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In this paper, we give the answer to the following two intimately related problems. 
(a) To decompose the tensor products of the harmonic representations into 

irreducible components to get a series of new unitary irreducible representations 
with highest weight vectors of the group G=  Mp(n), two-sheeted covering group 
of the symplectic group, or G = U(p, q). 

(b) To describe the representations of the group GL(n, ~ ) x  O(k, ~) (resp. 
GL(p, C) x GL(q, C) x GL(k, C)) in the space of pluriharmonic polynomials on 
the space M(n, k; C) of n • k complex matrices (resp. M(p, k; C) x M~q, k; ~)). 

The second problem arises when we construct an intertwining operator from 
the tensor product of the harmonic representation into a space of vector-valued 
holomorphic functions on the associated hermitian symmetric space G/K, or 
equivalently when we consider highest weight vectors in the tensor products. 

Some of our motivations are the following: 
1) Apart from special cases the unitary dual G of a real semi-simple Lie group 

is not known. There exist isolated points in G which are not members of discrete 
or "mock-discrete" series, (for exemple for Sp(2, C) where the unitary dual has 
been computed by M. Duflo [-18], there are two isolated points in ~, the trivial 
representation and the odd component of the Segal-Shale-Weil representation) 
and we are interested to produce series of such representations. 

2) We are extending to matrix spaces classical results for harmonic polynomials 
on N". 

(0.2) Let us now describe with more details our methods and results. Let G be 
Mp(n) or U(p, q). There is some interesting "minimal" representation in ~: 

(~) The consideration of Sp (n, F,,) as a group of automorphisms of the com- 
mutation relations (i.e. Heisenberg group) leads to the definition of the Segal- 
Shale-Well representation of the metaplectic group Mp(n) in L2(IR"). We call 
this unitary representation L the harmonic representation of Mp(n). L is the 
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sum of two irreductible representations L+ and L both having highest weight 
vectors. 

(fl) Let h be a hermitian form of signature (p, q) on CP+q; as an element of 
U(p,q) leaves h stable and afort ior i  the skew-symmetric form Im h, U(p, q) is 
naturally embedded in Sp(p+q, R). The restriction of the harmonic representa- 
tion to U(p, q) will be also denoted by L and called the harmonic representation: 
L breaks into a discrete sum of irreducible representations L,(n~Z) refered in 
the Physics literature as ladder representations. 

(The representations L + , L ,  L~ are in a sense we will not discuss here, 
associated to the minimal orbits of the co-adjacent representations I-7, 13].) 

k 

(0.3) We consider the tensor product L k =(~) L. This tensor product decomposes 
into a discrete sum of irreducible representations of G having highest weight 
vectors (see I for precise definitions). We will describe the components. 

For the small values of k (k < 2 n, in case 00 we get a series of new irreducible 
unitary representations of G. 

Let us explain here the decomposition of L k for the group Mp(n)=G. Let 
M,, k be the space of all n x k real matrices. We realize L k in L2(Mn.k) by the 
formulas 

LR (0 0 ta_ 1 ) f ](x)=(deta) k/z f(tax), a~GL(n, IR), 

(lo ' 
nk 

(LR(a) f)(x)= (~--~)2- ~ e rrr'xy f(y)dy, a= (~ -~). 
Mn, k 

The orthogonal group O(k) acts on L2(M,,k) by (cf.) (x)=f(xc), c~O(k) and 
this action commutes with L k. Let (V.~, 2) be an irreducible unitary representation 
of O(k) and L2(M., k; 2) be the space of all V~-valued square-integrable functions 
f(x) satisfying f(xc)=2(c)-lf(x) (xeM.,k,C~O(k)). We denote by Lk(2) the 
representation of G in L2(M,,k; 2) given by the same formula (F). 

Let E be the set of all 2eO(k) A such that L2(M,,k; 2):~0. Then, we have: 
L2(M,.,k)=O L2(M,.,k;2)| as a representation of G• where V~ is the 

2EZ 

dual vector space of V z. 

(0.4) We prove: 
(1) For each 2~,~, Lk0,) is an irreducible unitary representation of G having 

a highest weight vector. 

(2) Lk(2) appears in Lk(dim V~)-times, i.e. Lk= @ (dim V~)Lk(2 ) is the de- 
composition of L k into irreducible representations, a~z 

(0.5) We will describe further the representations Lk(2 ). Let (V,, z) be an irre- 
ducible unitary representation of K, v, its highest weight vector. We also denote 
by z the highest weight of z, We consider D = G/K and realize it as the Siegel 
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upper half plane 

{zEM(n,n;tE); z='z, Imz>0} .  

We consider the space (9(D, V~) of~tll V~-valued holomorphic functions on D and 
the representation T(~) (g) of G in (9(0, V~) given by 

(T(z)(g) f)(z)=z('(cz+d))f((az+b)(cz+d) -1) for g =  (~ bd)-' 

It is easy to see that any unitary subrepresentation of T(T) (if there is one) is 
irreducible, and has a highest weight vector ~b~ (z)=z(z + i)v~ of weight ~. 

We will observe now how LZ(M,.k; 2) is embedded in some (9(D, V~): 

(0.6) First let us look at a simple case in which 2 is the trivial representation 2 o 
of o (k). 

Let f be a function in L2(M,,k; 20); since we have f (x c)= f (x), f(x) is a 
function of ~ = x'x. 

We consider the map 

(F-l) ( i f  f ) =  ~ e iT*xtxz f(x) dx. 
Mn, k 

It is clear that ~ is an injective map from L2(M,.k; 2o) in (9(D). Let us see 
~- intertwines the representation Lk(2O) with T(det-k/2). The commutation (;0) 
relations are obvious to check on the formula for the elements t a -1 and 

We check the action of a; as Lk(a ) is the Fourier transform f o f  f,  we have 

(o~ Lk(a ) f)(z) = const. ~ e irrx tx~ f (x~dx  
= const. I ( e~T~x~ ~ ) f ( x )  dx 

But, we know that 

(F-2) (elTrx~)"----const. (det z) -k/2 e -iT~x~-' 

and hence we obtain the necessary commutation relations. Therefore, L 2 (M~,k; 2o) 
is irreducible having the highest weight vector (~-to~)(X)=e-T~'x of weight 
( -  k/2,..., - k/2). 

Furthermore we have imbedded L2(M,,k; 2o) as a subspace of (9(D) or via 
boundary values in a subspace of a principal series representation. Let us observe 
on this exemple how the image of L2(M,,k; 20) in (9(D) varies in function of k. 
Let C be the cone of positive definite n • n symmetric matrices. If k > n the image 
of M., k under the map x~--~=xtx is the solid cone C. Hence the image of 
L2(M.,k; 2o) is dense in (9(D) (however the representation T(det -k/2) is in the 
holomorphic discrete series only when k>2n). At the contrary when k<n the 
image of M,,, under the map ~=xtx is the set O k of C - C  of all positive semi- 
definite matrices of rank less or equal to k. Hence ~ - f  is the Fourier-Laplace 
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transform of the measure on O k derived from f(x)dx. Hence the holomorphic 
functions in the space ~-(L2(M,,k; 20) ) will satisfy the differential equations 
corresponding to the equations of O k. It is a difficult and interesting question 
to describe the G-invariant norm directly on this space of solutions or, otherwise 
stated, to grasp directly the existence of this s~all  unitary subspace of the repre- 
sentation T(det-k/2). 

(0.7) Now let us consider any 2 in 2 ~ O ( k )  ~. We want to find an irreducible 
unitary representation (~,  z) of K and an intertwining operator ~ from Lk(2 ) 
to T,. Suggested by (F-l), we shall assume that the intertwining operator ~ is 
given by 

(F-3) ( ~ f ) ( z ) =  S eiTr~'x~p(x)*f(x)dx 
Mn, k 

Here P(x) is a Home(V,, V~)-valued polynomial on M,, k. We may suppose 
evidently 

(F-4) P(xc)=2(c)-a P(x). 

The commutation relations with (10 bl) are trivially satisfied and the commutation 

(0 relations with t a -1 give us the relation 

(F-5) P(a-lx)=P(x)(z| for aeGL(n,N). 

Let us consider the commutation relation with ~. In the same way as when 2 = 2o 

(~ x Lk(~ ) f)(z)  = const. I eiTr x,~z P(x)* f(x) dx 
= const. S ( e~Trx'~ P(x)*Ff(x) dx. 

Therefore, we need the following relation similar to (F-2) 

(F-6) (e ~xr~`~" P(x)*)~=const. z(z) e -iTrx~xz-1 P(x)* 

and this' relation is verified when and only when P(x)* (and hence P(x)) is a 
harmonic polynomial. Therefore, P(x) should be a harmonic polynomial satis- 
fying (F-4) and (F-5). Since P(ax) is harmonic for all a, P(x) satisfies the equations 

(F-7) Aije(x)=O (l<i<j<n) 

where 

k 82 

This consideration leads us to Problem (b). 

(0.8) We call a polynomial satisfying the equations (F-7) pluriharmonic and 
denote by 6 the space of all pluriharmonic polynomials..~ is a representation 
space of OL(n, R ) x  O(k) by the action (g, c):f(x)~---~f(g-lxc). 
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We define .~(2)={P; Va-valued pluriharmonic polynomials on M,.k,P(xc ) 
= 2(c)- 1P(x) for any ceO(k)}. 

The group GL(n, IR) acts on ~(2) by left translation; we denote this repre- 
sentation by z (2). 

(0.9) We prove 
a) 2 e S ~ . ~ ( 2 )  ~0.  
b) If 2~Z, ~(2) is an irreducible finite-dimensional representation of GL(n,~).  
c) 2F--~(2) is an injective map. 

Hence, as a representation space of GL(n, ~ )  • O(k), we have .~ = @ ~(2)| 

d) We explicit S and the map 2~--~(2) in terms of highest weights; we give 
also explicitly the pluriharmonic polynomial with highest weight ~(2)| 

Defining the Homc(.~(2), V~)-valued polynomial P~(x) by P~(x)f=f(x) for 
fE~(2),  we get the intertwining operator from L2(Mn, k; 2) into T(z(2)@det -k/2) 
by the formula (F-3). Thus, L2(M,.k; 2) is an irreducible unitary representation 
with highest weight z(2)| -k/2. 

(0.10) Let us say something about the plan of our article. 
Chapter I is a paraphrase of results of Harish-Chandra. 
Chapter II deals with the case Mp(n); Results on pluri-harmonic polynomials 

are in (II.5) and (II.6) and can be read independently. 
Chapter III deals with U(p, q); we follow a similar line of arguments to those 

for Mp(n) and we will only give a sketch of our arguments when it is enough. 
Again, (III.5) and (III.6) on pluri-harmonic polynomials can be read independently. 

(0.11) Let us say that results on the decomposition of L k were obtained by several 
authors. For k > 2 n, by Gelbart [-2] for Sp(n, IR), Gross and Kunze [4] for Sp(n,~), 
U(n, n) and O*(2n). Saito investigated the case k>n for Sp(n, lR) ([20]). 

In these cases the representations L k breaks into representations of the 
holomorphic discrete series, or of some limit points. We are particularly thankful 
to Gross and Kunze for discussions on these topics. 

