
PARTITION FUNCTION AND GENERALIZED
DAHMEN-MICCHELLI SPACES

C. DE CONCINI, C. PROCESI, M. VERGNE

Abstract. This is the first of two papers on partition functions and the
index theory of transversally elliptic operators. In this paper we only
discuss algebraic and combinatorial issues related to partition functions.
The applications to index theory will appear in [4].

Here we introduce a space of functions on a lattice which general-
izes the space of quasi–polynomials satisfying the difference equations
associated to cocircuits of a sequence of vectors X. This space F(X)
contains the partition function PX . We prove a ”localization formula”
for any f in F(X). In particular, this implies that the partition function
PX is a quasi–polynomial on the sets c−B(X) where c is a big cell.

1. Introduction

Recall some notions. We take a lattice Γ in a vector space V and X :=
[a1, . . . , am] a list of non zero elements of Γ, spanning V as vector space. If
X generates a pointed cone C(X), the partition function PX(γ) counts the
number of ways in which a vector γ ∈ Γ can be written as

∑m
i=1 kiai with

ki ∈ N non negative integers.
A quasi–polynomial is a function on Γ which coincides with a polyno-

mial on each coset of some sublattice of finite index in Γ. A theorem
[6],[10], generalizing the theory of the Ehrhart polynomials [5], shows that
PX(γ) is a quasi–polynomial on certain regions c − B(X) where B(X) :=
{
∑m

i=1 tiai, 0 ≤ ti ≤ 1} is the zonotope generated by X while c denotes a big
cell, that is a connected component of the complement in V of the singular
vectors which are formed by the union of all cones C(Y ) for all the sublists
Y of X which do not span V . The complement of C(X) is a big cell. The
other cells are inside C(X) and are convex.

The quasi–polynomials describing the partition function belong to a re-
markable finite dimensional space introduced and described by Dahmen–
Micchelli [6] and which in this paper will be denoted by DM(X). This is
the space of solutions of a system of difference equations. In order to de-
scribe it, let us a call a subspace s of V rational if s is the span of a sublist
of X. We need to recall that a cocircuit Y in X is a sublist of X such
that X \ Y does not span V and Y is minimal with this property. Thus
Y is of the form Y = X \ H where H is a rational hyperplane. Given
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a ∈ Γ, the difference operator ∇a is the operator on functions defined by
∇a(f)(b) := f(b)− f(b−a). For a list Y of vectors, we set ∇Y :=

∏
a∈Y ∇a.

DM(X) := {f | ∇Y f = 0, for every cocircuit Y in X}.
It is easy to see that DM(X) is finite dimensional and consists of quasi–
polynomial functions (cf. [3]).

In this article, we introduce

F(X) := {f | ∇X\sf is supported on s for every proper rational subspace s}.
Clearly PX as well as DM(X) are contained in F(X). The space F(X) is of
interest even when X does not span a pointed cone and occurs in studying
indices of transversally elliptic operators on a vector space.

The main result of this article is a ”localization formula” for an element f
in F(X). In particular, given a chamber c, our localization formula allows us
to write explicitly the partition function PX as a sum of a quasi-polynomial
function Pc

X ∈ DM(X) and of other functions fs ∈ F(X) supported outside
c − B(X). This allows us to give a short proof of the quasi-polynomiality
of PX on the regions c − B(X). Furthermore this decomposition implies
Paradan’s wall crossing formulae [8] for the quasi–polynomials Pc

X . Our ap-
proach is strongly inspired by Paradan’s localization formula in Hamiltonian
geometry, but our methods here are elementary. We wish to thank Michel
Duflo and Paul-Emile Paradan for several suggestions and corrections.

2. Special functions

2.1. Basic notations. Let Γ be a lattice and E = Z,Q,R,C. Consider the
space CE(Γ) of E valued functions on Γ. When E = Z we shall simply write
C(Γ). We display such a function f(γ) also as a formal series

Θ(f) :=
∑
γ∈Γ

f(γ)eγ .

Of course, under suitable convergence conditions, the series
∑

γ∈Γ f(γ)eγ is
a function on the torus T whose character group is Γ, and it is the Laplace–
Fourier transform of f . In fact the functions that we shall study are Fourier
coefficients of some important generalized functions on T . This fact and the
several implications for the index theory of transversally elliptic operators
will be the subject of a subsequent paper [4].

The space CE(Γ) is in an obvious way a module over the group algebra
E[Γ], multiplication by eλ on the series Θ(f) corresponding to the translation
operator τλ defined by

(τλf)(γ) := f(γ − λ)
on the function f . Thus 1− eλ corresponds to the difference operator ∇λ.

We denote by δ0 the function on Γ identically equal to 0 on Γ, except
for δ0(0) = 1. Remark that the product of two formal series Θ(f1)Θ(f2),
whenever it is defined, corresponds to convolution f1 ∗ f2 of the functions f1

and f2. The function δ0 is the unit element.
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Remark 2.2. Notice that, for a difference operator ∇a acting on a convolu-
tion, we have:

∇a(f1 ∗ f2) = ∇a(f1) ∗ f2 = f1 ∗ ∇a(f2).

