follows (cf. (2)). Set the notationΩ•J(M,E) = Γ(Λ•(T̄JM)∗ ⊗ E)
for the anti-holomorphic differential forms with values inE, and consider
the twisted Dolbeault-Dirac operator [5]

DE : Ωeven
J (M,E)→ Ωodd

J (M,E).

This is a first-order elliptic differential operator, and its “virtual space of
solutions” is well-defined as a formal difference of two finite-dimensional
vector spaces:

(1) Q(M,E) = Ker(DE) ⊖ Coker(DE).

The dimension of this virtual vector space is defined to be theinteger

(2) dimQ(M,E) = dim Ker(DE) − dim Coker(DE).

This number may be computed by the Atiyah-Singer index formula:

(3) dimQ(M,E) =
∫

M
ch(E) Todd(TJM);

here ch(E) is the Chern character ofE and Todd(TJM) is the Todd class of
M.

Now assume that a compact, connected Lie groupG acts compatibly on
the manifoldM and the bundleE, and preserves the almost complex struc-
tureJ. ThenQ(M,E) becomes a virtual representation ofG, whose charac-
ter we denote byχE.

To make this more explicit, we introduce the following notation for the
Lie data:

• Denote byT the maximal torus ofG, and
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2 A. SZENES AND M. VERGNE

• by g andt the Lie algebras ofG andT, respectively;
• we will identify t∗ with the T-invariant subspace ofg∗ under the

coadjoint action.
• Let Λ stand for the weight lattice ofT thought of as a subspace of
t∗.
• We will use the notationeλ for the characterT → C∗ corresponding

to λ ∈ Λ, and writetλ for the value of this character ont in T. Thus
we haveeλ(t) = tλ for t ∈ T, and alsotλ = ei〈λ,X〉 if X ∈ t and
t = exp(X).
• Denote the set of roots ofG by R; these split into a positive and a

negative part:R = R+ ∪ R−.
• Write dt for the Haar measure onT satisfying

∫

T
dt = 1.

Further, forX ∈ g, we denote byVX the vector field

VX : M → TM, VX : q 7→
d
dt

e−tXq|t=0

on M induced by theG-action.
Atiyah-Bott-Segal-Singer [2, 3, 4] give a fixed point formula for χE(t).

The Fourier transformFχE of χE is then a function with finite support on
Λ; its value

FχE(λ) =
∫

T
e−λ χE dt

is an integer, called themultiplicity of the weightλ in χE. It is then possible
to expressFχE(λ) in terms of partition functions, the first example of such
an expression being Kostant’s formula for the multiplicityof a weightλ in
a finite dimensional representation of a compact Lie group interms of the
number of ways a weight can be expressed as a sum of positive roots.

Our focus will be the calculation of the dimension of theG-invariant part
Q(M,E)G of Q(M,E), obtained by takingG-invariants on the right hand side
of (1):

Q(M,E)G = Ker(DE)
G ⊖ Coker(DE)

G.

According to the Weyl character formula, this integer may beexpressed via
the multiplicities as follows

(4) dimQ(M,E)G =

∫

T

∏

α∈R−

(1− eα) χE dt.

Consider an equivariant line bundleL overM, endowed with aG-invariant
Hermitian structure and an Hermitian connection∇. Then the curvature
∇2 will be equal to−iΩ, whereΩ is a closed real 2-form onM. TheG-
invariant connection∇ determines aG-equivariant map, themoment map
µG : M → g∗ by the formula:

(5) i〈µG,X〉 = LX − ∇VX,

whereLX is the Lie derivative acting on the sections ofL. Observe that if
p ∈ M is a fixed point of theT-action, thenµG(p) is in t∗ ⊂ g∗, moreover,
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µG(p) is exactly theT-weight of the fiberLp. Differentiating (5), we obtain
the key equality

(6) 〈dµG,X〉 + Ω(VX, ·) = 0.

The spaceµ−1
G (0)/G is called thereduced spaceof M with respect toG.

The philosophy ofquantization commutes with reduction(or [Q,R]=0 for
short) is that the virtual spaceQ(M,E ⊗ Lk)G may be identified with the
virtual space of solutions of a Dirac operator associated toa vector bundle
of the formE0⊗L

k
0 on the reduced spaceµ−1

G (0)/G. This idea was introduced
in [10] in the form of a precise conjecture (cf. Theorem 6, andthe discussion
below). If µ−1

G (0)/G is smooth, then, using the conjecture and applying the
Atiyah-Singer formula (3) to the bundleE0 ⊗ L

k
0, we can conclude that

dimQ(M,E ⊗ Lk)G depends polynomially onk. This polynomiality thus is
a key manifestation of the [Q,R]=0 principle, and it will be our main object
of study in this article.

This reduction principle comes from considering the special case when
M is a complex projectiveG-manifold,L is the ample bundle, andE is a
holomorphic vector bundle onM. Then theG-action onM may be extended
to a holomorphic actionGC × M → M of the complexification of the com-
pact Lie groupG, and [Q,R]=0 follows from the fact that (cf. [16]) the orbit
of µ−1

G (0) by this complexified action ofGC is dense inM.
Returning to the almost complex setting, where no complexified action

exists, consider the case whereG = T is abelian. In this case, we will write
µ : M → t∗ for the moment map, omitting the indexT. A special case of
thequantization commutes with reductionprinciple then reads as follows.

Theorem 1. LetE+ andE− be T-equivariant vector bundles over the almost
complex manifold M. LetL be an equivariant line bundle with associated
moment mapµ : M → t∗. Suppose that the bundleE+ is equivalent toE−

overµ−1(0). Then, for k large, the multiplicitiesFχE+⊗Lk(0) andFχE−⊗Lk(0)
are equal.

Following Meinrenken, we give a proof of this theorem in§5 based on the
stationary phase principle applied to the integral formulaof [7] for χE⊗Lk.

Example 2. Let us consider the simplest example: M= P1(C),L is the dual
of the tautological bundle, endowed with an action of the groupSU(2). The
maximal torus T of this group corresponds to the set of diagonal matrices
in SU(2). Then we have the following table:

k . . . −4 −3 −2 −1 0 1 2 3 . . .
dimQ(Lk) . . . −3 −2 −1 0 1 2 3 4 . . .
dimQ(Lk)T . . . −1 0 −1 0 1 0 1 0 . . .
dimQ(Lk)SU(2) . . . 0 0 −1 0 1 0 0 0 . . .

Thus we see that

• dimQ(Lk) = k+ 1; it is thus a polynomial for all k∈ Z.
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• dimQ(Lk)T =























1, if 0 ≤ k is even,

−1, if 0 > k is even,

0, if k odd.
In particular, this is a quasi-polynomial for all k≥ 0.
• dimQ(Lk)SU(2) is, however, only polynomial for k≥ 1. Note that

dimQ(L−k)SU(2) is notpolynomial for k≥ 1.

This example shows, that, in general, dimQ(M,E ⊗ Lk)G is not polyno-
mial for smallk. To make a stronger statement, we setE to be the trivial
line bundle, and introduce a key condition onL as follows.

Definition 3. Given an almost complex manifold(M, J), we say that a line
bundleL over M ispositiveif for an Hermitian structure, and a compatible
connection∇ onL, the corresponding curvature−iΩ satisfies

(7) Ωq(V, JV) > 0 for all 0 , V ∈ TqM

at every point q∈ M.

Note that in this caseΩ is a symplectic form onM.

Remark 4. The data of a positive line bundle is the same as that of a pre-
quantizable symplectic manifold endowed with a Kostant line bundle ([12]);
this latter is a G-equivariant line bundle with first Chern class equal to the
class ofΩ/2π. Indeed, if(M,Ω) is a symplectic manifold, then we can
choose a unique (up to homotopy) positive almost complex structure J, and
then the Kostant property ofL is equivalent to the existence of a G-invariant
connection with property(7).

Definition 5. Let Ξ be a freeZ-module. A function P: Ξ → C is quasi-
polynomial if there exists a sublatticeΞ0 ⊂ Ξ of finite index such that for
everyλ ∈ Ξ the function P restricted toλ+Ξ0 coincides with the restriction
of a polynomial function fromΞ to Ξ0.

In particular, a functionP : Z → C is quasi-polynomial if, for some
nonzerod ∈ Z, the functionl 7→ P(ld + r) is polynomial for everyr ∈ Z.

Now we are ready to formulate the polynomiality statement for which we
give a new proof. As we explain below, this is a corollary of results of [15].

Theorem 6. Let (M, J) be a compact, connected almost complex manifold,
endowed with the action of a connected compact Lie group G, and letL be
a positive G-equivariant line bundle on M. Then

• the integer function

k→ dimQ(M,Lk)G

is quasi-polynomial for k≥ 1, and
• this quasi-polynomial is identically zero if0 < µG(M).

Let us further comment on the relation between this theorem and the
original Guillemin-Sternberg conjecture [10]. One may also consult [19]
and [23] for more details and references.
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Let M be a symplectic manifold equipped with a Kostant line bundleL.
If 0 is a regular value ofµG, then the reduced spaceµ−1

G (0)/G is a symplectic
orbifold equipped with a Kostant line bundleL0. Guillemin-Sternberg for-
mulated the conjecture thatQ(M,L)G may be identified toQ(µ−1

G (0)/G,L0).
Meinrenken, in his first approach to the Guillemin-Sternberg conjecture

[13], determined the asymptotic behavior of dimQ(M,Lk)G for k large,
under the assumption that 0 is a regular value. By a “stationary phase”
method (that we borrowed in part for our proof of Theorem 1), he showed
that dimQ(M,Lk)G is indeed equal to dimQ(µ−1

G (0)/G,Lk
0) for k sufficiently

large, and that the equality holds for allk ≥ 0 if G is abelian. He has thus
shown that the Guillemin-Sternberg conjecture for generalcompact con-
nected Lie groupG is equivalent to the fact that dimQ(M,Lk)G is quasi-
polynomial ink for k ≥ 1.