Results on the decomposition of pluri-harmonic polynomials are obtained 
(mainly also with the same restriction k>2n) in [2, 8, 14, 15], often with appli- 
cations to the analysis on the Stiefel manifolds. We are thankful to Stein 
for discussions on the construction of theses intertwining operators. 

Howe [19] proved an abstract double commutant theorem in a more general 
context of graded Lie algebras leading to independant proofs of (0.4) and (0.9) 
a) b) c). 

As we said at the beginning, the harmonic representation is of interest in 
physics [1, 6, 11-13]. In [6] the components L, of the representation L of U(2, 2) 
are identified with Hilbert spaces of distribution on the Minkowski space which 
are solutions of the Dirac and Maxwell equations. As a consequence of our 
results here we can describe the set P of all positive energy representations of 
the group U(2, 2) determined by Mack [9] using different methods. 

More generally, unitarisability of representations having a highest weight 
vector T is a problem originated in Harish-Chandra [5]; the first exemples of 
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such representations which are not in a discrete series are in Gross and Kunze 
[4]. Complete results when z is a one dimensional representation of K are obtained 
by Wallach [16], Rossi and Vergne [10] and Gindikin [3]. 

In view of our results, it is natural to pose here a conjecture: For G =  Mp(n) 
or U(p, q), any irreducible unitary representation with highest weight appears 
in the tensor product L k for some k. 

If it is true, it will be an interesting phenomenon when we compare it with the 
fact that any irreductible finite-dimensional representation of SL(n;r (or 
SO(n, ~) appears in the tensor product of the fundamental representation. 

We wish to thank N. Conze, D. Kazhdan, R. Howe, H. Rossi, I. Segal, E. Stein, S. Sternberg, 
N. Wallach, for friendly discussions about these topics. 

I. Review of Unitary Representations with Highest Weight Vectors 

1. Notations 

Let g be a simple Lie algebra over the reals IR, and g = f~)p a Cartan decomposition 
for g. We shall suppose that ~ has a non-zero center ~; then 3 = ~ Z  where the 
eigenvalues of the adjoint action of Z on pc are + i. 

Let 

p+={xepC;  [Z,x]=ix}, 

p - =  {xepr [Z , x ]=- i x } .  

Now let b be a maximal abelian subalgebra of [, then b= [)n [[, [ ]~ )RZ;  we 
shall let x~--~ denote the conjugation in gc relative to the real form g of g~, then 
p+ =p----. Let U denote the enveloping algebra of gc and u~-~u* the antilinear 
automorphism of 1I which extends the map x ~ - ~ on gr 

Let A denote the system of roots of gc relative to be; these roots take purely 
imaginary values on b. We have A = A~ u A~, where 

,t,= {yea; (gt)r 

4,  = {yea; (0 r = 0% 

Choose an ordering on the roots so that p + =  ~ (gc)r. Let g+=  ~ (gr 
et ~ At~ ~tE,d + 

If yeA, let H~ be the unique element of i[)c~ [(gc)r, (gc)-r] such that ~(Hr)=2. 
If red_ +, we shall choose Er e(gr r so that [Er,/~r] = Hr. If ~ed~ +, we shall choose 
E,e(gdi" so that [E~,/~,] = - H ~ .  

2. Modules with Highest Weight 

Let A be a linear form on b c. Let us consider the Verma module V(A) of highest 
weight A that is, for I a the left ideal generated by g+ and H-A(H)  (Hebr 
V(A)=II/I a. Let 1 a denote the image of 1 in V(A). The ll-module V(A) has a 
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unique maximal submodule. We will denote by W(A) the unique simple quotient 
of V(A). 

Let B(m, m') be a sesquilinear form on a 1Lmodule M; We will say that B is 
g-invariant if B(u m, m') = B(m, u* m') for any u in 11 and m, m' in M. M is called 
unitarisable if there exists a hermitian positive definite and g-invariant form on M. 
We denote by p the projection of 11 onto lI(b c) according to the decomposition 
U = ( U g  + + g -  U)eU(~C). 

(2.1) Lemma. a) Ba(u.l a, v.la)=(A,p(u* v)) defines a g-invariant sesquilinear 
form on V(A). 

b) Any other ~-invariant sesquilinear form on V(A) is proportional to B a. 
c) B A defines a g-invariant and non-degenerate form on W(A) (still denoted 

by BA). 
d) B a is hermitian, if and only if A is real on i b. 

All these assumptions are known and easy to prove [5]. IV. We wiU consider 
for the cases Sp(n, R) and U(p, q) the following problem originated in Harish- 
Chandra [5] IV: for which A, the module W(A) is unitarisable, i.e. for which A 
there exists a positive definite 9-invariant form on W(A). By the preceding lemma, 
this form has to be B A. We will denote 

P =  {A; real linear form on i[  such that, Vuell,  (A, p(u* u))>0}.  

Hence A r  if and only if W(A) is unitarisable. The following properties of P 
are easily verified [5]. IV 

(2.2) If AeP then 

(2.2a) V ~ A ? ,  A(H,) is a non-negativeinteger, 

(2.2b) u  +, A(Hr)<O. 

3. Spaces of Holomorphic Functions on G/K 

Let A be a real linear form on iD satisfying only the condition 2.2.a). We will 
realize the U-module W(A) as a module of holomorphic functions on the hermitian 
symmetric domain associated to the pair (g, f). 

Let t~ be the simply connected Lie group with Lie algebra g (for a change, 
the center Z of t~ is infinite). For x~g and f a differentiable function on G, we shall 

d 
let r (x) f  denote the function (r (x)f )  (g)=~-~ f (g exp t x)l~= o and l (x ) f  denote the 

. 4  
function (l(x) f )  (g) =-~t f ( e x p ( -  tx) g)[,= o. 

L e t / (  be the analytic subgroup of (~ with Lie algebra ~, then (~//( is a hermitian 
symmetric space. The holomorphic functions on t~//~ will be identified as the 
space of functions on G annihilated by all the vector fields r(x) with xePZ+p- .  

Let G e be the simply connected group with Lie algebra gr and G, K, Ke, 
P+, P_, the connected subgroups of Gr with Lie algebras g, ~, P:, O +, P-  respectively. 
Every element of P+ Kr P_ can be written in a unique way g = exp ((g) k(g) exp ('(g) 
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with ~(g)~p+, k(g)eKr and ~'(g)ep-.  We have G ~P+ Kr P- and the map g~-~ k (g) 
lifts to a map, denoted k(g),of G in to / ( e  the universal cover of Kr 

The group K e P is a maximal parabolic subgroup of Gr we denote by e o the 
image of 1 in Ge/KeP_; the map g~-~g.e o induces a biholomorphism of the 
complex manifold G/K into an open subset D of the complex manifold Ge/KeP.  

Let A be a real linear form on ib satisfying (2.2) a), i.e. A is a dominant integral 
form with respect to A(. Hence there exists a unique holomorphic representation 
z A of / ( r  on a finite dimensional vector space V A of highest weight A. Let v~ be the 
highest weight vector of VA; we choose a scalar product on V A such that zA(k ) for 
k~/(  is unitary and normalize it by <vA, vA> = 1. 

(3.1). We define • (A)={f ;  C~176 on G, VA-valued, such that f (gk)  
=zA(k)- l f (g) ,  g~G, ke / ( ;  r(x). f=O for x e p - } .  The group t~ acts on (9(A) by 
left translations. We consider ~(A) as a ll-module by x.  tp= l(x)~b. A function f 
in O(A) is a real analytic function on G (as the space (9(A) consists of holomorphic 
sections of the vector bundle G x V A ~ ~//(). We consider the ll-submodule 

K 
~o(A) of (9(A) consisting of/(-finite functions. 

(3.2). Let us consider the function @A(g)= zA(k(g))- 1. vA ' then obviously @A~(9o(A) 
(@A is of type ZA). It is clear that l(x). ~'A = 0  for every x e g  § hence ~b A is a highest 
weight vector of the module t~o(A ) of highest weight A. 

Conversely, let ~be(9(A) and satisfying l(x)tp=0 for every x~fl + then ~b is 
proportional to ~'A (q~ being analytic, to determine ~b it is sufficient to know the 
derivatives of all orders of tp at the origin 1 of G; we have (l(u) qS)(1)--0 for every 
u~ l lg  + by the hypothesis and this implies qS(1)=cvA; as ~beO(A) we have 
(l(x)l(u)c~)(1)=O for x~g and uEt[, the condition of covariance with respect 
to fe determines, then ~b completely.) 

On 6o(A) the compact Cartan subalgebra I) acts semi-simply. We have 

(3.3) Lemma. The weights # of D e on (9o(A) are on the form p = A -  ~ n~ ,  
where n~ are non-negative integers. ~ +  

Proof. Let ue l I  and f~(9o(A), we define (u,f)=<(u .f)(1), VA>. Then if ( u , f ) = 0  
for every uetl ,  f = 0 .  Ifu belongs to the right ideal generated by g- and H - A ( H )  
(H~[~ e) we have (u , f )=0 .  Let f~(~o(A) of weight #, hence there exists an element 
u of ll(g +) of weight ~b= ~ n~ ~ such that (u,f):~0. Let H~h r we have 

a>O 

(H u - u H, f )  = ~(H) (u, f )  

= A(H) (u, f ) -  #(H) (u, f) .  

It follows that # = A - 27 n, a. 
Let L(A) be the lI-module generated by the function ~a. 

(3.4) Corollary. Every non-zero ll-submodule of (9o(A) contains L(A). 

Proof. The weights of ~o(A) being bounded from above, each submodule has a 
vector ~b of highest weight, hence contains ~,~. 

It is clear then that L ( A ) = l l .  ~ba is an irreducible module of highest weight A, 
hence is the module W(A). 
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We are concerned with the existence of unitarisable submodules M of Co(A). 

(3.5) Lemma. I f  M is a non-zero unitarisable submodule of Oo(A), then M = L(A), 
hence M is irreducible. 

Proof. By Corollary 1.8, M contains L(A) but the orthogonal of L(A) in M is a 
submodule disjoint from L(A) so is reduced to 0. 

(3.6) Let us consider a unitary irreducible representation of G inside a Hilbert 
space Jr .  Let M' be the irreducible l{-module consisting of/s vectors; let 
us suppose that M' is a module with a highest weight vector v a with respect 
to g+ of weight A; Hence M ' =  W(A)=L(A). Let fe~f~ and m~M', then as m is 
an analytic vector, the function ~(g)= ( g - ' f ,  m)~ r is an analytic function on G 
and we have (r(u)~)(g)= ( g - ' - f ,  fi.m). Let VACM' be the irreducible unitary 
representation of Kr generated by m A, then if m~V A and xep  +, x.m=O. Let 
f~J t  ~ and mEVA, we define the Va-valued function z(f)  on G by (z(f)(g),m> 
= < g - ' . f ,  m>, hence if x~p- ,  r(x)z(f)=0. We remark also that if fCM', z(x-f)  
= l(x)~(f). These observations are reformulated in the 

(3.7) Lemma. The map f~-~z(f) is an imbedding of ~ into (9(A); the image of 
M' under this imbedding is L(A). 

Hence, if we know the highest weight vector, we can embed ~ in • (A). 

(3.8) Let us suppose that ovf is a non-zero Hilbert space contained in (_9(A) and 
where G acts unitarily by left translations; we suppose also that if f~.~f and g~ G 
the evaluation map at g, f~-~f(g) is continuous from ~ to ~. 