Let now X := [a1, . . . , am] be a list of non zero elements of Γ and let
V := Γ ⊗Z R be the real vector space generated by Γ. We assume that
X generates the vector space V but we do not necessarily assume that X
generates a pointed cone in V .

If X generates a pointed cone, then we can define

ΘX =
∏
a∈X

∞∑
k=0

eka.

We write
ΘX =

∑
γ∈Γ

PX(γ)eγ

where PX ∈ C(Γ) is the partition function. “ Morally”, the series ΘX is
equal to

∏
a∈X

1
1−ea , but 1

1−ea has to be understood as the geometric series
expansion

∑∞
k=0 e

ka.

Remark 2.3. We easily see that the partition function satisfies the difference
equation ∇XPX = δ0. Clearly this equation has infinitely many solutions.
The fact that PX is uniquely determined by the recursion expressed by this
equation comes from the further property of this solution of having support
in the cone C(X). We shall see other functions of the same type appearing
in this paper.

Definition 2.4. i) A subspace of V generated by a subset of the ele-
ments of X will be called rational (relative to X).

ii) Given a rational subspace s, we denote by C(Γ, s) the set of elements
in C(Γ) which have support in the lattice Γ ∩ s.

iii) Given a rational subspace s, we set MX\s =
∏
a∈X\s(1− ea) ∈ Z[Γ]

and ∇X\s :=
∏
a∈X\s∇a the corresponding operator.

With these notations, the space DME(X) defined by Dahmen–Micchelli is
formed by the set of functions f ∈ CE(Γ) satisfying the system of difference
equations∇X\sf = 0 as s varies among all proper rational subspaces relative
to X. It is easy to see that DME(X) consists of quasi–polynomials.

It follows from their theory (see also [3]), that for each E, the space
DME(X) is a free E−module of dimension δ(X), the volume of the zonotope
B(X). In particular DME(X) = E ⊗Z DMZ(X) for all E. Therefore from
now on we shall work directly over Z and drop the subscript E.

Let Λ be the smallest sub–lattice of Γ for which each function of DM(X)
is a polynomial on its cosets. Λ is the intersection of all the sublattices of
Γ generated by all the bases of V that one can extract from X (the least
common multiple).
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Given a rational subspace s, we will identify the space C(Γ ∩ s) with the
subspace C(Γ, s) of C(Γ) by extending the functions with 0 outside s.

2.5. The special functions PuX . Let U := V ∗ be the dual of V . Given a
(finite) list Y of non zero vectors in V , we shall say that a vector u ∈ U is
Y−regular if it does not vanish on any of the vectors in Y , in other words if it
is in one of the (open) faces of the hyperplane arrangement in U determined
by Y .

The vectors X define a hyperplane arrangement in U and this decomposes
U into faces. Given a rational subspace s and a vector u ∈ U vanishing on s
and regular for X \ s, we divide the set X \ s into two parts A,B, where u is
respectively positive and negative. These two sets A,B depend only upon
the face F in which u lies. Let V (u ≥ 0) be the closed half space of vectors
v where u is non negative. The half space V (u ≥ 0) contains C(A,−B)
the cone generated by the list [A,−B]. We denote this cone by C(F,X).
Furthermore the space s is determined by u and X, as s is the subspace
generated by the elements a ∈ X such that 〈u, a〉 = 0.

We are going to consider the series Θu
X which is characterized by the

following two properties:

Lemma 2.6. There exists a unique element

Θu
X =

∑
γ

PuX(γ)eγ

such that
i) MX\sΘu

X = 1, equivalently ∇X\sPuX = δ0.
ii) PuX is supported in −

∑
b∈B b+ C(F,X).

Proof. Set:

(1) Θu
X = (−1)|B|e−

P
b∈B b

∏
a∈A

(
∞∑
k=0

eka)
∏
b∈B

(
∞∑
k=0

e−kb).

It is easily seen that this element satisfies the two properties and is unique.
�

If s = V , u = 0 and P0
X = δ0.

Morally, Θu
X =

∏
a∈X\s

1
1−ea =

∏
a∈A

1
1−ea

∏
b∈B

−e−b

1−e−b . We indeed need to
reverse the sign of some of the vectors in X \ s in order that the convolution
product of the corresponding geometric series makes sense.

It is clear that Θu
X depends only of the face F of s⊥ where the regular

element u lies.