Meinrenken-Sjamaar in [15] formulated the Guillemin-Sternberg conjec-
ture for the case when 0 is not necessarily a regular value of the moment
map, and, using techniques of symplectic cutting, proved this more general
statement. There is also an analytic proof of this generalized Guillemin-
Sternberg conjecture by Tian and Zhang [21], and another proof by Paradan
[17] using transversally elliptic operators. Theorem 6 is aconsequence of
this statement.

In the present paper, we prove that dimQ(M,Lk)G is quasi-polynomial
in k for k ≥ 1 directly, without making the assumption that 0 is a regular
value of the moment map. However, we will not pursue here the task of
identifying geometrically the quasi-polynomial dimQ(M,Lk)G.

Our main purpose is to show that this result may be obtained from the
Atiyah-Bott fixed point formula forχLk, using Theorem 1 as the only ana-
lytic input. The rest of the argument is based on combinatorial manipula-
tions of Kostant partition functions and some simple geometric arguments
“localizing positivity”. The ideas underlying our paper originated in the
works of Paradan [17, 18].

The paper is structured as follows: in§2 we describe the calculus of the
expansions of the terms of the Atiyah-Bott fixed point formula forχE⊗Lk us-
ing partition functions (Corollary 10), and then introducea quasi-polynomial
character∆µ[E, a] encoding the asymptotic behavior of this expansion. We
begin§3 by Paradan’s combinatorial formula decomposing a partition func-
tion in terms of convolution products of partitions functions in lower dimen-
sions, then we apply this formula to our geometric setup (Proposition 35),
which results in a decomposition ofχE in terms of certain characters of the
type∆µ enumerated by fixed-point sets of subtori ofT. This combinatorial
decomposition is analogous at the level of characters to thestratification
of the manifoldM using the Morse function‖µ‖2 used by Witten [24] to
compute intersection numbers on reduced spaces. We finish the proof of
Theorem 6 in§4, by studying the terms of this expansion. The crucial part
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of the argument is a “localization of positivity” result: Proposition 44. Fi-
nally, we give a quick proof of Theorem 1 in§5. A list of notations given
in §6 helps the reader to navigate the paper.

2. Fixed point formula and a formal character.

2.1. The Fixed Point Formula. As in the previous section, let us start with
a connected, compact, almost complexT-manifold M, and a pair (E,L),
consisting of a complex equivariant vector bundle and a linebundle onM.
In this section, we embark on the study of the charactersχE andχE⊗Lk. Our
starting point is the Atiyah-Bott fixed point formula [2]. Tosimplify our
situation, we assume that the setF of T-fixed points inM is finite. Let us
introduce some notation for the fixed point data.

We will use the termlist for set with multiplicities. A listΦ thus consists
of a set{Φ}, and a multiplicity functionmΦ : {Φ} → Z>0. We will write

• ψ ∈ Φ if ψ ∈ {Φ};
• if ψ ∈ Φ andmΦ(ψ) > 1, thenΦ − {ψ} will denote the listΦ with

the multiplicity ofψ decreased by 1; ifmΦ(ψ) = 1, thenΦ− {ψ} will
denote the listΦ with ψ removed;
• for a listΦ and a setS, we will write Φ ∩ S for the list with un-

derlying set{Φ} ∩ S and multiplicity function coinciding with that
of Φ on this set; we will writeΦ \ S for the list with underlying set
{Φ} \ S and multiplicity function coinciding with that ofΦ on this
set;
• the product

∏

ψ∈Φ ψ will stand for the product
∏

ψ∈{Φ} ψ
mΦ(ψ).

For example, for each fixed pointp ∈ F, the weights of theT-action on
Ep form a list, which we will denote byΨp. Let εp be the functionT → C
obtained by taking the trace of theT-action on the fiberEp. Thus we have
εp =

∑

η∈Ψp
eη. Similarly, we denote byΦp the list of T-weights of the

complex vector spacēTJ
pM.

Without loss of generality, we can make the additional simplifying as-
sumption that the generic stabilizer of theT-action onM is finite; this is
equivalent to the condition thatΦp spanst∗ for all p ∈ F. With these prepa-
rations we can state the Atiyah-Bott fixed point formula for our case: it is
an equality between two functions defined on an open and densesubset of
T.

(8) χE =
∑

p∈F

εp
∏

φ∈Φp
(1− eφ)

.

Indeed, the right hand side is meaningful on the set

{t ∈ T | tφ , 1 ∀p ∈ F andφ ∈ Φp},

while the left hand side is regular onT. Let us see a few simple examples.

Example 7. Let M = P1(C) with the action ofU(1) given by t·(x : y) = (tx :
t−1y), and letE = Lk be the kth tensor power of the dual of the tautological
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line bundle. There are2 fixed points p+ = (1 : 0) and p− = (0 : 1), and we
have

χE(t) =
tk

(1− t−2)
+

t−k

(1− t2)
=

k
∑

j=0

tk−2 j .

The graph of the functionFχE is pictured below for k= 4.

−4 −3 −2 −1 0 1 2 3 4

1

Example 8. Let M be the flag variety ofC3 endowed with the action of
the groupU(3). The subgroup T= {(t1, t2, t3); t1, t2, t3 ∈ U(1)} ⊂ U(3) of
diagonal matrices serves as the maximal torus in this case, and the weight
lattice has a canonical diagonal bases:Λ = Zθ1 + Zθ2 + Zθ3. Then the
coordinate flag{Ce1 ⊂ Ce1 ⊕ Ce2 ⊂ Ce1 ⊕ Ce2 ⊕ Ce3} is invariant under T,
and the rest of the fixed points in MT may be obtained by applying to this
flag the elements of the permutations groupΣ3 in a natural manner. We will
use the notation w∈ Σ3 7→ pw ∈ MT for this correspondence; in particular,
the coordinate flag will be denoted by p123.

Consider the line bundleL induced from the character t4
1t
−1
2 t3

3 of T. Then

χLk =
∑

w∈Σ3

w ∗
t4k
1 t−k

2 t3k
3

(1− t2/t1)(1− t3/t2)(1− t3/t1)
,

where, again, w∗ stands for the natural action ofΣ3 on the indices.
The functionFχLk (for k = 1) is depicted below on the root lattice gener-

ated by the simple rootsα = θ1 − θ2 andβ = θ2 − θ3. The weightµ123 of the
bundleL at p123 is 4α + 3β.

= 3

= 2

= 1

µ123

αβ



8 A. SZENES AND M. VERGNE

2.2. The partition function. Recall thatχE is determined by its Fourier
coefficientsFχE : Λ → Z, and that this latter function has finite support in
Λ. Our immediate goal is to write down (8) as an equality of two functions
in the Fourier dual space{Λ→ Z}.

Before we proceed, we need to introduce a few basic notions.

• We denote byR(T) the set of finite integral linear combinations of
the characterseλ, λ ∈ Λ, and
• by R̂(T) the space of formal, possibly infinite, integral linear com-

binations of these characters. Thus the elements ofR̂(T) are in
one-to-one correspondence with the functionsm(λ) : Λ → Z via
θ :=

∑

λ∈Λm(λ)eλ ∈ R̂(T). We will write Fθ for the functionm
in this case. Conversely, given a functionm, we will call the cor-
responding seriesθ its character. If we extend the weightsλ ∈ Λ
to linear functions ontC, then we can also think of the elements of
R̂(T) as formal series of holomorphic exponential functions ontC.
• Informally, we will callδ ∈ R̂(T) aquasi-polynomial characterif its

Fourier transformFδ : Λ → C is quasi-polynomial (cf. Definition
5).

Observe that̂R(T) is a module overR(T) and the set of quasi-polynomial
characters forms a linear subspace inR̂(T) which is stable under multipli-
cation byR(T). In addition, elements of̂R(T) whose Fourier transforms are
supported on a fixed acute cone may be multiplied.

With these preparations, we are ready to introduce the basicbuilding
block of our constructions. LetΦ be a list of nonzero elements ofΛ. We
will call X ∈ t polarizingfor Φ if 〈φ,X〉 , 0 for everyφ ∈ Φ. For nonempty
Φ and polarizingX, define the partitionΦ = Φ+ ∪ Φ− of Φ into

Φ+ = {φ ∈ Φ | 〈φ,X〉 > 0} and Φ− = {φ ∈ Φ | 〈φ,X〉 < 0},

and introduce the formal character

(9) Θ[Φ↑X] = (−1)|Φ− |
∏

φ∈Φ−

e−φ ×
∏

φ∈Φ−

∞
∑

k=0

e−kφ ×
∏

φ∈Φ+

∞
∑

k=0

ekφ.

It is easy to verify that the products in this formula are meaningful, and
hence the seriesΘ[Φ ↑ X] defines an element of̂R(T). We also setΘ[∅ ↑
X] = 1 for anyX ∈ t.

We record a few basic properties ofΘ[Φ↑X].

Lemma 9. (1) Θ[Φ↑X] satisfies
∏

φ∈Φ(1− eφ)Θ[Φ↑X] = 1.
(2) Considered as a series of holomorphic functions of the form eiλ with

λ ∈ Λ, the series(9) converges absolutely in a neighborhood of
iX ∈ tC.

(3) FΘ[Φ ↑ X] is supported in the pointed cone generated int∗ by the
setΦ+ ∪ (−Φ−).

Note that if two formal characters in̂R(T) absolutely converge, and co-
incide on an open set oftC, then they also coincide as elements ofR̂(T). In
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particular, it follows from Lemma 9 that in their domain of convergence the
formal charactersΘ[Φ↑X] are equal to the function

∏

φ∈Φ(1− eφ)−1 for any
X.

This allows us to rewrite (8) as follows:

Corollary 10. We have the following equality in̂R(T):

(10) χE =
∑

p∈F

εpΘ[Φp↑X].

Remark 11. The functionFΘ[Φ ↑ X] : Λ → Z, traditionally, has been
called thepartition function, since, assumingΦ = Φ+, its value atµ equals
the number of ways one can writeµ as a nonnegative integral linear combi-
nations of vectors fromΦ. In particular, the equality(10)applied to Weyl’s
formula for the characters leads to Kostants’s formula for the multiplicity
of a weight in an irreducible representation of a reductive Lie group.