We consider the infinitesimal ~.I-module M of the/~-finite vectors on .Yf, then 
M is a lI-submodule of (9o(A), so by (3.5), M=L(A)  hence A~P, and the repre- 
sentation of G in ~ is irreducible. 

Remark. We have that if fe~ct ~, (f(1),  vA)va=Const. (f ,~ 'a)Je (by hypothesis, 
there exists a ~ in ~'~ such that (f(1),  Va>va= ( f ,  ~'>ae; we see easily that ~, is 
annihilated by [+ @p+, and hence ~ is proportional to ~a)" 

We are interested in determining for which A, there is such a ~ .  Naturally, 
if Jg(A)={feO(A); _S ][f(g)]l~Adg <~ is not reduced to zero, then G acts 

G/z 
unitarily in W(A) by left translations, so A e P. It is also clear that the corresponding 
representation is a member of the relative discrete series of G. We then denote 
by D the set of A such that ~(A)4= 0. 

(3.9) This set D has been determined by Harish-Chandra. Let 71 the highest 
non-compact root and let us denote by p=�89 ~ 0t, then A~D if and only if 
<A+p, Hn><O. ~ +  

II. Tensor Products of the Harmonic Representation of Sp(n, R) 

1. Description of the Harmonic Representation 

(2.1) We shall discuss in this section the harmonic representation (or the Segal- 
Shale-Weil representation) of Sp(n, R) and its tensor products. 
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The harmonic representation of the symplectic group Sp(n, IR) can be, besides 
other ways, introduced via intertwining operators of irreducible unitary repre- 
sentations of the Heisenberg group. 

Take a 2n-dimensional vector space with a non-degenerate skew-symmetric 
form E. We can identify this space with R2~ and denote a point of this space by 

(x) with x, yeR" such that  E((Xll,(x2))=(xl,y2)-(x2,Yl). Consider the 
xy! \ \  f \ Y 2 1 ! Y l  
Heisenberg group H=IR:"x ~ endowed with the multiplication law 

(wl, tl) o (w2, t2)=(wl +w2, tl + t~ +~e(wl ,  w2)). 

The unique class of unitary representation z of H such that z(0, t )=e-i t Id can 
be realized as acting on L 2 ( ~ )  by 

(T ( ~y: ), t ) f ) (x)=e-i((rl"x)+t-�89 f ( x -  y2). 

The symplectic group Sp(n, IR) = G can be considered as the group of auto- 
morphisms of R 2" which leave E invariant. 

Sp(n, R) acts on H by g. (w, t)=(gw, t), and by Von-Neumann theorem, the 
irreducible unitary representation Tg(w, t)= T(g w, 0 is equivalent to T for any g 
in G. Therefore, there exists a unitary intertwining operator L(g) (unique up to a 
constant multiple) acting on L2(IR ") such that L(g)T(w, t)= T(g. (w, t))L(g) for 
any (w, t)eH, and L(g 1, g2)----- c(gl,  g2) L(gl) L(g2) for c(gl, g2) a scalar of modulus 
one. However, if we choose L(g) suitably, g~---~L(g) becomes a unitary representa- 
tion of the two-sheeted covering group Mp(n) = G 2 (called the metaplectic group) 
of Sp(n, R). 

(1.2) We denote by M,(R) (resp. M~(IE)) the space of all n • n real (resp. complex) 
matrices. We denote by Mn, R=HOn~(P.,~R,]Rn) (resp. M~,k(C)) the space of all 
n xk real (resp. complex) matrices, xl--~'x the transposition; we consider Mn, k 
with the scalar product Trxtx. We denote by S(n) the space of all symmetric real 
matrices of size n. 

We define the following elements of Sp(n, ~);  (we write any 2n • 2n matrices 

x= ( xll x12]where x 0 are nxn matrices). 
\X21 X22] 

0 1] for 
g(a)= (0 (at) - aEGL(n, R), ! 

10) 
These elements generate Sp(n, R). 

Since {t(b); beS(n)} is simply connected, t(b) can be identified as an element 
in G 2 so that t(0) is the identity of G 2. 



On the Segal-Shale-Weil Representations 11 

For each a~GL(n, IR), we choose a determination of (deta) ~. For this choice, 
we still denote the element (a, (det a) �89 by g(a). We will identify in (3) g(a) as an 
element of G 2. We will also define (cr, i ~) in G 2 above tr according to the choice 
of i ~. 

We will see that the following choice of L(g) determines a representation of G 2 . 

(L(g (a)) f)(x)  = (det a)~f(ta x), 

_ i  ~bx, x) ~, 
(L(t(b))f)(x)=e z f(x), 

i n/2 
(L(a) f ) (x)=  ( ~ }  j .  ei'x'r)f(y)dy, 

i.e. L(a) is proportional to the Fourier transform. 

(1.3) Therefore the k-th tensor product L k of L is given as follows: 
Let L 2 (M,,k) be the Hilbert space of all square-integrable functions on M., k" 

L k acts o n  L2(Mn,k) as follows 

(L k (g (a)) f)(x)  = (det a) k/2 f(ta x), 

- - iTr t xbx  
(Lk(t(b))f)(x)=e 2 f(x),  

/ i \.k/2 
(Lk(a) f)(x)= [ ~ )  "!~ e'Vrx" f(y) dy" 

2. The Action of the Orthogonal Group O(k) 

On LE(M,,.,) the action of the orthogonal group O(k) given by (h . f ) (x)=f(x  h) 
commutes with the representation L k and hence we can decompose LZ(M,.k) 
under O(k). For any representation space M of O(k) and any 2 an irreducible 
unitary representation of O(k), we denote by Mx the isotypic component of M 
of type 2. If we denote M(2)=Homo~k)(2', M), we have Mz= V~(~)M(2'). Here 2' 

is the contragredient representation of 2. We have L2(M.,k)= (~) L2(M..k)~ 
and each L2(M,.k) is stable under G 2. ~O(k)" 

(2.1) We denote by LZ(M,.k;2) the space of all square-integrable Va-valued 
functions f(x) with the covariance relation f (x  h)=2(h)- I f (x)  for any h in O(k). 
Here (Vz, 2) is an irreducible unitary representation of O(k). The group G 2 acts 
on L2(M,,.k; 2) by the same formulas as L k (1.3). We denote by Lk(2) the corre- 
sponding representation. 

Let 2' be the contragredient representation of 2 on the dual space V~ and let 
us denote by (x, f )  the canonical bilinear pairing on V~ x V~. L2(M,.k).~ is iso- 
morphic to  L2(Mn, k,2')| by ((a| f)(x)=(4~(x), f )  for q~ in L2(Mn, k,2 ') a n d  f 
in V~. Therefore we get 

L2(M,.k) = (~) LZ(M,,k;2')| 
2eO(kF 
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as a representation of G 2 x O(k), and Lk=@(dim V~)Lk(2 ) as a representation 
of G 2. 

In the sequel, we shall prove that Lk(2 ) is an irreducible representation of G z 
with highest weight vector of type z(2). We will identify L:(M,. k; 2) with a Hilbert 
space of holomorphic functions on the Siegel upper half-plane D. We shall see 
also that 2w-+z(2) is injective and hence Lk(2 ) appears in LZ(M,,k) with rrlulti- 
plicity dim Vz. 

3. Representation on the Space of Holomorphic Functions on Siegel Domain 

(3.1) We shall apply the discussion of 1.3 to our case Sp(n, IR)=G and use the 
notations of I. Let X be the complex manifold of all Lagrangian planes in the 
symplectic vector space r  2", i.e. all n-dimensional isotropic vector spaces 2. 

m 
The complexification Gr rE) of the group Sp(n,~,) acts on X homoge- 
neously in the obvious way. Let us denote by D the open subset of X consisting 

of all 2's such that the hermitian form ~E(x, y) is positive definite on 2. D is 
1 

identified with the Siegel upper half-plane {zeM.(<E); z=tz, Imz>>0} by 

z+-+2=~(Xl;x=zy}" The gr~ G acts h~176176 ~ D by ~)" 

z~-,(az+b)(cz+d) -1. The isotropy subgroup K at z=i is given by 

and K is a maximal compact subgroup of G. The Lie algebra ge of Sp(n, tI~) 

consists of all 2 n x 2 n  complex matrices x=(  xll x12 / with x E z = - ~ x l t ,  
\X21 X22 ] 

x12=tx12, x21=tx2t. Let e=~-~ be the Cayley transform; it is an ele- 
V "  

ment of Sp(n, ~), and 

Therefore 

0 

Then we choose 

; xeM.(~), x=tx}, 

; yeM.(C), y= ty}, 
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b r = Ad c 

0 
~ 

an 

- - a  1 

0 
0 

O) 
�9 0 ; 
~ - - a  

a~eC 

and the system A + of positive roots such that 

0 i>=j} D =Ad(c){ (x~ 1 _tXll)'~(Xll)ij=O f o r  . 

Let 71 be the highest non-compact root; then 

n-1 

t H~,=Adc 0 - 1  0 

0 0 0 

and p(H~)=n. 

(3.2) Let (V~, T) be a representation of K in a finite dimensional vector space V~; 
we extend z as a holomorphic representation of K c identified with GL(n, r 

(~ 0 ) e- l" Let us den~ by xo the element 2 = { ~y) ; Ye~"} ~ X" by a ~--~ e ta_ 1 
We have e(Xo)=i=e o and K e P  is the stabilizer of e in Gr We define 
Gu={geGc;g.eoeD}, i.e. Gu=GKcP. Let zeD, then, by the definition, 

(~ z I . Xo=Z , every G, can uniquely hence element of  be written 
1! 

with z eD a e GL(n, C), x = tx e M,(r Recall that ~(z) is the space of holomorphic 
sections of G x V~. A function in (9(z) can obviously be prolonged to G,=GKzP 

K 
via f(gkp)=z(k)-tf(g) (geG, keK c, peP_). We identify f as a V:valued holo- 

morphicfunctiononDbyf(z)=f((~ ~) e - l ) .  

For g - a =  ( ;  ~) eG, we have: 

g-X (10 ~)=(10 (az+b)(cz+d)-X)l ( (cz ;  d)-x (czOd))" 

Hence we have 
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0 

= �9 ('(c z + d)) f((a z + b) (c z + d)- 1). 

Thus we have 

(3.3) Proposition. (_9(T) is isomorphic to the space (9(D, V~) of  all V,-valued holo- 
morphic functions f(z) on D, on which G acts by 

(T(~)(g) f)(z) = ~(t(c z + d)) f ((a z + b)(c z + d)- a) 

f~  zeD and g - l =  (~ ~)" 

(3.4) Let us assume here that ~ is irreducible. Let v~ be the highest weight vector 
of ~, then under this identification the highest weight vector ~,~ (I.3.2) becomes 

(up to a constant factor) the function f~(z)=z (z + i) - -  . I )  t 

(because if (~ ~ ) e - l = e  (~ 1 ) ( ;  'a 01)  ~ ~) e-1 

then ta 1 1 

(3.5) We will use for our purpose the following description of the universal 

covering group of G. For each g = (~ ~) eG we consider the function z~---~d(g, z) 

= d e t ( c z + d )  from D into 112-{0}. A determination on D of Log(det(cz+d)) is 
then completely determined by its value on z = i, as D is simply connected, which 
is a complex number defined modulo 2 i n Z .  We have d(g 1. g2 ,z)=d(gl ,  g2. z) 
�9 d(g2,z ). We consider the group G={(g, Logd(g,z))} endowed with the law 

(gl, Log d(g 1, z)). (g2, Log d(g2, z))= (gl g2, Log d(g 1, gz" z)+ Log d(gz, z)). 