Although a function f ∈ C(Γ, s) may have infinite support, we easily see
that the convolution PuX ∗ f is well defined. In fact we claim that, given
any γ ∈ Γ, we can write γ = λ + µ with µ ∈ s ∩ Γ, and λ ∈ (−

∑
b∈B b +

C(A,−B))∩Γ only in finitely many ways. This we see since 〈u | γ〉 = 〈u |λ〉
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and λ =
∑

a∈A kaa +
∑

b∈B hb(−b) with ka ≥ 0, hb ≥ 1. Thus the equality
〈u | γ〉 =

∑
a∈A ka〈u | a〉 +

∑
b∈B hb〈u | − b〉 yields that the vector λ is in a

bounded set, intersecting the lattice Γ in a finite set.

Choose two rational spaces s, t and a vector u ∈ U vanishing on s and
regular for X \ s. The restriction of u to t vanishes on t ∩ s and is regular
for (X ∩ t) \ s. To simplify notations, we still denote by u the restriction of
u to t. We have:

Proposition 2.7. i) ∇(X\t)\sPuX = PuX∩t.
ii) For g ∈ C(Γ ∩ s):

(2) ∇X\t(PuX ∗ g) = PuX∩t ∗ (∇(X∩s)\(t∩s)g).

Proof. i) From Equation (1), we see that the series associated to the function
∇(X\t)\sPuX equals

Θu
X∩t = (−1)|B∩t|e−

P
b∈B∩t b

∏
a∈A∩t

(
∞∑
k=0

eka)
∏
b∈B∩t

(
∞∑
k=0

e−kb).

ii) Let g ∈ C(Γ ∩ s). Take any rational subspace t, we have that ∇X\t =
∇(X∩s)\(t∩s)∇(X\t)\s, thus

∇X\t(PuX ∗ g) = (∇(X\t)\sPuX) ∗ (∇(X∩s)\(t∩s)g).

As ∇(X\t)\sPuX = PuX∩t from part i), we obtain Formula (2), which is the
mother of all other formulae of this article.

�

In particular, for s = t, the restriction of u to t is 0 and Formula (2)
implies the following.

Proposition 2.8. If f ∈ C(Γ ∩ s), we have f = ∇X\s(PuX ∗ f).

3. A remarkable space

3.1. The space F(X). We let SX denote the set of all rational subspaces
relative to X.

Definition 3.2. We define the space of interest for this article by:

(3) F(X) := {f ∈ C(Γ) | ∇X\sf ∈ C(Γ, s), for all s ∈ SX}.

One of the equations (corresponding to s = {0}) that must satisfy Θ(f)
when f ∈ F(X) is the relation

∏
a∈X(1−ea)Θ(f) = c, where c is a constant.

This equation was the motivation for introducing the space F(X). Indeed
the first important fact on this space is the following:

Lemma 3.3. i) If u is regular for X then PuX lies in F(X).
ii) The space DM(X) is contained in F(X).

Proof. i) Indeed, ∇X\sPuX = PuX∩s ∈ C(Γ, s).
ii) Is clear from the definitions. �
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In particular if X generates a pointed cone, then the partition function
PX lies in F(X).

Example 3.4. Let us give a simple example. Let Γ = Zω, and X =
[2ω,−ω]. Then it is easy to see that F(X) is a free Z module of dimension
4, with corresponding basis

θ1 =
∑
n∈Z

enω, θ2 =
∑
n∈Z

nenω,

θ3 =
∑
n∈Z

(
n

2
+

1− (−1)n

4
)enω, θ4 =

∑
n≥0

(
n

2
+

1− (−1)n

4
)enω.

Here θ1, θ2, θ3 are a Z basis of DM(X).

In fact, there is a much more precise statement of which Lemma 3.3 is a
very special case and which will be the object of Theorem 3.8.

3.5. Some properties of F(X). Let s be a rational subspace and u ∈ s⊥
be a X \ s regular element.

Proposition 3.6. i) ∇X\s maps F(X) to F(X ∩ s).
ii) The map g 7→ PuX ∗ g gives an injection from F(X ∩ s) to F(X).

iii) If g ∈ DM(X ∩s), then ∇X\t(PuX ∗g) = 0, for any rational subspace
t such that t ∩ s 6= s.

Proof. i) If f ∈ F(X), we have ∇X\sf ∈ F(X ∩ s). In fact take a rational
subspace t of s, we have that ∇(X∩s)\t∇X\sf = ∇X\tf ∈ C(Γ ∩ t).

ii) If g ∈ F(X∩s), then ∇(X∩s)\(t∩s)g ∈ C(Γ∩ t∩s), hence Formula (2) in
Proposition 2.7 shows that ∇X\t(PuX ∗ g) ∈ C(Γ, t), so that PuX ∗ g ∈ F(X)
as desired.

iii) Similarly, if g ∈ DM(X ∩ s), Formula (2) in Proposition 2.7 implies
the third assertion of our proposition.

�

Proposition 3.6 allows us to associate to a rational space s and a regular
vector u vanishing on s, the operator

Πs,u
X : f 7→ PuX ∗ (∇X\sf)

on F(X). The operator Πs,u
X is a projector.