A key fact is that the Fourier transformFΘ[Φ↑X], as a function onΛ, is
piecewise quasi-polynomial. Let us explain this in more detail:

Definition 12. Given a listΦ spanningt∗, we will call an elementγ ∈ t∗

Φ-regularif it is not the linear combination of fewer thandim(t) elements
ofΦ.

The set ofΦ-regular elements form the complement of a hyperplane ar-
rangement int∗, and we will use the termΦ-topefor the connected compo-
nents of this set. It will be convenient to use the notationT (γ) for the tope
containing theΦ-regular elementγ. Note that topes are open convex cones,
which are invariant under rescaling.

Lemma 13. GivenΦ and X as above, and aΦ-topeT , there exists a quasi-
polynomial characterδ[Φ ↑ X,T ] such thatFΘ[Φ ↑ X] coincides with
Fδ[Φ↑X,T ] onΛ ∩ T .

This lemma is proved in [9] (see also [8]).

Example 14. Let t∗ = Rα, Λ = Zα, Φ = [α] and let X∈ t to be the vector
satisfying〈α,X〉 = 1. Then

Θ[Φ↑X] =
∞
∑

k=0

ekα.

ThenT := {tα, t > 0} is a tope andδ[Φ ↑X,T ] =
∑

k∈Z ekα. The character
δ[Φ ↑ X,T ] is quasi-polynomial as the multiplicityFδ[Φ ↑ X,T ] is the
constant function1 onZα.

2.3. The asymptotics of the character.Now we return to our geometric
setup. We continue to assume that the torusT acts on the compact al-
most complex manifoldM with a finite set of fixed points. Also, recall our
notationµ : M → t∗ for the moment map associated to the HermitianT-
equivariant line bundleL as in§1, and the fact that forp ∈ F, µ(p) is the
weight of theT-action on the fiberLp.
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Definition 15. For p ∈ F, and a subset S⊂ t∗ denote by Sp the shifted
subset S− µ(p). In particular, we haveγp = γ − µ(p) for γ ∈ t∗.

The moment mapµ gives rise to a real affine hyperplane arrangement
whose complement is the open set

(11)
⋂

p∈F

{

γ ∈ t∗| γp isΦp-regular
}

⊂ t∗.

We will use the termalcovefor the connected components of the set (11).
The alcoves are thus minimal nonempty intersections of the translated poly-
hedral conesT + µ(p), wherep ∈ F, andT is a tope ofΦp. Just as in the
case of topes, we will use the notationa(C) for the alcove containing the
connected subsetC of the set (11).

Remark 16. If L is a positive line bundle as in Definition 3, thenµ(M) is
the convex hull of the pointsµ(p), where p∈ F, and the set (11) is contained
in the set of regular values ofµ.

Next, we define a quasi-polynomial character by formally replacing the
generating function for the partition functionΘ[Φp ↑ X] in (10) by appro-
priately chosen corresponding quasi-polynomialsδ[Φp↑X,T ] (cf. Lemma
13).

Definition 17. Given a T-equivariant vector bundleE over M, and an al-
covea ⊂ t∗, we define the formal character

(12) ∆µ[E, a] =
∑

p∈F

εp · δ[Φp↑X,T (ap)],

whereap = a − µ(p).

Remark 18. Note that we omitted the dependence on X in the notation (cf.
Corollary 23).

This character acquires a geometric meaning for the sequence of bundles
E ⊗ Lk, k = 1, 2, . . . (cf. Lemma 21 and Proposition 22).

The relation of the character∆µ[E, a] to symplectic reduction may be
described as follows. In the case when the moment mapµ : M → t∗ is
associated to a positive line bundle (and henceΩ is a nondegenerate 2-
form), any elementγ in an alcovea is a regular value ofµ, and the torusT
acts with finite stabilizers onµ−1(γ). Then the setµ−1(γ)/T is an orbifold,
which does not change ifγ remains ina, and thus we can denote it byMa.
The bundleE descends to an orbifold bundleEa on Ma, and each character
λ allows us to twistEa by the associated line bundleLλ = µ−1(γ)×T Cλ over
Ma. We then consider the integer dim(Q(Ma,Ea ⊗ Lλ)), which, according
to the Atiyah-Singer index formula, is a polynomial function of λ if Ma is
smooth. In the general case, whenMa is an orbifold, the index formula for
orbifolds ([1], see also [22]) implies that the functionλ→ dim(Q(Ma,Ea ⊗
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Lλ)) is a quasi-polynomial. In this setup, the character∆µ[E, a] appears as
the generating function of this quasi-polynomial:

∆µ[E, a] =
∑

λ

dimQ(M,E ⊗ Lλ) eλ.

We will not use this interpretation in what follows.

Example 19. We return to Example 7, withµ is associated to the dual of
the tautological bundle over P1(C). Then there are3 alcoves

a1 :=] −∞,−1[; a2 :=] − 1, 1[; a3 :=]1,∞[

For E the trivial bundle, we have

∆µ[E, a1] = 0; ∆µ[E, a2](n) = 1; ∆µ[E, a3] = 0.

Example 20. We return to Example 8, withµ associated to the line bun-
dle L. The straight lines cut the plane into alcoves. The support of the
multiplicity functionFχL is the highlighted hexagon.

Since∆µ[E, a] is a linear combination of quasi-polynomial characters, it
is itself quasi-polynomial. The following extension of this fact holds.

Lemma 21. The function(λ, k) 7→ F∆µ[E ⊗ Lk, a](λ) is quasi-polynomial
on the latticeΛ × Z.

Proof. Indeed, we have

∆µ[E ⊗ L
k, a] =

∑

p∈F

εpekµ(p)δ[Φp↑X, ap].

The statement now follows from the fact that for a formal characterθ ∈
R̂(T), andλ, ν ∈ Λ, we haveFekµθ(λ) = Fθ(λ − kµ). �
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For smallk, in particular fork = 0, ∆µ[E ⊗ Lk, a] does not have any
direct relationship withχE⊗Lk. Sinceεp for p ∈ F is the trace of a finite-
dimensional representation, its multiplicity functionFεp, p ∈ F has finite
support inΛ. For largek, we have the following statement.

Proposition 22. Let b be a compact subset of an alcovea. Then there exist
a positive integer K such that for every k> K andλ ∈ kb ∩ Λ, the equality

(13) F∆µ[E ⊗ L
k, a](λ) = FχE⊗Lk(λ)

holds.

Proof. Recall the notationΨp introduced for the list of weights ofEp at
p ∈ F. According to (10), we have

FχE⊗Lk(λ) =
∑

p∈F

∑

η∈Ψp

FΘ[Φp↑X](λ − η − kµ(p)),

while, by Lemma 21,

F∆µ[E ⊗ L
k, a](λ) =

∑

p∈F

∑

η∈Ψp

Fδ[Φp↑X,T (ap)](λ − η − kµ(p)).

Hence, by the definition of the quasi-polynomial characterδ given in Lemma
13, these two expressions coincide as long as for eachp ∈ F andη ∈ Ψp,
we haveλ − η − kµ(p) ∈ T (ap). Since topes are invariant under rescaling,
andap = a − µ(p), we can conclude that (13) holds if

(14)
λ

k
−
η

k
∈ a for eachη ∈ ∪p∈FΨp.

As the set∪p∈FΨp is finite, for large enoughk, we will haveb − η/k ∈ a
for everyη from this set. Hence (14) holds for large enoughk, uniformly in
λ ∈ kb ∩ Λ. This completes the proof. �

Corollary 23. The quasi-polynomial character∆µ[E, a] does not depend on
the choice of the polarizing vector X.

Indeed, assume that the subsetb ⊂ a in Proposition 22 contains an open
setU, and observe that the set of pairs (ξ, t) satisfying the conditiont >
K, ξ ∈ tb with K as in Proposition 22 contains a translate of the open cone
{(rγ, r)| r > 0, γ ∈ U} ⊂ t∗ × R. According to Lemma 21,F∆µ[E, a] is
quasi-polynomial onΛ×Z, and hence the right hand side of (13) completely
determines the left hand side. SinceFχE⊗Lk does not depend onX, we can
conclude that neither doesF∆µ[E, a].

In what follows, we will need the extension of the definition of ∆µ[E, a]
to the case when the generic stabilizer of theT action is not finite.

Definition 24. Suppose the Lie group G with Lie algebrag acts on a mani-
fold M. Then for a subset C⊂ M we denote by

gC = {X ∈ g; VX vanishes on C}
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the stabilizer subalgebra ofg, and by GC the connected subgroup of G with
Lie algebragC.

In particular,TM is theconnected componentof the generic stabilizer of
M containing the identity element, andtM ⊂ t is the Lie algebra ofTM.
Then for everyp ∈ F, the weightsΦp span the annihilatort⊥M ⊂ t

∗.
Clearly, the groupTM acts on each of the fibersEq, q ∈ M, and since

M is connected, this representation does not depend onq. In particular, for
two fixed pointsp andq in F, the weightsµ(p) andµ(q) of T differ by an
element oft⊥M. Thus the affine-linear subspace

(15) AM = µ(p) + t⊥M
of t∗ does not depend onp ∈ F. Note that according to equation (6), the
imageµ(M) is contained inAM.

Now we can repeat the definitions (11) and (12) witht∗ replaced byt⊥M.
More precisely, we consider the open set inAM consisting of those elements
γ for whichγp ∈ t⊥M isΦp-regular for anyp ∈ F. An alcovea is a connected
component of this open set. For an alcovea, we denote byT (ap) theΦp-
tope int⊥M containingap. The formal character∆µ[E, a] may be defined by
equation (12). The multiplicity functionF∆µ[E, a] is then supported on a
finite number of translates (by vectors from the set∪p∈F{Ψp}) of t⊥M∩Λ, and
it is quasi-polynomial on each translate.