It is clear that (~ is a covering group of G, and it is in fact its universal covering. 
Let ~ be any real number, we can then define det (c z + d) '=  e i" Log ar ,) on G • D. 
In particular, we can consider the representations 

(T(z, ~) (~) f )  (z) = det (c z + d)- ~ ~ ('(c z + d)) f ((a z + b)(c z + d)- 1) 

for ~-X=(g, Log d(g, z)), g =  (a ~ ) o f  G inside the space of V~-valued holo- 
X v  

morphic functions on D. This is equivalent to �9 (z | 6_ ~) where 6, is the represen- 
tation of /~ defined by det(cz+d) ~ at z=i.  We will study in this article only the 
values aEZ/2. Therefore we define G2= {~=(g,(det(cz+d))~)} with the obvious 
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law and the representations, for k~77, of G z in (_0(D, V~) 

(T(z, k)(~,) f)(z) = det(c z + d)- ki2 "r ('(c z + d)) f((a z + b)(c z + d)- 1) 

(~)- l=(g,  de t (cz+d)  ~) with g =  ( :  bd). for 

(3.6) Let a~GL(n, F.), suppose we have chosen (deta) + one of the 2 determina- 

(o ~ ) tions of (deta) ~. Above g(a)-- (at)_ t we choose as determination of 

det(cz+d)~=(det(a~) -1)~ the value ((deta)~) -1, and we denote this element 
of G2 by g(a). 

A b o v e e - ~ = (  ~ ; )  , we choose the determination of (det - z) ~ s u c h t h a t _  

it is equal to (i~) -~ at z=i,  according to the choice of i ~. we still denote this 
element by e-~. 

These are the precise definitions of the elements of G 2 used in Formulas (1.2) 
and (1.3). 

4. Intertwining Operators 

(4.1) Let (~ ,  z) be a holomorphic representation of GL(n, ~) in a finite dimen- 
sional vector space V~ and (V~, 2) an irreducible unitary representation of O(k). 
We choose a scalar product on V~ such that r(g*)=z(g)*. We seek to construct 
an operator from L2(M,.k;2) into (9(D, ~). Let I(x) be a Hom~:(V~, Vx)-valued 
polynomial of x~M,.k  = M(n, k; IR). Consider the integral transform 

(4.2) ( ~ f ) ( z ) =  S e�89 dx 
Mn. k 

for f~L2(M,,k; 2) and z~DcM,(IE) .  

(4.3) Lemma. ~(3~ is an absolutely convergent integral. The map f v - - ~ f  is 
continuous from LZ(M,.k; 2) to (9(D, V,) with the topology of uniform convergence 
on compacta. 

Proof. Since I(x) is a polynomial, we have 

Ill(x)* f(x)lJ <(1 +trxtx)  N ]lf(x)j] for some N. 

Therefore 

tx(lmz)x 

]](~f)(z)}12<(je . . . .  2 (1 +Trx'x)NIIf(x)lldx) ~ 

< (~ e-  xr'x(Im~)x(1 + Tr x'x) 2N dx)(~ [I f(x)It z dx). 

which implies immediately the desired result, as e-Tr'~Y~(1 +Trx 'x )  2N is inte- 
grable for any positive definite matrix y. 
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A function 4~(x) o n  Mn, k is called harmonic if it satisfies 

i=lv=lOxivOxi--(o=O where x =  : �9 eHom(Rk;IR"). 

\Xni X.k /  

(4.4) Proposition. Suppose that I satisfies the following two conditions: 
a) I (axh)=2(h)- l  I(x)z(a) -1 for aeGL(n, lR) and h~O(k). 
b) I(x) is a harmonic polynomial. 
7hen the map 4 :  L2(M,,k;2)~(9( D, V~) intertwines the representation Lk(i ) 

with the representation T(z, k) (3.5) of G 2. 

Proof. Since G 2 is generated by g(a), t(b) and a, it is enough to show that ~ i  
commutes with these actions. It is obvious to check on the formulas that 
commutes with g(a), t(b); for example, for g=g(a),  we have 

(Lk(g) f)(x) = (det a) k/2 f(ta x) 

and 

(T(z, k)(g) f)(z) = (deta) -k/2 z(a) f ( a -  i z 'a-  1). 

We compute 

(~Lk(g) f)(z) 

=~ e�89 * (deta) */2 f( tax) dx 

k k " I(ta- ix)* f (x)  dx =(deta) ~ e �89 

= (det a)- k/2 Z (a)(~ f ) (a -  a z ta- 1). 

We shall check now the action of a. We have 

n k  

( f f  tLk(a) f ) (z)= S e ~T . . . .  ~ I(x)*(S eiTr*xy f (y)  dy) dx 

nk 

= I (f eiTr'xye2T . . . .  I(x)* dx)f(y)  dy. 

by Plancherel formula. 

Let us assume the 

(4.5) Lemma. Let f (x)  be a polynomial on M.. k (that we extend as a complex 
polynomial on M..R(IE)) such that the function x~--~f(gx) is harmonic for any 
geGL(n,  I1), then for z~D: 

i n k  

e f (x)dx=(Zrt)  2 ~det ~-] e f ( - z - i y ) .  
5eiT,,xy ~-T,,x=x - - [ .  Z\ -k/2 ~T,'y(-z-')y 

Here, (detz/i) -k/2 takes a branch such that it equals 1 at z=i.  
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As we have I(ax)*= z(ta-1)I(x)* on M., k, I(X)* satisfies the condition of the 
lemma. If we extend I(x)* to a complex polynomial J(x) on M..k(r ), we will have 
J(ax)=z(ta - 1)J(x) for xeM.,k(C), aeGL(n,~).  We apply the lemma and thus 
we have: 

i t t --Tr xzx  
I eiTr xy e 2 I ( x ) *  dx 

[ Z \  - k /2  2Tr ty ( - - z - l ) y  
=(2n) "k/2 [det ~) e-  J ( - z -  l y )  

[ Z \  -k /2  �9 
=(2n) "k/z [detT) e 2Tr'r( ~ ' ) ' z ( - z ) I (y )* .  

And hence we get 

(~,~ L(a) f)(z) = (det - z)- k/2 Z ( -- Z) (~  f ) (  -- Z- a) 

=(T(z, k)(a)(~f))(z) ,  q.e.d. 

It remains to prove (4.5); as both sides are holomorphic in z, it is enough to check 
it when z = i~ 2 with a positive definite real symmetric matrix a. The left hand side 
is equal to 

S eiTr txy e- ~ Tr,(~)(~x) f (x)  dx = (det ~)- k S eiTr'x~ - ty  e- ~ Trtxx f ( ~ -  1 x) dx. 

Since f ( ~ - i  x) is a harmonic polynomial, it follows from the mean-value formula, 
that this is equal to: 

nk 
(det ~)-k(2rC)~- e-~Tr'C~-lr)~-lr f (~ -  l(ict- l y)) 

=(2~) 2 det e-~T~Y(-~-~)rf(--z-ly).  

(4.6) Let us consider the map x~--,~(x)=xtx. It is a proper map from Mn, k into 
the space S(n) of symmetric n xn  real matrices, and we have ~(x)=r if and 
only if x = x ' h  with heO(k). Let C be the cone of all positive definite symmetric 
matrices. If k > n, the image of the map ~ consists of all the positive semi-definite 
symmetric matrices, i.e. is the closure C of the cone C. We denote by dk(~ ) the 

k - ( n +  1) 

measure on C obtained from dx, i.e. dk(r ) z de. 
If k<n, then the matrix x'x is of rank less than or equal to k; we will denote 

by bk(C ) the subset of the boundary of C consisting of all the positive semi- 
definite matrices of rank less or equal to k, and by dk(r ) the measure on bk(C ) 
defined by 

f f ( x ' x )  dx= I f(~)dk(r 
bk(C) 

Let I verify the conditions of the Proposition (4.4) and feL2(M,,k; 2); then the 
function l(x)* f (x)  is invariant under right translations by the group O(k), hence 
is a function ~b(~) of ~=xtx.  The integral transform ~ can be written 
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iTr~z 
(~ f ) ( z )=~e  2 ~b(~)dk(r 

i.e. ~ f  is the Fourier Laplace transform of the measure c~(r162 ) supported 
on the cone C; 

It follows that if ~ f = 0  then q~(~) is almost every where zero for dk(~) i.e. 
l(x)* f(x) must be zero almost everywhere. 

5. Pluriharmonic Polynomials 

(5.1) In order to use the Proposition (4.4), we have to investigate for a given 2 
what are the possible z's for which a non zero 1 satisfying (4.4)a)b) will exist. 

Since such an I verifies I(ax)=I(x)z(a) -1, the function x~--~l(ax) is also 
harmonic. It is easily observed that a function f is such that fa(x)=f(ax) is 
harmonic for any a~GL(n,  IR), if and only if 

(5.2) (Ai.~f)(x)=O l <i<j<n.  

Here 
k 02 

Ai'J=v~=l OXivOXjv" 

Note that the ring of constant coefficient differential operators invariant by O(k) 
is generated by Ai.fs. 

If a function f satisfies (5.2), then we will call f pluriharmonic. We consider 
indifferently a polynomial on M., k as a complex polynomial on M,,k(~ ). We 
denote by �9 [M.. k] the ring of polynomials on M,, k and ~ the space of all pluri- 
harmonic polynomials. Evidently GL(n, ~ ) •  O(k, ~)  acts on .~ by (g,h): f(x) 
~--~f(g-lx h). C [M,, 1,] has a positive definite hermetian form ( f ,  g) = (f(Dx)~)(0). 

"This scalar product satisfies ( a . f , g ) = ( f ,  a ' g )  for a~GL(n, C). If we denote 
by J the ideal of C[M.,k_] generated by the coefficient (xtx)ij of xtx, then it is 
obvious that ~ is the orthogonal complement of J and hence we have C [M., k] 
= ~ J .  

We denote by C rx txl the subring of C rM., z] generated by (x tx)i. j (1 =< i =<j _-< n) 
i.e. the ring of invariant polynomials under O(k). 

(5.3) Lemma. ~[Mn.k] = ~ "  C [ x t x ] .  

Proof We shall show that a homogeneous polynomial f(x) is contained in 
.~. ~ [x tx ]  by induction on the degree of f .  Since r  = .~@J,  f can be 
written on the form f (x)=h(x)+~i , i (x)(xtx) i , j  where h~.~. We may assume 
that h is of degree deg. f, and qbij of degree deg. f -  2, so by induction hypothesis 
c~i.j~ ~ �9 C[xtx] and hence f.  

Remark. In general we have not ~[M, .k]  =.~| however, if k>2n this 
is true [ 15]. 

