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Introduction

These notes on volumes and Ehrhart polynomials of convex polytopes are
afterwards thoughts on lectures already delivered in Roma, by the second
author in December 1999. The subject of these lectures was to explain
Jeffrey-Kirwan residue formula for volumes of convex polytopes [J-K] and
the residue formula for Ehrhart polynomials of rational polytopes [B-V 1, 2].
The main concept used in these formulae is the study of rational functions
with poles on an arrangement of hyperplanes and the total residue of such a
function, which can be computed recursively. Now, what about “concrete”
polytopes ? The residue formula leads in principle to an answer, but to be
carried out in practice, without further thinking, requires too many steps.
Thus we have been fascinated by calculations of Chan-Robbins in [CR], and
the conjectures of Chan-Robbins-Yuen [C-R-Y] on the volume of the a cer-
tain polytope (proved by Zeilberger [Z]) and of some of its faces, as well as
by other examples given by Pitman-Stanley [Pi-S], Stanley [S]. All these ex-
amples are related with the root system An. Therefore we will study here in
more details what can be said on residues formulae for this root system and
subsets of this system.

Let us sketch briefly the content of these notes. Short bibliographical
comments are also given at the end of each section. We first recall the def-
inition of total residue in Section 1 and Jeffrey-Kirwan residue formula for
volumes of general convex polytopes (and give a proof) in Section 2 and
Appendix (Section 14). A formula for change of variables in total residues
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is obtained in Section 9. We go on considering flow polytopes (see Exam-
ples below, and Definition in Section 3), and defining a special class of flow
polytopes: the cascade polytopes . In Section 4, we show that the Jeffrey-
Kirwan residue formula for the volume of cascade polytopes is an iterated
constant term formula. We then give a proof of a divisibility property be-
tween the volume of a cascade polytope and the volume of some particular
face (this implies Conjecture 4 of [C-R-Y]) and a similar divisibility property
for Ehrhart polynomial. We carry out the computation of the residue for the
complete flow polytope, following the indications of Zeilberger [Z] . It thus
leads to the known formula [Z] for the volume of the complete flow poly-
tope. Our method is algebraic though combinatorists would probably prefer
another type of proof. For example, Chan-Robbins-Yuen proved that their
polytope P could be explicitly decomposed in a union of K elementary sim-
plices (each of volume equal 1

(dim P )!
). Later K was computed by Zeilberger.

Here we apply directly the residue formula for the volume, and we do not
use any simplicial decomposition.

In Section 8, we state a residue formula for Ehrhart polynomials of flow
polytopes (the proof is not given here, but is similar to the one given for
volumes; it is a reformulation of Khovanskii-Pukhlikov theorem [KP]).

In Section 10, as suggested by R. Stanley, we show that formulae for
volumes of a family of flow polytopes can be transmuted very explicitly to
formulae for Ehrhart polynomials, due to the formula of change of variables
in residues. Sections 4, 5, 6 and 7 can be skipped if the reader is interested
only in the nice formula of Section 10. Finally, we state a symmetry property
that must satisfy the Kostant partition function.

Let us now state here more precisely the setting and the contents of these
notes.

Let V be a r-dimensional real vector space and V ∗ its dual vector space.
Let Φ = {α1, α2, ..., αN} be a sequence of non-zero linear forms on V ∗ all lying
in an open half space (we do not assume the αk to be distinct) and spanning
V ∗. We denote by ∆+ the set {Φ} (we mean ∆+ and Φ are the same sets,
but Φ may have multiplicities), and by ∆ the set ∆+ ∪ −∆+ . The closed
convex cone C(∆+) generated by ∆+ is decomposed as a union of closure of
big chambers c as in [B-V 1]. For a ∈ V ∗, we denote by PΦ(a) ⊂ RN

+ the
convex polytope consisting of all solutions (u1, u2, ..., uN), in non negative
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real numbers uk, of the equation

N∑

k=1

ukα
k = a

and by vol PΦ(a) its volume. Any convex polytope can be realized in that
way.

Consider the space R∆ of rational functions of x ∈ VC with poles on the
union HC of the hyperplanes αk(x) = 0. A subset σ of ∆ is called a basis

of ∆, if the elements α ∈ σ form a basis of V ∗ . For such σ, set

fσ(x) :=
1∏

α∈σ α(x)
.

In appropriate coordinates x1, ..., xr, the function fσ is simply 1
x1x2...xr

and
we denote by S∆ the subspace of R∆ spanned by such “simple” elements fσ .
The vector space S∆ is contained in the homogeneous component of degree
−r of R∆ and we have the direct sum decomposition

R∆ = S∆ ⊕ (

r∑

k=1

∂kR∆).

We call the projection map

Tres∆ : R∆ → S∆

according to this decomposition the total residue map. This projection van-
ishes outside the homogeneous component of degree −r of R∆. The total
residue of a function is again a function. It consists of computing a rational
function f(x) up to derivatives, in other words, f(x)dx and (Tres∆(f))(x)dx
are top dimensional holomorphic forms representing the same cohomology
class on VC −HC.

We consider a ∈ V ∗. Then

JΦ(a)(x) = Tres∆(
e〈a,x〉

∏N
k=1 αk(x)

) =
1

(N − r)!
Tres∆(

〈a, x〉N−r

∏N
k=1 αk(x)

)

is an element of the vector space S∆.
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We denote by

KΦ(a) = Tres∆(
e〈a,x〉

∏N
k=1(1 − e〈αk ,x〉)

)

the “periodic” version of JΦ. This is also an element of the vector space S∆.
Now, to each big chamber c of the subdivision of C(∆+) is associated a

linear form f → 〈〈c, f〉〉 on S∆. It takes value 1 or 0 on a normalized multiple
of fσ whether or not c is contained in C(σ). This is explained in Section 2
and in the Appendix (Section 14). Here are the two fundamental formulae
we will use in these notes.

Formula 1: for a ∈ c, we have

vol PΦ(a) = 〈〈c, JΦ(a)〉〉.

If Φ spans a lattice in V ∗ and if a belongs to this lattice, we denote by
kΦ(a) the number of all solutions (u1, u2, ..., uN), in non negative integral

numbers uk of the equation

N∑

k=1

ukα
k = a.

Similarly (under simplifying assumptions that we do not state in the intro-
duction), the following formula holds.

Formula 2: for a ∈ c, we have

kΦ(a) = 〈〈c, KΦ(a)〉〉.

In particular, as well known, the functions a 7→ vol PΦ(a) and the Ehrhart
function a 7→ kΦ(a) are polynomials on a big chamber c. (The notion of
Minkowski sums and of big chambers are intimately related: if a1, ..., am are
vectors in the closure of a big chamber c, then the polytope PΦ(a1 + · · ·+am)
is isomorphic to the Minkowski sum of the polytopes PΦ(ak).)

This shows that calculation of volumes (or of Ehrhart polynomials) is
done by an algebraic version of “integration”: it consists of computing par-
ticular rational function f(x) on VC modulo derivatives. Furthermore this
formula shows clearly that the S∆- valued polynomial function a → JΦ(a)
determines entirely the locally polynomial function a 7→ vol PΦ(a).

Thus the calculation of the volume of a flow polytope PΦ(a), a ∈ c, is
divided in TWO problems.
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A) Compute the linear form f → 〈〈c, f〉〉.
B) Compute the function

e〈a,x〉

∏N
k=1 αk(x)

up to derivatives.

We will now study some particular cases, where A) or B) can be solved.
The Chan-Robbins-Yuen polytope CRYr consists of solutions (xij) ≥ 0

where 1 ≤ i < j ≤ (r + 1) of the linear equations:

•
r+1∑

i=2

x1,i = 1,

•
r∑

i=1

xi,r+1 = 1,

• For 2 ≤ j ≤ r,
j−1∑

i=1

xij =
r+1∑

k=j+1

xjk.
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Figure 1: Graph for CRY3.

The CRY polytope is also called the complete flow polytope. Indeed,
consider a graph G with r + 1 vertices 1, 2, 3, ..., r, r + 1 and edges i 7→ j
(1 ≤ i < j ≤ r + 1), for all i < j.

We can imagine that the positive quantity xij is the quantity of liquid at
time t in the branch i 7→ j of this cascade. Thus the linear equations above
reflect the constant flow of the cascade ( See Figure 1).

We can also consider other graphs with possibly multiple edges. The as-
sociated polytope will be called a flow polytope. See the precise definition in
Section 3. For example, Pitman-Stanley polytope is the polytope consisting
of solutions in non negative numbers of the inequations

y1,r+1 ≤ a1,

y1,r+1 + y2,r+1 ≤ a1 + a2,
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y1,r+1 + y2,r+1 + y3,r+1 ≤ a1 + a2 + a3,

...

where ai are non negative real numbers.
It is associated to a flow graph, with r + 1 vertices, and edges from i to

r + 1 and from i to i + 1 and last edge r 7→ r + 1 of multiplicity 2.
We can imagine that a1, a2,...ar are additional sources of water, so that

the quantities of water yi,r+1 in the streams i → r+1 satisfies the inequalities
stated above, with a leakage of zi,i+1. ( See g 2).

In the rest of these notes, we consider the positive root system

A+
r = {(ei − ej), 1 ≤ i < j ≤ (r + 1)}.

The system A+
r spans the vector space

Er = {a = a1e
1 + a2e

2 + ... + ar+1e
r+1,

r+1∑

i=1

ai = 0}.

The cone C(A+
r ) ⊂ Er generated by positive roots is the cone a1 ≥ 0, a1+a2 ≥

0,..., a1 + a2 + · · · + ar ≥ 0, a1 + a2 + ... + ar+1 = 0. We denote by c
+ the

open set of C(∆+) defined by

c
+ = {a ∈ C(Ar

+) such that ai > 0, i = 1, .., r}.

It is a big chamber of our subdivision, and will be called the nice chamber.
Thus the functions a 7→ vol PΦ(a) and the Ehrhart function a 7→ kΦ(a)

on the chamber c
+ are the mixed volumes and the mixed lattice point enu-

merators of the fountain polytopes Pk = PΦ(ek − er+1).
Let Φ be a sequence of N elements of A+

r spanning Er. By definition, a
flow polytope is a polytope isomorphic to a polytope PΦ(a), where a is an
element of C(A+

r ) and a cascade polytope the special class of flow polytopes
PΦ(a), where a is constrained to be in the nice chamber of C(A+

r ). The flow
graph associated to Φ has mij edges from i to j, if (ei − ej) has multiplicity
mij ≥ 0 in Φ. In fact, any polytope associated to a smooth toric variety (i.e.
Delzant polytopes and limits) can be realized as a flow polytope (Szenes:
personal communication).

The set of simple roots

Π = {(e1 − e2), (e2 − e3), ..., (er−1 − er), (er − er+1)}

7



a1

a2

a3

z12

z23

z34

y14

y24

y34

y14 ≤ 0

y14 + y24 ≤ a1 + a2

y14 + y24 + y34 ≤ a1 + a2 + a3

Figure 2: Graph for π3(a).
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is a basis of A+
r and the element

fΠ =
1

(e1 − e2)(e2 − e3) · · · (er−1 − er)(er − er+1)

is an element of SAr
. The dimension of SAr

is r! and a particularly nice basis
of SAr

is given by the elements w · fΠ where w ∈ Σr= permutation group of
r elements, acts by permutation on the set {1, 2, ...r}. By THEOREM 19,
the linear form f 7→ 〈〈c+, f〉〉 is the “simplest” possible: the iterated residue
Iresx=0. This is defined as follows: a function in RAr

is identified with
rational function f(x1, ..., xr) (setting er+1 = 0) with poles on the hyperplanes
xi = xj , or xi = 0, and we have

〈〈c+, f〉〉 = Iresx=0f = Resx1=0Resx2=0...Resxr=0f(x1, x2, ..., xr).

Thus the volume of a cascade polytope is given by an iterated residue
formula. But problem B still remains to be solved.

When a is a root of the system Ar+1, the calculation of the total residue
of the particular rational function

JΦ(a)(x) =
〈a, x〉r(r+1)/2

∏
α∈A+

r+1
〈α, x〉

(as well as very similar examples) will be done in Section 6. Let a = e0−er+1.
Setting as before er+1 = 0,

JΦ(a)(x0, ..., xr) =
x

r(r+1)
2

0

x0x1....xr

∏
0≤i<j≤r(xi − xj)

.

The “integration” of this function is very familiar in the context of Selberg
integral ([Se]). However the usual factor

∏
0≤i<j≤r(xi − xj) here is in the

denominator and “Integration ” means that we explicitly compute

1

x1....xr

∏
0≤i<j≤r(xi − xj)

modulo partial derivatives ∂x1 , ∂x2 , ..., ∂xr
, following Aomoto [A]. In THEO-

REM 26, we obtain the formula
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TresA+
r+1

(
(e0 − er+1)r(r+1)/2

∏
0≤i<j≤r+1(e

i − ej)
)

=

r−1∏

i=1

(2i)!

i!(i + 1)!

∑

w∈Σr

ǫ(w)w ·
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)(er − er+1)

where Σr acts by permutations on {1, 2, ..., r}, . Similar formulae are also
obtained. As pointed out by Zeilberger [Z], these calculations are mere refor-
mulations of Morris Identity [M]. The total residue formula replaces here the
iterated constant term. It would be interesting to generalize them to other
root systems.

The Chan-Robbins polytope is described as a face of the polytope of
doubly stochastic matrices in Section 7, as Chan-Robbins-Yuen originally
described it. We apply then THEOREM 27, to prove a formula for the
volume of CRYn , and PROPOSITION 23 for the volume of a particular face
of it.

In Section 9, we prove a formula of Change of variables in total residue.
As a corollary, the S∆- valued polynomial function KΦ(a) for Φ a sequence

of N elements of A+
r is deduced from the function JΦ(a), in a way which will

be explained now. Define

tΦj =
r+1∑

k=j+1

mjk − 1,

sΦ
j = 1 −

j−1∑

k=1

mkj.

We write the vector valued polynomial JΦ, which is homogeneous of de-
gree (N − r),

JΦ(a1e
1 + a2e

2 + ... + are
r − (a1 + a2 + ... + ar)e

r+1)

=
∑

i1+i2+···+ir=N−r

ai1
1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
fΦ(i)

where fΦ(i) are elements of S∆.
Then we obtain THEOREM 46:

KΦ(a1e
1 + a2e

2 + ... + are
r − (a1 + a2 + ... + ar)e

r+1)
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=
∑

|i|=N−r

(
a1 + tΦ1

i1

)(
a2 + tΦ2

i2

)
· · ·

(
ar−1 + tΦr−1

ir−1

)(
ar + tΦr

ir

)
fΦ(i).

Applying FORMULAE (1) and (2) for the volume and Ehrhart polyno-
mials, we see that the Ehrhart polynomial on a big chamber c is immediately
deduced from the polynomial function vol PΦ(a) (i.e; its highest degree com-

ponent) by replacing the monomial
a

ik
k

ik!
by the function

(
ak+tΦ

k
ik

)
(with same

leading term). The function a 7→
(

a
k

)
is more adequate than the monomial

ak/k! in the integral context, as it takes integral values on integers.
THEOREM 46 is a generalization of B.V. Lidskii formula for Kostant par-

tition function [Li]. It was also proven by Stanley for general flow polytopes.
R. Stanley suggested to look for a proof via residues.

In Section 11, we apply the “nice formula” to a polytope considered by
Pitman and Stanley [Pi-S].

Finally, in Section 13, using the action of the full Weyl group Σr+1 on
SAr

, we list r − 1 symmetries properties of the Kostant polynomial

k(A+
r , c+)(a1(e

1−er+1)+· · ·+ar−2(e
r−2−er+1)+ar−1(e

r−1−er+1)+ar(e
r−er+1)).

(This is the mixed lattice point enumerator N(
∑

akPk) of the Chan-
Robbins-Yuen polytopes Pk = PA+

r
(ek − er+1), 1 ≤ k ≤ r.) The function

k(A+
r , c+)(a) is a function of (r−1) variables k+(a1, a2, ....., ar−1). This func-

tion satisfies for example, the properties:

• for any values x1, ..., xr, we have

k+(x1, ...., xr−2,−(x1 + ... + xr−2 + xr−1 + xr + 2)) =

−k+(x1, x2, ..., xr−2, xr−1) − k+(x1, ..., xr−2, xr − 1).

• for any values x1, ..., xr, we have

k+(x1, x2, ..., xr−3,−(x1 + x2 + ... + xr + 3), xr−1) =

−k+(x1, x2, ..., xr−3, xr−2, xr −1)+k+(x1, x2, ..., xr−3, xr−1−1, xr−2 +1)

−k+(x1, x2, ..., xr−3, xr−2, xr−2+1)+k+(x1, x2, ..., xr−3, xr−1−1, xr−1).

We do hope to have shown in these notes that the space S∆, well known in
the study of hyperplanes arrangements, is providing an efficient tool in the
computation of Volumes and Ehrhart polynomials of polytopes. However,
we also learnt in writing these notes how difficult and exciting are “concrete
polytopes”.
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1 Total residues

Let V be a r-dimensional real vector space and V ∗ its dual vector space.
Let ∆ ⊂ V ∗ be a finite subset of non-zero linear forms. We assume ∆
symmetric: ∆ = −∆. Each α ∈ ∆ determines a linear form on V and a
complex hyperplane {x ∈ VC; α(x) = 0} in VC. Consider the hyperplane
arrangement

HC =
⋃

α∈∆

{x ∈ VC, α(x) = 0}.

The ring R∆ of rational functions with poles on HC is the ring ∆−1S(V ∗)
generated by the ring S(V ∗) of polynomial functions on V , together with
inverses of the linear functions α ∈ ∆.

A subset σ of ∆ is called a basis of ∆, if the elements α ∈ σ form a basis
of V ∗. We denote by B(∆) the set of bases of ∆. For σ a basis of ∆, set

fσ(x) :=
1∏

α∈σ α(x)
.

Definition 1 The subspace S∆ of R∆ spanned by the elements fσ, σ ∈ B(∆),
will be called the space of simple elements of R∆:

S∆ =
∑

σ∈B(∆)

Rfσ.

The vector space S∆ is contained in the homogeneous component of degree
−r of R∆. If ∆ does not span V ∗, then the set B(∆) is empty and S∆ = 0.

In general, elements fσ are not linearly independent.
Example 1.