3.7. The main theorem. Choose for every rational space s, a vector us ∈
U vanishing on s and regular for X \ s. The following theorem is the main
theorem of this section.

Theorem 3.8. Then:

(4) F(X) = ⊕s∈SX
Pus

X ∗DM(X ∩ s).
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Proof. Denote by SiX , the subset of subspaces s ∈ SX of dimension i. Con-
sider ∇X\s as an operator on F(X) with values in C(Γ). Define the spaces

Ki := ∩t∈Si−1
X

Ker∇X\t.

Notice that by definition K{0} = F(X), that KdimV is the space DM(X)
and that Ki+1 ⊆ Ki.

Lemma 3.9. Let s ∈ SiX .
i) The image of ∇X\s restricted to Ki is contained in the space DM(X∩

s).
ii) If f is in DM(X ∩ s), then PuX ∗ f ∈ Ki.

Proof. i) First we know, by the definition of F(X), that∇X\sKi is contained
in the space C(Γ, s). Let t be a rational hyperplane of s, so that t is of
dimension i− 1. By construction, we have that for every f ∈ Ki

0 =
∏

a∈X\t

∇af =
∏

a∈(X∩s)\t

∇a∇X\sf.

This means that ∇X\sf satisfies the difference equations given by the cocir-
cuits of X ∩ s.

ii) Follows from the third item of Proposition 3.6.
�

Consider the map ∆i : Ki → ⊕s∈Si
X
DM(X ∩ s) given by

∆if = ⊕s∈Si
X
∇X\sf

and the map Pi : ⊕s∈Si
X
DM(X ∩ s)→ Ki given by

Pi(⊕gs) =
∑
Pus

X ∗ gs.

Lemma 3.10. The sequence

0 −→ Ki+1 −→ Ki
∆i−→ ⊕s∈Si

X
DM(X ∩ s) −→ 0

is exact. Furthermore, the map Pi provides a splitting of this exact sequence:
∆iPi = Id.

Proof. By definition, Ki+1 is the kernel of ∆i, thus we only need to show
that ∆iPi = Id. If s, t are two distinct subspaces of SiX , s ∩ t is a proper
subspace of t. Item iii) of Proposition 3.6 says that for g ∈ DM(X ∩ s),
∇X\t(P

us

X ∗ g) = 0. Thus given a family gs ∈ DM(X ∩ s), the function
f =

∑
t∈Si

X
Put

X ∗ gt is such that ∇X\sf = gs. This proves our claim that
∆iPi = Id. �

Putting together these facts, Theorem 3.8 follows.
�
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A collection u = (us) of elements us ∈ U vanishing on s and regular for
X \ s will be called a regular collection (for X). Given a regular collection
u, we can write an element f ∈ F(X) as

f =
∑
s∈SX

fs

with fs ∈ P
us

X ∗DM(X ∩ s). This expression for f will be called the u de-
composition of f . In this decomposition, the component fV is in DM(X).

The space Pus

X ∗ DM(X ∩ s) will be referred to as the us-component of
F(X).

From Lemma 3.10 it follows that the operator Id −Pi∆i projects Ki to
Ki+1 with kernel ⊕s∈Si

X
Pus

X ∗DM(X∩s) (this operator depends of u). Thus
the ordered product

Πi
u := (Id−Pi−1∆i−1)(Id−Pi−2∆i−2) . . . (Id−P0∆0)

projects F(X) to Ki; therefore, we have

Proposition 3.11. Let u be a regular family and s a rational subspace of
dimension i. The operator

Pu
s = Πs,us

X (Id−Pi−1∆i−1)(Id−Pi−2∆i−2) . . . (Id−P0∆0) = Πs,us

X Πi
u

is the projector of F(X) to the us-component Pus

X ∗DM(X ∩ s) of F(X).
In particular the operator

PV := (Id−Pdim(V)−1∆dim(V )−1)(Id−Pdim(V)−2∆dim(V )−2) . . . (Id−P0∆0)

is the projector F(X) → DM(X) associated to the direct sum decomposi-
tion:

F(X) = DM(X)⊕
(
⊕s∈SX |s 6=V P

us

X ∗DM(X ∩ s)
)
.

Let u = (ut) be a X regular collection. If s is a rational subspace, the
collection (ut|s), with t ∈ SX∩s is a X ∩ s regular collection. We still denote
it by u in the next proposition. The proof of this proposition is skipped, as
it is very similar to preceding proofs.

Proposition 3.12. Let s be a rational subspace. Let f ∈ F(X) and f =∑
t∈S(X) ft be the u decomposition of f and ∇X\sf =

∑
t∈SX∩s

gt be the u
decomposition of ∇X\sf , then

• ∇X\sft = 0 if t /∈ SX∩s,
• ∇X\sft = gt if t ∈ SX∩s.