Denote byCλ the trivial line bundle overM endowed with the actioneλ
of T. As an immediate consequence of the decomposition

(16) E =
⊕

λ∈Λ/Λ∩t⊥M

Cλ ⊗ (E ⊗ C−λ)
TM ,

one has the explicit formula

(17) ∆µ[E, a] =
∑

λ∈Λ/Λ∩t⊥M

eλ∆µ[(E ⊗ C−λ)
TM , a],

where the sum is understood as taken over any system of representatives
of the quotient. Note that this formula expresses the formalT-character
∆µ[E, a] through quasi-polynomial characters for the torusT′ = T/TM,
which acts onM with generic finite stabilizer.

We have the following simple corollary of (17):

Lemma 25. If for someλ ∈ Λ, the multiplicityF∆µ[E, a](λ) is not zero,
then the restriction ofλ to tM is a weight of the representation of TM on a
fiber ofE.

We end this section with a comment on the situation, where theaffine
spaceAM given by equation (15) is linear, i.e. passes through the origin.
This is equivalent to the condition thatTM acts trivially on the fibers ofL,
i.e.L is aT/TM-line bundle.

Lemma 26. LetE be a T-bundle, andL be a T/TM-line bundle on M. Then
k 7→ F∆µ[E ⊗ Lk, a](0) is a quasi-polynomial function of k.
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Proof. Applying (17) to the bundleE ⊗ Lk, and using the condition onL,
we obtain the equality

∆µ[E ⊗ L
k, a](0) = ∆µ[E

TM ⊗ Lk, a](0).

SinceETM is aT/TM-equivariant vector bundle, we can replaceT by T/TM.
According to Lemma 21,F∆µ[ETM⊗Lk, a](λ) is quasi-polynomial in (λ, k) ∈
(t⊥M ∩Λ)×Z, and henceF∆µ[ETM ⊗Lk, a](0) is a quasi-polynomial function
of k. �

3. Decomposition of partition functions

3.1. The decomposition formula. In this section, we prove a decomposi-
tion formula for the generating functionΘ[Φ ↑ X] of the partition function
introduced in (9). This formula is due to Paradan [18], and itwill serve as
the combinatorial engine of our proof of Theorem 6.

Definition 27. Given a listΦ of weights inΛ ⊂ t∗, introduce the set of
Φ-rational subspaces

RS(Φ) = {S ⊂ t∗ linear; Φ ∩ S spans S}.

This is the set of linear subspaces oft∗ spanned by some subset ofΦ:

Remark 28. 1. Note that{0} ∈ RS(Φ), andt∗ ∈ RS(Φ) if Φ spanst∗.
2. Comparing this definition to Definition 12, we see that all subspaces
S ∈ RS(Φ), except for S= t∗, consist of nonregular elements.

Now, fix a positive definite scalar product (·, ·) on t∗, and denote by
γ 7→ γ∗ the induced linear bijection betweent∗ and t. For each rational
subspaceS ∈ RS(Φ) andγ ∈ t∗, introduce the notationγS for the orthog-
onal projection ofγ onto S, andYS,γ for the vector (γS − γ)∗ ∈ t (see the
diagram below).

0

γ

SγS

YS,γ

Finally, recall from Lemma 13 that, on aΦ-topeT , the partition function
FΘ[Φ ↑ X] coincides with a quasi-polynomialFδ[Φ ↑ X,T ] : Λ → Z. It
is thus natural to compare the two functions at all points ofΛ. As we will
see, the difference may be expressed as a sum of (convolution) products of
partition functions and quasi-polynomials coming from lower-dimensional
systems.
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Proposition 29. (Paradan) LetΦ be a list of vectors inΛ, and let X be a
polarizing vector forΦ (see the definition ofΘ in (9)). Assume thatγ ∈ t∗

is such that for every S∈ RS(Φ), the projectionγS ∈ S is(Φ ∩ S)-regular,
while the orthogonal component YS,γ is polarizing forΦ\S . Then

(18) Θ[Φ↑X] =
∑

S∈RS(Φ)

Θ[Φ\S↑YS,γ] · δ[Φ ∩ S↑X,T (γS)].

Observe that if−γ is in the dual cone to the cone generated byΦ+∪−Φ−,
then all the terms but the one corresponding toS = {0} vanish, and hence,
in this case, the identity (18) is tautological.

Example 30. Let t∗ = Rα, Λ = Zα, Φ := [α] and set X∈ t to be the vector
satisfying〈α,X〉 = 1. Then

Θ[Φ↑X] =
∞
∑

k=0

ekα.

The setRS(Φ) has two elements: S= {0} and S= t∗.
If we letγ = tα for some t> 0, then on the right hand side of(18) we

have

• δ[Φ↑X,T (γS)] =
∑

k∈Z ekα for S = t∗, and
• Θ[Φ↑YS,γ] = −

∑

k>0 e−kα, for S = {0}.

Then formula(18) reads:

Θ[Φ↑X] = δ[Φ↑X,T (γS)] + Θ[Φ↑YS,γ].

Proof of Proposition 29.Replacingγ by its orthogonal projection on the
subspace generated byΦ, we may assume thatV is spanned byΦ.

Observe that for each term on the right hand side of (18), the Fourier
transform restricted to a tope ofΦ is quasi-polynomial. We show that the
Fourier transforms of the two sides of (18) coincide.

We start by showing that the Fourier coefficients of the two sides coincide
on the topeT (γ). The term corresponding toS = t∗ is δ[Φ ↑ X,T (γ)],
whose Fourier coefficients coincide with those ofΘ[Φ ↑ X] on the tope
T (γ). For anyS ∈ RS(Φ) different fromt∗, by construction, the Fourier
transform of the corresponding termΘ[Φ\S ↑ YS,γ] · δ[Φ ∩ S ↑ X,T (γS)]
is a function onΛ supported on the subset{λ; 〈λ,YS,γ〉 ≥ 0} (cf. Lemma
9). Since〈γ,YS,γ〉 = −|γS − γ|

2 < 0, we see that this function vanishes on
a conic neighborhood of the half lineR+γ. This implies that the Fourier
coefficients of all these terms vanish on all ofT (γ), and thus indeed, the
Fourier coefficients of the two sides of (18) coincide onT (γ).

To extend the equality of Fourier coefficients to the rest ofΛ, we use
induction on the number of elements inΦ. If Φ is empty, then both sides are
equal to 1. Now pick an elementφ ∈ Φ, and considerΦ′ = Φ − {φ} (cf. the
beginning of§2 for our conventions). Clearly (1−eφ)·Θ[Φ↑X] = Θ[Φ′ ↑X].
If we restrict the Fourier transform of this equation to a topeT , we obtain

(1− eφ) δ[Φ↑X,T )] = δ[Φ′ ↑X,T ′]
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if Φ′ generatesV andT ′ is the tope ofΦ containingT , while

(1− eφ) δ[Φ↑X,T )] = 0

if Φ′ does not generateV.
We multiply both sides of (18) by (1− eφ), and compare the results. On

the left hand side, we end up withΘ[Φ′ ↑X]. For a term on the right hand
side corresponding toS ∈ RS(Φ), we separate 3 cases:

1. φ < S: In this case,S ∈ RS(Φ′), Φ ∩ S = Φ′ ∩ S and

(1− eφ) · Θ[Φ\S↑YS,γ] = Θ[Φ′\S↑YS,γ].

Thus, after multiplication by (1− eφ), we end up with the term

(19) Θ[Φ′\S↑YS,γ] · δ[Φ
′ ∩ S↑X,T (γS)].

2. φ ∈ S, and S ∈ RS(Φ′): In this caseΦ\S = Φ′\S while (Φ ∩S) −
{φ} = Φ′ ∩ S, which implies that

(1− eφ) δ[Φ ∩ S↑X,T (γS)] = δ[Φ′ ∩ S↑X,T ′(γS)].

Thus we end up with the term (19) again.
3. φ ∈ S, and S < RS(Φ′): In this case,

(1− eφ) δ[Φ ∩ S↑X,T (γS)] = 0.

Thus multiplying the right hand side of (18) by (1− eφ) has the effect of
replacingΦ by Φ′. Using the inductive assumption, we can conclude that
after multiplying both sides of (18) by (1− eφ) for anyφ ∈ Φ, we obtain
an identity. AsΦ spanst∗, this implies that the Fourier coefficients of the
difference of the two sides of (18) form a periodic function with respect
to the sublattice of finite index inΛ generated byΦ. Since we also know
that these coefficients vanish onT (γ), they must vanish on all ofΛ. This
completes the proof. �

3.2. Paradan’s decomposition of a character.In this paragraph, we sub-
stitute the decomposition (18) into formula (10), and then find a geometric
interpretation of the resulting expression.

Note that while performing this substitution, we have the freedom of
varying the vectorγ in (18) depending on the fixed pointp. We take advan-
tage of this possibility, by shiftingγ by µ(p) for p ∈ F, and thus replacing
γ by the vectorγp = γ − µ(p).

With this choice, we obtain

(20) χE =
∑

p∈F

∑

S∈RS(Φp)

εp · Θ[Φp\S↑YS,γp] · δ[Φp ∩ S↑X,T (γp
S)].

Now we turn to the geometric meaning of this sum. Recall that eachX ∈ t
defines a vector fieldVX on M; this vector field vanishes on the fixed point
setF.
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Definition 31. For p ∈ F and S∈ RS(Φp), denote by C(p,S) the connected
component of the set

MS⊥ = {m ∈ M|VX(m) = 0 for every X∈ S⊥}

which contains p. LetFPC(M) stand for the set of all connectedfixed point
componentsC(p,S) obtained this way:

FPC(M) = {C(p,S)| p ∈ F, S ∈ RS(Φp)}.

Observe that the setMS⊥ is also the fixed point set of the subtorus ofT
with Lie algebraS⊥.