Let V be a 2-dimensional vector space with basis e1, e2. Let ∆ be the set

∆ = {±e1,±e2,±(e1 − e2)}.

Then we have the linear relation

1

e1e2
=

1

e2(e1 − e2)
−

1

e1(e1 − e2)

between elements fσ1 ,fσ2 , fσ3 with σ1 = {e1, e2}, σ2 = {e1, (e1 − e2)} and
σ3 = {e2, (e1 − e2)} bases of ∆.
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We let elements v of V act on R∆ by differentiation:

(∂(v)f)(x) :=
d

dǫ
f(x + ǫv)|ǫ=0.

Then the following holds ([B-V 2], Proposition 7.)

Theorem 2

R∆ = ∂(V )R∆ ⊕ S∆.

As a corollary of this decomposition, we can define the projection map

Tres∆ : R∆ → S∆.

The projection (Tres∆f)(x) of a function f(x) is again a function of x that we
called the total residue of f . By definition, this function can be expressed
as a linear combination of the simple fractions fσ(x). The main property

of the map Tres∆ is that it vanishes on derivatives. If f ∈ R∆ = P∏
k αk

(P ∈ S(V ∗), αk ∈ ∆ ) has a denominator product of linear forms αk ∈ ∆
which do not generate V ∗, then it is easy to see that f is a derivative and
the total residue of f is equal to 0.

Example 2: Let us do a computation. Let V be with basis e0, e1, e2 and
let

∆ = {±e1,±e2,±(e0 − e1),±(e0 − e2),±(e1 − e2)}.

We write x ∈ V as x = x0e0 + x1e1 + x2e2. The reason, for writing xi

instead of xi is in order not to misinterpret an upper index with a power.
Consider the following function W3 of R∆:

W3(x0, x1, x2) =
x2

0

(x0 − x1)(x0 − x2)(x1 − x2)x1x2
.

Then W3 is homogeneous of degree −3. To compute the total residue of
W3(x0, x1, x2), we write x0 as a linear combination of linear forms in the
denominator of W3, in order to reduce the degree of the denominator. For
example, writing x2

0 = ((x0 − x1) + x1)((x0 − x2) + x2), we obtain

W3(x0, x1, x2) =
1

(x1 − x2)x1x2
+

1

(x0 − x2)(x1 − x2)x1

+
1

(x0 − x1)(x1 − x2)x2
+

1

(x0 − x1)(x0 − x2)(x1 − x2)
.

13



The first and last fractions have denominators with linearly dependent
forms, so that their total residue is zero and we obtain:

Tres∆(W3(x)) =
1

(x0 − x1)(x1 − x2)x2
+

1

(x0 − x2)(x1 − x2)x1
.

(More precisely, in the direct sum decomposition,

R∆ = S∆ ⊕ (∂x0R∆ + ∂x1R∆ + ∂x2R∆),

we have,

W3(x0, x1, x2) − Tres∆(W3(x)) = U3(x0, x1, x2),

with

U3(x0, x1, x2) = −∂x1

x0 − 2x2

x2(x0 − x2)(x1 − x2)
− ∂x2

x0 − 2x1

x1(x0 − x1)(x1 − x2)
.)

If V is one dimensional, and ∆ = {±e1}, then R∆ is the ring of Laurent
series

L = {f(x) =
∑

k≥−q

akx
k}.

The total residue of a function f(x) ∈ L is the function a−1

x
. The usual residue

denoted Resx=0f is the constant a−1. The constant term a0 of the Laurent
series f(x) is denoted by CTx=0f . We have CTx=0xf(x) = Resx=0f(x).

We will also use the following obvious properties.

Lemma 3 • Assume Γ ⊂ ∆ is a subset of ∆. Then

RΓ ⊂ R∆,

SΓ ⊂ S∆.

Furthermore, if f ∈ RΓ, then Tres∆(f) belongs to SΓ and

TresΓ(f) = Tres∆(f).

• Assume that V = V1 ⊕ V2 and ∆ = ∆1 ∪ ∆2, with ∆i ⊂ Vi, then

R∆ = R∆1 ⊗ R∆2 ,

S∆ = S∆1 ⊗ S∆2 ,

T res∆ = Tres∆1 ⊗ Tres∆2.
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Consider the vector space Ŝ(V ∗) of formal power series on V . Define
R̂∆ = ∆−1Ŝ(V ∗). As the total residue vanishes outside the homogeneous
component of degree −r of R∆, the map Tres∆ extends as a map

Tres∆ : R̂∆ → S∆.

Consider the open set U∆ = VC −HC, complement of the union of hyper-
planes {α = 0}. Choose a basis ei of V ∗ . This gives coordinates xi on VC.
Let dx = dx1 ∧dx2 ∧ · · ·∧dxr. Let f ∈ R∆. Consider the r- holomorphic dif-
ferential form f(x)dx, defined on the open set U∆. Then (f −Tres∆(f))dx is
an exact form on this open set : by definition of the total residue, the function
f−Tres∆(f) is in the span of ∂kR∆, so (f−Tres∆(f))dx is the differential of

some (r−1)- holomorphic differential form
∑r

k=1 fkdx1∧dx2∧ d̂xk∧· · ·∧dxr.

Bibliographical remarks.

The space S∆ is isomorphic to the highest degree component of the Orlik-
Solomon algebra H∗(U∆, C), described in [O-T] by generators and relations.
The definition of the total residue is given in [B-V 2]. It formalizes notions
introduced in Jeffrey-Kirwan [J-K]. Proposition 2 is proven in [B-V 2].

2 Jeffrey-Kirwan residue formula for volumes

of convex polytopes

Now the vector space V is equipped with a fixed Lebesgue measure dx. We
denote by da the dual measure on V ∗. If σ is a basis of ∆, we denote by vol(σ)
the volume of the parallelepiped ⊕α∈σ[0, 1]α, for our Lebesgue measure da.

We consider RN with basis (w1, . . . , wN) and corresponding Lebesgue
measure dw. Let p be a surjective linear map from RN to the vector space
V ∗. Then the vector space Ker(p) = p−1(0) is of dimension d := N − r. It
is equipped with a Lebesgue measure dm quotient of dw by da. For a ∈ V ∗,
p−1(a) is an affine space parallel to Ker(p), thus also equipped with the
Lebesgue measure dm. Volumes of subsets of p−1(a) are computed for this
measure.

We set p(wk) := αk for 1 ≤ k ≤ N , and

Φ = (α1, . . . , αN).
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We have thus, for ui ∈ R,

p(u1w
1 + u2w

2 + ... + uNwN) = u1α
1 + u2α

2 + · · ·+ uNαN .

The N elements αk of the sequence Φ need not to be distinct. We
denote by CN the closed convex cone in RN generated by w1, . . . , wN , and
we set C(Φ) := p(CN), the cone generated by (α1, . . . , αN).

We assume that p−1(0) ∩ CN = {0}. Then 0 is not in the convex hull of
the vectors αk and C(Φ) is an acute cone.

Definition 4 Let a ∈ V ∗. We define

PΦ(a) := p−1(a) ∩ CN .

We immediately see that the set PΦ(a) is the convex polytope consisting of
all solutions (u1, u2, ..., uN), in non negative real numbers uk, of the equation

N∑

k=1

ukα
k = a.

In particular, the polytope PΦ(a) is empty if a is not in the cone C(Φ).
Remark: any convex polytope can be realized canonically as a polytope

PΦ(a), see for example [B-V 1, Section 4.1].
The following lemma is obvious.

Lemma 5 For any invertible transformation w of V ∗, then

PwΦ(w · a) = PΦ(a).

For a in the interior of C(Φ), the dimension of PΦ(a) is N−r. The function
a 7→ vol PΦ(a) is a continuous function on C(Φ), homogeneous of degree
N − r. This function is locally polynomial. Let us recall the description of
regions where we are sure that this function is given by a polynomial formula.

We consider the set {Φ} ⊂ V ∗ consisting of elements of Φ: we mean Φ
and {Φ} are the same sets, but Φ may have multiplicities. Let ∆+ be a finite
subset of V ∗ containing the set Φ and such that the cone C(∆+) is acute.
Usually, we take ∆+ = {Φ}. We define

∆ = ∆+ ∪ −∆+.
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For any subset ν+ of ∆+, we denote by C(ν+) the closed cone generated
by ν+. We denote by C(∆+)sing the union of the cones C(ν+) where ν+ is
any subset of ∆+ of cardinal strictly less than r = dim(V ). By definition,
the set C(∆+)reg of ∆+-regular elements is the complement of C(∆+)sing.
A connected component of C(∆+)reg is called a big chamber. If c is a big
chamber, and σ+ a basis of ∆+, then either c ⊂ C(σ+), or c ∩ C(σ+) = ∅,
as the boundary of C(σ+) does not intersect c. Thus the closure of the big
chamber c is the intersection of the simplicial cones C(σ+), σ+ a basis of ∆+,
containing c.

A wall of ∆ is a (real) hyperplane generated by r−1 linearly independent
elements of ∆. We denote by H∗ the union of walls. A small chamber of
C(∆+) is a connected component of C(∆+) − H∗. Clearly C(∆+) − H∗ is
contained in C(∆+)reg and each small chamber is contained in a big chamber.
In the appendix, we describe big and small chambers c when ∆+ is the
positive root system of An, for n = 2, 3. See Figure 4 in Section 15.

Remark. When a varies in a big chamber c, the combinatorial nature
of PΦ(a) remains the same, and the family of polytopes PΦ(a) have parallel
facets. The notion of Minkowski sums and of big chambers are intimately
related: if a1, ..., am are vectors in the closure of a big chamber c, then the
polytope PΦ(a1+· · ·+am) is isomorphic to the Minkowski sum of the polytopes
PΦ(ak). This follows for example of ([B-V 1 Section 3.1] )

The function a 7→ vol PΦ(a) is given by a polynomial formula, when a
varies in a big chamber c. Let us recall this formula.

The Jeffrey-Kirwan residue ([J-K]) associate to a big chamber c of C(∆+)
a linear form f 7→ 〈〈c, f〉〉 on the vector space S∆ of simple fractions. To
determine the linear map f 7→ 〈〈c, f〉〉, it is enough to determine it on the
generating set fσ, with σ a basis of ∆. If σ = σ+ ∪ σ− with σ+ ⊂ ∆+ and
σ− ⊂ ∆−, then

fσ = (−1)|σ
−|f(σ+∪{−σ−}).

Thus any function f in S∆ can be written as a linear combination of functions
fσ, with σ a basis of ∆ consisting of positive elements.

The linear form 〈〈c, f〉〉 has the following properties:
A) If σ is a basis of ∆+ (it is important to require that σ consists of

positive elements), then
a) If c ⊂ C(σ),

〈〈c, fσ〉〉 =
1

vol(σ)
,

17



b) If c ∩ C(σ) = ∅,

〈〈c, fσ〉〉 = 0.

B) If σ = σ+ ∪ σ− with σ+ ⊂ ∆+ and σ− ⊂ ∆−, then

〈〈c, fσ〉〉 = (−1)|σ
−|〈〈c, f(σ+∪{−σ−})〉〉.

Remark. We can interpret the linear form f → 〈〈c, f〉〉 in terms of
Laplace transform (see Section 14) . Assume σ is a basis of ∆ contained
in ∆+. Then we have:

vol(σ)fσ(x) =

∫

C(σ)

e−〈x,a〉da

whenever x is in the dual cone of C(σ). In particular, a function f in S∆,
being a linear combination of such functions fσ, coincide on the dual cone
to C(∆+) with the Laplace transform of a function f̂ locally constant on big
chambers of C(∆+), and the linear form 〈〈c, f〉〉 consists in evaluating the
function f̂ at a point of c.

Let a ∈ V ∗. Let f ∈ R∆. Consider

eaf =
∞∑

k=0

ak

k!
f.

This is an element of R̂∆ . If ek is a basis of V , and we write a ∈
V ∗ =

∑r
i=1 aie

i and x ∈ V as x =
∑r

k=1 xkek (here, and in many other local
calculations, we write xi instead of xi, as we do not want to misinterpret an
upper index as a power), then eaf is the analytic function on VC −HC, given
by x 7→ ea1x1+a2x2+···+arxrf(x). Its total residue is defined by

Tres∆(eaf) =

∞∑

k=0

Tres∆(
ak

k!
f).

There are only a finite number of non-zero terms in this sum. More precisely,
if f is homogeneous of degree −q, then

Tres∆(eaf) =
1

(q − r)!
Tres∆(aq−rf).
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Definition 6 Define

JΦ(a) := Tres∆

(
ea

∏
α∈Φ α

)
.

This is a polynomial function of a ∈ V ∗ with value in the vector space S∆.
More precisely, we choose a basis e1, ..., er of V ∗, and write a =

∑r
i=1 aie

i,
x =

∑r
i=1 xiei. Let i be a sequence (i1, i2, ..., ir) of non-negative integers. We

write |i| := i1 + i2 + · · ·+ ir. If |i| = N − r, then the function

xi1
1 xi2

2 · · ·xir
r∏

α∈Φ α(x)

is of homogeneous degree −r.

Definition 7 Let fΦ(i) be the following element of S∆:

fΦ(i)(x) = Tres∆

(
xi1

1 xi2
2 · · ·xir

r∏
α∈Φ α(x)

)
.

Lemma 8 We have

JΦ(a) =
∑

|i|=N−r

ai1
1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
fΦ(i).

Proof. We have

JΦ(a)(x) = Tres∆

(
ea1x1+...+arxr

∏
α∈Φ α(x)

)

=
∑

i1,i2,..,ir

ai1
1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
Tres∆

(
xi1

1 xi2
2 · · ·xir

r∏
α∈Φ α(x)

)
.

The total residue is zero outside the homogeneous component of degree
−r. This gives the formula of the lemma.

QED
Thus the function a 7→ JΦ(a) is an homogeneous polynomial in the vari-

able a of degree N − r, with value in the finite dimensional vector space
S∆.
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Theorem 9 (Jeffrey-Kirwan) Let c be a big chamber of C(∆+). Then, if
a ∈ c, we have

vol PΦ(a) = 〈〈c, JΦ(a)〉〉.

We give the proof of this theorem in the appendix (Section14).

Definition 10 Let c be a big chamber. We denote by v(Φ, c)(a) the polyno-
mial function on V ∗ such that

v(Φ, c)(a) = vol PΦ(a)

when a varies in c.

More explicitly, when a varies in the closure of a big chamber c, we have
the polynomial formula for the volume:

v(Φ, c)(a) =
∑

|i|=N−r

〈〈c, fΦ(i)〉〉
ai1

1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
.(1)

Remark. The function a → JΦ(a) ∈ S∆ is a vector-valued polynomial
function on V ∗ of degree N − r. It is thus determined by dim S∆ scalar
homogeneous polynomial functions of degree (N−r) in r variables. As a result
of THEOREM 9, the collection of polynomial functions v(Φ, c) is entirely
determined by the function JΦ(a). It is very difficult to determine the number
of big chambers c. It is usually much larger than dim S∆. For example,
consider A+

n the positive root system of An. For n = 1, 2, 3, the number
of big chambers is 1,2,7; for n = 4,5,6, it is known that their number is
greater or equal to than 48, 820,51133 ([S]). The dimension of S∆ is n!, so
respectively 1, 2, 6, 24, 120, 720. So, there are many linear relations between
the different linear functions f → 〈〈c, f〉〉 on S∆, thus many linear relations
between the polynomials v(Φ, c).

The relative volume of PΦ(a) compare the volume of PΦ(a) to the volume
of the standard simplex, so is defined by

volrel PΦ(a) = (N − r)! vol PΦ(a).

We have:

volrel PΦ(a) = 〈〈c, T res∆(
aN−r

∏
α∈Φ α

)〉〉.
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Bibliographical remarks.

Results on this section are mainly due to Jeffrey-Kirwan [J-K]. The strat-
ification on big chambers is introduced in [B-V 1]. The fact that the volume
is polynomial on big chambers follows from the proof given in the Appendix
( Section ??). More details on the relations between Jeffrey-Kirwan formulae
and Laplace transforms are given in [B-V 2].

3 Flow polytopes

Consider a (r + 1) dimensional vector space, with basis e1, e2, ..., er+1, and
let A+

r (the positive root system of Ar) be

A+
r = {(ei − ej), 1 ≤ i < j ≤ (r + 1)}.

Let Er be the vector space spanned by the elements (ei − ej),

Er = {a ∈ Rr+1, a = a1e
1+...+are

r+ar+1e
r+1 with a1+a2+...+ar+ar+1 = 0}.

The vector space Er is of dimension r and is provided with the lattice
generated by Ar, so has a canonical measure da. We have da = da1...dar. If
σ is any basis of Ar, then vol(σ) = 1. The cone C(A+

r ) generated by positive
roots is the cone a1 ≥ 0, a1 + a2 ≥ 0,...,a1 + a2 + · · · + ar ≥ 0.

Definition 11 If a = (a1, a2, ..., ar) ∈ Rr, we denote by a ∈ Er the element

a = a1e
1 + ... + are

r − (a1 + · · · + ar)e
r+1.

Let Φ be a sequence of N elements of A+
r spanning Er.

Definition 12 We define mij(i < j) to be the multiplicity of the root (ei−ej)
in Φ . Thus mij ≥ 0.

Associate to Φ a graph with r + 1 vertices 1, 2, ..., r + 1, and mij edges
from i → j if (ei − ej) is in Φ (thus i < j). This graph is called a flow graph.
The graph associated to A+

r is the complete flow graph (with 1 edge i 7→ j
for any i < j).

Definition 13 • A flow polytope is a polytope isomorphic to a polytope
PΦ(a) where Φ is a sequence of elements of A+

r and a = (a1, a2, ..., ar) ∈
Rr.
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• The polytope PΦ(e1 − er+1) will be called the fountain polytope of shape
Φ.

• A flow polytope PΦ(a) with a1 ≥ 0, a2 ≥ 0, ..., ar ≥ 0 will be called a
cascade polytope.

The flow polytope PΦ(a) is of dimension N−r when a1 > 0. The polytope
PA+

r
(e1 − er+1) associated to the complete flow graph is the Chan-Robbins-

Yuen polytope. It will be described in Section 7.
Remark 1. If a1, ..., ar are greater or equal to 0 , the polytope PΦ(a) is

the Minkowski sum of the polytopes akPΦ(ek − er+1). If k > 1, the vector
ek − er+1 is on the boundary of C(∆+) and the polytope PΦ(ek − er+1) is of
smaller dimension than N − r. It is the fountain polytope of shape Φ′ where
Φ′ is the system where we have deleted all (ei − ej) with i < k.