Remark 3.13. It follows from the previous theorems and the properties of
DM(X) that, for every E, we could define a space FE(X) of E valued
functions as in Definition 3.2 and we have FE(X) = E ⊗Z F(X).
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3.14. Localization theorem. Let B(X) := {
∑m

i=1 tiai, 0 ≤ ti ≤ 1} be
the zonotope generated by X, and let τ denote a tope, that is a connected
component of the complement in V of the union of the hyperplanes generated
by subsets of X. We will show that for any element f ∈ F(X), the function
f(γ) coincides with a quasi–polynomial on the sets (τ−B(X))∩Γ (we simply
say f is a quasi–polynomial on τ −B(X)).

In order to do this remark that, given x0 ∈ τ and a proper rational space
s, it is possible to choose a regular element us such that us(x0) < 0, as the
projection of x0 on V/s is not zero.

Let f ∈ F(X) and let τ be a tope. Let x0 ∈ τ and let u be a regular
collection such that us(x0) < 0 for every s 6= V . Our previous claim then
follows from the explicit construction below.

Proposition 3.15 (Localization theorem). Let f =
∑
fs be the u-decom-

position of f . Then the component fV of this decomposition is a quasi–
polynomial function in DM(X) such that f = fV on τ −B(X).

Remark 3.16. A choice of u = (us) negative on x0 has the effect of pushing
the supports of the elements fs (s 6= V ) away from the neighborhood τ of
x0. See Figures 1, 2 which describe the u decomposition of the partition
function PX for X := [a, b, c] with a := ω1, b := ω2, c := ω1 + ω2 in the
lattice Γ := Zω1⊕Zω2. Thus the content of Proposition 3.15 is very similar
to Paradan’s localization theorem [9].

n1

n2

(n2 + 1)

(n1 + 1)

0

0

0

0

Figure 1. The partition function of X := [a, b, c]

Proof. Write f =
∑

s∈SX
fs with fs = Pus

X ∗ ks where ks ∈ DM(X ∩ s).
Let s be a proper rational space. Denote by Fs the face of s⊥ where us
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n1

n2

(n2 + 1)

(n1 + 1)

x0

+

n1 +

n2

−(n2 + 1)

x0
n1 +

n2

−(n1 + 1) x0
n1

n2

(n1 − n2)
x0

+

n1

n2

(n2 + 1)

x0

Figure 2. u decomposition of the partition function of
X := [a, b, c] for u negative on x0

belongs. In the notation of Lemma 2.6, the support of fs is contained in the
polyhedron s −

∑
b∈B b + C(Fs, X) ⊂ s + C(Fs, X). This last polyhedron

is convex and, by construction, it has a boundary limited by hyperplanes
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which are rational with respect to X. Thus either τ ⊂ s + C(Fs, X) or
τ ∩ (s+C(Fs, X)) = ∅. As us ≥ 0 on s+C(Fs, X) and us(x0) < 0, it follows
that τ is not a subset of s+ C(Fs, X), so that τ ∩ (s+ C(Fs, X)) = ∅.

In fact we claim that τ−B(X) does not intersect the support s−
∑

b∈B b+
C(Fs, X) of fs. Indeed, otherwise we would have an equation v−

∑
x∈X txx =

s+
∑

a∈A kaa+
∑

b∈B hb(−b) with v ∈ τ , 0 ≤ tx ≤ 1, ka ≥ 0, hb ≥ 1. This
would imply that v ∈ s+C(A,−B) a contradiction. Thus f coincides with
the quasi–polynomial fV on τ −B(X). �

One should remark that a quasi–polynomial is completely determined
by the values that it takes on τ − B(X) thus fV is independent on the
construction.

Definition 3.17. We shall denote by f τ the quasi–polynomial coinciding
with f on τ −B(X).

Let us remark that the open subsets τ −B(X) cover V , when τ runs over
the topes of V (with possible overlapping). Thus the element f ∈ F(X) is
entirely determined by the quasi–polynomials f τ .

Example 3.18. In Figure 3, for each tope τ , the set of integral points in
τ − B(X) is contained in one of the affine closed cones limited by thick
lines. We are showing in color the convex envelop of the integral points in
τ −B(X) and not the larger open set τ −B(X).

a

cb

n1

n2

Figure 3. Translated topes of X. The zonotope −B(X) is
in black.
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3.19. Wall crossing formula. We first develop a general formula describ-
ing how the functions f τ change when crossing a wall. Then we apply this
to the partition function PX and deduce that it is a quasi–polynomial on
c−B(X), where c is a big cell.

Let H be a rational hyperplane, and let u ∈ U be an equation of the
hyperplane.

Lemma 3.20. If q ∈ DM(X∩H), then w := PuX ∗q−P
−u
X ∗q is an element

of DM(X).

Remark 3.21. In [1], a one-dimensional residue formula is given for w allow-
ing us to compute it.