(5.4) Corollary. We denote by C [M,,k](2)(resp..~(2)) the space of all Va-valued 
polynomials f(x)  (resp. pluriharmonic polynomials f(x)) such that f (x  h) = 2(h)- if(x), 
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then 

tE [M,. k ]  (2) = r [x 'x] . .~(2) .  

Proof We have 9 =  @ .~ ,  and ~ ,  =.~(2) |  Vz, hence 

(5.3) r  z,= ff~[xtx] ~ ,  

= r  b(,~)| v~, 

= r174 Vz, 

and the corollary follows. 
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(5.5) Lemma. Let P and Q be harmonic polynomials on Mn, k. Then 

<P, Q> =(2~z) -"k/2 ~ e - Tr x~x P(x) Q(x) dx. 

Proof. If Q is harmonic, so is any derivative of Q. By the mean-value formula 
nk  

for harmonic polynomials on ~ 2, we have: 

T r X t X  nk nk 

e- -~- (P(Dx) Q_.)(x) dx = (2 re) T (P(Dx) Q)(0)= (2 n)~- <P, Q>. 

Now the first hand side is also equal to 

- Tr  x t x  _ 

(P( -Dx)  e 2 ) Q(x) dx. 

Now as 
- T r  xt~x -- nk  - -  T r  y ty  

e 2 =(2n) 2 j" eiTrxty e 2 dy, 

- - n k  _ T r Y t Y  

p(_D~)e-Tr2=(2n)  2 ~eiTrxtr e 2 P(--iy)dy 
_ T r  x t x  

=e 2 P(x), as P is harmonic. 

(5.6) We shall denote by Z the subset of all 2~O(k)" such that LE(M.,k; 2 ) , 0 .  
This condition is equivalent to C[M. .R](2) ,0 ,  and hence ~ ( 2 ) , 0  (5.4) as 

{e-X*x'~f(x); f(x)e•[Mn.k](),)} is dense in L2(M,,k; 2). 

For 2~zS, we denote by z(2) the representation of GL(n, ~) by left translation 
o n  ~(~). 

(5.7) Proposition. The representation z(2) is an irreducible representation of 
GL(n, C). 

Proof As the action of GL(n, ~) conserves the degree of the polynomials, the 
representation z(2) is semi-simple; Let V 1 be an invariant subspace of .~(2) and 
V 2 its orthogonal; thus we have by (5.5), if PeV1, Q e V  2 

T r  x t x  

~e- T<(a.P)(x),(a.Q)(x)>dx=O forany aeGL(n ,R) ,  
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hence 

e-�89 Q(x)) dx =0.  

As P, Q ~ ( 2 ) ,  the function (P(x), Q(x)) is invariant under right translation of 
O(k), i.e. is a function of ~=xtx; as the set of functions {e-Xrrxtx; y~ C} is dense 
in this space, we obtain (P(x),Q(x))-O. 

(5.8) Let us suppose k<n; Let us consider the point lk= (ok) of M,.k where/1 k 
X i 

is the k x k identity matrix. Let M o be the dense open subset of M,, k consisting 
of the x's which are injective maps from R k to F,"; M o is the orbit of 1 k under the 
action of GL(n, F,), because if x(el), ..., X(ek) are linearly independent, they can 
be transformed in el, e2, ...,e k by an invertible matrix. Let us embed O(k) in 

GL(n,R) by a~--~= (aao-~l). We have ~. lk= lk a. 

Now if 1114: 0, then exists a P in 1/1 such that P(lk)=~ 0 (translate by GL (n, IR)). 
Furthermore, the subset {P(lk); Pc  1/1} of V~ is invariant under 4, as 

(hP)(lk) = P ( h - ' .  lk)=P(1 k h-1)=2(h). P(IR) for heO(k). 

Since Vx is an irreducible representation of O(k), {P(lk); P~V1} is equal to Vz. 
Now it follows that V2 =0, as otherwise we could choose in V 2 a polynomial Q such 
that P(lk) = Q (lk) 4: 0, contradicting the fact that (P(x), Q (x)) =_ O. 

(5.9) Let us now suppose that k>n. Let f be a function on M,,k; we consider f 

as a function f on Mk.k bY f (~)=f(x), where x~M,.k, YeMk_n,k. 

It is clear that if fe.~,,k(2), then fe~k.k(~). 

us  onsi er  oro, su . ra g l(n). 

Let fe.~,,k(2) be a highest weight for the representation z(2), with respect 
to b~, i.e. there exists a character/~ of the lower triangular subgroup B~ of GL(n; IU) 
such that f (b-  1 x)=#(b)f(x) for b~Bn. Let/7 be an element 

n 

b = \ b l 2  t b2] k 

of the lower triangular subgroup of GL(k; IE). As 

we have, setting/~(~) =,u(bl), 
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So f is a highest weight vector of the irreducible representation Zk.k(2); it follows 

that f (~)=f(x) is unique up to a constant multiple and so is f. This proves 

that %.k(~.) is irreducible as well. 

(5.10) Let 2~S and z=z(2) the irreducible representation of GL(n, tE) in 
E=~(2) .  We define a Hom(~(2), Vx)-valued polynomial la(x ) as follows: 

(5.11) I~(x)P=P(x) for Pc.5(2). 

It is immediate that Iz(x ) satisfies the conditions (4.4)a)b). Hence we get a map 
~ = o ~  intertwining the representations Lk(2 ) and T(z(2), k). 

(5.12) Proposition. 7"he map ~ is injective. 

Proof Suppose that f s L ( M , , k ; 2  ) is such that ~ f = 0 ,  then, by (4.6), we 
have I~(x)*f(x)=O almost everywhere. Let Pe.~(2), then (Ia(x)*f(x), P) 
= (f(x),  P(x)) =0. 

But since ~?[M,,k](2)=tE[x'x ] .5(2)(5.4), this holds for any qSelEI-M,.k](2 ). 
Hence e-Trx'x(f(x),~)(X))=O for any ~belE[M.,k](2); since {e-Trxtx~)(X); 
r is dense in LZ(M,,k; 2), we have f = 0 .  

(5.13) We will describe in the next section the set S and the correspondence 
2w-,~(2) in terms of the highest weight. 

6. Description of .9(2) 

(6.1) Let 2cO(k) A, it is known that 2=2' .  

(6.2) First we will study the case when k is odd. Then the matrix - I d  k is of 
determinant - 1 ,  hence O(k, R ) =  S O(k, R ) x  7/2 (direct product) and a represen- 
tation of O(k) is determined by two irreducible representations of SO(k) and 
of 7/2 . 

We consider the group O(k t~). We set k = 2 /+  1; we write a (2 /+  1)x (2 l+  1) 
matrix by 

l$ /a l l  al2 a13~ 
151021 a22 a23]; 
15 \a31 a32 a33/  

we consider the symmetric matrix 

J =  0 
0 

and 

O(k; •)= {geGL(k, 112); t g d g = j } ,  

S O(k; I1~)= {geO(k, 112); detg = 1}. 
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The Lie algebra ~o(k) of S O(k, ~E) is then 

!) o ( k )  = - ' ~  ; fl, ~ skew symmetric / . 

We consider the Borel subalgebra 

b k = - ' a  ; ~ upper triangular 
_t  6 

and the Cartan subalgebra 

0 

\o 

0 
0 

tl 
--t 1 0 

" ,  

0 --h 
0 

; ti~C 

Then S O(k) ̂  is parametrized by the highest weight (ml, ..., ml), with m 1 > m 2 ->_... 
>=ml~O (mj~Z) ((ml, m 2 . . . . .  ml) corresponds to Smitj). 

Thus O(k) is parametrized by 2=(m~, ...,mz;e). This notation means that 
2 is a tensor product of (m:, ..., ml)| Here e is the 1-dimensional representa- 
tion of Z 2 trivial or nontrivial according to e = 1 or - 1. 

Therefore 21SO(k) is (m 1, m2, . . . ,  ml) and ,~(--]lk)=~. 

We also take a Borel subalgebra b h = ( ~  ) of gL(n)and a Cartan subalgebra 

We write a member w of Mn.k(C) w = ( x ,  y ,  t ); The ring of invariant poly- 
nomials on Mn.k(IE) by this form of O(k, 112) are the (wJtw)Lj. So the ring of 
differential operators invariant by O(k, 112) is generated by 

(6.3) Ai,j= = 1 ~x,-~-Oyj~ + Ox~-Oy,~ -t ~?tiOtj 

We set: 
(x11, . . . , x l j )  

(6.4) Aj(x)=det . . . . .  l < j<n , l ,  
�9 ~ X j l  ~ . . .  ~ X j j  / 

( l <  i, j<=n). 
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Aj(x, y, t) 

/ X l l , X 1 2  , . . . .  XI, I ,Y l , j+ 1 . . . . .  Y l , , , t ,  \ 

=det  ~ x 2 : '  x2: '  :" :  . . . . .  x2':' Y2'J+:' :"7 . . . .  Y.2':' t. 2 . . . .  "} 

\ X2I - j+I , I ,X21- j+I ,  2, "" ,X21- j+I , I ,  Y21-j+I, j+D "'', Y21-j+l, l ,  t 2 1 - j + l /  

O<j<l, 2 1 - j + l < n .  

We consider the action of GL(n, r  x O(k, IE) in .~ and we want to decompose .~ 
into irreducible components under this action. By (5.7), as ~(2)| is an irreducible 
representation of GL (n, 117) x O (k, IE), this decomposition is 

.~ = Q .~(2)| V a, = (~) .~(2)| V a ((6.1)). 
2e,~ ,~e~ v 

(6.5) This means that for each representation 2 e S  ~ O(k)" and w Va there exists 
a unique element f ,  up to scalar multiple, in .~ such that 

a) f transforms under right translations by O(k, 112) according to the action 
of 2 on v. 

b) f is highest weight vector with respect to b~ (left action). The corresponding 
weight will be the highest weight of z (2) with respect to b~. 

The following proposition will then determine Z and the map 2~--,z(2). 

(6.6) Propos i t ion .  Let fs~3 be a highest weight vector for the action of GL(n, tE) 
x O(k, C) on 9. Then f is on the form: 

1) Al(X)aq... Aj(X) a' (O~j<~n,l) 

(~1 . . . .  , o t s~N = {0, 1, 2 , . . . } ) .  

or 

2) A, (xT'... a~(x)', 2j(x, y, t) 

( 0 < j < n ,  l, 2 1 - j +  1 <n). 

Proof. 1. The function f of the form 1) are obviously pluriharmonic and semi- 
invariant under b, x b k. 

2. We set x2t-J+ l,~ x2t-J+ L~ \ t2~- J+ l /  
Xv= : T= . 

Let e be the canonical non zero element of A 2t- i+ '  IR 2'-j+j.  Then Aj(x,y,t) 
= X , ^ . . . A X ~ ^ . . . A X l ^  Yj+I^ ' "^  Y~^'"^  Yt^ T. 