Lemma 32. For p ∈ F and S ∈ RS(Φp), consider C(p,S) ∈ FPC(M).
Then

(1) the set C(p,S) is a smooth, T-invariant submanifold of M,
(2) the Lie algebra of the generic stabilizertC(p,S) of C(p,S) in t is ex-

actly S⊥, and
(3) for q ∈ C(p,S) ∩ F, we have S∈ RS(Φq) and C(q,S) = C(p,S).

Proof. Recall the basic fact that a torus action on a manifold can be lin-
earized near a fixed point. It is sufficient then to verify these statements in
a linear model. LetV be a vector space with a linearT-action, with a list
of weightsΨ, and letS ∈ RS(Ψ). Then the set of points stabilized by the
torus exp(S⊥) is the direct sum of all eigenspaces ofV whose weight is in
S. This easily implies all three statements.

�

It follows then that there is a one-to-one correspondence

{(p,S)| p ∈ F, S ∈ RS(Φp)} ↔ {(p,C)|C ∈ FPC(M), p ∈ C ∩ F},

and hence we can regroup the terms of the sum in (20) accordingto the fixed
point componentC to which it corresponds. To write down the resulting
formula, we need to introduce new notation for the vectorsγS andYS,γ in
terms of the componentC.

The manifoldC inherits aT-invariant almost complex structure, and the
set of weights of the fiber of the complex vector bundleT̄JC at p ∈ C ∩ F
isΦp ∩ t

⊥
C. Consider theT-equivariant line bundleLC onC obtained as the

restriction ofL to C, and recall from (15) the definition of the affine space
AC.

Using our scalar product, we decomposet∗ = tC ⊕ t⊥C. If p andq ∈ C∩F,
thenµ(p) − µ(q) belongs tot⊥C, thus the projection (µ(p) − γ)t(C) of µ(p) − γ
to t(C) does not depend onp ∈ C ∩ F. This is the polarizing vector in any
term of the sum in (20) associated to the componentC.

Using this observation, we introduce the following notations.

Definition 33. From now on, we will writeγC for the orthogonal projection
of γ on the affine space AC. We introduce the notation

YC
def
= (µ(p) − γ)t(C) = γC − γ
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for the polarizing vector int(C), omitting the dependence onγ.

µ(q)
µ(p)

γ

ACγC

YC

0

Regrouping the terms of (20), and using these notations, we obtain the
formula

(21) χE =
∑

C∈FPC(M)

∑

p∈C∩F

εp · Θ[Φp\t
⊥
C ↑YC] · δ[Φp ∩ t

⊥
C ↑X,T (γC − µ(p))].

Recall thata(γC) stands for the alcove containingγC. We claim that the
term

∆C :=
∑

p∈C∩F

εp · Θ[Φp\t
⊥
C ↑YC] · δ[Φp ∩ t

⊥
C ↑X,T (γC − µ(p))]

has the form∆µ[ẼC, a(γC)] for an infinite-dimensional bundlẽEC over C,
whose fiber at the fixed pointp has characterεp · Θ[Φp\t

⊥
C ↑YC].

This bundle may be constructed as follows. The bundleKC = T̄JM/T̄JC
is a T-equivariant complex bundle onC, whoseTC-weights are constant
alongC; denote the set of theseTC-weights byΦC. These weights thus may
be obtained by restrictingΦp\ t

⊥
C to tC for any p ∈ C ∩ F. Now, we can

splitΦC into the disjoint unionΦ+C ∪ Φ
−
C according to the sign of the value

of the weights on the polarizing vectorYC ∈ tC, and we obtain a direct sum
decomposition ofKC in KC = KC+ ⊕ KC−, whereKC+ andKC− are the
subspaces generated by eigenvectors ofTC with weights fromΦ+C andΦ−C,
respectively.

Then, recalling the definition of the formal characterΘ from (9), we ob-
tain the following statement.

Lemma 34. Define the infinite-dimensional T-equivariant virtual bundle

(22) S•(KC↑YC) = (−1)rankKC− det(KC∗−) ⊗
∞
⊕

m=0

S[m](KC∗− ⊕ KC+)

over C, whereS[m](V) stands for the mth symmetric tensor product of the
vector space V, anddet(V) for its top exterior product. The fibers of this
bundle over points of C form a TC-representation with finite multiplicities,
moreover, for p∈ C ∩ F, the T-character of the fiberS•(KC ↑ YC)p is
Θ[Φp\t

⊥
C ↑YC].
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Denote byEC the restriction ofE to C. Then the combination of the
fixed point formula with Paradan’s decomposition leads to the following
statement.

Proposition 35(Paradan). Letγ be a generic point int∗. Then we have the
following equality inR̂(T):

(23) χE =
∑

C∈FPC(M)

∆µ[EC ⊗ S
•(KC↑YC), a(γC)].

If C consists of a single fixed pointp ∈ F, then the corresponding term
is εp · Θ[Φp ↑ (µ(p) − γ)∗]. It is reassuring to compare this to (10), which
contains a similarΘ-term functions but oriented differently. According to
Lemma 9 (1), the two terms, interpreted as generalized functions, coincide
on the set{t ∈ T; tφ , 1∀φ ∈ Φp}.

We also observe that these are the only terms which correspond to smooth
functions on some open sets ofT; all the other terms correspond to gener-
alized functions supported in positive-codimensional subtori of T. One can
think of this formula then as a refinement of the Atiyah- Bott formula (8).

Remark 36.
(1) The alcovea(γC) is an open set in AC = µ(p) + t⊥C when p∈ C.
(2) The moment mapµ : M → t∗ of the line bundleµ satisfies equation

(6), and this implies thatµ(C) is contained in the affine space AC.
Moreover, ifL is a positive line bundle as in Definition 3, thenµ(C)
is the convex hull of the finite set{µ(p); p ∈ C ∩ F}.

(3) Proposition 52 implies the vanishing of those the terms of the sum
in (23)which corresponding to a fixed point component C satisfying
a(γC) 1 µ(C).

(4) We note that the terms of the sum(23) are not quasi-polynomial.
Rather, the term corresponding to the fixed point component Cis
quasi-polynomial along each element an infinite set of linear trans-
lates oft⊥C ⊂ t

∗.
(5) When C= M, then the term of the sum(23) reduces to∆µ[E, a(γ)],

which is an actual quasi-polynomial character (cf. Lemma 21and
Proposition 22).

Example 37. In Example 7, the elements ofFPC(M) are easy to list:

FPC(M) := {M, p+, p−}.

If we considerγ = 0, the corresponding decomposition ofχE reads as fol-
lows:

t−4 + t−2 + 1+ t2 + t4 =
∑

k∈Z

t2k − t6
∞
∑

k=0

t2k − t−6
∞
∑

k=0

t−2k.

Example 38. In Example 8 (see also Example 20), the set of fixed point
componentsFPC(M) consists of the following elements:

• the complex 3-dimensional manifold M itself,
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• the 6 fixed points pw, w ∈ Σ3, corresponding to the vertices of the
highlighted hexagon. The corresponding values of the moment map,
are as follows:

µ123 = 4α + 3β, µ213 = −α + 3β, µ132 = 4α + β,

µ321 = −3α − 4β, µ231 = −3α + β, µ312 = −α − 4β

• 9components isomorphic toP1(C), whose images are intervals which
span the 9 lines on the picture below. Each of these components con-
tains precisely two fixed points; we will use the notation C[pv, pw]
for the component containing the fixed points pv and pw, andℓ〈µv, µw〉

for the corresponding line.
For example, the fixed point component C[p123, p213] may be de-

scribed as the set of flags of the form

Cv ⊂ Ce1 ⊕ Ce2 ⊂ Ce1 ⊕ Ce2 ⊕ Ce3.

The stabilizer group of this submanifold is{(t, t, u); t, u ∈ U(1)}.

a(x0)
a(x1)

µ123

ℓ〈µ123, µ132〉

ℓ〈µ123, µ213〉

ℓ〈µ123, µ321〉

ℓ〈µ132, µ231〉

αβ

Thus decomposition(23) of the characterχL involves16 formal char-
acters. On each of the alcoves, each of these terms gives us a polynomial
function. Clearly, these polynomials need to add up to 0 in analcove which
is not in the support ofFχE. The support ofFχE, which is the convex hull
of the pointsµ(pw), w ∈ Σ3, is the highlighted hexagon on the diagram.

We will consider two such cases: the alcovea(x0) containing the point
x0 = 7α + 5β, and the alcovea(x1) containing the point x1 = 11α + 5β. We
will express an elementλ ∈ Λ in the basis of simple roots:λ = k1α + k2β.
The multiplicity functionFχL thus is a function of(k1, k2), with k1, k2 ∈ Z.

We begin witha(x0). In fact, because of the support conditions, only the
following 6 fixed point components contribute:

• C = M contributes the constant function f1(k1, k2) = 3.
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• The term corresponding to C= p123is

∆p123 = −eµ123e(α+β+(α+β)) ·

∞
∑

k=0

ekα ·

∞
∑

k=0

ekβ ·

∞
∑

k=0

ek(α+β).

The Fourier transform of this character restricted toa(x0)∩Λ is the
function f2(k1, k2) = −(k2 − 4).
• The term corresponding to C= C[p123, p132] is

∆C[p123,p132] := eµ123e(α+(α+β)) ·
∑

k∈Z

ekβ ·

∞
∑

k=0

ekα ·

∞
∑

k=0

ek(α+β).

The Fourier transform of this character restricted toa(x0) ∩ Λ is
f3(k1, k2) = (k1 − 5).

• The term corresponding to C= C[p123, p213] is

∆C[p123,p213] := eµ123e(β+(α+β)) ·
∑

k∈Z

ekα ·

∞
∑

k=0

ekβ ·

∞
∑

k=0

ek(α+β).

The Fourier transform of this character restricted toa(x0) ∩ Λ is
f4(k1, k2) = (k2 − 4).

• The term corresponding to C= C[p132, p231] is

∆C := −eµ132e(α+β) ·
∑

k∈Z

ekα ·

∞
∑

k=0

ekβ ·

∞
∑

k=0

ek(α+β).