Proof. If t ∈ SX is different from H, ∇X\t(PuX ∗ q) = ∇X\t(P−uX ∗ q) = 0, as
follows from Proposition 3.6 iii). If s = H, then ∇X\H(PuX ∗ q−P

−u
X ∗ q) =

q − q = 0. �

Assume that τ1, τ2 are two adjacent topes namely τ1 ∩ τ2 spans a hyper-
plane H. The hyperplane H is a rational subspace. Let τ12 be the unique
tope for X ∩H such that τ1 ∩ τ2 ⊂ τ12 (see Figure 4).

Example 3.22. Let C be the cone generated by the vectors a := ω3 + ω1,
b := ω3 + ω2, c := ω3 − ω1, d := ω3 − ω2 in a 3-dimensional space V :=
Rω1 ⊕ Rω2 ⊕ Rω3. Figure 4 represents the section of C cut by the affine
hyperplane containing a, b, c, d. We consider X := [a, b, c, d].

We show in section, on the left of the picture, two topes τ1, τ2 adjacent
along the hyperplane H generated by b, d and, on the right, the tope τ12.
The list X ∩H is [b, d]. The closure of the tope τ12 is ”twice bigger ” than
τ1 ∩ τ2.

a

b

c

d

x0
τ1τ2

b

d

τ12

x0

Figure 4. Two adjacent topes of X := [a, b, c, d]

Let f ∈ F(X). The function ∇X\Hf is an element of F(H ∩ X), thus
by Proposition 3.15, there exists a quasi–polynomial (∇X\Hf)τ12 on H such
that ∇X\Hf agrees with (∇X\Hf)τ12 on τ12.
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Theorem 3.23. Let τ1, τ2, H, τ12 be as before and f ∈ F(X). Take u ∈ U
vanishing on H such that 〈u, τ1〉 > 0 and so 〈u, τ2〉 < 0. Then

(5) f τ1 − f τ2 = PuX ∗ (∇X\Hf)τ12 − P−uX ∗ (∇X\Hf)τ12 .

Proof. Let x0 be a point in the relative interior of τ1 ∩ τ2 in H. Then x0

does not belong to any X-rational hyperplane different from H (see Figure
4). Therefore we can choose a regular element us for every s different from
H,V such that us is negative on x0.

Consider the regular collection u1 = (u1
s) where u1

s = us for s 6= H and
u1
H = −u and the regular collection u2 = (u2

s) where u2
s = us for s 6= H and

u2
H = u.
For i = 1, 2 let f = f iV + f iH +

∑
s 6=H,V f

i
s be the ui decomposition of f .

We write f1
H = P−uX ∗ q(1) with q(1) ∈ DM(X ∩ H). The family u1

takes a negative value at any point x1 of τ1 sufficiently close to x0, thus by
Proposition 3.15, the component f1

V is equal to f τ
1
. By Proposition 3.12,

∇X\Hf = q(1) +
∑

s⊂H,s 6=H
∇X\Hf1

s

is the u1 decomposition of ∇X\Hf so that q(1) = (∇X\Hf)τ12 by Proposition
3.15. We thus have f1

V = f τ1 and f1
H = P−uX ∗ (∇X\Hf)τ12 .

Similarly, f2
V = f τ2 and f2

H = PuX ∗ (∇X\Hf)τ12 .
Now from Proposition 3.11, when dim(s) = i,

f1
s = Π

s,u1
s

X Πu1

i f, f2
s = Π

s,u2
s

X Πu2

i f,

and, for any i < dimV , the operators Πu1

i and Πu2

i are equal. Thus f1
s = f2

s

for s 6= V,H. So we obtain f1
V + f1

H = f2
V + f2

H , and our formula.
�

Consider now the case where X spans a pointed cone. Let us inter-
pret Formula (5) in the case in which f = PX . We know that for a given
tope τ , PX agrees with a quasi–polynomial PτX on τ − B(X). Recall that
∇X\H(PX) = PX∩H as we have seen in Lemma 3.3. It follows that given
two adjacent topes τ1, τ2 as above, (∇X\Hf)τ12 equals (PX∩H)τ12 (extended
by zero outside H). So we deduce the identity

(6) Pτ1X − P
τ2
X = (PuX − P−uX ) ∗ Pτ12X∩H .

This is Paradan’s formula ([8], Theorem 5.2).

Example 3.24. Assume X = [a, b, c] as in Remark 3.16. We write v ∈ V
as v = v1ω1 + v2ω2. Let τ1 = {v1 > v2 > 0}, τ2 = {0 < v1 < v2}. Then one
easily (see Figure 1) sees that

Pτ1X = (n2 + 1), Pτ2X = (n1 + 1), Pτ12X∩H = 1.
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Equality (6) is equivalent to the following identity of series which is easily
checked:∑
n1,n2

(n2 − n1)xn1
1 xn2

2 = (−
∑

n1≥0,n2<0

xn1
1 xn2

2 +
∑

n1<0,n2≥0

xn1
1 xn2

1 )(
∑
h

xh1x
h
2).