Remark 2. Let da be the dimension of PΦ(a). If s is a vertex of PΦ(a) and
s + R+v1, s + R+v2,..., s + R+vda

are da edges passing through s, directed by
integral vectors vi with minimal length, then the volume of the parallelepiped
spanned by vk, 1 ≤ k ≤ da is equal to 1. Such polytope is associated to an
ample line bundle on a smooth toric variety: a limit of Delzant polytopes.
Reciprocally, any polytope associated to a smooth toric variety can be realized
as a flow polytope PΦ(a) when Φ is a sequence of elements of the positive root
system A+

r (Szenes: personal communication).
In the rest of this article, we study volumes and Ehrhart polynomials of

flow polytopes. Our method is based on the study of the vector space RAr

and of the vector space SAr
.

Consider the system Ar−1 = {(ei − ej), 1 ≤ i < j ≤ r}.

Proposition 14 The map from

r∑

i=1

SAr−1 ⊗
1

(ei − er+1)
→ SAr

given by
r∑

i=1

fi ⊗
1

(ei − er+1)
7→

r∑

i=1

fi
1

(ei − er+1)

is a bijection.
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Proof. If f is in SAr−1, then for any 1 ≤ i ≤ r, the element f 1
(ei−er+1)

is in
SAr

, and it is easy to see that the map above is injective.
To prove that it is surjective, observe first that for any set of elements

A ⊂ {1, ..., r}:

∏

i∈A

1

(er+1 − ei)
=
∑

i∈A

1∏
j∈A;i6=j(e

i − ej)

1

(er+1 − ei)
.

If ν is a subset of Ar−1, we denote by fν = 1∏
α∈ν α

. Then

∏

i∈A

1

(er+1 − ei)
fν =

∑

i∈A

1∏
j∈A;i6=j(e

i − ej)
fν

1

(er+1 − ei)
.

If ν ∪ {(ei − er+1), i ∈ A} is a basis of Ar, then for every i ∈ A,

ν ∪ {(ej − er+1), j ∈ A, j 6= i} ∪ {(ei − er+1)}

is a basis of Ar. The lemma follows.
QED
It follows from the lemma above that the dimension of SAr

is r!. We
denote by Σr the set of permutations of {1, 2, ...r}. As seen from PROPO-
SITION 14 above, a particularly nice basis of SAr

is given by the elements

fw = w ·
1

(e1 − e2)(e2 − e3) · · · (er−1 − er)(er − er+1)

where w ∈ Σr acts by permutation on the set {1, 2, ...r}.
We define as usual the character ǫ(w) = ±1 of Σr with value −1 on

symmetries.

Bibliographical remarks. Polytopes associated to subsets of A+
r are

related to graphs and called flow polytopes by Stanley [S]. The representation
of the Weyl group in the space S∆, for ∆ any root system, has been studied
extensively by G. Lehrer [L]. In particular, for Ar, the space S∆ carries the
regular representation of the subgroup Σr of the Weyl group Σr+1. We employ
the corresponding basis fw (w ∈ Σr) in these notes.
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4 Chambers and Iterated residues for Ar.

Let

V = {
r+1∑

i=1

xiei, xr+1 = 0}.

(as before, we write xi instead of xi). The vector space V has basis e1, ..., er.
An element a =

∑r+1
i=1 aie

i of Er gives the linear form
∑r

i=1 aixi on V . This
identifies Er with V ∗. In this identification

A+
r = {xi, 1 ≤ i ≤ r, (xi − xj), 1 ≤ i < j ≤ r}.

A function in RAr
is thus a rational function f(x1, x2, ..., xr) on VC, with

poles on the hyperplanes xi = xj or xi = 0. The basis fw considered in the
preceding section is given by the elements

fw(x1, ..., xr) = w ·
1

(x1 − x2)(x2 − x3) · · · (xr−1 − xr)xr

where w ∈ Σr acts by permutation on the set {1, 2, ...r}.
The following linear form f 7→ Iresx=0f defined by

Iresx=0f

= Resx1=0Resx2=0 · · ·Resxr=0f(x1, x2, ..., xr)

is a linear form on RAr
which vanishes on the vector space of derivatives∑r

i=1 ∂iRAr
. It will be called the iterated residue. It provides a linear form

on SAr
. If we compute it on the basis fw of SAr

indexed by the symmetric
group, we have Iresx=0(fw) = δ1

w. The iterated residue depends on the order
on variables. Permuting the variables by the group Σr, we obtain r! linear
forms on SAr

, dual to the basis fw. Precisely set

Iresσ
x=0f = Resxσ(1)=0Resxσ(2)=0 · · ·Resxσ(r)=0f(x1, x2, ..., xr) =

Resx1=0Resx2=0 · · ·Resxr=0f(xσ−1(1), xσ−1(2), ..., xσ−1(r)),

it is not difficult to check that σ · Iresx=0fw = Iresx=0σ
−1fw = Iresσ

x=0fw =
δσ
w while Ires1

x=0 = Iresx=0.
Iterated residues are particularly easy to calculate, thus it is important

to express the linear forms associated to big chambers in terms of iterated
residues.

Consider the set H∗ of hyperplanes in Er spanned by (r − 1) linearly
independent vectors of Ar.
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Lemma 15 An element H of H∗ is the kernel of a linear form
∑

i∈A ai where
A is a subset of 1, 2, ..., r.

Proof. Let ν be a subset of A+
r spanning a (r − 1)-dimensional vector

space. If ν is contained in the set ±(ei − ej), 1 ≤ i < j ≤ r , the hyperplane
spanned by ν is the hyperplane

∑r
i=1 ai = 0. If not, then ν contains a vector

(ei − er+1), and we conclude by induction.
QED

Definition 16 We denote by c
+ the open set

c
+ = {a ∈ C(Ar

+) such that ai > 0, i = 1, .., r}.

Lemma 17 The set c
+ is a small and a big chamber for A+

r . It will be

called the nice chamber.

Proof. The set c
+ is a small chamber since it doesn’t meet any hyperplane.

But c
+ is the simplicial cone generated by the elements (ei−er+1), 1 ≤ i ≤ r,

so that c
+ is also a big chamber.

QED
Let w ∈ Σr and n(w) be the number of elements such that w(i) > w(i+1).

We denote by C+
w ⊂ C(Ar

+) the simplicial cone generated by the vectors

ǫ(1)(ew(1)−ew(2)), ǫ(2)(ew(2)−ew(3)), ..., ǫ(r−1)(ew(r−1)−ew(r)), (ew(r)−er+1),

where ǫ(i) is 1 or -1 depending whether w(i) < w(i+1) or not. When w = 1,
then C1 = C(A+

r ). The dual basis for the vectors generating C+
w is given by

ǫ(1)ew(1), ǫ(2)(ew(1) + ew(2)), ..., ǫ(r− 1)(ew(1) + ..+ ew(r−1)), (ew(1) + ..+ ew(r)).

If we write a =
∑r+1

j=1 aje
j in Er, then the cone C+

w is given by the following

system of inequalities
∑i

j=1 aw(j) ≥ 0, for all i such that w(i) < w(i + 1),

but
∑i

j=1 aw(j) ≤ 0 if w(i) > w(i + 1).

Lemma 18 Let c be a big chamber. Consider the set of elements w ∈ Σr

such that c ⊂ C+
w . Then, for f ∈ SAr

,

〈〈c, f〉〉 =
∑

w∈Σr,c⊂C+
w

(−1)n(w)Iresx=0w
−1f.
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Proof. Let f ∈ SAr
and write f =

∑
w∈Σr

af
wfw. Using the dual base,

we compute af
s = Iresx=0

s(f) and we find that the linear form f 7→ 〈〈c, f〉〉
is the sum over all elements w ∈ Σr such that c ⊂ C+

w of the linear form
(−1)n(w)Iresw

x=0 = (−1)n(w)Iresw
x=0.

QED

Theorem 19 The linear form f 7→ 〈〈c+, f〉〉 coincide with the iterated
residue Iresx=0.

Proof. As we just observed, the linear form f 7→ 〈〈c+, f〉〉 is the sum over
all elements w such that c

+ ⊂ C+
w of the linear form (−1)n(w)Iresw

x=0. So, to
prove the lemma, it is enough to prove that if c

+ ⊂ C+
w , then w = 1. Assume

that w 6= 1. We let k be the smallest integer such that w(k) > w(k + 1). In
particular if a ∈ C+

w then

aw(1) ≥ 0, aw(1) + aw(2) ≥ 0, . . . , aw(1) + aw(2) + . . . + aw(k−1) ≥ 0,

aw(1) + aw(2) + . . . + aw(k) ≤ 0

which forces aw(k) ≤ 0, and therefore, if w 6= 1, then c
+ is not contained in

C+
w .

QED

Bibliographical remarks.

Bases of S∗
∆ given by iterated residues are constructed for any system ∆ by

Szenes [Sz]. The linear forms f 7→ 〈〈c, f〉〉 are called Jeffrey-Kirwan residues.
It is usually difficult to express them in functions of iterated residues.

5 Volumes of flow polytopes

Let Φ be a sequence of N vectors in A+
r spanning Er. The set of regular

elements for the system A+
r is clearly contained in the set of regular elements

for the smaller system {Φ}. Recall the map a = (a1, a2, ..., ar) → a given in
DEFINITION 11. We will sometimes identify implicitly Er with Rr using
this map. Thus if c is a big chamber for A+

r , the function a 7→ vol PΦ(a) is
polynomial on c. We denote it by v(Φ, c). We have (see Section 2, Formula
1):

v(Φ, c)(a) = 〈〈c, JΦ(a)〉〉.
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The function v(Φ, c+), attached to the nice chamber c
+ is particularly

important, due to the following lemma.

Lemma 20 Let c be a big chamber. Let Σr(c) be the set of elements w ∈ Σr

such that c ⊂ C+
w . Then

v(Φ, c)(a) =
∑

w∈Σr(c)

(−1)n(w)v(Φ, c+)(w−1a).

Proof. Due to THEOREM 19, the linear form f 7→ 〈〈c+, f〉〉 is the iterated
residue Iresx=0. Thus v(φ, c+)(a) = Iresx=0JΦ(a). By LEMMA 18, the form
〈〈c, f〉〉 is a signed sum of iterated residues Iresw

x=0 over the elements w in
Σr(c) and we obtain the lemma.

QED
We write

v(Φ, c)(a1, ..., ar) =
∑

i1+i2+···+ir=N−r

v(Φ, c, i)
ai1

1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!

where
v(Φ, c, i) = 〈〈c, fΦ(i)〉〉.

Lemma 21 The coefficient v(Φ, c+, i) is the non negative integer defined by:

v(Φ, c+, i) = Iresx=0
xi1

1 ...xir
r∏

1≤i<j≤r(xi − xj)mij
∏

1≤i≤r x
mi,r+1

i

.

Proof. It is immediate to check that

v(Φ, c+, i) = Iresx=0
xi1

1 ...xir
r∏

1≤i<j≤r(xi − xj)mij
∏

1≤i≤r x
mi,r+1

i

is a non negative integer. We will give a combinatorial interpretation of this
integer in LEMMA 43 in Section 8.

QED

Proposition 22 The polynomial v(Φ, c+)(a1, a2, ..., ar) is homogeneous of

degree |Φ| − r. It is divisible by a
(
∑r+1

k=2 m1k−1)
1 . It is of degree less or equal to

(mr,r+1 − 1) in ar.
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Proof. We have

JΦ(a)(x) =
ea1x1+...+ar−1xr−1+arxr

∏
1≤i<j≤r(xi − xj)mij

∏
1≤i≤r−1 x

mi,r+1

i x
mr,r+1
r

=
ea1x1+...+ar−1xr−1+arxr

x
m1,r+1

1

∏
1<j≤r(x1 − xj)m1j

∏
2≤i<j≤r(xi − xj)mij

∏
2≤i≤r x

mi,r+1

i

.

The function v(Φ, c+)(a1, a2, ..., ar) is the iterated residue of JΦ(a)(x). If
we start by taking the residue in xr = 0, (use the first expression), we have
to develop the term earxr up to order mr,r+1 − 1, so we obtain the second
property.

On the other hand, x1 is considered as generic up to the last step. Con-
sider the function

F (x1, a2, ..., ar) =

Iresx2=0,...,xr=0
ea2x2+...+ar−1xr−1+arxr

∏
2≤j≤r(1 − xj/x1)m1j

∏
2≤i<j≤r(xi − xj)mij

∏
2≤i≤r x

mi,r+1

i

.

This function is of the form
∑

k≥0 Ck(a2, ..., ar)x
−k
1 , and

Iresx=0JΦ(a)(x) = Resx1=0
ea1x1

xN1
1

F (x1, a2, ..., ar),

with N1 =
∑r+1

k=2 m1k.
Thus, expanding the exponential, we obtain

v(Φ, c+)(a1, a2, ...., ar) =
∑

k≥0

Ck(a2, ..., ar)
aN1+k−1

1

(N1 + k − 1)!
.

This establishes the first property .
QED

Proposition 23 ( Schmidt-Bincer)
Let c

+ be the nice chamber. Let v+
r = v(A+

r , c+). The function v+
r (a1, a2, ..., ar)

is independent of ar. It is of homogeneous degree r(r−1)/2, of degree less than
1 in the variable ar−1 and is divisible by ar−1

1 (a1 +a2 +a3 + ...+ar−2 +3ar−1).
More precisely, we have:

3v+
r (a1, a2, ..., ar)

= (a1 +a2 + ...+ar−2 +3ar−1)v(A+
r minus (er−1−er), c+)(a1, a2, ..., ar−2, 0, 0).
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Proof. Let

J(a, x) =
ea1x1+...+ar−1xr−1+arxr

∏
1≤i<j≤r−1(xi − xj)

∏
1≤i≤r−1(xi − xr)

∏
1≤i≤r xi

.

We have

v+
r (a1, a2, ..., ar) = Iresx=0J(a, x).

We first take the residue in xr = 0. We obtain

Resxr=0J(a, x) =
ea1x1+...+ar−1xr−1

∏
1≤i≤r−1 x2

i

∏
1≤i<j≤r−1(xi − xj)

=
ea1x1+...+ar−1xr−1

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

∏
1≤i≤r−2(1 − xr−1/xi)x

2
r−1

.

This shows already that v+
r (a1, a2, ..., ar) is independent of ar.We proceed

to take the residue in xr−1 = 0. There is a double pole in xr−1, so that the
dependence in ar−1 is of degree at most 1. More precisely,

Resxr−1=0[
ea1x1+...+ar−1xr−1

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

∏
1≤i≤r−2(1 − xr−1/xi)x2

r−1

]

=
ea1x1+...+ar−2xr−2

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

(ar−1 +
r−2∑

i=1

1

xi

)

= (ar−1 +
1

3
(a1 + a2 + ... + ar−2))

ea1x1+...+ar−2xr−2

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

−
1

3
(∂1 + ∂2 + · · ·+ ∂r−2)

ea1x1+...+ar−2xr−2

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

,

as (∂1 + ∂2 + · · ·+ ∂r−2) annihilates functions xi − xj .
Residues vanishes on derivatives, so that we obtain

3v+
r (a1, a2, ..., ar) = (3ar−1 + a1 + a2 + a3 + ... + ar−2)×
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Resx1=0...Resxr−2=0
ea1x1+...+ar−2xr−2

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

.

On the other hand, the residue computation of

v(A+
r minus (er−1 − er), c+)(a1, a2, ..., ar−2, 0, 0)

gives
v(A+

r minus (er−1 − er), c+)(a1, a2, ..., ar−2, 0, 0)

= Resx1=0...Resxr−2=0
ea1x1+...+ar−2xr−2

∏
1≤i≤r−2 x3

i

∏
1≤i<j≤r−2(xi − xj)

as the step xr = 0 as well as the step xr−1 = 0 involves only simple poles,
and we obtain the divisibility property announced.

QED
Example.

The dimension of the polytope PA+
2
(a) is 1, of PA+

3
(a) is 3 and of PA+

4
(a)

is 6. Thus the corresponding polynomials v(A+
2 , c+), v(A3, c

+), v(A4, c
+) are

homogeneous of degrees 1, 3, 6.
We have :

v(A+
2 , c+)(a1, a2) = a1,

v(A+
3 , c+)(a1, a2, a3) =

1

3!
a3

1 +
1

2
a2

1a2 =
1

6
a2

1(a1 + 3a2),

v(A+
4 , c+)(a1, a2, a3, a4) =

1

120
a3

1(a1 + a2 + 3a3)(a
2
1 + 5a1a2 + 10a2

2).

More generally, we have the following proposition, with same proof.

Proposition 24 Let Φ be a sequence of N vectors in A+
r , generating Er.

Assume mr,r+1 = 1 and mr−1,r+1 + mr−1,r = 2. Furthermore, assume that

mj,r+1 + mj,r + mj,r−1

mj,r−1

= c

is independent of j for 1 ≤ j ≤ (r − 2), then

v(Φ, c+)(a1, ..., ar−1, ar) = v(Φ, c+)(a1, ..., ar−1, 0)

= (
a1 + · · ·+ ar−2

c
+ ar−1)v(Φ minus (er−1 − er), c+)(a1, a2, ..., ar−2, 0, 0).
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Consider the permutation w0 : [1, 2, ..., r, r + 1] 7→ [r + 1, r, ..., 2, 1]. Then
−w0 preserves A+

r and the vector e1−er+1. It transforms Φ = A+
r minus (er−1−

er) in A+
r minus (e2 − e3). Thus we obtain from LEMMA 5

Corollary 25 We have

3v(A+
r , c+)(e1 − er+1) = v(A+

r minus (er−1 − er), c+)(e1 − er+1)

= v(A+
r minus (e2 − e3), c+)(e1 − er+1).

Bibliographical remarks.

Proposition 23 is due to [S-B].

6 Calculation of some total residues for the

system Ar+1

Consider a (r+2) dimensional real vector space, with basis e0, e1, e2, ...., er, er+1.
In this Section, we consider Ar+1 as the collection of elements (ei − ej) with
0 ≤ i ≤ r + 1, 0 ≤ j ≤ r + 1, and i 6= j.