It is easy to check on the form of the Lie algebra b k that Aj(x,y,t) is semi- 
invariant under b k and hence a function of the form 2) is semi-invariant under 
b, x b k. Let us check that f (x) = A, (x) ~' . . . . .  A j (x) "j z~ (x, y, t) is pluriharmonic. 
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It is evident that 

~2 
f=0 

3Xiv ~Yi'v 
~2 

- - f = O .  
at~ 3t~, 

Therefore 

l 
A,, , . f= 

v=j+l 

if v<j 

~2 ~2 

and as Al(x), . . . ,  Aj(x) do not depend on x~.~ for v>j+ 1, we have 

A.. f =  A 1 (x)~" ... A j(x) ~' 
/ ( 632 0~2 ) 

v=j+l ~Xi' v ~3Yiv 

Let us fix v ~ j  + 1, then 

Aj(x ,y , t )e= +_X,^ YvAX1 A . . . A X v A  ""ASIA Yj+I A ' ' -A  "YvA ... A Yl A T. 

Each component of the vector X~/x Y~ in A 2 IR 2 / - j + l  is of the form 

(x,~ yo~- xp~ y~v), 

hence for any (i, i') we have 

~2 ~2 

(-6qxl-v-~yi, v + Oxv v 6~Y,v) XvA Y~=0 

and as the other elements X,,,, Yv' do not depend on x~,,,ya,,, we have 

~2 ~2 

('63XiT ~Yi, v + 6~x,~ ~yiv) ~ j=O" 

And finally A~, f = 0. Let us show now that each highest weight vector f appearing 
in .~ is on the form 1) or 2). Let  us suppose first that k<n; we will show that for 
any 2~O(k)  ̂  there exists an f in .~ of the form 1) o r  2) satisfying the condition 
(6.5)a). This will prove the result (and that Z =  O(k) ). 

Let 2=(m 1 . . . .  , mz; e). Suppose that e - ( -  1 ) m + + ' %  then 

f=hl(X)ml-m2 /I 2 (x)m2-m3... Al_l(X)ml-L-m1 Al(X)ml 

corresponds to 2 (under the transformation x~-+-x, f is multiplied by 
(_  1)(mt--raz)+Z(m2--m3)+...+O--1)(mt-l-ml)+lml _~_(__ 1),~1 + =2 +... +,,,). 

Suppose that e = ( - 1 )  '~l+'n2+'''+"'+a. Take j such that rnj>l  and mj+ l=0  
then f =  Al(x) ml-m2... Aj(x)mJ-1 Aj(x, y, t) if of type 2 (we have always 21 - j +  1 ~ n). 

Let us suppose now that k > n. Let us consider f as in (5.9) f is a function on 
Mk, ~; we know then that f has the form 1) or 2) and so is f .  
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(6.7) Corollary. Z =  {2; ~ ( 2 ) , 0 }  is 

{(ml, m2, ..., ml; 5); mj=O for j >  n and e = ( -  1) "1+"2+'''+"'} 

u {(m 1, m 2, ..., mz; a); 5 = ( -  1) m~+m~++"'+l k < 2 n  mj+O for  j < k - n } .  

(6.8) We will now parametrise the representation z of GL(n, ~) by their highest 

( " ~ ) , i ' e ' z = ( m , , m 2 , " "  m,) weight with respect to the Borel subalgebra b + = 0 

with m 1 > m  z > . . .  > m ,  for any decreasing sequences of n integers, positive or 
negative. Then we express in this parametrisation the correspondence 2~--~z(~.). 

(6.9) Theorem. Let  k = 21+ 1. 
Let  

26Z, then i f  2 = ( m l , m  2 , . . . ,mj ,  0 , . . . ,0 ;  e) 

and 

~ = ( _  1).,1 +, ,2+. . .  + , , j  

then 

If 

with j < n 

z(2)=(0, . . . ,0 ,  - -m j, - -mj_  1 . . . . .  --m2, --mO. 

2=(ml ,  m 2 , . . . , m j ,  O , . . . ,O;e  ) with mj:#O and k - n < j < l  

and 

e = ( _  1)ml+m2+"'+m,+l 

then 

z(2)=(O, . . . ,  O, - 1, - 1, . . . ,  - 1, - % ,  - mj_ 1 . . . . .  - m 2 ,  -m l ,  ). 
~- k - - j  

(6.10) We shall discuss now the case when k=21  is even. We take the form 

(0 
O(k)={geGL(2 l ;  C); t g j g = j }  with J =  1l . 

then 

~o(k)={(~ _ ~ ) ;  fl, Tskew-symmetric}. 

We take a Borel subalgebra 

b k = { ( :  _ ~ ) ;  e upper triangular; fl skew symmetric} 
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and a Cartan subalgebra 

tlo 
--t I 

o) 
m 

- -  t I 

t ~ C  

An irreducible representation of SO(k) is parametrized by its highest weight with 
respect to b k i.e. (ml,m2, . . . ,mt_l ,mt)  with ml>m2>. . .>ml_l>lml l ,  mfiTZ. 
O(k) is the semi-direct product of SO(k) by 7Z 2. 

Let 

l 
l 0 0 

11 O0 

0 

a =  O0 I1 
0 0 11 

1 

1 t 
0 

Then a e O  (k)-SO(k) and a normalises the Borel subalgebra bk: Hence we see 
easily that if 2 is the representation of SO (k) of highest weight (ml, mE,..., m z_ 1, rn~), 
then the representation 0-.2 has highest weight (ml, m2,. . . ,  mz_l, -m~). It follows 
that if mz4:0 the stabiliser of the representation (ml, m2, ..., m~) of SO(k) is SO(k) 
itself, and the induced representation of (m 1 , m 2, ..., mz) to O(k) is irreducible and 
its restriction to SO(k) is sum of (ml, m2,. . . ,  mr) and (ml, m2, ... , -mz). 

We denote this irreducible representation 2 of O(k) by (ml, m 2 .. . . .  ml_a, [mtl), 
m~ 4: 0. If m t = 0, the representation (ml, m2, ..., m t_ 1,0) extends into two different 
representation 2 and 2|  of O(k, Ir). 

We denote a member of Mn.k(II;) by ( x ,  y )$n, in these coordinates we have: 

! 02 ~2 
Aij= ~ c3xi,,~y~ + ~, = 1 t3xj~ ~?Yi,, 

We set 

Ai(x)=det ( x " ' " X a j  I l <=j<=l,n, 
\Xjl X j j !  

\/XI, I ,X1,2," ' ,XI ,  I, Yl, j+l, "'', Yl, ) 

3j(x, y)=det ~x2~ .... 

\ X 2 t - j , l ,  X2l-j, 2, " ' ,  Y2t-j.j+I, " . ,  Y2t-j,l 

2 l - j < n ,  O<j<l. 
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We denote (taking n>  k) for any decreasing sequence of non negative integers 
(m~, m 2 . . . .  , ms) by 2 =(ml, m 2 . . . .  , mr) + the irreducible representation of O(k, C) 
generated by A 1 (x) r"l . . . . . . . .  A l- 1 (x)"'- ' -  r,, A~(x)m, under right translation. Taking 
the integer j such that mj+O, mj+~ =0, we denote by 2=(ma, m2, ...,ms) the 
irreducible representation of O (k, C) generated by 

A 1 (x) ml . . . . . . . .  A j_ 1 (x )  mj -1 - m, A j ( x )  m j -  1 z~j ( x ,  y) .  

(if ml4:0, (ml . . . .  , ml)+ = ( m l ,  . . . ,  mr)_). 
(6.11) Proposition. Let f6 .~ be a highest weight vector for the action of GL(n,I~) 
x O(k, •) on 9, then f is on the form 

1) Al(x) . . . . . . .  Aj(x) ~J ( j<n,  l) or 

2) An(x ) . . . . . . .  Aj(x)~J,~j(x, y) ( 21 - j<n ,  O < j < l -  1). 

(6.12) Corollary. 

Z = {2; .~ (2)* 0} is 

={(ml, mz, ..., ml) + ; mj--0 for j>n}  

w{(ml ,mz ,  ...,ml)_ ; k<2n,  mj#:O for j < k - n } .  

Theorem. Let k = 2 l ;  Let 2~S,  then if (6.13) 

2=  

then 

(ml ,mz , . . . ,mr ,  O , . . . ,0)+ with j<=n, 1, 

( 2 )  = ( 0 , . . . ,  O, - m r , - m r _  1 , . . . ,  - m 2 ,  - m l ) .  

I f  

2=(ma,mz , . . . ,m j ,  0 , . . . ,0)_  with mj~:O 

with 

l ~ j > k - n , O  

then 

zQ.)=(0, ..., 0, - 1, - 1, ..., - 1, - m r ,  - m j _  1 . . . .  , --m2, --ml). 
k - j  

As these propositions are proved exactly in the same way as (6.6), (6.7), (6.9), 
we do not repeat this proof. 

(6.14) Proposition. For any k, the map 2~--~(2) is injective. 
This is immediate from the explicit formula of z(2) given (6.9) and (6.13). 

7. Decomposition of  L 2 (M,, k) 

(7.1) We know that L2(M,,k; 2) is embedded in r174 ((3.4), (4.4) and 
(5.12)). Since z(2)| is an irreducible representation ((5.7)); L2(M,,k; 2) is an 
irreducible unitary representation of G 2 with highest weight z(2)| k/2 ((3.5) 
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in I). On the other hand, we have 

L2(M,,k)=@L2(M..k; ,~)| V~,, 
,tE,~ 

and hence 

L 2 (M., k) = O (dim V~) L 2 (M., k; 2). 
.Z~2: 

Since 2~--~z(2) is injective ((6.14)), L2(M.,k; 2) are not equivalent to one another. 
Hence we have 

(7.2) Theorem. 1) For any ~ .~  the representation Lk(2) appears in the repre- 
sentation Lkdim Va-times, and we have 

Lk = @ (dim V~) L k (2). 

2) For 2 ~ ,  the representation Lk(2 ) is an irreducible unitary representation 
of G 2 of highest weight 

Z(2)| (6_kl2 has weight ( k2 , ..., _ k  )). 

3) The description of ~, and z(2) is given in (6.7), (6.9) and (6.12), (6.13). 

8. Unitary Representations of Sp(n, lR) with Highest Weight 

(8.1) Let k be an integer. Let 2e27 k and z =~(2) the irreducible representation of 
GL(n, C) associated to 2. We can then construct the map ffa: L2(M,,k;2) --~ (9 (D, V~). 
We consider the Hilbert space 

Mz={~(~b) ;  ~L2(M, ,k ;  2)} with 11~(~)ll2= IIr 2. 

Then M~ is a Hilbert space of holomorphic functions for which point evalu- 
ations is continuous (Lemma (4.3)). Let A be the highest weight of the repre- 
sentation z| g)-k/a of the two-sheeted covering group of GL(n, ~E). Then the 
corresponding infinitesimal module M of all K-finite vector is equivalent to 
L(A), and A~P. 

We recall that A~D, i.e. the corresponding representation is a member of the 
discrete series if and only (A + p, H~)  < 0. In particular we see on the description 
of A given by applying Propositions (6.9) and (6.13), the following result. 

(8.2) If k=>2n+l ,  then all the representations associated to 2 obtained are 
members of the holomorphic discrete series; 

If k < 2 n - 1 ,  none of the representations obtained are discrete. 
If k=2n, the representation associated to 2=(m1,m2, . . . ,  m,)+ is discrete if 

and only if m, 4: 0. In the cases we described, i.e. when (A + p, H ~ ) <  0, we know 
that the Hilbert space Mx has to be 3r In the coordinates z = x + i y  of D, 
it comes that 
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(8.3) M~ = {f; Vcvalued holomorphic functions on D such that 

S ( z ( Y ) - l f ( x + i y ) , f ( x + i y ) )  (det Y) k/2-t"+l) d x d y < ~ } .  