Recall that a big cell is a connected component of the complement in V
of the singular vectors which are formed by the union of all cones C(Y ) for
all the sublists Y of X which do not span V . A big cell is usually larger
than a tope. See Figure 5 which shows a section of a cone in dimension 3
generated by 3 independent vectors a, b, c. Here X = [a, b, c, a+ b+ c]. On
the drawing, the dots a,b,c,d represents the intersection of the section with
the half lines R+a, R+b, R+c, R+d.

a

bc

d

a

bc

d

Figure 5. Topes and cells for X := [a, b, c, d := a+ b+ c]

Let us now consider a big cell c. We need

Lemma 3.25. Given a big cell c, let τ1, . . . , τk be all the topes contained in
c. Then:

c−B(X) = ∪ki=1(τi −B(X)).

Proof. Notice that ∪ki=1τi is dense in c. Given v ∈ c−B(X), v +B(X) has
non empty interior and thus its non empty intersection with the open set c
has non empty interior. It follows that v + B(X) meets ∪ki=1τi proving our
claim. �

Now in order to prove the statement for big cells, we need to see what
happens when we cross a wall between two adjacent topes.

Theorem 3.26. On c − B(X), the partition function PX agrees with a
quasi–polynomial f c ∈ DM(X).

Proof. By Lemma 3.25, it suffices to show that given two adjacent topes
τ1, τ2 in c, Pτ1X = Pτ2X .

But now notice that the positive cone spanned by X ∩ H, support of
PX∩H , is formed of singular vectors and therefore it is disjoint from c by
definition of big cells. Therefore PX∩H vanishes on τ12. Thus Pτ12X∩H = 0
and our claim follows from identity 6. �
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n1

n2

(n2 + 1)

(n1 + 1)

x0

Figure 6. The function f

This theorem was proven [6] by Dahmen-Micchelli for topes, and by
Szenes-Vergne [10] for cells. In many cases, the sets c−B(X) are the max-
imal domains of quasi-polynomiality for PX .

Remark 3.27. If c is a big cell contained in the cone C(X), the open set
c− B(X) contains c so that the quasi–polynomial f c coincides with PX on
c.

This is usually not so for f ∈ F(X) and a tope τ : the function f does not
usually coincide with f τ on τ . Figure 6 describes the function f := −PuX in
F(X) with X := [a, b, c] as in Remark 3.16 and u strictly negative on a, b.
We see for example that f is equal to 0 on the set n1 = 0, n2 ≤ 0 which is
in the closure of the tope τ3 := {v2 < v1 < 0} while the quasi–polynomial
f τ3 = (n1 + 1) takes the value −1 there.

4. A second remarkable space

4.1. A decomposition formula. In this section we want to present the
analogue for distributions, the proofs are essentially the same or simpler than
in the previous case, so we skip them. We shall freely use the notations of
the previous sections.

Let V be a finite dimensional vector space, consider the space D(V ) of
distributions on V . We denote by δ0 the delta distribution on V .
D(V ) is in an obvious way a module over the algebra of distributions with

compact support, under convolution. Let now X := [a1, . . . , am] be a list of
non–zero elements of V .
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Definition 4.2. i) Given a rational subspace s, we denote by D(V, s)
the set of elements in D(V ) which vanish on all test functions van-
ishing on s.

ii) Given a vector a 6= 0, we denote by ∂a the directional derivative
associated to a. For a list Y of non–zero vectors, we denote by
∂Y :=

∏
a∈Y ∂a.

The restriction map C∞c (V )→ C∞c (s) on test functions induces, by dual-
ity, an identification between the space of distributions on s and the space
D(V, s).

If X spans V , we have the space defined by Dahmen–Micchelli, which we
denote D(X), and which is formed by the set of distributions f ∈ D(V )
satisfying the system of differential equations ∂Y f = 0 as Y varies among
all cocircuits of X. It is easy to see that an element of D(X) is a polynomial
density P (x)dx on V .

Assume that X spans a pointed cone. Recall the definition of the multi-
variate spline TX , it is a tempered distribution defined by:

(7) 〈TX | f〉 =
∫ ∞

0
. . .

∫ ∞
0

f(
m∑
i=1

tiai)dt1 . . . dtm.

If W is the span of X and if we choose a Lebesgue measure dx on W ,
we may interpret TX as a function on W supported in the cone C(X) by
writing 〈TX | f〉 =

∫
W f(x)TX(x)dx.

If Y is a sublist of X one has that ∂X\Y TX = TY .
We next define the vector space of interest for this section:

(8) G(X) := {f ∈ D(V ) | ∂X\sf ∈ D(V, s), for all s ∈ SX}.

Lemma 4.3. i) If X generates a pointed cone, the multivariate spline
TX lies in G(X).

ii) The space D(X) is contained in G(X).

Proof. i) ∂X\sTX = TX∩s ∈ D(V, s).
ii) is clear from the definition.

�

As for the partition functions, this lemma is a very special case of Theorem
4.5 which follows.