Let
Π = {(e0 − e1), (e1 − e2), ..., (er − er+1)}

be the set of simple roots. Let

fΠ =
1

(e0 − e1)(e1 − e2) · · · (er − er+1)
.

This is an element of SAr+1 (in particular is homogeneous of degree −(r+
1)).

As explained in the introduction, we are particularly interested in the Σr

anti-invariant function of homogeneous degree −(r + 1) given by

Wr+1 =
(e0 − er+1)r(r+1)/2

∏
0≤i<j≤r+1(e

i − ej)
.

As seen by the Example 2 of Section 1, this function is not in the space
S∆. However, its projection on S∆ is particularly nice.

We prove in this section the following Theorem
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Theorem 26 We have

TresA+
r+1

(
(e0 − er+1)r(r+1)/2

∏
0≤i<j≤r+1(e

i − ej)
)

=
r−1∏

i=1

(2i)!

i!(i + 1)!

∑

w∈Σr

ǫ(w)w ·
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)(er − er+1)
.

In fact, we will prove more general identities, which are reformulation of
Morris identity.

Consider the group Σr of permutations of {1, ..., r}. Let 0 ≤ ℓ ≤ r and
denote by Pℓ,r the Σr-invariant polynomial

Pℓ,r =
∑

w∈Σr

w · [(e1 − er+1)(e2 − er+1)...(eℓ − er+1)].

In particular

P0,r = r! Pr,r = r!
r∏

j=1

(ej − er+1).

When r is fixed, we will write Pℓ for Pℓ,r, when ℓ > 0.
We consider the rational function given by

φr+1(ℓ, k1, k2, k3)

=
Pℓ

(
∏r

j=1(e
j − er+1))k1(

∏r
j=1(e

0 − ej))k2(
∏

1≤i<j≤r(e
i − ej))k3

.

In particular

φr+1(0, k1, k2, k3)

= r!
1

(
∏r

j=1(e
j − er+1))k1(

∏r
j=1(e

0 − ej))k2(
∏

1≤i<j≤r(e
i − ej))k3

.

Here, k1, k2 and k3 are non negative integers, so that φr+1(ℓ, k1, k2, k3)

is an element of RAr+1 of homogeneity degree ℓ − (k1 + k2)r − k3
r(r−1)

2
. If k3

is odd, this function is anti-invariant under the group Σr of permutations of
{1, ..., r}. If k3 is even, this function is invariant.
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Remark that if k1 ≥ 1,

φr+1(r, k1, k2, k3) = φr+1(0, k1 − 1, k2, k3).

Let k1, k2, k3 ≥ 0, 0 ≤ ℓ ≤ r. Let D = (k1 + k2)r + k3
r(r−1)

2
− ℓ.

Then the function (e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3) is of homogeneity
degree equal to −(r + 1).

We have in particular

Wr+1 =
1

r!
(e0 − er+1)r(r+1)/2φr+1(0, 1, 1, 1).

Theorem 27 Let k1, k2, k3 ≥ 0, 0 ≤ ℓ ≤ r. Let D = (k1+k2)r+k3
r(r−1)

2
−ℓ.

Then the function (e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3) is of homogeneity
degree equal to −(r + 1), and we have

• If k3 is odd,

TresA+
r+1

((e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3))

= Cr+1(ℓ, k1, k2, k3)[
∑

w∈Σr

ǫ(w)w.fΠ].

• If k3 is even,

TresA+
r+1

((e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3))

= Cr+1(ℓ, k1, k2, k3)[
∑

w∈Σr

w.fΠ].

The constants Cr+1(ℓ, k1, k2, k3) are determined uniquely by the relations:

• for 1 ≤ ℓ ≤ r,

(k1 + k2 − 2 +
k3

2
(2r − ℓ − 1))Cr+1(ℓ, k1, k2, k3)

= (k1 − 1 +
k3

2
(r − ℓ))Cr+1(ℓ − 1, k1, k2, k3),
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•
Cr+1(r, k1, k2, k3) = Cr+1(0, k1 − 1, k2, k3),

•
Cr+1(r − 1, 1, k2, k3) = Cr(0, k3, k2, k3).

•
Cr+1(0, k1, k2, k3) = Cr+1(0, k2, k1, k3).

•
Cr+1(0, 1, 1, 0) = r!.

• If k1 or k2 = 0,
Cr+1(ℓ, k1, k2, k3) = 0.

Remark 1. The function (e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3) is invariant
or anti-invariant under the group Σr depending on the parity of k3, then
its total residue must be an element of SAr+1 which is invariant or anti-
invariant by Σr. There are (r + 1) linearly independent such functions. Let
us consider the basis w · fΠ of SAr+1 with w a permutation of {0, 1, 2, ..., r}.
For homogeneity reasons, it is easy to see that the iterated residue Iresσ

x=0

of the function x
D−(r+1)
0 φr+1(ℓ, k1, k2, k3)(x0, x1, ...., xr, 0) is equal to 0, if the

permutation σ of {0, 1, ....r} does not leave 0 fixed. Thus the total residue
of (e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3) belongs to the vector space spanned by
elements fw with w ∈ Σr , and the total residue of the function

(e0 − er+1)D−(r+1)φr+1(ℓ, k1, k2, k3))

is proportional to either [
∑

w∈Σr
ǫ(w)w.fΠ] or [

∑
w∈Σr

w.fΠ]. The calculation
of the constant of proportionality is thus equivalent to the Morris iterated
constant term identity. However, we will give here a direct proof.

The recurrence formula above determines entirely the constants

Cr+1(ℓ, k1, k2, k3).

Indeed, assume first k3 > 0. Then, in the first relation, when k3 > 0 and
r > 1, all constants (k1 − 1) + k3

2
(r − ℓ) are strictly positive, so if k1 > 1,

we can increase ℓ to ℓ = r, then using the second relation, we decrease k1

to k1 − 1. Now, if k1 − 1 > 1, then using one we can again increase ℓ = 0
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to ℓ = r, and using the second decrease to k1 − 2. In conclusion, we may
determine using alternatively one and two, the constant Cr+1(ℓ, k1, k2, k3)
from Cr+1(ℓ, 1, k2, k3). If k1 = 1, k3 > 0 and r > 1, we can increase ℓ up to
(r − 1), using the first relation. Then using the third, we decrease r + 1 to
r. In conclusion we determine Cr+1(ℓ, k1, k2, k3), if k3 > 0 from the value of
C2(ℓ, k1, k2, k3). But if r = 1, there is no factor corresponding to k3, so that
C2(ℓ, k1, k2, k3) = C2(ℓ, k1, k2, 0). Now, check that constants Cr+1(ℓ, k1, k2, 0)
are uniquely determined by the recurrence relations above. The first one
reads, for 1 ≤ ℓ ≤ r,

(k1 + k2 − 2)Cr+1(ℓ, k1, k2, 0) = (k1 − 1)Cr+1(ℓ − 1, k1, k2, 0).

In the same way, using alternatively one and two, we compute Cr+1(ℓ, k1, k2, 0)
from the value of Cr+1(ℓ, 1, k2, 0). Relation above shows that Cr+1(ℓ, 1, k2, 0) =
0, if ℓ is not equal to 0. It remains to compute Cr+1(0, 1, k, 0). By the
symmetry relation, we can also assume k = 1. We are finally reduced to
Cr+1(0, 1, 1, 0).

Corollary 28 Assume r > 1.

• If k3 > 0, or if k1 + k2 > 2, then for 1 ≤ ℓ ≤ r,

Cr+1(ℓ, k1, k2, k3) =
ℓ∏

j=1

k1 − 1 + (r − j)k3

2

k1 + k2 − 2 + (2r − j − 1)k3

2

Cr+1(0, k1, k2, k3).

• If k1 + k2 ≥ 2,

Cr+1(0, k1, k2, k3) = r!
r−1∏

j=0

Γ(1 + k3

2
)Γ(k1 + k2 − 1 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k1 + j k3

2
)Γ(k2 + j k3

2
)
.

Corollary 29 We have

•

Cr+1(ℓ, 1, 1, 1) =

ℓ∏

j=1

(r − j)

(2r − j − 1)
Cr+1(0, 1, 1, 1).
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•

Cr+1(0, 1, 1, 1) = r!

r−1∏

i=1

Ci,

where Ci = (2i)!
i!(i+1)!

is the i-th Catalan number.

•

Cr+1(0, k, 1, 1) = r!

r+k−3∏

i=k−1

1

2i + 1

(
r + k + i − 1

2i

)
.

•

Cr+1(ℓ, k, 1, 1) =

ℓ∏

j=1

2(k − 1) + (r − j)

2(k − 1) + (2r − j − 1)
Cr+1(0, k, 1, 1).

The second corollary is of course a consequence of the first, using several
times the duplication formula for the Gamma function, but it is somewhat
easier to use directly the recurrence formulas in k1, k2, k3, with k3 = 1 as the
value of k3 remains constant and equal to 1, through the recurrence.

THEOREM 26 is then a corollary of THEOREM 27 and COROLLARY
29.

Remark that

1

r!
Cr+1(0, 1, 1, 1) =

1

(r − 1)!
Cr(0, 2, 1, 1) =

r−1∏

i=1

Ci =

r−2∏

i=1

1

2i + 1

(
r + i

2i

)
.

Let us first verify the corollaries , assuming THEOREM 27.
To verify the first corollary, we verify the recurrence relations, the first

being obvious, we check the second:

Cr+1(r, k1, k2, k3) = Cr+1(0, k1 − 1, k2, k3).

We write
Cr+1(r, k1, k2, k3)

= r!

r∏

j=1

k1 − 1 + (r − j)k3

2

k1 + k2 − 2 + (2r − j − 1)k3

2

×
r−1∏

j=0

Γ(1 + k3

2
)Γ(k1 + k2 − 1 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k1 + j k3

2
)Γ(k2 + j k3

2
)
.
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In the first product, we change j in (r − j), in the second we use Γ(z + 1) =
zΓ(z) and we obtain:

r!

r−1∏

j=0

k1 − 1 + j k3

2

k1 + k2 − 2 + (r + j − 1)k3

2

Γ(1 + k3

2
)(k1 + k2 − 2 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)(k1 − 1 + j k3

2
)

×
r−1∏

j=0

Γ(k1 − 1 + k2 − 1 + (r + j − 1)k3

2
)

Γ(k1 − 1 + j k3

2
)Γ(k2 + j k3

2
)

= Cr+1(0, k1 − 1, k2, k3).

We verify the third condition.
We write

Cr+1(r − 1, 1, k2, k3)

= r!

r−1∏

j=1

(r − j)k3

2

k2 − 1 + (2r − j − 1)k3

2

r−1∏

j=0

Γ(1 + k3

2
)Γ(k2 + (r + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(1 + j k3

2
)Γ(k2 + j k3

2
)

= r!

r−1∏

j=1

(r − j)k3

2

k2 − 1 + (2r − j − 1)k3

2

r−1∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

×Γ(k2 + (r − 1)
k3

2
)

r−1∏

j=1

Γ(k2 + (r + j − 1)k3

2
)

Γ(1 + j k3

2
)

In the first product, we change j in (r − j), in the last we use Γ(z + 1) =
zΓ(z), and we obtain after simplification that Cr+1(r − 1, 1, k2, k3) is equal
to

r!

r−1∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)
Γ(k2 + (r − 1)

k3

2
)

×
r−1∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

= r!

r−2∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

Γ(1 + k3

2
)

Γ(1 + r k3

2
)

r−1∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)
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= (r−1)!
r−2∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

Γ(k3

2
)

Γ(r k3

2
)

r−1∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

while

Cr(0, k3, k2, k3) = (r − 1)!
r−2∏

j=0

Γ(1 + k3

2
)Γ(k3 + k2 − 1 + (r − 1 + j − 1)k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k3 + j k3

2
)Γ(k2 + j k3

2
)

.

= (r − 1)!

r−2∏

j=0

Γ(1 + k3

2
)

Γ(1 + (j + 1)k3

2
)Γ(k2 + j k3

2
)

r−2∏

j=0

Γ(k2 − 1 + (r + j)k3

2
)

Γ((j + 2)k3

2
)

It remains to verify

Γ(k3

2
)

Γ(r k3

2
)

r−1∏

j=1

Γ(k2 − 1 + (r + j − 1)k3

2
)

Γ(j k3

2
)

=

r−2∏

j=0

Γ(k2 − 1 + (r + j)k3

2
)

Γ((j + 2)k3

2
)

.

which is true.
The remaining properties are obvious.
We now prove THEOREM 27 by induction on r.

Proof. If k1 = 0, the remaining roots (ei − ej) occurring in the denom-
inator of φr+1(ℓ, 0, k2, k3) are contained in the hyperplane

∑r
i=0 ei = 0. So

the total residue of φr+1(ℓ, 0, k2, k3) is 0. The same argument shows that
φr+1(ℓ, k1, 0, k3) is 0 .

We thus may assume that k1, k2 > 0. We first show that the function (e0−
er+1)φr+1(ℓ − 1, k1, k2, k3) is proportional to the function φr+1(ℓ, k1, k2, k3)
modulo

∑r
i=1 ∂iRA+

r+1
. Thus the functions (e0−er+1)D−(r+1)φr+1(ℓ−1, k1, k2, k3)

and (e0 − er+1)D−rφr+1(ℓ− 1, k1, k2, k3) will be proportional too, modulo the
vector space

∑r
i=1 ∂iRA+

r+1
, their total residues will be proportional and we

will get the first recursive relations for the constant Cr+1.
In the following, we use xi instead of ei, etc... as it is a more familiar

notation for computing derivatives.
We write U = (

∏r
j=1(xj − xr+1))

−k1(
∏r

j=1(x0 − xj))
−k2(

∏
1≤i<j≤r(xi −

xj))
−k3 so that PℓU = φr+1(ℓ, k1, k2, k3).
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We compute

∂1[(x0 − x1)(x1 − xr+1)(x2 − xr+1) · · · (xℓ − xr+1)U ]

This is equal to

−(1 − k2)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)U

+(1 − k1)(x0 − x1)(x2 − xr+1)...(xℓ − xr+1)U

−k3(x0 − x1)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)

r∑

j=2

1

x1 − xj
U.

Using (x0 − x1) = (x0 − xr+1) + (xr+1 − x1), this is also equal to

= (k1 + k2 − 2)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)U

+(1 − k1)(x0 − xr+1)(x2 − xr+1)...(xℓ − xr+1)U

−k3(x0 − x1)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)
r∑

j=2

1

x1 − xj

U.

Assume first that k3 is odd, so that U is anti-invariant by the group Σr.
Let us antisymmetrize over permutations. We obtain

∑

w∈Σr

ǫ(w)w · (∂1((x0 − x1)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)U)) =

(k1 + k2 − 2)PℓU + (1 − k1)(x0 − xr+1)Pℓ−1 U

−k3

∑

w∈Σr

w ·

(
(x0 − x1)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)

r∑

j=2

1

x1 − xj

)
U.

To compute
∑

w∈Σr
w ·((x0−x1)(x1−xr+1)(x2−xr+1)...(xℓ−xr+1)

1
x1−xj

),

we first sum over the transposition (j, 1).
If 2 ≤ j ≤ ℓ, we use

(x0 − x1)(x1 − xr+1)(xj − xr+1)

x1 − xj
+

(x0 − xj)(xj − xr+1)(x1 − xr+1)

xj − x1

= −(x1 − xr+1)(xj − xr+1).
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If j > ℓ, we use

(x1 − xr+1)(x0 − x1)

x1 − xj
+

(xj − xr+1)(x0 − xj)

xj − x1

= (x0 − x1) + (xr+1 − xj) = (x0 − xr+1) + (xr+1 − x1) + (xr+1 − xj).

We obtain that

2
∑

w∈Σr

w · ((x0 − x1)(x1 − xr+1)(x2 − xr+1)...(xℓ − xr+1)
r∑

j=2

1

x1 − xj

)

is equal to

(−(ℓ − 1) − 2(r − ℓ))Pℓ + (x0 − xr+1)(r − ℓ)Pℓ−1.

Thus finally, we obtain

∑

w∈Σr

ǫ(w)w·(∂1((x0−x1)(x1−xr+1)(x2−xr+1)...(xℓ−xr+1)φr+1(0, k1, k2, k3)) =

(k1 + k2 − 2 +
k3

2
(2r − ℓ − 1))φr+1(ℓ, k1, k2, k3)

+(x0 − xr+1)(−k1 + 1 −
k3

2
(r − ℓ))φr+1(ℓ − 1, k1, k2, k3).

If k3 is even, we also obtain

∑

w∈Σr

w · (∂1((x0 −x1)(x1 −xr+1)(x2 −xr+1)...(xℓ −xr+1))φr+1(0, k1, k2, k3)) =

(k1 + k2 − 2 +
k3

2
(2r − ℓ − 1))φr+1(ℓ, k1, k2, k3)

+(x0 − xr+1)(−k1 + 1 −
k3

2
(r − ℓ))φr+1(ℓ − 1, k1, k2, k3).

Thus we see that

(x0 − xr+1)φr+1(ℓ − 1, k1, k2, k3) is proportional to φr+1(ℓ, k1, k2, k3),

modulo derivatives with respect to x1, x2,..., xr. In particular the total
residue of the function (x0 − xr+1)

D−(r+1)φr+1(ℓ, k1, k2, k3) is proportional to
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the total residue of the function (x0 − xr+1)
D−(r+1)+1φr+1(ℓ − 1, k1, k2, k3).

This proves the first property.
We proceed to the proof of the second property. We return to the notation

xi = ei.
To avoid confusion in the following argument we will write explicitly the

dependence by the parameters of D, that is we will write, whenever necessary,

D = DAr+1(ℓ, k1, k2, k3) = (k1 + k2)r + k3
r(r − 1)

2
− ℓ.

We now compute the total residue of

(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

with D = DAr+1(r − 1, 1, k2, k3) = (1 + k2)r + k3
r(r−1)

2
− (r − 1) .

We have:
r!(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

= (e0 − er+1)D−(r+1) Pr−1

(e1 − er+1)(e2 − er+1)...(er − er+1)
φr+1(0, 0, k2, k3).

with

Pr−1

(e1 − er+1)(e2 − er+1)...(er − er+1)
∑

w∈Σr
w · [(e1 − er+1)(e2 − er+1)...(er−1 − er+1)]

(e1 − er+1)(e2 − er+1)...(er − er+1)

= (r − 1)!
r∑

j=1

1

(ej − er+1)
.