The Fourier transform of this character restricted to ona(x0) ∩ Λ
f5(k1, k2) = −(k2 − 1).

• The term corresponding to C= C[p123, p321]

∆C := −eµ123eβ ·
∑

k∈Z

ek(α+β)) ·
∞
∑

k=0

ekα ·

∞
∑

k=0

e−kβ.

The Fourier transform of this character restricted toa∩Λ is f6(k1, k2) =
−(k1 − k2 − 1).

Now, it remains to observe that the sum of all these contributions van-
ishes:

f1+ f2+ f3+ f4+ f5+ f6 = 3−(k2−4)+(k1−5)+(k2−4)−(k2−1)−(k1−k2−1) = 0.

On the alcovea(x1), the calculation is quite similar. One still has the con-
tributions f1, f2, f3, f4, f5, f6, and there are 2 additional terms: one coming
from the fixed point p132, and the other from C[p132, p321]. The first contri-
butions restricted to this alcove is(k1−k2)−6, while the second is the same
expression with opposite sign. Thus we have8 contributions adding up to
0.
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4. Quasi-polynomial behavior of multiplicities

4.1. Decomposition of aG-character. Returning to the setup of§1, we
consider a compact connected Lie groupG acting compatibly on an almost
complex manifoldM, bundlesE andL and the connection∇ onL.

Let T be the maximal torus ofG. Our first goal is to understand what
formula (23) tells us about dimQ(M,E ⊗ Lk)G. Let WG be the Weyl group
of G, and choose a triangular decompositiongC = tC ⊕ n+ ⊕ n− of the com-
plexification of the Lie algebrag of G. This choice induces a splitting of the
roots ofG into positive and negative ones:R = R+∪R−, whereR± is the list
of weights ofT onn±; it also provides us with the subsetΛdom ⊂ Λ of dom-
inant weights, which serve as a fundamental domain of theWG-action on
Λ ⊂ t∗. Then the irreducible charactersχλ : T → C of G are parametrized
by λ ∈ Λdom.

Remark 39. As observed by Atiyah-Bott, the Weyl character formula

χλ :=
∑

w∈WG

ewλ
∏

α∈R−(1− ewα)

is the Atiyah-Bott formula fordimQ(G ·λ,Lλ) associated to the line bundle
Lλ = G×Gλ

Cλ on the coadjoint orbit G· λ.

We consider theG-equivariant moment mapµG : M → g∗ satisfying
equation (5). Then the mapµ, obtained as the composition ofµG with the
restrictiong∗ → t∗, serves as a moment map for theT-action.

Now our characterχE⊗Lk ∈ R(T) may be expressed in a unique way as a
finite linear combination of irreducible charactersχλ, λ ∈ Λdom. In partic-
ular, the sought after quantity

∫

G
χE⊗Lk dg = dimQ(M,E ⊗ Lk)G is exactly

the coefficient of the trivial character in the decomposition ofχE⊗Lk as a
linear combination of irreducible characters. To obtain anexplicit formula
for this multiplicity, we observe that the Weyl character formula forχλ may
be stated in the following way:

Lemma 40. Introduce the element

ωG =
∏

α∈R−

(1− eα) ∈ R(T).

Then forλ1, λ2 ∈ Λdom, we have

FωGχλ1(λ2) =















1 if λ1 = λ2,

0 otherwise.

Applying this to our situation withλ = 0, we obtain the formula

dimQ(M,E)G = FωGχE(0).

Now we make the formal observation that multiplyingχE byωG amounts to
tensoringE by the trivial super-bundle overM with fiber∧n− = ∧evenn− ⊖



[Q,R] = 0 AND KOSTANT PARTITION FUNCTIONS 23

∧oddn− endowed with the standard (adjoint)T-action. This leads to the fol-
lowing formula:

(24) dimQ(M,E ⊗ Lk)G = χE⊗∧n− (0).

Now Proposition 35 combined with Remark 36 (3) implies

Corollary 41. For any integer k, we have
(25)
dimQ(M,E⊗Lk)G =

∑

C∈FPC(M)

F∆µ
[

EC ⊗ L
k
C ⊗ ∧n

− ⊗ S•(KC↑YC), a(γC)
]

(0),

and those terms for whichγC < µ(C) vanish.

It turns out that one can significantly strengthen the condition onC under
which the corresponding term in (25) vanishes. Letg = t ⊕ q be theT-
invariant decomposition ofg with q = [t, g]. This induces a decomposition
g∗ = t∗ ⊕ q∗ which, in turn, gives us a mapµ⊥ : M → q∗ satisfying

µG(m) = µ(m) ⊕ µ⊥(m).

Now introduce the notation Slice(M) = µ−1
⊥ (0). The set Slice(M) is a T-

space, and on Slice(M), the mapµG coincides withµ. Also, note that any
G-orbit in M intersects Slice(M).

Theorem 42(Paradan). Letγ be generic int∗, and C∈ FPC(M) be a fixed
point component. Then the term

(26) ∆µ

[

EC ⊗ L
k
C ⊗ ∧n

− ⊗ S•(KC↑YC), a(γC)
]

in (25)vanishes unless

γC ∈ µ(C ∩ Slice(M)).

Proof. Recall that for a Hermitian vector spaceH the formula

(27) c(v) : ω 7→ v∧ ω − v∗⌊ω, v ∈ H, ω ∈ ∧H,

defines the Clifford action ofH on the exterior algebra ofH, i.e. a linear
mapH → End(∧H). A simple computation shows thatc(v)2 = −‖v‖2 · id,
and hencec(v) is an isomorphism wheneverv , 0.

Now assume that the inverse imageµ−1(γC) does not intersect Slice(M)∩
C. Then, for anyq ∈ C such thatµ(q) = γC, the componentµ⊥(q) does
not vanish, and hence the map [q, ω] 7→ [q, c(µ⊥(q))ω] is a T-equivariant
bundle-mapC × Λevenn− → C × Λoddn−, which is an isomorphism over
µ−1(γC)∩C. Now, using Proposition 52, we can conclude that the term (26)
vanishes. �

4.2. The main result. At this point, we impose the condition of positivity
on our line bundleL. Recall that this means that the curvature of the con-
nection∇ onL is of the form−iΩ, where the closed 2-formΩ is such that
the quadratic formV 7→ Ωq(V, JV) is positive definite at each pointq ∈ M.
Note that this condition, in particular, implies thatΩ is symplectic.

Now we turn to the proof of Theorem 6, which we repeat here for refer-
ence.
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Theorem 43.Let (M, J) be a compact, connected almost complex manifold,
endowed with the action of a connected compact Lie group G, and letL be
a positive G-equivariant line bundle on M. Then

• the integer function

k→ dimQ(M,Lk)G

is quasi-polynomial for k≥ 1, and
• this quasi-polynomial is identically zero if0 < µG(M).

Proof. Let γ be a regular element oft∗. For C ∈ FPC(M), we retain the
notationγC andYC from Definition 33. Then, according to Theorem 42, we
have

(28) dimQ(M,Lk)G =
∑

C

F∆µ
[

Lk ⊗ ∧n− ⊗ S•(KC↑YC), a(γC)
]

(0),

where{C ∈ FPC(M); γC ∈ µ(C ∩ Slice(M))}.

First, consider the terms of this sum corresponding toC ∈ FPC(M) for
which the affine-linear subspaceAC defined in (15) passes through the ori-
gin: 0∈ AC. Lemma 26 shows that in this case, the function

k→ F∆µ
[

Lk ⊗ ∧n− ⊗ S•(KC↑YC), a(γC)
]

(0)

is a quasi-polynomial function ofk. Furthermore, if 0∈ AC but 0< µG(M),
then forγ sufficiently close to 0, the orthogonal projectionγC of γ to AC is
also close to 0, and thusγC < µ(C∩Slice(M)) ⊂ µG(M). Hence, according to
Theorem 42, the term of (28) corresponding to suchC ∈ FPC(M) vanishes.

Now, both assertions of Theorem 43 will follows if we show that, for γ
chosen sufficiently near 0 andk ≥ 1, the term on the right hand side of (28)
corresponding toC ∈ FPC(M) with 0 < AC vanishes.

Indeed, consider a fixed point componentC ∈ FPC(M) for which 0< AC,
i.e. for which the stabilizertC acts nontrivially on the fibers of the line
bundleLC , and letγ ∈ t∗ be a generic element, for which there is aq ∈ C
satisfyingµ⊥(q) = 0 andµ(q) = γC.

Assume,ad absurdum, that the zero weight occurs with nonzero multi-
plicity in theT-module

∆µ

[

Lk ⊗ ∧n− ⊗ S•(KC↑YC), a(γC)
]

.

According to Lemma 25, this implies that the representationof TC on the
fiber of the bundleLk ⊗ ∧n− ⊗ S•(KC ↑ YC) at some point ofC contains
the trivial weight. This implies that at every pointq ∈ C the Lie algebra
elementYC ∈ tC annihilates a nonzero vector in the fiber

(29) (Lk ⊗ ∧n− ⊗ S•(KC↑YC))q.

To find a contradiction, we will give a positive lower bound onthe eigen-
values ofYC on this space for an appropriately chosenγ. Let us consider
the eigenvalues ofYC on each of the 3 tensor factors:
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• The eigenvaluey(Lk) of YC acting onLk
q is equal tok〈µ(q),YC〉 =

k〈γC,YC〉.
• The eigenvalues ofYC on∧n− are parametrized by subsetsI ⊂ R− of

the negative roots: we have the expressiony(∧n−, I ) =
∑

α∈I〈α,YC〉

for the corresponding eigenvalues.
• Finally, recall from the discussion before Lemma 34 the splitting
ΦC = Φ

+
C ∪ Φ

−
C of the tC-weights of the conormal bundleKC ac-

cording to the sign of their value onYC. It follows then that all
eigenvalues ofYC onS[m](KC∗−⊕KC+)q are nonnegative, and hence,
according to (22), all eigenvalues ofYC onS•(KC↑YC) are bounded
from below by the eigenvalue ofYC on∧KC∗−:

(30) y(∧KC∗−) = −
∑

η∈Φ−C

〈η,YC〉.