Given a rational subspace s, choose a regular vector u in s⊥. Divide as
before the set X \s into two parts A,B, where u is respectively positive and
negative.

We want to define an element T uX ∈ D(V ) which is characterized by the
following two properties:

Lemma 4.4. There exists a unique element T uX characterized by the prop-
erties ∂X\sT uX = δ0 and T uX is supported in C([A,−B]).
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Proof. Set:
T uX = (−1)|B|T[A,−B].

It is easily seen that this element satisfies the two properties. The uniqueness
is also clear.

�

Identify the space of Dahmen–Micchelli D(X ∩ s) with a subspace of
D(V, s). Although a distribution f ∈ D(V, s) may have non compact sup-
port, we easily see that the convolution product T uX ∗ f is well defined. In
fact, given any γ ∈ V , we can write γ = λ+µ with µ ∈ s, and λ ∈ C(A,−B)
only in a bounded polytope.

The analog of the ”mother formula” (2) of Proposition 2.7 is the following
formula.

For g ∈ D(V, s):

(9) ∂X\t(T
u
X ∗ g) = T uX∩t ∗ (∂(X∩s)\(t∩s)g).

Following the same scheme of proof as for Theorem 3.8, the following
theorem follows:

Theorem 4.5. Choose for every rational space s, a vector us ∈ U vanishing
on s and regular for X \ s. Then:

G(X) = ⊕s∈SX
T
us

X ∗D(X ∩ s).

We associate to a rational space s and a regular vector u vanishing on s,
the operator on G(X) defined by

π
s,u
X : f 7→ T uX ∗ (∂X\sf).

This is well defined. Indeed ∂X\sf is supported on s so that the convolution
is well defined. We see that πs,uX maps G(X) to G(X) and that it is a
projector.

Given a regular collection u, we can write an element f ∈ G(X) as

f =
∑
s∈SX

fs

with fs ∈ T
us

X ∗D(X ∩ s). This expression for f will be called the u decom-
position of f . In this decomposition, the component fV is in D(X).

The space T us

X ∗D(X∩s) will be referred to as the us-component of G(X).
Let u be a regular family. One can write in the same way as in Proposition

3.11 the explicit projectors to the various components.

4.6. Polynomials. Let f ∈ G(X) and let τ be a tope. Let x0 ∈ τ and let
u be a regular collection such that us(x0) < 0 for any s 6= V .

Proposition 4.7 (Localization theorem). Let f =
∑
fs be the u-decompo-

sition of f . Then the component fV of this decomposition is a polynomial
density in D(X) such that f = fV on τ .
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Proof. Write f =
∑

s∈SX
fs with fs = T

us

X ∗ ks where ks ∈ D(X ∩ s). The
distribution fs = T

us

X ∗ ks is supported on s + C(Fs, X). As in Proposition
3.15 we know that τ ∩ (s+ C(Fs, X)) = ∅. �

Remark 4.8. Thus the distribution f is a locally polynomial density on V . In
particular this is a tempered distribution. Here the distribution f coincides
with the polynomial density fV only on τ and not on the bigger open set
τ−B(X). This extension property is replaced the regularity property that f
is of class Cr−1, where r is the minimum of the cardinality of the cocircuits
of X (see [3]).

We shall denote by f τ the polynomial density in D(X) coinciding with f
on the tope τ .

Let H be a rational hyperplane, and let u ∈ U be the equation of the
hyperplane.

Lemma 4.9. If q ∈ D(X ∩H), then w := T uX ∗ q−T
−u
X ∗ q is an element of

D(X).

Let us use the notations τ1, τ2, H, τ12 as in Theorem 3.23. Let f ∈ G(X).
The distribution ∂X\Hf is an element of G(H∩X), thus by Proposition 4.7,
there exists a polynomial density (∂X\Hf)τ12 ∈ D(X ∩H) on H such that
∂X\Hf agrees with (∂X\Hf)τ12 on τ12.

Theorem 4.10. Take u ∈ U vanishing on H such that 〈u, τ1〉 > 0. Then

(10) f τ1 − f τ2 = T uX ∗ (∂X\Hf)τ12 − T−uX ∗ (∂X\Hf)τ12 .

When X spans a pointed cone, we interpret Formula (10) for f = TX .
On a given tope τ , TX agrees with a polynomial density T τX .

Since ∂X\H(TX) = TX∩H we deduce, the identity

(11) T τ1X − T
τ2
X = (T uX − T−uX ) ∗ T τ12X∩H .

Now the statement for big cells:

Theorem 4.11. On c, the multivariate spline TX agrees with a polynomial
density in D(X).

Remark 4.12. Once Theorems 3.26 and 4.11 have been proven, it is easy
to deduce from them that the generalized Khovanskii- Pukhlikov formula
relating volumes and number of points holds [2]. Indeed, one can prove it
easily sufficiently far from the walls (cf. [3]).
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