Consider the subgroup Cycr generated by the circular permutation of
1, ..., r. Then

r∑

j=1

1

(ej − er+1)
=

∑

w∈Cycr

w ·
1

(er − er+1)
.

Assume k3 odd. Thus

r!

(r − 1)!
φr+1(r − 1, 1, k2, k3) = [

∑

w∈Cycr

w ·
1

(er − er+1)
]φr+1(0, 0, k2, k3)
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=
∑

w∈Cycr

ǫ(w)w · [
1

(er − er+1)
φr+1(0, 0, k2, k3)]

as φr+1(0, 0, k2, k3) is anti-invariant under Σr.
Remark that:

φr+1(0, 0, k2, k3) = r
1

(e0 − er)k2
φr(0, k3, k2, k3)

so that

(e0 − er+1)D−(r+1) 1

(er − er+1)
φr+1(0, 0, k2, k3)

= r(e0 − er+1)D−(r+1) 1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3).

It follows that we have

(e0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

=
∑

w∈Cycr

ǫ(w)w · [(e0 − er+1)D−(r+1) 1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)].

We now use LEMMA 3 to compute the total residue of the last term in
the equality.

We write the vector space Er+1 as Er ⊕ R(er − er+1), and we consider
∆′ = Ar ∪ {(er − er+1)}

Using the decomposition (e0 − er+1) = (er − er+1) + (e0 − er), we write

(e0 − er+1)D−(r+1) =
∑

i≥0,j≥0,i+j=D−(r+1)

cij(e
r − er+1)i(e0 − er)j.

Thus

(e0 − er+1)D−(r+1) 1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)

=
∑

i≥0,j≥0,i+j=D−(r+1)

cij
(er − er+1)i

(er − er+1)

(e0 − er)j

(e0 − er)k2
φr(0, k3, k2, k3)
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belongs to the vector space R{(er−er+1)}⊗RAr
and we can easily compute the

total residue using LEMMA 3 of Section 1, as well as the obvious calculation
for a one dimensional space. Precisely

TresAr+1[(e
0 − er+1)D−(r+1) 1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)]

=
∑

i≥0,j≥0,i+j=D−(r+1)

cijTres(er−er+1)(
(er − er+1)i

(er − er+1)
)

×TresAr
[
(e0 − er)j

(e0 − er)k2
φr(0, k3, k2, k3)].

Only the term i = 0 gives a non zero residue, so we obtain

TresAr+1[(e
0 − er+1)D−(r+1) 1

(er − er+1)

1

(e0 − er)k2
φr(0, k3, k2, k3)]

=
1

(er − er+1)
TresAr

[(e0 − er)D−(r+1)−k2φr(0, k3, k2, k3)].

Now

D− (r+1)−k2 = DAr+1(r−1, 1, k2, k3)− (r+1)−k2 = DAr
(0, k3, k2, k3)−r.

So we obtain

TresAr+1[(e
0 − er+1)D−(r+1) 1

(er − er+1)
(e0 − er)k2φr(0, k3, k2, k3)]

=
1

(er − er+1)
TresAr

[(e0 − er)DAr (0,k3,k2,k3)−rφr(0, k3, k2, k3)].

We apply induction hypothesis on r. We have

TresAr
[(e0 − er)DAr (0,k3,k2,k3)−rφr(0, k3, k2, k3)]

= Cr(0, k3, k2, k3)
∑

w′∈Σr−1

ǫ(w′)w′ · [
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)
].

By FORMULA 6, as the total residue commutes with the action of W ,
we obtain:
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TresAr+1(e
0 − er+1)D−(r+1)φr+1(r − 1, 1, k2, k3)

= Cr(0, k3, k2, k3)
∑

w∈Cycr

ǫ(w)w · [
1

(er − er+1)
]

×
∑

w′∈Σr−1

ǫ(w′)w′ · [
1

(e0 − e1) · · · (er−1 − er)
].

But

∑

w∈Cycr

ǫ(w)w · [
1

(er − er+1)
]
∑

w′∈Σr−1

ǫ(w′)w′ · [
1

(e0 − e1)(e1 − e2) · · · (er−1 − er)
]

=
∑

ww′∈CycrΣr−1=Σr

ǫ(ww′)ww′ · [
1

(er − er+1)

1

(e0 − e1)(e1 − e2) · · · (er−1 − er)
]

=
∑

w∈Σr

ǫ(w)w.fΠ.

Thus we obtain the second relation. The case k3 even is completely
analogous, so the proof of the first and second relation is complete. The
symmetry property in k1, k2 is obvious.

Let us check
Cr+1(0, 1, 1, 0) = r!.

More precisely, we have the following exact formula ( without projection
on S∆).

Lemma 30
(e0 − er+1)(r−1)

∏r
i=1(e

0 − ei)(ei − er)
=
∑

w∈Σr

w · fΠ.

Indeed, by reduction to the same denominator, the right hand side can
be written as

P∏r
i=1(e

0 − ei)(ei − er)
∏

1≤i<j≤r(e
i − ej)
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¿From invariance consideration, P has to be anti-invariant under Σr , so
is divisible by

∏
1≤i<j≤r(e

i − ej). From degree consideration, we obtain the
desired equality, and Cr+1(0, 1, 1, 0) = r!.

QED

Bibliographical remarks.

For the proofs of Theorem 26 and 27, we followed the indications of
Zeilberger [Z]. Indeed, as explained in the remark following Theorem 27,
these formulae are closely related to calculations of Selberg integral [Se], and
to Morris identity [M]. We follow here closely Aomoto’s [A0] proof of the
Selberg formula .

7 Chan-Robbins-Yuen polytope

Let Bn be the polytope of n × n doubly stochastic matrices; that is the
set of n × n matrices with non negative entries, and such that the sum
of entries in any row or column is equal to 1. The vector space of n × n
matrices is equipped with the lattice of matrices with integral coefficients.
The intersection of this lattice with the affine space spanned by Bn is an
affine lattice, thus determines an unity of volume. The volume of Bn is
defined with respect to this unity. It has been computed only up to n = 8
([CY]). In [C-R-Y], some conjectures on the volume of some faces of Bn were
stated. We show that they follow from Jeffrey-Kirwan formula for volumes,
together with the explicit calculation of the preceding paragraph.

Definition 31 Define the vector space Yn as the vector space of (n × n)
matrices, with xij = 0 , if j ≥ (i + 2). The Chan-Robbins-Yuen polytope is
the polytope CRYn = Bn ∩ Yn.

Consider the vector space of (n + 1) × (n + 1) lower triangular matrices
such that first and last coefficients in the diagonal are equal to 0. Clearly
this vector space is isomorphic to Yn, by adding to a matrix X ∈ Yn a row
above identically equal to 0, and a last column identically equal to 0.

Example n = 5.
The vector space Y5 consists of 5 × 5 matrices X = (xij) such that
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X =




x11 x12 0 0 0
x21 x22 x23 0 0
x31 x32 x33 x34 0
x41 x42 x43 x44 x45

x51 x52 x53 x54 x55




The augmented matrix aug(X) is the 6 × 6 lower triangular matrix

aug(X) =




0 0 0 0 0 0
x11 x12 0 0 0 0
x21 x22 x23 0 0 0
x31 x32 x33 x34 0 0
x41 x42 x43 x44 x45 0
x51 x52 x53 x54 x55 0




It is clear that the transformation X 7→ aug(X) transforms the polytope
CRYn to the polytope C ′

n of (n + 1)× (n + 1) lower triangular matrices with
non negative entries, first row and last column identically equal to 0, and
other rows and columns summing to 1.

Example n = 5. The polytope C ′
5 consists of matrices

A =




0 0 0 0 0 0
a21 a22 0 0 0 0
a31 a32 a33 0 0 0
a41 a42 a43 a44 0 0
a51 a52 a53 a54 a55 0
a61 a62 a63 a64 a65 0




such that aij ≥ 0, and such that

a21 + a31 + a41 + a51 + a61 = 1,

a21 + a22 = 1 = a22 + a32 + a42 + a52 + a62,

.......

a51 + a52 + a53 + a54 + a55 = 1 = a55 + a65,

a61 + a62 + a63 + a64 + a65 = 1.
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Let n be the vector space of strictly lower triangular (n + 1) × (n + 1)-
matrices, with basis Eij , (j < i) with unique non zero entry at the i-th
row and j column. Consider a (n + 1) dimensional vector space with basis
ei, 1 ≤ i ≤ (n + 1) and dual basis ei. Let An = {(ek − eℓ); k 6= ℓ} with
positive root system {(ek − eℓ); 1 ≤ k < ℓ ≤ (n + 1)}. Let p be the map
sending the basis Eji of the vector space n to (ej−ei), for 1 ≤ j < i ≤ (n+1).
The span of An is the n-dimensional vector space En consisting of elements
a =

∑n+1
i=1 aie

i, with
∑n+1

i=1 ai = 0

Lemma 32 The polytope CRYn is isomorphic to PA+
n
(e1 − en+1).

We give the proof for n = 5, as it is most transparent on an example. By
definition the polytope PA+

5
(e1 − e6) consists of all (6 × 6) lower triangular

matrices

B =




0 0 0 0 0 0
b21 0 0 0 0 0
b31 b32 0 0 0 0
b41 b42 b43 0 0 0
b51 b52 b53 b54 0 0
b61 b62 b63 b64 b65 0




with non negative coefficients bij and such that

∑
bij(e

j − ei) = e1 − e6.

This gives the 6 equations:

b21 + b31 + b41 + b51 + b61 = 1,

−b21 + b32 + b42 + b52 + b62 = 0,

−b31 − b32 + b43 + b53 + b63 = 0,

.......

−b61 − b62 − b63 − b64 − b65 = −1.

Define
b′22 = 1 − b21, b′33 = 1 − (b31 + b32)

b′44 = 1 − (b41 + b42 + b43)

b′55 = 1 − (b51 + b52 + b53 + b54).
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These coefficients are positive: indeed the total sum of coefficients of the
entries of the matrix B in the rectangle Rij consisting on elements in a row
of index greater than i and on a column of index less than j is identically
equal to 1, so that any partial sum is less then 1. For example, adding first
3 inequalities, we obtain that

b41 + b42 + b43+

b51 + b52 + b53+

b61 + b62 + b63

is equal to 1, so that b41 + b42 + b43 is less than 1.
Then the matrix

B′ =




b21 b′22 0 0 0
b31 b32 b′33 0 0
b41 b42 b43 b′44 0
b51 b52 b53 b54 b′55
b61 b62 b63 b64 b65




is in the polytope CRY5.
We now show that the conjectures of Chan-Robbins-Yuen on their poly-

tope CRYn and related polytopes are consequences of THEOREM 26 and
PROPOSITION 23

Theorem 33 (Zeilberger) The relative volume of CRYn is equal to

n−2∏

i=1

1

i + 1

(
2i

i

)
.

Proof. The polytope CRYn is isomorphic to the polytope PA+
n
(e1 − en+1).

The linear isomorphism described above using the map aug preserves the
volume, as it preserves the corresponding lattices. We thus compute the
relative volume of PA+

n
(e1 − en+1). Consider

Jn =
(e1 − en+1)n(n−1)/2

∏
1≤i<j≤(n+1)(e

i − ej)
.

It is an element of RAn
of homogeneous degree −n. We choose the big

chamber c
+ in En consisting of elements a =

∑n+1
i=1 aie

i, with ai > 0, for
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i = 1, 2, ..., n. The element a = e1−en+1 is in the closure of this big chamber.
Jeffrey-Kirwan formula is:

volrel PA+
n
(e1 − en+1) = 〈〈c+, T resAn

(Jn)〉〉.

The function Jn up to renumbering has been introduced in Section 5.
This is the function Wn. Recall the formula for its total residue given in
THEOREM 26.

Let

fΠ =
1

(e1 − e2)(e2 − e3) · · · (en − en+1)

be the particular element of S∆ obtained by taking the inverse of the product
of simple roots. Then

TresAn
(Jn) =

n−2∏

i=1

1

i + 1

(
2i

i

)
[
∑

w∈Σ[2,...,n]

ǫ(w)w.fΠ.]

The linear form 〈〈c+, f〉〉 has been computed in Section 4. We write

jn(x) =
x

n(n−1)/2
1

x1...xn

∏
1≤i<j≤n(xi − xj)

.

It is the function Jn restricted at elements
∑n

i=1 xiei . Then

〈〈c+, Jn〉〉 = Iresx=0jn(x).

As iterated residues form a dual basis to the basis w.fΠ of S∆ (with
w ∈ Σ[1, 2, ...., n]), we obtain 〈〈c+, Jn〉〉 =

∏n−2
i=1

1
i+1

(
2i
i

)
.

QED

Consider the polytope CRYn((̂2, 2)), consisting on elements of CRYn with
the entry (2, 2) equal to 0. It is a face of codimension 1 of CRYn, isomorphic
to the polytope PA+

n minus (e2−e3)(e
1−en+1). Taking in account the fact that the

dimension of CRYn is
(

n
2

)
, we obtain from PROPOSITION 23 the following

corollary.

Lemma 34 (Conjecture 4 of [C-R-Y])
We have (

n

2

)
volrel CRYn((̂2, 2)) = 3 volrel CRYn.
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Bibliographical remarks.

The Chan-Robbins-Yuen polytope is described in [C-R-Y]. Its volume is
computed by Zeilberger [Z], using a formula of Postnikov- Stanley [S] or of
Chan-Robbins-Yuen [C-R-Y] for the volume of CRYn , as a particular value
of Kostant partition function (see Lemma 44 in next Section 8). Our proof
follows directly from the Jeffrey-Kirwan residue formulae for the volume, but
we use also the crucial identity of Theorem 27. The conjectured relations
between volumes of flow polytopes and the volume of a particular face is
deduced from Proposition 23. However, the volume of the entire boundary
of the polytope CRYn is unknown .

8 Ehrhart polynomial of a flow polytope.

We consider the positive root system of Ar realized in Er ⊂ Rr+1. We will
use sometimes implicitly the map

a = (a1, a2, ..., ar) → a = a1e
1 + ... + are

r − (a1 + · · ·+ ar)e
r+1

to identify Er and Rr.
Let M = r(r + 1)/2. Let a ∈ Zr+1 ∩ C(A+

r ). Then a1 ≥ 0, a1 + a2 ≥ 0,
..., a1 + a2 + · · ·+ ar ≥ 0, a1 + a2 + · · ·+ ar+1 = 0. Let kA+

r
(a) be the number

of solutions (u1, u2, ..., uM), in non negative integers um, of the equation

M∑

m=1

umαm = a.

Here αm runs though the r(r + 1)/2 positive roots (ei − ej) of Ar. The
function kA+

r
(a) is the number of integral points in the polytope PA+

r
(a) and

is called the Kostant partition function (for Ar).
Consider the permutation w0 : [1, 2, ..., r, r + 1] 7→ [r + 1, r, ..., 2, 1]. Then

−w0 preserves A+
r . A solution (u1, u2, ..., uM), in non negative integers um,

of the equation
M∑

m=1

umαm = a

gives a solution of the equation

M∑

m=1

um(−w0 · α
m) = −w0 · a.
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So for a1 + a2 + ... + ar+1 = 0, we have

kA+
r
(a1e

1 + a2e
2 + · · ·+ are

r + ar+1e
r+1)

= kA+
r
(−ar+1e

1 − are
2 − · · · − a2e

r − a1e
r+1).

Almost by definition, the function kA+
r

is given by an iterated constant
term.

Lemma 35 Let a = a1e
1+a2e

2+ ...+are
r +ar+1e

r+1, with a1+a2 + ...+ar +
ar+1 = 0. The value kA+

r
(a) is given by the iterated constant term formula:

kA+
r
(a) = CTz1=0CTz2=0...CTzr+1=0

(
za1
1 za2

2 ...z
ar+1

r+1∏
1≤i<j≤r+1(1 − zj/zi)

)
.

Here 1
(1−zr+1/zi)

is expanded as a power series in zr+1. The constant term

at zr+1 = 0 of
z

ar+1
r+1∏

1≤i≤r+1(1−zr+1/zi)
is in the ring R[z−1

1 , z−1
2 , ..., z−1

r ] and we

reiterate.
Thus, some explicit values for Kostant partition function can be obtained

from the total residue formula of Section 6, as iterated constant term of
a function f coincide with the iterated residue of this function divided by
z1z2...zr.

For example

Lemma 36 For r ≥ 2,

kA+
r
((1 + d), (2 + d), ..., (r + d)) =

r+d−1∏

i=d+1

1

2i + 1

(
r + d + i + 1

2i

)
,

kA+
r
(1, 2, ..., r) =

r∏

i=1

Ci.

Let Φ = {α1, α2, ..., αN} be a sequence of elements of A+
r generating Er.

Consider the surjective linear map p : RN → Er such that p(wi) = αi.
Then, for a ∈ Zr, the polytope PΦ(a) ⊂ RN

+∩p−1(a) has vertices with integral
coordinates.
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Definition 37 For a ∈ Zr, define

kΦ(a) = |PΦ(a) ∩ ZN |.

Thus kΦ(a) is the number of solutions (u1, u2, ..., uN), in non negative
integers um, of the equation

N∑

m=1

umαm = a.

Define k′
Φ(a) as the number of solutions (u1, u2, ..., uN), in strictly positive

integers um, of the equation

N∑

m=1

umαm = a.

Remark. Let a =
∑r+1

i=1 aie
i. If k′

Φ(a) is non zero, then necessarily
a1 ≥

∑r+1
j=2 m1j .

We consider the system −w0(Φ). Then clearly kΦ(−w0(a)) = k−w0(Φ)(a).

Lemma 38 Let a = a1e
1+a2e

2+ ...+are
r +ar+1e

r+1, with a1+a2 + ...+ar +
ar+1 = 0. The value kΦ(a) is given by the iterated constant term formula:

kΦ(a) = CTz1=0CTz2=0...CTzr+1=0

(
za1
1 za2

2 ...z
ar+1

r+1∏
1≤i<j≤r+1(1 − zj/zi)mij

)
.

We also consider the number k′(Φ, c)(a) of solutions in strictly positive
integers um of the equation

N∑

m=1

umαm = a.