Hence, to prove thatYC does not annihilate vectors in the vector space
(29), it suffices to show that for some regularγ ∈ t∗,

(31) y(Lk) + y(∧n−, I ) + y(∧KC∗−) > 0 for everyI ⊂ R−.

Denote byβC the projection of the origin ontoAC. Naturally, forγ near
the origin, the pointγC will be close toβC. Also, for suchγ, under the
identification oft with t∗, the vectorYC will be close toβC. This implies
that forγ near the origin

(32) y(Lk) = k〈γC,YC〉 ∼ k(βC, βC) = k‖βC‖
2 > 0.

By the definition ofΦ−C, all terms of the sum in (30) are also positive. Thus
our worry is the set of negative terms which could appear iny(∧n−, I ): these
correspond toα ∈ R− for which 〈α,YC〉 < 0. Again, by continuity, for
γ in a small neighborhood of the origin, for such a rootα, there are two
possibilities:

• either (βC, α) = 0,
• or the three numbers〈α,YC〉, (βC, α), and (γC, α) are all negative.

When (βC, α) = 0, then forγ sufficiently close to the origin int∗, the sum

y(Lk) +
∑

{〈α,YC〉; α ∈ R
−, (βC, α) = 0}

remains positive.
If 〈α,YC〉, (βC, α), (γC, α) < 0, theny(∧n−, I ) needs to be neutralized us-

ing the summands ofy(∧KC∗−) in (30). To prove that indeed,y(∧n−, I ) +
y(∧KC∗−) ≥ 0, it will be sufficient to show that all such roots appear as
weights of KC. More precisely, it is sufficient to show, that whenever
α ∈ R− and (γC, α) < 0, thenα restricted totC is a weight ofKC.

Proposition 44. Let (M,Ω, J) be a positive symplectic G-manifold. Let
q ∈ M be a point such thatµG(q) = µ(q), i.e. µ⊥(q) = 0. Then the list of
complex weights of the stabilizer group Tq in TqM with respect to the almost
complex structure J contains the the list of restricted weights

(33) [α|tq; α ∈ R, (µ(q), α) > 0].
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Proof. As usual, we use the notationVX(q) for the tangent vector in TqM
corresponding toX ∈ g under theG-action onM. SinceµG isG-equivariant,
we have

gq = {X ∈ g; VX(q) = 0} ⊂ gµ(q) = {X ∈ g; ad∗X(µ(q)) = 0}

for the stabilizer Lie subalgebras. Thus under the correspondenceX 7→
VX(q), the Gµ(q)-invariant complementg⊥

µ(q) of gµ(q) in g maps injectively
into TqM. We will look for our weights (33) among the weights of this
image.

Our first observation is that by contracting the equation〈dµG,X〉+ι(VX)Ω =
0 byVZ, and using theG-equivariance ofµG, we can identify the symplectic
form on this image. We obtain

(34) Ωq(VX,VZ) = 〈µG(q), [X,Z]〉

for X,Z ∈ g. SinceµG(q) = µ(q), using the structure of reductive Lie
algebras, we can conclude that this antisymmetric form restricts to a non-
degenerate form onVg⊥

µ(q) ⊂ TqM.
Let us summarize our situation: we have a real vector space TqM en-

dowed with an action of a torusTq, a Tq-invariant symplectic formΩ and
a Tq-invariant positive complex structureJ. We have aTq-invariant sym-
plectic subspaceVg⊥

µ(q) ⊂ TqM, which is, however, not necessarily in-
variant under the complex structureJ. Finally, we know theTq-weights
of the spaceVg⊥

µ(q) ⊗ C: in our case this is the set of restricted weights
{α|tq; α ∈ R, (µ(q), α) , 0}. Our goal is to find out which of these weights
appear as weights of the complex vector space (TqM, J).

The following lemma, which is a simple exercise in linear algebra, gives
us the answer:

Lemma 45. Let W be a real vector space on which a torus group TW acts,
and assume that W is endowed with an invariant symplectic formΩW and
an invariant complex structure JW, satisfying

(35) ΩW(X, JWX) > 0 for all 0 , X ∈W.

Let α be a TW-weight, and let Z∈ tW be such that〈α,Z〉 , 0. Then the
multiplicity of α in the complex vector space(W, JW) equals to half of the
number of positive eigenvalues of the quadratic form

X 7→
1
〈α,Z〉

Ω(X,Z · X) on (Wα ⊕W−α) ∩W,

where Wα is theα weight-space of W⊗ C.

This lemma has the following corollaries:

Corollary 46. (1) GivenΩW on W, the complex eigenvalues of TW with
respect to those complex structures JW satisfying(35)do not depend
on JW. Thus we can speak of thesymplecticTW-weightsof W.
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(2) If W′ ⊂W is a TW-invariant symplectic subspace, then the symplec-
tic weights of W′ form a sublist of the list of symplectic weights of
W.

(3) In the special case when the quadratic form X7→ Ω(X,Z · X) is
positive definite, all symplectic weightsα of W satisfy〈α,Z〉 > 0.

Now we apply Lemma 45 and its corollaries to our situation:W = TqM,
W′ = Vg⊥

µ(q) andTW = Tq, and we can conclude that the symplectic weights
of Vg⊥

µ(q) form a subset of the symplectic weights of TqM. Now we observe
that the naturaltq-action onVg⊥

µ(q) extends to an action oft via the formula
Z · VX = V[Z,X], and hence, using this action, we can try to verify the
condition in Corollary 46 (3) for aZ ∈ t not necessarily intq.

Denote byZq the element oftwhich corresponds toµ(q) under our chosen
inner product; thus we have

〈α,Zq〉 = (µ(q), α) and〈µ(q),Y〉 = (Zq,Y) for α ∈ t∗, Y ∈ t.

The weights of the spaceg⊥
µ(q) ⊗ C then may be listed as the subset{α ∈

R; 〈α,Zq〉 , 0}, and hence, according to Corollary 46, Proposition 44 will
follow if we show that the quadratic form

X 7→ Ωq(VX,Zq · VX)

is positive definite ong⊥
µ(q) = g

⊥
Zq

. This is indeed the case: using (34), we see
that forX ∈ g⊥Zq

we have

Ωq(VX,Zq·VX) = 〈µ(q), [X, [Zq,X]]〉 = (Zq, [X, [Zq,X]]) = ([Zq,X], [Zq,X]).

This last expression is positive for 0, X ∈ g⊥Zq
and this completes the

proof. �

This ends our proof of Theorem 43. To recapitulate, we have chosen
a genericγ ∈ t∗ near the origin, and considered a fixed point component
C ∈ FPC(M) such that 0, AC; we needed to show that the corresponding
contribution to (28) vanishes. In view of Theorem 42, we could assume
that there is aq ∈ C satisfyingµ⊥(q) = 0 andµ(q) = γC, whereγC is the
projection ofγ on to the affine subspaceAC ⊂ tC. Using simple estimates
we reduced this vanishing to the inequality (31) on the eigenvalues of an
elementYC ∈ t on a certain vector space associated toC. The first term
on the left hand side of this inequality is positive and bounded away from
zero according to (32). A quick calculation then shows that the sum of the
last two terms is nonnegative if{α|tC ∈ R−; (γC, α) < 0} is a subset of the
tC-weight ofKC; this last statement is the content of Proposition 44.�

5. The asymptotic result in the torus case

The purpose of this last section is to give a proof of a versionof Theorem
1. This result was also first proved by Meinrenken.
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Theorem 47. Let M be a compact almost complex T manifold,L a T-
equivariant line bundle over M, with moment mapµ. LetE = E+ ⊕ E− be a
super-bundle. If for someγ ∈ t∗, the T-equivariant bundlesE+ andE− are
isomorphic onµ−1(γ), then there is a neighborhoodb of γ and K > 0 such
thatFχE⊗Lk(λ) = 0 for k > K andλ ∈ kb ∩ Λ.

Proof. As FχE⊗Lk(λ) is an integer, it will be sufficient to show that there is
a neighborhoodb of γ and a constantC such thatk|FχE⊗Lk(λ)| < C when
k ≥ 1 andλ ∈ kb.

We choose a neighborhooda of γ such that the vector bundlesE+ and
E− are isomorphic overµ−1(a) and chooseb a compact neighborhood ofγ
contained ina.

Let us begin with the Atiyah-Bott fixed point formula (8);

(36) χE⊗Lk =
∑

p∈F

ekµ(p)εp
∏

φ∈Φp
(1− eφ)

.

According to our hypothesis that theT-equivariant vector bundlesE+ and
E− are isomorphic onµ−1(a), we haveεp = ε

+
p − ε

−
p = 0 if µ(p) ∈ a. Denote

by F′ the set ofp ∈ F such thatµ(p) < a. Then we have

(37) FχE⊗Lk(λ) =
∫

T
e−λ(t)

∑

p∈F′

ekµ(p)(t)εp(t)
∏

φ∈Φp
(1− eφ(t))

dt.

To estimate this integral, we would like to exchange the summation and
the integration in this formula. However, the terms of the sum are singular
expressions, and thus we can only estimate the part of this integral where
the terms of the sum are bounded.

To find this partial estimate, we proceed as follows. Consider the open
set

Treg = {g ∈ T | eφ(g) , 1∀φ ∈ Φp, p ∈ F′},

of those elementsg ∈ T for which the terms of our sum are regular, and for
eachg ∈ Treg pick a ballUg ⊂ t centered at 0∈ t such that forX ∈ Ug,
we havegexp(Ug) ⊂ Treg. Now, letρg : T → [0, 1] be an auxiliary smooth
function with compact support ongexp(Ug), and consider the piece

(38)
∫

T
ρg(t)e−λ(t)χE⊗Lk(t) dt

of the integral in (37) supported ingexp(Ug). Pulling this integral back to
t via the mapgexp : t → T, we can estimate the absolute value of (38) as
being less or equal than

(39)
∑

p∈F′

∣

∣

∣

∣

∣

∣

∫

t

ek〈µ(p)−λ/k,X〉
ρg(gexp(X)) εp(gexp(X))
∏

φ∈Φp
(1− ei〈φ,X〉eiφ(g))

dX

∣

∣

∣

∣

∣

∣

.