If the representation Lk(2 ) is not in the holomorphic discrete series, then it is 
not easy to give a description of the Hilbert space M z of holomorphic functions 
obtained. For example, let us remark that if k<n, the functions o,~ f being the 
Fourier transform of a measure supported on bk(C ) will satisfy the differential 
equations corresponding to the equations of bk(C) (all the minors of rank k+  1 
has to be zero). The converse problem involves to know conditions for a distri- 
bution solution of differential equations to be the Fourier transform of a measure. 

(8.4) Let 2s2~ and M z = { ~ b ;  ~EL2(Mn, k;J,)} with pl~q~ll=llOll. We will 
compute the reproducing kernel K a of the space Mz, i.e. Ka is a function K~(z,w) 
on D x D holomorphic in z, antiholomorphic in w with values in End(V~) such 
that for every veV~ and for every weD, the function Kz(. , w). v belongs to Ma 
and for every f ~ M ~ ( f (w), V )w = ( f , K ~ (. , w) . V ) M . 

(8.5) Lemma. Up to a constant factor, we have 

Ka(z, w)=z ( ~ )  det ( f ~ )  -k/2. 

Proof. We have, under the correspondence F(z )= f  ((10 ~)r  F(i)=f(1), 
consequently by the Remark (I.3.8), we know that 

(U) Ka(z , i).v a = z det v a. 

Using the fact that the representation T(z@det -k/2) is unitary, we get covariance 
relations of Kz(z, w) under G 2 and the lemma follows. 

(8.6) Corollary. Let 2 ~ S k, then we have 

k 

z det ~ e 2 I(x)* I(x) dx. 
Mn, k 

Proof. Let 4)eLZ(M,,k; 2) then for veV~ 

( ( ~  (p)(W), O)=~ e {Trtxwx (I(x)* 4(x), v) dx 

i -~Trtx~x 
=~ (O(x), e I(x) v) dx. 

Let Kz(z,~)=o~ kz(x, fro be the reproducing kernel of Mz. Then we have: 

kz(" , N)- v) ((o% r v )  = ( ~ q~, 

=~ (c~(x), k~(x, ~). v) dx 

It follows that ka(x, ~). v=e  -*/zTr'x'~ I(x). Hence the Corollary (8.6). 
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From the Corollary (8.6), the highest weight vector 

k 

i .  e-Trz-I(x) * I(X) V A dx det UA = ~ eSTr xzx 

i.e. the highest weight vector of the representation Lk, ,~ in L 2 (M,. k; •) is the function 
- Tr txx 

e 2 Ia(x). va; this function is given explicitly by Propositions (6.6) and (6.11). 

(8.7) Let S be the set of all irreducible representations of C~L(n, (E) of the form 
z(2)| -k/2 for some 2~O('k). 

(8.8) Theorem. We have 

S - ~ t z = ( - m l ,  - m 2 ,  . . . ,  m l  ~ 7Z/2 

m 1 <- . .  <m, ,  mi+ 1 - m  i integer, and 

mE --m 1 (m 3 -- ml )  + (m2 - - m l )  
ml> min n - l ,  2 + n - 2 ,  2 4-n-3, 

""' (m"--ml)+'"+(m2--ml))}2 " 

Proof. We set S' the right hand side of this formula. Combining Proposition (6.9) 
and (6.13), we have 

S = { ( - / , . . . ,  - l ,  - m  1, . . . ,  -ml); O<l<n, rnl>l, mlr 

w { ( - l , . . . , - / , - ( l + l ) , . . . , - ( l + l ) , ,  - m l , . . . , - m j ) ;  n - Z l + j > l , l > j + l }  
n-- 21+ j 2(l-j)  

u { ( - ( t + ~ )  . . . .  , - ( t + � 8 9  . . . . .  -m , ) ;  

O<l<n, ml>l+�89 m~r189 

u {!--(l +�89 . . . , - ( 1  + �89 +1+�89 . . . . .  -(1 + t +  k ) , - m l ,  . . . , - m j ) ;  
n-- 2 l + j + l  2(l--j)+ 1 

ONjNl, n>2l-- j+ 1}. 

Then, it is easy to check that S is contained in S'. We shall show that S contains S'. 
Let z = ( -  mx, ..., - ran) be a member of S'. If m~ => n -  1, r is obviously contained 
in S. So, assume that m I < n - 1 .  Then, there is k (1 _< kNn--1) such that 

m 1 => (m2 - m l ) +  ... + ( m k +  1 - - m  1) 
2 b- (n - k  - 1) 

and 

(m2- ml) + " "  +(ink-- mO + ( n -  k). 
m~ < 2 

Therefore we have 

O> mk+~--m~ 1. 
2 
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Since O<=mk+ 1 - - m l ,  we have ink+ 1 =m~ or  mk+ 1 -----ml + 1. Suppose  that  ink+ 1 = m  1. 

T h e n  m 1 . . . . .  ink+l,  a n d  hence  n - k -  1 < m l < n - k .  Therefore  m 1 = l  o r  ml=l+ �89 
with  l = n - k -  1, a n d  hence  

" C = ( - - / ,  . . . ,  - - 1 ,  ~ - - m k +  2 ,  . . . ,  --m~) 
l 

o r  

z = ( - ( / + � 8 9  . . . ,  - ( l + � 8 9  S mk + 2, ..., --ran ). 
l 

T h u s  z be longs  to S. 
Suppose  tha t  rag+ ~ =m~ + 1. Then ,  there  is v such that  

m 1 . . . . .  m~.,m~.+~ . . . . .  mk+l=ml+l ,  a n d  l < v < k .  

Thus ,  we have  

k - v  k - v + l  
+n-k>ml>= 2 q - n - k - 1  

a n d  hence  

k - v  1 k + v + l  
m l = T + n - k - g = n  2 

If m 1 is a n  integer ,  se t t ing l = m a, we have  

z=(-l~_ . . . .  , - 1 ,  - ( /+1)  . . . . .  --(l+l),  --mk+ 2 ,  , . . . . .  --m~). 
v k - v + l  n-k- 1 

Since v = n - 21 + (n - k - 1) a n d  k - v + 1 = 2 ( / -  (n - k - 1)), z be longs  to S. 
If  m 1 is a ha l f  integer ,  se t t ing ml = l + �89 we have  

z = ( 7 ( / + � 8 9  . . . ,  - ( l + k ) ,  ~- ( I+3) ,  . . . ,  - ( l + ~ ) ,  Smk+2 . . . . .  --m,~) 
v k - v + l  n--k--1 

a n d  hence  z be longs  to S. 

III. Tensor Products of the Harmonic Representation of U(p, q) 

1. Description of the Harmonic Representation 

(1.1) We  cons ide r  the  complex  vector  space C q t ~ I E r 0 ) C  q wi th  basis  

el,e2, ...,eq, Vl, V 2 . . . . .  v r , f l , f 2 , . . . , f  q (p=q+r). 

W e  will wri te  any  (q + r +  q )x  (q + r +  q) complex  ma t r ix  by blocs,  i.e. 

/ X l l  Xl2 X13~$q 
, X = ~ 2 1  X 2 2  X231~r" 
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Let us consider the hermitian matrix 

h =  1 , 

0 

We denote by (x, y) the canonical complex symmetric bilinear form, and by 
(x, y )= (x ,  ~) the canonical hermitian form; then h(x, y)= (hx, y) is a hermitian 
form on C~@Cr~3C q of signature (p, q). 

We consider the group G=  U(p, q)= {g; g* hg=h}. 

(1.2) Let us describe Lie algebra g of G: 

~ =  X =  1 7 2 ' a+d*=O,  b=b*, c=c* . 

O~ 2 ~l  = i f l ~ ,  (X2-~- - - i f l~ ,  ])"~- ] )*=0  

We denote by M(kl, k2; C ) = H o m , ( C  ul, ck2) and H(k)= {x~M(k,k; *); x=x*} 
the real vector space of hermitian k x k matrices. 

(1.3) We consider the following elements of G: 0) 
g(a)= 1 0 ; aeGL(q,  C), 

0 (a*)-  1 

\ 0 1 0 1 1 /  

/1_12A2t 
k ( ~ ) = ~ o_o_o_o_o_o_o_o_o_oA ~ / ;  ~,(~), 

\ 0 1 0 1 1 /  

1 i u *  t 

n(u)= 1 ; ueM(r,q.C) 

0 
and 

o'= 1 

0 

These elements generate the group G. 

(1.4) Let us consider the Heisenberg group H defined on 
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by the law 

(u, t). (u', t') = (u + u', t + t' - Im h (u, u')). 

We write also (u, t)=(Wl, Vo,W2, t) with wlEC q, VoE~', WzE(E q, tEIR. 
We consider the Hilbert space; 

58 = {classes of measurable functions ~(w, v)= ~(Rew, Imw, v) on ~q x C'  
such that: 
a) ~(w, v) is holomorphic in v, 
b) ~ [~O(w, v)[ 2 e-(v. v)[dw[2 idv]2 < ~ }. 

Here, [dw[ 2 is the euclidean measure 2 q d ( R e w O d ( I m w O . . .  d(Rewq)d(Imwq) 
on Cq=IR 2q and [dv[ 2 is the euclidean measure on C ' = R  2" defined in the same 
manner. Then the unique class of unitary irreducible representation T of H such 
that T(0, t)= e it Id can be realized as acting on 58 by 

(T(Wl, v o, w2; t) O)(w, v) 

=eit e<V, ~o) e -  ~<~o, ~o) e-  2me(w, w~) eiRe(wl, w2) ~ ( W  - -  W2, l) - -  I)o). 

Let g E G; the action g. (u, t)= (g. u, t) realizes G as a subgroup of automorphisms 
of H leaving the center of H stable, i.e. as a subgroup of Sp(p + q; F,). We consider 
the restriction L of the harmonic representation of the symplectic group (con- 
sidered as a projective representation) i.e. for each gEG we construct L(g) the 
unitary operator on 58 (defined up to a scalar of modulus one) such that 

L(g) T(u, t) L(g)- 1 = T(g. u, t). 

We will see that actually the following formulas for L(g) leads to a representation 
of G (not only a projective one): 

(L(g(a)) ~)(w, v)= (det-a) r w, v), 

(L(k (e)) 0)(w, v) = ~O(w, a-  1 v), 

(L(t(x)) t~)(w, v )=e  - i (  . . . .  ) O(w, v), 

(L(n (u)) ~)(w, v) = e -  ~: ( . . . . .  ) e < . . . .  ) t~ (w, v - u w), 

(g(o) O)(W, V) = ~ w') ~I(W', V)Idw'] 2 

i.e. L(a) is the partial Fourier transform with respect to the variable w. 
Let us consider any non negative integer k and Lk the k-th tensor product 

of the representation L. 
We consider wEM(q,  k; C) and vEM(r,  k; C) 

(1.5) The representation L k is hence realized in the Hilbert space 

58k = {classes of measurable functions ~O(w, v)=~b(Rew, Imw, v) such that 
a) qJ(w, v) is holomorphic in v, 
b) S e -T~"~* I~h (w, v)[ 2 ]dwl 2 Idvl 2 < oo}. 