Let c be a big chamber for the system ∆+ = {Φ}. It follows from Ehrhart
results on polytopes with integral vertices that the function kΦ(a) is given
by a polynomial formula when a varies in c ∩ Zr. This polynomial is called
the Ehrhart polynomial of the family of polytopes PΦ(a), on the big

chamber c.
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For α ∈ Φ, the rational function on E∗
r

α

1 − e−α
= 1 +

1

2
α +

1

12
α2 + ...

is analytic at the origin, and can be expanded as a Taylor series. Thus

1

1 − e−α
=

1

α
(

α

1 − e−α
)

as an element of R̂∆, and for any a ∈ Er, the function ea∏N
i=1(1−e−αi )

is an

element of R̂∆.
Define

KΦ(a) = Tres∆

(
ea

∏
α∈Φ(1 − e−α)

)
.

As 1∏N
i=1(1−e−αi )

= 1∏N
i=1 αi

+
∑

k>−N fk, we have

Tres∆(
ea

∏N
i=1(1 − e−αi)

)

=
1

(N − r)!
Tres∆(

aN−r

∏N
i=1 αi

) +
∑

q<(N−r)

1

q!
Tres∆(aqf−r−q).

Thus the function

a 7→ Tres∆(
ea

∏N
i=1 1 − e−αi

)

is a polynomial function of degree (N − r) with value in S∆. Recall DEFI-
NITION 6 of the function JΦ. We see that the homogeneous component of
degree (N − r) of KΦ(a) is

JΦ(a) = Tres∆(
ea

∏N
i=1 αi

)

=
∑

|i|=N−r

fΦ(i)
ai1

1

i1!

ai2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
.

Khovanski-Pukhlikhov formula [KP] says that the locally polynomial func-
tion kΦ(a) is deduced (as for any partition family of polytopes, see [B-V 1,
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Section 3.5]) from the locally polynomial function vol PΦ(a) via a Todd op-
erator. Using Jeffrey-Kirwan residue formula for the volume, we obtain (see
[B-V 1 , Section 3.5]) the following residue formula for the Ehrhart polyno-
mials kΦ(a) and k′

Φ(a) .

Theorem 39 (Multidimensional residue theorem)
Let a ∈ C(∆+). Let c ⊂ C(∆+) be a big chamber such that a ∈ c, then

kΦ(a) = 〈〈c, KΦ(a)〉〉.

If a ∈ c, then
k′

Φ(a) = (−1)|Φ|〈〈c, KΦ(−a)〉〉.

For example, in case ∆ = A1 and Φ with multiplicity m, the preceding
theorem asserts that for a ≥ 0

kΦ(ae1 − ae2) = CTz=0
z−a

(1 − z)m
= Resx=0

eax

(1 − e−x)m
.

The first expression is the residue of the 1-form z−a

(1−z)m
dz
z

at z = 0. The

second is the residue at z = 1 of this 1-form (we choose z = e−x as local
coordinate, near x = 0 ). As a + m > 0, the rational function z−a

(1−z)m
dz
z

has
no poles at z = ∞ and we obtain the result from the one dimensional residue
theorem.

Definition 40 We denote by k(Φ, c)(a) the polynomial such that k(Φ, c)(a) =
kΦ(a) when a ∈ c

Thus
k(Φ, c)(a) = 〈〈c, KΦ(a)〉〉.

This is a polynomial of degree N − r and the homogeneous component of
degree N − r of k(Φ, c) is the polynomial

v(Φ, c)(a) = 〈〈c, JΦ(a)〉〉.

As in LEMMA 20, the knowledge of k(Φ, c+)(a) determines (in principle)
the other functions k(Φ, c).
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Lemma 41 Let c be a big chamber. Let Σr(c) be the set of elements w ∈ Σr

such that c ⊂ C+
w . Then

k(Φ, c)(a) =
∑

w∈Σr(c)

(−1)n(w)k(Φ, c+)(w−1a).

We write

v(Φ, c)(a1, ..., ar) =
∑

i1+i2+···+ir=N−r

v(Φ, c, i)
ai1

1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
.

Definition 42 Define

tΦj =

r+1∑

k=j+1

mjk − 1,

sΦ
j = 1 −

j−1∑

k=1

mkj.

We consider the nice chamber c
+. Then we can express the coefficients

of the function v(Φ, c)(a) as values at very particular points depending on i

of the function kΦ′ , where Φ′ is the system where we have deleted all roots
ei − er+1.

The system Φ′ is a sequence of vectors in the positive root system of Ar−1,
which spans the vector space Er−1 = {a =

∑r
i=1 aie

i , with
∑r

i=1 ai = 0}.
Remark that if i1 + i2 + ... + ir = N − r, then the vector (i1 − t1)e

1 + (i2 −
t2)e

2 + ... + (ir − tr)e
r is in Er−1.

Proposition 43 (Postnikov-Stanley)
For the big chamber c

+ of C(A+
r ) we have

v(Φ, c+, i) = kΦ′((i1 − t1)e
1 + (i2 − t2)e

2 + ... + (ir − tr)e
r).

Proof. We use the iterated residue formula for f 7→ 〈〈c+, f〉〉 and the
iterated constant term formula (LEMMA 38) for kΦ′. Indeed

v(Φ, c+, i)

= Resx1=0Resx2=0 · · ·Resxr=0

(
xi1

1 xi2
2 · · ·xir

r

x
m1,r+1

1 ...x
mr,r+1
r

∏
1≤i<j≤r(xi − xj)mij

)
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= CTx1=0CTx2=0 · · ·CTxr=0

(
x

i1+1−m1,r+1

1 x
i2+1−m2,r+1

2 · · ·x
ir+1−mr,r+1
r∏

1≤i<j≤r(xi − xj)mij

)

= CTx1=0CTx2=0 · · ·CTxr=0

(
xi1−t1

1 xi2−t2
2 · · ·xir−tr

r∏
1≤i<j≤(1 − xj/xi)mij

)

= kΦ′((i1 − t1)e
1 + (i2 − t2)e

2 + ... + (ir − tr)e
r).

QED
Consider now the system Φ = A+

r . We have tΦi = (r − i). The system Φ′

is A+
r−1. We have thus

v(A+
r , c+, i) = kA+

r−1
((i1 − (r−1))e1 +(i2 +(r−2))e2 + · · ·++ir−1e

r−1 + ire
r)

In the right hand side, if ir > 0, the element (i1−(r−1))e1+· · ·+ir−1e
r−1+

ire
r cannot be in the cone generated by (ei − ej) with 1 ≤ i < j ≤ r, as seen

by looking at the component on er which would be negative. Furthermore,
if ir = 0, we see that the coefficients of roots ei − er in a solution of the
equation

∑

αm∈A+
r−1

xmαm = (i1 − (r − 1))e1 + (i2 + (r − 2))e2 + · · ·+ ir−1e
r−1

(with xm ≥ 0) are necessarily 0. So, consider the system A+
r−2 realized as

(ei − ej), 1 ≤ i < j ≤ (r − 1). Then we see that

v(A+
r , c+; (i1, i2, ..., ir−1, ir)) = 0

if ir > 0 and
v(A+

r , c+; (i1, i2, ..., ir−1, 0))

= kA+
r−2

((i1 − (r − 1))e1 + (i2 − (r − 2))e2 + · · ·+ (ir−1 − 1)er−1).

In particular, we obtain for monomials, the relation between the volume
of the CRY polytope PAr

(e1 − er+1) and Kostant Partition function. Indeed,
the only i to consider is i1 = r(r − 1)/2, i2 = 0, ..., ir = 0. The point
(i1 − (r − 1))e1 − (r − 2)e2 + ... − 2er−2 − er−1 is flipped to the point e1 +
2e2 + ... + (r − 2)er−2 + (r − 1) − i1)e

r−1 under the transformation −w0 of
the system A+

r−2. We then obtain:
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Corollary 44 (Postnikov-Stanley)

vol PA+
r
(e1 − er+1) = kA+

r−2
(1, 2, 3, 4, ..., (r − 2)).

Similarly, for any sequence Φ, the relative volume of the flow polytope
PΦ(e1 − er+1) is an integer, given by the Kostant partition function kΦ′ at a
particular point. Combinatorists are happy of this result, only if they can ex-
plain this by giving an explicit simplicial decomposition of the corresponding
flow polytope.

Bibliographical remarks.

Lemma 36, as well as many other results on Kostant Partition function is
in [Ki]. Theorem 39 follows from [K-P] and [J-K], at least for generic values.
A generalization to any rational polytope is given in [B-V 1]. Proposition 43
and corollary 44 are due to Postnikov- Stanley [ P-S].

9 Change of variables for the total residue

We return to the notations of Section 2.
Let F : VC → VC be an analytic map, such that F (0) = 0 and preserving

the open set U∆ = VC − HC of VC. If f ∈ R̂∆, the function (F ∗f)(x) =
f(F (x)) is again in R̂∆. Let Jac(F ) be the Jacobian of the map F . We
assume Jac(F )(0) 6= 0. We write F (x) = L(F )(x) + r(x) where L(F ) is a
linear invertible map, and r(x) vanishes at 0 at order 2. Thus L(F ) permutes
the hyperplanes {α = 0}. If f is in S∆, the function L(F )∗(f) is again in
S∆.

Theorem 45 For any f in R̂∆, we have the equality in S∆:

Jac(F )(0)L(F )∗(Tres∆(f)) = Tres∆(Jac(F )(F ∗f)).

Proof. Let f ∈ R̂∆. Then (f − Tres∆(f))dx is the differential of some

(r−1)-form
∑r

k=1 fkdx1∧dx2∧d̂xk∧· · ·∧dxr, with fk ∈ R̂∆. The vector space∑r
k=1 fkdx1∧dx2∧d̂xk∧· · ·∧dxn with fk ∈ R̂∆ is stable by the action of F ∗ on

differential forms. As F ∗ commutes with d, (F ∗f)F ∗dx−F ∗(Tres∆(f))F ∗dx

is the differential of some (r − 1)-form
∑r

k=1 Φkdx1 ∧ dx2 ∧ d̂xk ∧ · · · ∧ dxr,

with Φk ∈ R̂∆. We have (F ∗f)F ∗dx = Jac(F )(F ∗f)dx.
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We now analyze the differential form (F ∗f)(F ∗dx) = (F ∗f)Jac(F )dx
with f ∈ S∆. The function f is the inverse of the product of r linear forms
αk. As F preserves U∆, we have αk(F (x)) = βk(x)gk(x) where βk(x) is
another linear form in the system ∆ and gk(x) is holomorphic at 0. Thus
(F ∗f)(x) = 1∏

k βk(x)

∏
k(g

k(x))−1 is again in R̂∆.

Furthermore, we see that (F ∗f)− (L(F )∗f) is an element of R∆ of degree
〉 − r. Thus (F ∗f)J(F ) − (L(F )∗f)J(F )(0) is an element of R̂∆ of degree
> −n. It follows that (F ∗f)F ∗dx− L(F )∗(f)J(F )(0)dx is the differential of
some (r − 1)-form

∑r
k=1 hk(x)dx1 ∧ dx2 ∧ ˆdxk ∧ · · · ∧ dxr, with hk ∈ R̂∆.

Adding these two informations, we see that for any f ∈ R̂∆,

Jac(F )(F ∗f)dx− J(F )(0)(L(F )∗Tres∆(f))dx

is the differential of some r − 1-form
∑r

k=1 mk(x)dx1 ∧ dx2 ∧ ˆdxk ∧ · · · ∧ dxr,

with mk ∈ R̂∆. This implies the formula of the lemma.
QED

10 A nice formula for Kostant restricted par-

tition function

Let Φ be a sequence of N vectors in A+
r ⊂ Er generating Er. In the same

spirit that Lidskii formula for Kostant partition function ([L]), we will give a
closed formula for kΦ(a) in function of vol PΦ(a). In fact, we will express the
S∆-valued polynomial KΦ(a) in function of the S∆-valued polynomial JΦ(a)
of Section 12.

Let ((
u

k

))
=

u(u + 1)(u + 2) · · · (u + (k − 1))

k!
.

Theorem 46 Let

JΦ(a) =
∑

i1+i2+···+ir=N−r

fΦ(i)
ai1

1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
.

Then

KΦ(a) =
∑

|i|=N−r

fΦ(i)

(
a1 + tΦ1

i1

)(
a2 + tΦ2

i2

)
· · ·

(
ar−1 + tΦr−1

ir−1

)(
ar + tΦr

ir

)
.
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We have as well

KΦ(a) =
∑

|i|=N−r

fΦ(i)

((
a1 + sΦ

1

i1

))
· · ·

((
ar−1 + sΦ

r−1

ir−1

))((
ar + sΦ

r

ir

))
.

Proof. We realize Ar in Rr as the system (ei − ej), 1 ≤ i < j ≤ r, ei, 1 ≤
i ≤ r.

Then
KΦ(a)

= Tres∆[
ea1x1ea2x2 · · · earxr

∏r
i=1(1 − e−xi)mi,r+1

∏
1≤i<j≤r(1 − e−(xi−xj))mij

].

We use LEMMA 45 for changing variables in residues. Let x =
∑r

i=1 xiei

in V . Define F (x) =
∑r

i=1(e
xi − 1)ei. This change of variables preserves the

vector space R∆. Indeed (exi − exj ) is divisible by (xi − xj). The differential
of F at the origin is the identity. We have Jac(F ) = ex1ex2 · · · exr .

We write tk, sk instead of tΦk , sΦ
k . Let a1, a2, ..., ar be integers and let

f(a1, a2, ..., ar)(x) =
(1 + x1)

a1+t1(1 + x2)
a2+t2 · · · (1 + xr)

ar+tr

x
m1,r+1

1 x
m2,r+2

2 · · ·x
mr,r+1
r

∏
1≤i<j≤r(xi − xj)mij

.

Then the function (F ∗f)Jac(F ) is equal to

ea1x1ea2x2 · · · earxr

(1 − e−x1)m1,r+1(1 − e−x2)m2,r+1 · · · (1 − e−xr)mr,r+1

×
1∏

1≤i<j≤r(1 − e−(xi−xj))mij
.

Thus, we obtain from LEMMA 45:

Tres∆(
e〈a,x〉

∏
α∈Φ(1 − e−〈α,x〉)

) = Tres∆(
(1 + x1)

a1+t1 · · · (1 + xr)
ar+tr

∏
α∈Φ α(x)

).

To compute the total residue of the last expression, as the denominator∏
α∈Φ α(x) is homogeneous of degree N , we have to seek for the term in the

numerator which is homogeneous of degree N−r, thus we seek the coefficient
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of each term of the form xi1
1 · · ·xir

r with i1 + i2 + · · · + in = N − r. We thus
obtain the first part of Proposition 46.

The second is proved the same way, using F (x) =
∑r

i=1(1 − e−xi)ei and
the function

(1 + x1)
−(a1+s1) · · · (1 + xr)

−(a2+sr)

x
m1,r+1

1 x
m2,r+1

2 · · ·x
mr,r+1
r

∏
1≤i<j≤r(xi − xj)mij

QED
Thus we obtain the following formula for kΦ(a).

Theorem 47 Let c be a big chamber and a ∈ c. Then

kΦ(a) =
∑

|i|=N−r

fc(i)

(
a1 + tΦ1

i1

)(
a2 + tΦ2

i2

)
· · ·

(
ar−1 + tΦr−1

ir−1

)(
ar + tΦr

ir

)
.

We have as well

kΦ(a) =
∑

|i|=N−r

fc(i)

((
a1 + sΦ

1

i1

))
· · ·

((
ar−1 + sΦ

r−1

ir−1

))((
ar + sΦ

r

ir

))
.

Comparing with formula 1 for the volume, we see that the function kΦ(a)
is immediately deduced from the polynomial function vol PΦ(a) (i.e; its high-

est degree component) by replacing the monomial
a

ik
k

ik!
by the function

(
ak+tΦ

k
ik

)

(with same leading term).

Corollary 48 Let qΦ = (
∑r+1

k=2 m1k)−1. The polynomial k(Φ, c+) is divisible
by (a1 + 1)(a1 + 2)...(a1 + qΦ).

Proof. Indeed, on the big chamber c
+, we have seen in PROPOSITION

22 that that multiindices i such that fΦ(i) is non zero are such that i1 ≥ qΦ.
We have sΦ

1 = 1, thus the corollary follows.
QED

Remark This follows also from the remark following definition 37, and
Theorem 39.

If Φ = A+
r , we then obtain the relation for Kostant partition kc on a big

chamber c . Define

fc(i) = 〈〈c, T res∆

(
xi1

1 xi2
2 · · ·xir

r

x1x2...xr

∏
i<j(xi − xj)

)
〉〉.

Then we have
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Proposition 49 (Lidskii)
We have:

k(A+
r , c)(a)

=
∑

|i|=(r
2)

fc(i)

(
a1 + r − 1

i1

)(
a2 + r − 2

i2

)
· · ·

(
ar−1 + 1

ir−1

)(
ar

ir

)
.

We have as well:

k(A+
r , c)(a)

=
∑

|i|=(r
2)

fc(i)

((
a1 + 1

i1

))((
a2

i2

))
· · ·

((
ar−1 + 3 − r

ir−1

))((
ar + 2 − r

ir

))
.

Bibliographical remarks.

Proposition 49 is due to B.V. Lidskii [L]. Theorem 47 is due to Stanley,
who suggested to look for a proof via residues, as given here.

11 Volumes and Ehrhart polynomials of the

Stanley-Pitman polytope

Section 10 reduces the computation of the Ehrhart polynomial to the com-
putation of mixed volumes.

Here is an example. Let

Πr(a) = {y ∈ Rr; yi ≥ 0, y1 + · · ·+ yi ≤ a1 + a2 + · · · + ai}

with ai ≥ 0.
Let Φ be the following sequence of 2r elements {βi, γj}, 1 ≤ i ≤ r, 1 ≤

j ≤ r} of A+
r

Φ = {β1 = (e1 − er+1), ...., βr = (er − er+1)}

∪{γ1 = (e1 − e2), γ2 = (e2 − e3), · · ·γr−1 = (er−1 − er), γr = (er − er+1)}
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The multiplicity of (er − er+1) in Φ is 2. We write ti = tΦi . Thus
t1 = t2 = ... = tr−1 = tr = 1, while s1 = 1, s2 = s3 = ... = sr = 0.
Let nΦ = R2r with basis vβk , wγj . Let C+

2r be the standard cone

⊕r
k=1yi,r+1vβk ⊕r

k=1 zk,k+1wγk

with yi,r+1 ≥ 0, zk,k+1 ≥ 0
Let p : R2r → Er be the map sending vβ to β and wγ to γ. Then for

a = a1e
1 + · · · + are

r, with ai ≥ 0 the polytope Πr(a) is isomorphic to
PΦ(a) = p−1(a) ∩ C+

2r. Indeed the point
∑r

k=1 yk,r+1vβk +
∑r

k=1 zk,k+1wγk

with yi,r+1 ≥ 0, zi,i+1 ≥ 0 is in PΦ(a) if and only if

r∑

k=1

yk,r+1(e
k − er+1) +

r∑

i=1

zi,i+1(e
i − ei+1)

= a1e
1 + · · ·+ are

r − (a1 + a2 + ... + ar)e
r+1.