Note that we omitted the constant factoreikµ(p)−iλ(g), since it is of absolute
value 1.

Now we recall the following standard estimate from Fourier Analysis.
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Lemma 48. Let 0 , η ∈ t∗, and H : t → C be a smooth compactly
supported function. Then for every positive integer d, the inequality

∣

∣

∣

∣

∣

∫

t

ei〈η,X〉H(X) dX
∣

∣

∣

∣

∣

≤
Cd(H)
‖η‖2d

holds, where one can take

Cd(H) = max
X∈t

∣

∣

∣

∣

∣

∣

∣















∑

i

∂2
i















d

(H(X))

∣

∣

∣

∣

∣

∣

∣

;

This constant depends only on a finite number of derivatives of H.

Now we return to (39), and consider expressionµ(p) − λ/k in the expo-
nent, forλ/k ∈ b. Sinceµ(p) is not ina, we have the bound|µ(p) − λ/k| ≥
δ > 0, which depends only on the choice of the relatively compactsetb ⊂ a.
Applying Lemma 48 toη = k(µ(p) − λ/k), we obtain the following

Corollary 49. For fixed compactb ⊂ a, g ∈ Treg, and smooth function
ρg : T → [0, 1] with compact support in Ug, the integral(38) goes to zero
faster than any power of k, uniformly inλ ∈ kb.

5.1. Equivariant forms. In order to bound the rest of the integral (37), for
eachg ∈ T \Treg, we will replace the Atiyah-Bott formula by an expression,
which is regular atg. Such formulas were given in [7]; here we sketch the
setup and the relevant notions. We start with the identity element ofT:
g = id.

For a manifoldM with aT-action, we define the algebraAT(M) of equi-
variant formsas the space of smooth mapsα : t → Γ(∧•T∗M)T , from t to
the set of invariant differential forms onM. As a matter of notation, we will
writeα(X) for the resulting differential form onM, andα(X, q) for the value
of this differential form atq ∈ M.

The equivariant differentialD : AT(M) → AT(M) is given by the for-
mula

Dα(X) = dα(X) − VX⌊α(X);

we haveD2 = 0. Accordingly,α ∈ AT(M) is calledequivariantly closed
if Dα = 0. The formulas in [6] express the integral

∫

M
α : t → C of an

equivariantly closed formα in terms of local data onM. We follow the
exposition of ([5],chapters 7,8).

Returning to our setup ofT-manifold M, endowed with a line bundleL
with curvatureRL = −iΩ, we observe that we have already encountered
such equivariantly closed forms: indeed, equation (6) may be interpreted as
saying that the expression

(40) RL(X) = RL + LX − ∇VX = i〈µ,X〉 − iΩ,

the equivariant curvatureof the bundleL, is equivariantly closed. The
equivariant curvature may be constructed for any equivariant bundleB over
M by choosing aT-invariant connection∇ onB with curvatureRB. Then,
again, we can defineRB(X) = RB + LX −∇VX which is a smooth map fromt
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to theT-invariant sections of the bundle of algebras∧•T∗M ⊗ End(B). We
can then define the equivariant forms
(41)

chB(X) = TrB
[

exp(RB(X))
]

, ToddB(X) = detB

[

RB(X)
1− exp(−RB(X))

]

,

where the trace and the determinant are taken in End(B). These forms are
called, respectively, theequivariant Chern classand theequivariant Todd
classof the bundleB. Note that the latter is only defined in a neighborhood
of 0 ∈ t.

Applying this construction to the bundlesE+, E− and TJM, we obtain the
equivariant curvature formsRE+ , RE− andRTJM, respectively. Now we make
the crucial observation, that sinceE+ is isomorphic toE− overµ−1(a), we
can assume that the corresponding connections∇E+ and∇E− are chosen to
coincide overµ−1(a), and thus we have

(42) RE+(X, q) = RE−(X, q) if µ(q) ∈ a.

Now we are ready to write down the relevant formula from [7] (see also
[5],chapter 8):

χE⊗Lk(expX) =
1

(2iπ)dim M/2

∫

M
chLk(X) [chE+(X) − chE−(X)] ToddTJM(X);

this equality is valid forX from the neighborhoodUid of 0 ∈ t where
ToddTJM(X) is defined.

Writing chE(X) for chE+(X) − chE−(X) and using (40), we can rewrite this
expression as

(43) χE⊗Lk(expX) =
1

(2iπ)dim M/2

∫

M
eik〈µ,X〉−ikΩ chE(X) ToddTJM(X).

Now we are proceeding quite similarly to our analysis of the Atiyah-Bott
formula above. We choose an auxiliary smooth functionρid : T → [0, 1]
with compact support in exp(Uid) and we write

(44) (2iπ)dim M/2

∫

T
ρid(t)e−λ(t)χE⊗Lk(t) dt =

∫

M

dim M/2
∑

j=0

(−i) j k
j

j!
Ω(q) j

×

∫

t

ρid(exp(X))eik〈µ(q)−λ/k,X〉 chE(X, q) ToddTJM(X, q) dX.

Now we observe that due to (42), the factor chE(X, q) vanishes whenever
µ(q) ∈ a, and hence we can again assume that|µ(q) − λ/k| > δ for some
positiveδ depending onb only. Since bothM and the support ofρid are
compact, we have bounds on the derivatives of the integrand in (44), which
are uniform inq. Hence we can apply Lemma 48 again to conclude that for
eachd, there is a constantCd, independent ofq, such that the integral over
t in (44) is bound byCdk−2d. Integrating overM then gives us

Corollary 50. The integral(44)goes to zero faster than any negative power
of k.
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Finally, we extend these arguments to allg ∈ T, using the generalization
of the above formula given in [7, Theorem 3.23]. We first introduce the
twisted versions of our characteristic forms: ifs ∈ T acts trivially onM,
then we can define the twisted Chern character

chB,s(X) = Tr
[

sexp(RB(X))
]

,

and
DB,s = det

[

1− s−1 exp(−RB(X))
]

,

assacts fiberwise in anyT-equivariant vector bundle overM.
Now let g ∈ T be an arbitrary element, denote byMg the submanifold

fixed byg (thusg acts trivially onMg) and letNMg be the normal bundle
of Mg in M. Then the formula in [7] states that

(45) χE⊗Lk(gexpX) =
1

2iπdim Mg/2

∫

Mg

chLk,g(X) chE,g(X) ToddMg(X)

DNMg,g(X)
.

Starting from here, the arguments are identical to those we gave in the
caseg = id, and hence they will be omitted.

We can summarize what we proved as follows.

Lemma 51. For g ∈ T, let Ug be a neighborhood of0 ∈ t such that for
X ∈ Ug the characteristic classesToddMg(X) and 1

DNMg,g(X) are defined on
Mg. Then for any smooth functionρg : T → [0, 1] compactly supported in
gexp(Ug), and anyλ ∈ kb, the integral

∫

T
ρg(t)e−λ(t)χE⊗Lk(t) dt

goes to zero faster than any negative power of k.

Now we can easily finish the proof of the theorem. Indeed, the sets
{gexp(Ug)| g ∈ T} form an open cover of the compact torusT. We can thus
pick a finite subsetS ⊂ T such that∪g∈Sgexp(Ug) = T. Next, we choose a
partition of unity subordinated to this cover, i.e functions ρg : T → [0, 1],
g ∈ S such thatρg is compactly supported ingexp(Ug) and

∑

g∈S ρg = 1.
Then, forλ ∈ kb, we have

∫

T
e−λ(t)χE⊗Lk(t) dt =

∑

g∈S

∫

T
ρg(t)e−λ(t)χE⊗Lk(t) dt.

Each term of the sum goes to zero ask→ ∞ uniformly in λ, and hence so
does their sum, the expression on the left hand side, which equalsFχE⊗Lk.
This completes the proof of Theorem 47.

�

Let us formulate the corollary of Theorem 47 that we used to conclude the
vanishing of certain quasi-polynomial characters on some alcoves. Without
loss of generality we can assume thattM, the infinitesimal stabilizer ofM in
t, is trivial.
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Proposition 52. LetE = E+⊕E− be a super-bundle. Leta ⊂ t∗ be an alcove.
If for someγ ∈ a, the T-equivariant bundlesE+ andE− are isomorphic on
µ−1(γ), then∆µ[E, a] = 0.

Proof. According to Lemma 13 and Proposition 22, this follows from the
fact that for a compactb ⊂ a andk sufficiently large

λ ∈ kb ⇒ FχE⊗Lk(λ) = 0.

�

6. List of notations

• (M, ω) – compact symplectic manifold;E – vector,L – line bundle
overM.
• TM – the tangent bundle ofM, J ∈ End(TM) stands for a complex

structure, TJ andT̄J denote the±i eigenspaces ofJ.
• T – compact torus group,t – its Lie algebra,Λ – weight lattice of

T, G – compact Lie group with maximal torusT and Lie algebrag.
• µG : M → g andµ : M → t – moment maps.
• Fη – the Fourier transform/multiplicity function of the formal char-

acterη of T.
• Θ[Φ↑X] – formal character of the partition with a list of weightsΦ

and oriented by the vectorX (cf. (9)).
• δ[Φ↑X,T ] – formal quasi-polynomial character, whose multiplicity

function coincides with that ofΘ[Φ↑X] on the topeT (cf. Lemma
13).
• ∆µ[E, a] – the asymptotic character associated toE andµ (cf. Defi-

nition 17).
• GC,TC, gC, tC, generic stabilizer groups of the subsetC ⊂ M, and

their Lie algebras.
• FPC(M) – set of connected components of fixed point sets ofM.
• EC – vector bundle restricted to the submanifoldC.
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