This gives

y1,r+1 + z1,2 = a1,

y2,r+1 + z2,3 = a2 + z1,2

y3,r+1 + z3,4 = a3 + z1,2 + z2,3

......

so that

y1,r+1 ≤ a1,

y1,r+1 + y2,r+1 ≤ a1 + a2,

y1,r+1 + y2,r+1 + y3,r+1 ≤ a1 + a2 + a3

· · ·

and the point (y1,r+1, y2,r+1, ..., yr,r+1) ∈ Πr(a).
We compute the volume

vol Πr(a) =
∑

i1+i2+···+ir=r

fΦ(i)
ai1

1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
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As a ∈ c
+, we have, by LEMMA 43,

fΦ(i) = kΦ′((i1 − 1)e1 + (i2 − 1)e2 + .... + (ir − 1)er).

The system Φ′ is the set of simple roots (e1−e2), ..., (er−1−er). They are
linearly independent and generate a simplicial cone C(Φ′). Thus the function
kΦ′ is identically 1 on the cone C(Φ′)∩Zr. Thus we obtain f(i1, i2, i3, ..., ir) =
0 or 1. It is 1 if and only (i1 − 1)e1 + (i2 − 1)e2 + .... + (ir − 1)er is in the
cone C(A+

r−1). We thus need

(i1, i2, i3, ..., ir) ∈ Kr

where

Kr = {(i1, i2, i3, ..., ir), i1 ≥ 1, i1 + i2 ≥ 2, ..., i1 + i2 + · · ·+ ir = r}.

We obtain the formula for the volume of Πr(a) and its Ehrhart polyno-
mial, given in [Pi-S] .

Proposition 50 (Pitman-Stanley)

vol Πr(a) =
∑

i∈Kr

ai1
1

i1!

ai2
2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!
,

kΦ(a) =
∑

i∈Kr

((
a1 + 1

i1

))((
a2

i2

))
· · ·

((
ar−1

ir−1

))((
ar

ir

))
.

The same beautiful occurs for any family of polytopes associated to a
smooth toric variety, giving rather nice formulae deduced immediately from
the mixed volumes.

Bibliographical remarks. Results of this section are due to [Pi-S].

12 Divisibility property of the Kostant par-

tition function

.
Here we list some properties of the polynomial k(A+

r , c+). They are similar
to the properties of its highest degree term v(A+

r , c+) established in Section
5. For example, the following Lemma implies of course LEMMA 23.
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Proposition 51 ( Schmidt-Bincer)
The function k(A+

r , c+)(a1, a2, ..., ar) is independent of ar. It is of degree
less or equal to 1 in the variable ar−1 and is divisible by (a1 + a2 + a3 + ... +
ar−2 + 3ar−1 + 3).

More precisely, we have:

3k(A+
r , c+)(a1, a2, ..., ar−1, ar) = 3k(A+

r , c+)(a1, a2, ..., ar−1, 0)

= (a1 + a2 + ... + ar−2 + 3ar−1 + 3)k(A+
r , c+)(a1, a2, ..., ar−1, 0)

= (a1+a2+...+ar−2+3ar−1+3)k(A+
r minus (er−1−er), c+)(a1, a2, ..., ar−2, 0, 0).

Proof. The proof is almost identical to the proof of PROPOSITION 23.
Let

K(a, x)

=
ea1x1+...+ar−1xr−1+arxr

∏
1≤i<j≤r−1(1 − e−(xi−xj))

∏
1≤i≤r−1(1 − e−(xi−xr))

∏
1≤i≤r(1 − e−xi)

.

We have:

k(A+
r , c+)(a1, a2, ..., ar) = Iresx=0K(a, x).

We write k(A+
r , c+) = k+

r . We first take the residue of K(a, x) in xr = 0.
We obtain

Resxr=0K(a, x) =
ea1x1+...+ar−1xr−1

∏
1≤i<j≤r−1(1 − e−(xi−xj))

∏
1≤i≤r−1(1 − e−xi)2

.

This shows already that k+
r (a1, a2, ..., ar) is independent of ar. We proceed

now to take the residue in xr−1 = 0. There is a double pole in xr−1, so that
the dependence in ar−1 is of degree at most 1. More precisely, a simple
calculation shows that

Resxr−1=0
ea1x1+...+ar−1xr−1

∏
1≤i<j≤r−1(1 − e−(xi−xj))

∏
1≤i≤r−1(1 − e−xi)2

=
ea1x1+...+ar−2xr−2

∏
1≤i<j≤r−2(1 − e−(xi−xj))

∏
1≤i≤r−2(1 − e−xi)3

(ar−1 + 1 +

r−2∑

i=1

e−xi

1 − e−xi
)
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= (ar−1+1+
1

3
(a1+a2+...+ar−2))

ea1x1+...+ar−2xr−2

∏
1≤i<j≤r−2(1 − e−(xi−xj))

∏
1≤i≤r−2(1 − e−xi)3

−
1

3
(∂1 + ∂2 + · · ·+ ∂r−2)

ea1x1+...+ar−2xr−2

∏
1≤i≤r−2(1 − e−xi)3

∏
1≤i<j≤r−2(1 − e−(xi−xj))

.

As residue vanishes on derivatives, we obtain

k+
r (a1, a2, ..., ar−1, ar)

= (ar−1 + 1 +
1

3
(a1 + a2 + ... + ar−2))×

Resx1=0...Resxr−2=0
ea1x1+...+ar−2xr−2

∏
1≤i<j≤r−2(1 − e−(xi−xj))

∏
1≤i≤r−2(1 − e−xi)3

.

On the other hand, the residue computation of

k(A+
r minus (er−1 − er), c+)(a1, a2, ..., ar−2, 0, 0)

gives

k(A+
r minus (er−1 − er), c+)(a1, a2, ..., ar−2, 0, 0)

= Resx1=0...Resxr−2=0
ea1x1+...+ar−2xr−2

∏
1≤i<j≤r−2(1 − e−(xi−xj))

∏
1≤i≤r−2(1 − e−xi)3

as the step xr = 0 as well as the step xr−1 = 0 involves only simple poles,
and we obtain the divisibility property announced.

QED
More generally, we have the following lemma, with same proof.

Lemma 52 Let Φ a sequence of vectors in A+
r generating Er. Assume

mr,r+1 = 1 and mr−1,r+1 + mr−1,r = 2. Furthermore, assume that

mj,r+1 + mj,r + mj,r−1

mj,r−1

= c

is independent of j for 1 ≤ j ≤ (r − 2), then

k(Φ, c+)(a1, ..., ar−1, ar) = k(Φ, c+)(a1, ..., ar−1, 0)

= (
a1 + · · ·+ ar−2

c
+ ar−1 + 1)v(Φ minus (er−1 − er), c+)(a1, a2, ..., ar−2, 0, 0).
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Bibliographical remarks.

Proposition 51 is due to [S-B].

13 A “not so obvious ” symmetry property

of the volume and Ehrhart polynomial

The full Weyl group Σr+1 of the root system Ar acts on SAr
as it permutes

the elements (ei − ej), 1 ≤ i < j ≤ (r + 1). We show that the existence of
this action implies some constraints on the coefficients of the S∆-valued poly-
nomial function JA+

r
(a) and KA+

r
(a). In particular, the Kostant polynomial

k(A+
r , c+)(a) = Iresx=0(KA+

r
(a)) satisfies some symmetries.

Lemma 53 For any w ∈ Σr+1, we have

JA+
r
(w.a) = ǫ(w)w · JA+

r
(a).

Let q be a linear form on S∆. Then the map a 7→ 〈q, JA+
r
(a)〉 is a

polynomial of degree |Ar−1| = r(r − 1)/2 on Er. This way, we obtain a
map from the r!-dimensional space S∗

∆ to the space of polynomials of degree
|Ar−1| = r(r − 1)/2 on Er, commuting with the representation of Σr+1.

A subset of {1, 2, ..., N} will be called an interval, if it is of the form
{a, a+1, a+2, ..., a+k}, for a an integer between 1 and N (and k an integer
between 0 and N − a). Let us represent a permutation in ΣN as a list of N
elements . For example, if we write w = [Id(N−3), N, N − 2, N − 1], the first
N − 3 indices are fixed by the permutation w , N − 2 is sent to N , N − 1 to
N − 2 and N to N − 1.

Definition 54 The subset BN is the subset of elements w of ΣN such that
for any 1 ≤ k ≤ N the subset w−1{1, 2, 3, ..., k} is an interval.

Lemma 55 The subset BN is of cardinal 2N−1.

Proof. We prove it by induction on N . If v ∈ BN+1, the set v−1{1, 2, 3, ..., N}
is an interval. So it is either equal to {1, 2, 3, ..., N} or to {2, 3, ..., N, N +1}.
Thus a transformation w of BN gives rise to two transformations of BN+1

namely [w, N + 1] and [N + 1, w].
QED
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Definition 56 For 1 ≤ i ≤ r, we define W i,r as the subset of Σr consisting
of elements w such that:

• w(k) = k, 1 ≤ k ≤ i − 1.

• For 0 ≤ s ≤ (r − i), the set w−1{i, r, r − 1, r − 2, r − 3, ..., r − s} is an
interval (of {i, ..., r}).

Clearly the subset W i,r is isomophic to Br−(i−1) by relabelling indices.
Thus the set W i,r is of cardinality 2r−i. A list of r elements representing an
element of W i,r is constructed as follows: we start writing i in the middle of
a horizontal line, then we write r either at the immediate left of i, or at the
immediate right. After, we write (r − 1) either at the immediate left of the
unordered set {i, r}, or at the immediate right, and we go on until we have
written all elements of the set {i, r.., i + 1} = {i, i + 1, ..., r} on this line. At
this step, we finally write the ordered set {1, 2, ..., i − 1} at the immediate
left of the unordered set {i, i + 1, ..., r}.

Example. Let us list elements of W i,r ⊂ Σr for i = r, r − 1, r − 2.
We have

W r,r = {[Idr]}

W (r−1),r = {[Idr], [Idr−2, r, r − 1]}.

W (r−2),r =

{[Idr−3, r−2, r, r−1], [Idr−3, r, r−2, r−1], [Idr−3, r−1, r−2, r], [Idr−3, r−1, r, r−2]}.

Let w ∈ Σr. Consider the element r̂(w) of Σr−1 such that the list repre-
senting r̂(w) is the list w where the element r is omitted. In other words, if u
is such that w(u) = r, then r̂(w)(k) = w(k) if k < u, and r̂(w)(k) = w(k+1)
if k ≥ u. We have the lemma.

Lemma 57 The element w ∈ W i,r if and only if:

• w−1{i, r} is an interval.

• r̂(w) ∈ W i,r−1.

We denote by T (i, r+1) ∈ Σr+1 the transposition of i and (r+1). It acts
on S∆, thus on S∗

∆.
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Proposition 58 Let 1 ≤ i ≤ r. Then the following holds:

T (i, r + 1) · Iresx=0 =
∑

w∈W i,r

(−1)r+1−w−1(i)w · Iresx=0.

Proof. If g ∈ Σr+1, we have g · Iresx=0 =
∑

w∈Σr
cg
wIresw

x=0, as elements
Iresw

x=0 = w · Iresx=0 form a basis of linear forms on S∆. Let, for w ∈ Σr,

fw =
1∏

1≤p≤r−1(e
w(p) − ew(p+1))(ew(r) − er+1)

.

The coefficient cg
w is equal to 〈g · Iresx=0, fw〉 = Iresx=0(g

−1fw). We need
to prove

• If w is not in W i,r, then

〈Iresx=0, T (i, r + 1)fw〉 = 0.

• If w ∈ W i,r, then

〈Iresx=0, T (i, r + 1)fw〉 = (−1)r+1−j

with j = w−1(i).

Let φ = 1∏
α∈σ α

be in SAr
. The set σ consists on r linearly independent

elements of Er. The partial residue Resxr=0φ is non zero if and only one
of the elements α in the denominator of φ is proportional to (er − er+1).
Indeed, in computing Resxr=0φ, we replace ei by xi, when i ≤ r, and er+1 by
0. Thus the only factor creating a pole on xr = 0 is (er − er+1). It follows
that Resxr=0(T (i, r +1)fw) is zero unless there exists p, 1 ≤ p ≤ r, such that
(ew(p) − ew(p+1)) is proportional to the linear form T (i, r + 1) · (er − er+1).

If i = r, then T (r, r + 1) · (er − er+1) = −(er − er+1) and we see that
necessarily p = r and w(r) = r. Then

Iresx=0T (r, r + 1) · fw

= Resx1=0 . . . Resxr−1=0
−1∏r−2

k=1(xw(k) − xw(k+1))xw(r−1)

= −δ1
w

since w(r) = r and that the basis fw, with w ∈ Σr−1 is dual to the basis of
iterated residues on SAr−1, as seen in Section 4. On the other hand W r ,r =
[Id(r)], and thus the case i = r is completed.
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Let i < r. We proceed by induction on r. Let w ∈ Σr and j such that
w(j) = i. Then, with g = T (i, r + 1),

g · fw =
1

(ew(1) − ew(2))(ew(2) − ew(3)) . . . (ew(j−2) − ew(j−1)
×

×
1

(ew(j−1) − er+1)(er+1 − ew(j+1)) . . . (ew(j+1) − ew(j+2)) . . . (ew(r) − ei)

and

Iresx=0g · fw = −Iresx=0
1

(xw(1) − xw(2))(xw(2) − xw(3)) . . . (xw(j−2) − xw(j−1)

×
1

xw(j−1)xw(j+1)(xw(j+1) − xw(j+2)) . . . (xw(r) − xi)
.

The function g · fw has only two simple poles in xw(j−1) and in xw(j+1), thus
Resxr=0g · fw 6= 0 iff w(j − 1) = r, or w(j + 1) = r. Precisely

• if w(j − 1) = r, then Resxr=0g · fw

= −1
(xw(1)−xw(2))...(xw(j−3)−xw(j−2))xw(j−2) ·xw(j+1)(xw(j+1)−xw(j+2))...(xw(r)−xi)

• and if w(j + 1) = r, then Resxr=0g · fw

= 1
(xw(1)−xw(2))...(xw(j−2)−xw(j−1))xw(j−1) ·xw(j+2)(xw(j+2)−xw(j+3))...(xw(r)−xi)

In particular we see that if w−1{i, r} is not an interval, then Resxr=0g ·fw

is zero, so a fortiori Iresx=0g · fw is equal to 0.
If w−1{i, r} is an interval, then we check on the preeceding formula that

• if w(j − 1) = r, then

Iresx=0T (i, r + 1) · fw = Resx1=0 . . . Resxr−1=0T (i, r) · fr̂(w).

• if w(j + 1) = r, then

Iresx=0T (i, r + 1) · fw = −Resx1=0 . . . Resxr−1=0T (i, r) · fr̂(w).

We conclude by induction, using Lemma 57.
QED

We now consider the volume polynomial v(A+
r , c+)(a) = Iresx=0(JA+

r
(a)).

As the function JA+
r
(a) is anti-invariant under the full group Σr+1, we

obtain from PROPOSITION 58
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Proposition 59 Let a =
∑r+1

i=1 aie
i with

∑r+1
k=1 ak = 0. Then we have

v(A+
r , c+)(T (i, r + 1) · a) =

∑

w∈W i,r

ǫ(w)(−1)r−w−1(i)v(A+
r , c+)(w−1 · a).

Example: We know that the function v(A+
r , c+)(a) is a function of (r−1)

variables v+(a1, a2, ....., ar−1). Then, for i = r, r − 1, r − 2, we get from
Proposition 59, and the description given of the corresponding sets W i,r,
that the function v+(x) satisfies the identities:

• i = r: v+(x) = v+(x).

• i = r − 1: for any values x1, ..., xr, we have

v+(x1, ...., xr−2,−(x1 + ... + xr−2 + xr−1 + xr)) =

−v+(x1, x2, ..., xr−2, xr−1) − v+(x1, ..., xr−2, xr).

• i = r − 2: for any values x1, ..., xr, we have

v+(x1, x2, ..., xr−3,−(x1 + x2 + ... + xr), xr−1) =

−v+(x1, x2, ..., xr−3, xr−2, xr) + v+(x1, x2, ..., xr−3, xr−1, xr−2)

−v+(x1, x2, ..., xr−3, xr, xr−2) + v+(x1, x2, ..., xr−3, xr−1, xr).

Remark: A function v(x1, ..., xr−1) of the form w(x1, ..., xr−2)(x1 + x2 +
... + xr−2 + 3xr−1) satisfies (2). This is in agreement with the divisibility
of v(A+

r , c+)(a) by the linear factor (a1 + a2 + ... + ar−2 + 3ar−1) proved in
Section 5.

We now give a stronger result on the symmetry for the Kostant partition
polynomial k(A+

r , c+) attached to the nice chamber c
+.

Let ρ = 1
2

∑
α∈A+

r
α. We have

ρ =
1

2
(re1 + (r − 2)e2 + · · · − (r − 2)er − rer+1).

As usual, we have a shifted symmetry property for KA+
r
.
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Lemma 60 For any w ∈ Σr+1, the function

KA+
r
(a) = Tres∆

(
ea

∏
α∈Φ(1 − e−α)

)

satisfies the relation:

w · KA+
r
(a) = ǫ(w)KA+

r
(w · a + w · ρ − ρ).

Thus PROPOSITION 13 implies the following symmetry relation for
k(A+

r , c+)(a) = Iresx=0KA+
r
(a).

Proposition 61 Let a =
∑r+1

k=1 ake
k with

∑r+1
k=1 ak = 0. Then we have for,

every 1 ≤ i ≤ r,

k(A+
r , c+)(T (i, r + 1) · a − (r − i + 1)(ei − er+1))

=
∑

w∈W i,r

ǫ(w)(−1)r−w−1(i)k(A+
r , c+)(w−1a + w−1 · ρ − ρ).

Example: We know that the function k(A+
r , c+)(a) is a function of (r−1)

variables k+(a1, a2, ....., ar−1). Then, for i = r, r − 1, r − 2, we get from
Proposition 61, that the function k+(x) satisfies the identities:

• i = r: k+(x) = k+(x).

• i = r − 1: for any values x1, ..., xr, we have

k+(x1, ...., xr−2,−(x1 + ... + xr−2 + xr−1 + xr + 2)) =

−k+(x1, x2, ..., xr−2, xr−1) − k+(x1, ..., xr−2, xr − 1).

• i = r − 2: for any values x1, ..., xr, we have

k+(x1, x2, ..., xr−3,−(x1 + x2 + ... + xr + 3), xr−1) =

−k+(x1, x2, ..., xr−3, xr−2, xr −1)+k+(x1, x2, ..., xr−3, xr−1−1, xr−2 +1)

−k+(x1, x2, ..., xr−3, xr−2, xr−2+1)+k+(x1, x2, ..., xr−3, xr−1−1, xr−1).

Remark: A function k(x1, ..., xr−1) of the form w(x1, ..., xr−2)(x1 + x2 +
... + xr−2 + 3xr−1 + 3) satisfies (2). This is in agreement with the divisibility
of k(A+

r , c+)(a) by the linear factor (a1 + a2 + ... + ar−2 + 3ar−1 + 3) proved
in Section 12.

Bibliographical remarks.

As explained as the beginning, the relations given here are transcription
of the ”hidden” action of Σr+1 on S(Ar).
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14 Appendix 1: Jeffrey-Kirwan residue for-

mula for the volume.

We return to the notations of Section 3. Let Φ = {α1, ..., αN} be a sequence
of elements of ∆+. Let p : RN → V ∗ be the map such that

p(u1w
1 + u2w

2 + ... + uNwN) = u1α
1 + u2α

2 + · · ·+ uNαN .

.
Consider the family of polytopes PΦ(a) where a varies in C(∆+) ⊂ V ∗.

Let x ∈ V , such that 〈αk, x〉 > 0 for all αk ∈ Φ. We have

1∏N
k=1〈α

k, x〉
=

∫

RN
+

e−
∑N

k=1 uk〈α
k ,x〉du1 · · · duN =

∫

RN
+

e−〈p(w),x〉dw.

Let s : V ∗ → RN be a section from V ∗ to E such that

RN = s(V ∗) ⊕ Ker(p).

We write w = s(a)+m, with p(w) = a and p(m) = 0. Our choice of measure
is such that dw = dadm. By Fubini, we obtain

∫

RN
+

e−〈p(w),x〉dw =

∫

C(∆+)

e−〈a,x〉(

∫

PΦ(a)

dm)da.

Thus
1∏N

k=1〈α
k, x〉

=

∫

C(∆+)

e−〈x,a〉 vol PΦ(a)da,

i.e. the Laplace transform of the function vol PΦ(a)da is
∏N

k=1
1

αk(x)
. We need

to inverse this formula to find vol PΦ(a).
We denote by G∆ the subspace of R∆ spanned by the functions of the

form
1∏

α∈σ αnα

where σ is a basis of ∆ and the nα are positive integers.

Lemma 62 Let κ be a sequence of elements of ∆+ such that κ generates V ∗.
Then the function

1∏
α∈κ α

belongs to the vector space G∆.
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Proof. We argue on the cardinal on the underlying set {κ} to κ. If the
cardinal of {κ} is minimum, then {κ} is a basis of ∆. If not, there is a linear
relation β =

∑
j cjα

j between elements β, αj belonging to κ. Then

1

β
∏

j αj
=
∑

j

cj

β2
∏

i6=j αi
.

We conclude by induction.
QED
Let σ = {α1, α2, ..., αr} be a basis of ∆ consisting of elements of ∆+. Let

fσ =
1

α1 · · ·αr

and let [C(σ)] be the characteristic function of the cone C(σ).
Consider the function

F (x) =
1

〈α1, x〉k1+1 · · · 〈αr, x〉kr+1

where kj are non negative integers. From the one dimensional formula:

1

xk+1
=

∫

R+

e−ax ak

k!
da

we see that

F (x) =

∫

V ∗

e−〈a,x〉v(a)[C(σ)](a)da

where v is a polynomial.
Let c be a big chamber of ∆+. The verification of the inversion formula:

[C(σ)](a)v(a) = 〈〈c, T res∆(eaF )〉〉(2)

for a ∈ c is straightforward. Indeed, we write a =
∑r

k=1 akα
k, then da =

vol(σ)da1da2...dar and v(a) = 1
vol(σ)

a
k1
1

k1!
· · · akr

r

kr !
. On the other hand the func-

tion F (x)e〈a,x〉 is equal to

ea1〈α1,x〉

〈α1, x〉k1+1
· · ·

ear〈αr ,x〉

〈αr, x〉kr+1
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and its total residue is the function

ak1
1

k1!
· · ·

akr
r

kr!

1

〈α1, x〉
· · ·

1

〈αr, x〉
.

So

Tres∆(eaF ) =
ak1

1

k1!
· · ·

akr
r

kr!
fσ.

Let c be a big chamber. If c ⊂ C(σ), then the left hand side of the
equation above is v(a), and the right hand side is

〈〈c, fσ〉〉
ak1

1

k1!
· · ·

akr
r

kr!
=

1

vol(σ)

ak1
1

k1!
· · ·

akr
r

kr!
= v(a).

If c is not contained in C(σ), then c ∩ C(σ) = ∅ and both sides are equal to
0.

Thus the inversion formula for any function of G∆ is established and we
obtain THEOREM 9.
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15 Appendix 2. Chambers and basis for A2

and A3

We briefly recall the setting. Following Section 4 we realize V ∗ as Er with
basis {e1, e2, ..er}, so that we may write:

Ar = {±e1,±e2, ..,±er,±(ei − ej), 1 ≤ i < j ≤ r}.

Then |A+
r | = N = r(r + 1)/2 and the set of positive roots is

A+
r = {e1, e2, ..er, (ei − ej), 1 ≤ i < j ≤ r}.

We consider the group Σr of permutations of {1, 2, ..., r}. We denote a
permutation in Σr as a list of r elements . For example [231] represents the
permutation in 3 elements {1, 2, 3} sending 1 to 2, 2 to 3 and 3 to 1. The
group Σr acts naturally on V ∗.

The knowledge of the S∆-valued polynomial function

JA+
r
(a)(x) = TresA+

r
[

e〈a,x〉

∏
α∈A+

r 0〈α, x〉
] =

1

( r(r−1)
2

)!
TresA+

r
[
〈a, x〉(

r(r−1)
2

)

∏
α∈A+

r
〈α, x〉

]

determines the various polynomial functions associated to big chambers.
The function JA+

r
is anti-invariant under the group Σr:

JA+
r
(w · a) = ǫ(w)JA+

r
(a)

thus we need only to determine the polynomial Iresx=0JA+
r
(a). It is an ho-

mogeneous polynomial of degree |Ar−1|. (In fact, JA+
r
(a) is also anti-invariant

under Σr+1 leading to some constraints on coefficients of JA+
r
(a).)

Recall that C(σ) denote the simplicial cone determined by a basis σ of
A+

r . If we write a =
∑r

i=1 aie
i for a ∈ V ∗, the cone generated by A+

r is

C(A+
r ) = {a ∈ V ∗such that a1 ≥ 0, a1 + a2 ≥ 0, ..., a1 + .. + ar ≥ 0}

The small chambers, denoted by a, are defined as the open connected
component of V ∗ − H∗ in C(A+

r ). To any h ∈ C(A+
r ) we associate the

intersection of all the simplicial cones C(σ) which contain h. The interior of
the maximal cones of this subdivision of C(A+

r ) into polyhedral cones are
called big chambers. The relevance of the big chambers lies in the fact that
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the polynomial volume is the same on all the small chambers that make
up a big chamber. Recall that the nice chamber c

+ is given by ai > 0.
The nice chamber c

+ is the cone
∑r

i=1 aie
i with ai > 0, 1 ≤ i ≤ r. Using

the permutation w0 ∈ Σr+1 reversing order on {1, 2, ..., (r + 1)}, there is
the “opposite” nice chamber c

−, which is the cone spanned by the roots
{e1, (e1 − e2), (e1 − e3), ..(e1 − er)}.

If w ∈ Σr, we denote by C+
w ⊂ C(Ar

+) the simplicial cone generated by
the vectors

ǫ(1)(ew(1) − ew(2)), ..., ǫ(r − 1)(ew(r−1) − ew(r)), (ew(r) − er+1),

where ǫ(i) is 1 or -1 depending whether w(i) < w(i + 1) or not.
The space SAr

is of dimension r!. As basis of SAr
, we choose elements fw

indexed by w ∈ Σr, with

fw = w ·
1

(e1 − e2)(e2 − e3)....(er−1 − er)er
.

To a big chamber c is associated a linear form f → 〈〈c, f〉〉 on SAr
.

By definition, 〈〈c, fw〉〉 is equal to 0 if c is not contained in C+
w . Otherwise,

〈〈c, fw〉〉 = (−1)n(w), where n(w) be the number of elements such that w(i) >
w(i+1). Thus to compute 〈〈c, f〉〉 = (−1)n(w)Iresw

x=0f , we need to determine
elements w such that c ⊂ C+

w and n(w).
We compute the big chambers forms c, and the corresponding form 〈〈c, f〉〉,

in the A2 and A3 case. Only the form associated to c
+ has a simple expression

in the basis fw. (Of course this basis is somewhat arbitrary).
For a ∈ c, c a big chamber we recall the transmutation formula for the

volume and the Kostant partition function as given in Sections 10:

vol PA+
r
(a) = v(A+

r , c) =
∑

|i|=(r
2)

fc(i)
ai1

1

i1!

ai2

i2!
· · ·

a
ir−1

r−1

ir−1!

air
r

ir!

and

k(A+
r , c)(a) =

∑

|i|=(r
2)

fc(i)

(
a1 + r − 1

i1

)(
a2 + r − 2

i2

)
· · ·

(
ar−1 + 1

ir−1

)(
ar

ir

)
.

where 〈〈c, fA+
r
(i)〉〉 = fc(i)

For A2 we may draw the following picture:
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e1 − e2

e2 e1

c2

c1

a1 + a2 ≥ 0

a1 ≥ 0
a2 ≥ 0

Figure 3: Chambers for A2 with a = a1e
1 + a2e

2.

The equations defined by the hyperplanes are:

a1 = 0, a2 = 0, a1 + a2 = 0.

In dimension 2, small and big chambers coincide.
There are 3 bases in A+

2 ,σ1 = {e1, e2}, σ2 = {e1, (e1 − e2)}, and σ3 =
{e2, (e1 − e2)} bases of ∆. The space S∆ is spanned by fσ2 ,fσ3 . We have the
linear relation fσ1 = fσ3 − fσ2 .

Therefore , if a = a1e
1 + a2e

2, then

JA+
2
(a) = a1f[12] − a2f[21],

v(A+
2 , c+) = a1,

k(A+
2 , c+) = a1 + 1.

vol PA+
r
(a) = a1, if a ∈ c1
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and
vol PA+

r
(a) = a1 + a2, if a ∈ c2.

As for the Ehrhart polynomials, we have

k(A+
r , c1)(a) = a1 + 1 and k(A+

r , c2)(a) = a1 + a2 + 1.

When r = 3 we may draw the following picture on a plane with equation
e1 = constant.

We see that there are 8 small chambers ai and 7 big chambers ck.
The big chambers are
c1 = a1 = C(e1, e2, e3).
c2 = a2 = C(e1, e1 − e2, e1 − e3).
c3 = a3 = C(e1, e2 − e3, e2) ∩ C(e1, e2, e1 − e3).
c4 = a4 = C(e1 − e3, e2 − e3, e1) ∩ C(e1, e2, e1 − e3).
c5 = a5 = C(e1, e2 − e3, e2) ∩ C(e2, e1 − e3, e2 − e3).
c6 = a6 = C(e2, e1 − e3, e2 − e3) ∩ C(e1, e2 − e3, e1 − e3).
c7 = a7 ∪ a8 = C(e1 − e2, e1, e3).

For all w ∈ Σ3, we have n(w) = 1, except if w = [123], where n(w) = 0
and w = [321] where n(w) = 2. We have

C+
[123] = c1 ∪ c2 ∪ c3 ∪ c4 ∪ c5 ∪ c6 ∪ c7

C+
[213] = c2 ∪ c7

C+
[132] = c5 ∪ c6

C+
[231] = c4 ∪ c6

C+
[312] = c2 ∪ c3 ∪ c4

C+
[321] = c2 ∪ c4 ∪ c6.

Thus, we have rather complicated formula for the linear forms 〈〈c, f〉〉,
except on the “nice” chamber c

+ = c1.

〈〈c1, f〉〉 = Ires
[123]
x=0 f.

〈〈c2, f〉〉 = Ires
[123]
x=0 f − Ires

[213]
x=0 f − Ires

[312]
x=0 f + Ires

[321]
x=0 f.

〈〈c3, f〉〉 = Ires
[123]
x=0 f − Ires

[312]
x=0 f.

〈〈c4, f〉〉 = Ires
[123]
x=0 f − Ires

[231]
x=0 f − Ires

[312]
x=0 f + Ires

[321]
x=0 f.

〈〈c5, f〉〉 = Ires
[123]
x=0 f − Ires

[132]
x=0 f.

〈〈c6, f〉〉 = Ires
[123]
x=0 f − Ires

[132]
x=0 f − Ires

[231]
x=0 f + Ires

[321]
x=0 f.

〈〈c7, f〉〉 = Ires
[123]
x=0 f − Ires

[213]
x=0 f.

We easily compute the coefficients fi of the function

JA+
3
(a1e

1 + a2e
2 + a3e

3) =
1

6
TresA+

3
(

(a1x1 + a2x2 + a3x3)
3

x1x2x3(x1 − x2)(x1 − x3)(x2 − x3)
).
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e1

e2

e3e1 − e2

e2 − e3

e1 − e3

a1a2

a3a4

a5a6

a7a8

a1 ≥ 0

a2 ≥ 0

a3 ≥ 0

a1 + a2 ≥ 0

a1 + a3 ≥ 0

a2 + a3 ≥ 0

a1 + a2 + a3 ≥ 0

Figure 4: Chambers for A3 with a = a1e
1 + a2e

2 + a3e
3
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Let v+(a) = 1
6
a3

1 + 1
2
a2

1a2.
We obtain:

JA+
r
(a1e

1 + a2e
2 + a3e

3) =
∑

w∈Σr

ǫ(w)v+(w−1 · a)fw.

Thus, we see that

v(A+
3 , c+)(a) =

1

6
a2

1(a1 + 3a2).

k(A+
3 , c+)(a) =

1

6
(a1 + 1)(a1 + 2)(a1 + 3a2 + 3).

Thus here is the list of formulas for the volume and partition functions.
We see that the polynomials v(A+

3 , ci) are all differents so that the big cham-
bers are indeed the minimal domains where the function vol is expressed by
a polynomial formula.

v(A+
3 , c1)(a) = 1

6
a2

1(a1 + 3a2).
k(A+

3 , c1)(a) = 1
6
(a1 + 1)(a1 + 2)(a1 + 3a2 + 3).

v(A+
3 , c2)(a) = 1

6
(a1 + a2 + a3)

2(a1 + a2 − 2a3).
k(A+

3 , c2)(a) = 1
6
(a1 + a2 + a3 + 1)(a1 + a2 + a3 + 2)(a1 + a2 − 2a3 + 3).

v(A+
3 , c3)(a) = 1

6
a3

1 + 1
2
a2

1a2 −
1
2
a1a

2
3 −

1
6
a3

3.
k(A+

3 , c3)(a) = v(A+
r , c3)(a) + a2

1 + 3
2
a1a2 + 1

2
a1a3 −

1
2
a2

3

+11
6
a1 + a2 + 2

3
a3 + 1.

v(A+
3 , c4)(a) = 1

6
a3

1 + 1
2
a2

1a2 −
1
2
a1a

2
3 −

1
6
a3

2 −
1
2
a2

2a3 −
1
2
a2a

2
3 −

1
3
a3

3.
k(A+

3 , c4)(a) = v(A+
r , c4)(a) + a2

1 + 3
2
a1a2 + 1

2
a1a3 −

1
2
a2

3

+11
6
a1 + 7

6
a2 + 5

6
a3 + 1.

v(A+
3 , c5)(a) = 1

6
a2

1(2a1 + 3a2 + 3a3).
k(A+

3 , c5)(a) = 1
6
(a1 + 2)(a1 + 1)(2a1 + 3a2 + 3a3 + 3).

v(A+
3 , c6)(a) = 1

6
(a1 + a2 + a3)

2(2a1 − a2 − a3).
k(A+

3 , c6)(a) = 1
6
(a1 + a2 + a3 + 1)(a1 + a2 + a3 + 2)(2a1 − a2 − a3 + 3)

v(A+
3 , c7)(a) = 1

6
(a1 + a2)

3.
k(A+

3 , c7)(a) = 1
6
(a1 + a2 + 1)(a1 + a2 + 2)(a1 + a2 + 3).

Volume functions vanishes on the boundary of the cone C(∆+), thus all
functions v(A+

3 , ck) for k 6= 3, 4 must have a linear factor. The order of this
factor is computed as L − 1, where L is the number of roots not on the face
boundaring the chamber ( see for example jump formula in [B-V 2]), thus is
2 for c1, c2, c5, c6 and 3 for c7.

It is also reassuring to check that functions k(A+
3 , ck) define a continuous

function on C(∆+) ( polynomials k(A+
3 , ck1) and k(A+

3 , ck2) agree on ck1 ∩
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ck2. For example, if a2 = a3 = 0, the five polynomials k(A+
3 , ck)(xe1) k =

1, 2, 3, 4, 7 restricts to 1
6
(x + 1)(x + 2)(x + 3).

Bibliographical remarks. Tables for k(A+
3 , c) are given for example in

[S-B].
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