M(q, k; C) x M(r, k: r 
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by the formulas: 

(1.6) (Lk(g(a)) O)(w, v)=(deta) k O(a* w, v), 

(L~ (k (~)) O )(w, v) = 0 (w, ~ - ~ v), 

(Lk(t(x)) O)(w, v) = e-iTrw*xw ~1 (W, 1.)), 

(L k n (u) ~k) (w, v) = e- ~ T . . . .  *u* r w* u* I/1 (W, /) - -  U W), 

(Lk(a)~b)(w'v) =(ilqk\zn] ~ eZ~R~T'ww'*O(W" v)[dw'[2" 
M(q, k; e) 

2. The Action of the Unitary Group U(k) 

On ~k the action of the unitary group U(k) given by (h .f)(x)=f(xh) commutes 
with the representation Lk; and hence we will decompose ~q~k under U (k). 

For any representation space M of U(k), and any 2e U(k) A, we denote M~ the 
isotopic component of type 2. 

We have "~k = @ A ~ k ,  4" Each ,~t~k, 2 is stable by L k . 
2~U(k) 

Let V~ be the space of 2, we define the Hilbert space: 

(2.1) ~e(2) = {classes of measurable function O(w, v)= O(Re w, Im w, v) 
with values in Va, such that 

a) ~b(wc, vc)= 2(c) -1 tfi(w,v), 
b) O(w, v) is holomorphic in v, 

v~it2 -rrvV, ldwl2 idvlZ<~}. c) ~ ItO(w, ,,,v~ e 

The group G acts on LP(2) by the same formulas (1.6) as L k. We denote by Lk(2) 
the corresponding representation. Let 2' be the contragredient representation 
of 2 in the dual space V2, and (x, f )  the bilinear paring. 

Then 

~ k ,  ), = ~ (2 ' )  (~) V 2 -~- Hom e (V z,; ~ (2')). 

Therefore we have 

~e~= | ~d2') |  
2eU(k)- 

as a representation on space of G x U(k). 

(2.2) It is easy to see that the set of functions {e -Trww* P(w, v)} is dense in L~e, 
where P(w, v)=P(Re w, Im w, v) is a real polynomial in w, and holomorphic in v. 

The map Pa:.L~ ~ ~ Hom(V~, s s a, given by 

((P~ O).f)(w, v)= I O(wc, vc)2(c)-i f dc 
U(k) 

is the projector of Za to the component of type 2'. It follows that the set of functions 
{e -T~ww* P(w, v); where P is a Vx-valued polynomial in Re w, Im w, v satisfying 
P(w c, v c)= 2(c)-1 P(w, v)} is dense in L,e(2). 
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(2.3) In the sequel we shall p rove  that  the representat ion Lk(2 ) is irreducible 
and we will identify ~ ( 2 )  with a Hi lber t  space of ho lomorph ic  functions on the 
associated hermit ian symmetr ic  space. 

3. Representations of G on Spaces of Holomorphic Functions 

(3.1) We consider X the complex  grassmannian  of q-dimensional  subspaces 2 
of CP@II; q. We consider G imbedded  in G L ( p + q ,  ~ )  which acts on X homo-  
geneously in the obvious  way. Let  D be the open subset of  X consisting of all 2's 
such that  the hermit ian form h is negative definite on 4. 

Let 2 E D, then 2 n ((11~ e 1 |  �9 II; eq)@(ll~ v 1 0 " "  | C v,)) = {0}, i.e. 

2 = { w + z w + u w ;  weC  fl@...O)tE fq } 
ueM(r, q; r u: C flO...OI12 f q ~  CvlG...@ll~ v, 
z~M(q, q; C) z: C fl  O...GI12 fq-~ ~ elG...OIl2 e q. 

Let us write z = x + i y, with x = x*, y = y* the condit ion h (w + z w + u w, w + zw + uw) 
u* u 

< 0 is equivalent  to y > 2 

We will identify the complex manifold D with the open subset, still denoted 
by D, of  M(q, q; 11~) x M(r, q; ~) defined by 

u'u1 
D= (x+iy,  u ) ; x = x * , y = y * , y > T ~ .  

We write also p for the couple (~)  and we consider p as an element of M(p, q; 112). 

Let us write an element g of  G L ( p  + q, 112) as 

& &  

Then the action of the group G on D is given by g.p=(~p+fl) (Tp+6) -~. 
We will consider the following element e o = (i, 0) of D. 
The stabiliser of e o is a maximal  compact  subgroup  K of G. Let  

0 

Let 

h o =  1 , then h = c h o c * .  

0 - 

Let x o = ~ f l  0 " "  @ Cfq, then e o = C(Xo). 
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Let 

Go= {g; geGL(p+  q; t~); g 'hog  =ho} 

Ko={g;geGo;  g. Xo=Xo}. 

and 

Obviously Ko = ( ~ - ~ ) ;  c~ U(p), 6~U(q). 
/,,v [ NX 

We then have that the map (~,6)~--~e 1~--~)e -1 is an isomorphism of 
U(p) x U(q) with K. ~ u i o /  

The Lie algebra go c is canonically identified with g l(p + q; (r). We choose 

P q 

o :AdcI(o ) 

/a~ 

D r = Adc, ap 
b 1 

0 
\ 

; x ~ M(p, q; C)}, 

y~M(q, p; (E)}, o! 
ai, b~l12 

.~ 

b 

We choose the system A + of positive roots, such that 

,+  and,areup ertriangular}and +=,+o0+ 
We suppose q4:0. Let ~1 be the highest non compact root, then (0 ) 

0 0 
H~I = A d e  0 and p ( H ~ ) = p + q - 1 .  

00-1  

(3.2) Let z be a holomorphic representation of GL(p; ~;) x GL(q, fie) on a finite 

vector space V~. The representation e (0 ~) c- 1 ~--~r(~, 6) of Ke is also denoted 
by z. 

Let us consider G,,={g~GL(p+q; C); g. eniD} i.e. Gu=GKr 
Let peD, by definition 

(; 1~)xo-p=(~ 1)c 1 eo 
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So any element of G u can be written uniquely 

g =  go, where peD, goeKeP_ 

i.e. 
e 0 

. 

We recall that (9(z) is the space of holomorphic section of G x V~; A function in 
K 

(9(z) can obviously be prolonged to G,=GKep_ by f (gkp)=z(k) - l f (g) ,  geG, 
kEKr peP_. 

We identify f as a V~-valued holomorphic function on D by 

1 p 

We denote by ,/1 (g, p), J2 (g, P) the elements of GL(p, ti;), GL(q, II?) such that 

\ Y J2 (g, P) 

The action of G on (9 (z) becomes the action on the space (9 (D, V~) of all V~-valued 
holomorphic functions f(p) on V~ by 

(3.3) (T(z)(g) f)(p) = z (,I1 (g- 1, p), ,I2 (g- 1, p))- 1 f ( g -  1 p). 

We will write here explicitly the formula (3.3) for the special elements of G we 
have pointed out; 

(T(z)(g(a)) f)(z ,  u)=z ( ( 0 

(T(z)(t(x)) f )  (z, u) = f ( z -  x, u), 

1 I - 5 - '  ~-~o), 

(3.4) Let us assume that z is irreducible, then z = z l |  2 with z 1 (resp. %) an 
irreducible holomorphic representation of GL(p, t17) (resp. GL(q, II?)). 

Let v~l (resp. v~2 ) be the highest weight vector of V~, (resp. V~), then the highest 
weight vector 0~ of (9(z) (I.3.2) becomes the function: 

z+i  0 
i 

L(z,u)= ~ ~_ 1/~ |  .v~,Ov~. 

i 
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4. Intertwining Operators 

We identify the complixification of the real vector space 

M(q,k;~)  with M(q,k;~)•  via w~--~(w,w). 

So if P(Rew, Imw) is a polynomial on the real vector space M(q, k; C), then 
there exists a complex polynomial on M(q, k; ~)x  M(q, k; C) still denoted by P, 
such that P(w, ~) = P(Rew, Imw). 

Let 2 be an irreducible unitary representation of U(k) that we extend holo- 
morphically to GL(k, IU) and z a finite dimensional holomorphic representation 
of GL(p, •) x GL(q, ~) on V~; we choose a scalar product V~ such that z(g*, g~) 
=z(gl ,  g2)*. We denote by .~(2, z) the space of polynomials P(x, y) on M(p, k; C) 
x M(q, k; tE) with values in Hom(V~, Vz) such that 

a) P(a 1 x c, ta 21 y 'c - 1 ) = 2 (c)- 1 P(x, y) z (al, a2)- 1 

a 1 ~ GL(p, ~), az EGL(q, r c~GL(k, tlY), 
b) the function 

is a harmonic function in w, i.e. 

Y' Y' ~w~v 0~i~ P ' ~ =0 .  
i = 1  v = l  

Note that condition a) and b) imply 

(A~.jP)(x,y)=O for l< i<p ,  l < j < q  

where A o is the differential operator: 

h C32 

~3Xi~ t3yj" v= 1 

If Pe.~(2, z), we define 

((wit (IP)(w,v)=P iv ' ~ 

then IP is a polynomial on M(q, k; C)x M(r, k; C) harmonic in w, and holo- 
morphic in v. We have the following relations for IP: 

~) (IP)(wc, ve)=2(c)-l(IP)(w,v); cEU(k), 

8) (IP)(aw, v)=(IP)(w,v)~ ,(a*) -1 ; a eaL(q ,  C), 
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(4.1) Proposition. Let P be a function in .~(2, z). 
a) Let ~ be in Lf(2) (2.1), then the integral 

(~(P)  Ip)(z, u)=S eiTrw*zw eTrwv*u e -  Trvv*(lP(w'  v)) *lp(w, v)Idwl 2 Idvl 2 

is an absolutely convergent integral whenever (z, u)~D and defines a holomorphic 
function on D with values in V~. 

b) The map O~--,o~(P)tp intertwines the representation Lk(2 ) with the repre- 
sentation T(z| on (9(D, V~) given by 

(T(r | 6k)(g) f)(p) = (r | 6k)(J l(g- 1, p), Jz (g- 1, p))- 1 f ( g -  ~ p). 

Here 6k (gl, g2) = (det g2) k for gl e G L(p, •), g2 e GL(q, IE). 

Proof We shall prove first a). 
[ u* u\ 

Let (z,u)ED and f~V~; we write z = x + i  ~ t+~2- ) ,  with a positive definite 
hermitian matrix t, then 

I <(~-(P) ~,)(z, u), f)12 
WW*U*U VI)* , --Tr ~ - T r ~  

~=(~ e -Trww t e ~ eReTrwv*U e 

�9 ((IP)*(w, v) O(w, v) , f ) Idwl  2 Idvl2) 2. 

We have 

- Tr  v v* 
2 

e 

[( IP*(w, v) • (w, v) , f  ) l= l (  ~ (w, v), (IP)(w, O f ) l <  IlqJ(w, v)b] IIIP(w, v)fl]. 

Applying Schwarz inequality, we get 

I ( (~(P)  O)(z, u), f>[2 
~ (I e-2Trww*t  e -  Trww*u*u eTrwv*u eTru*vw * e-- Trvv* 

II(1P)(w, v) fll 2 Idwl 2 Idvl 2) 110112 
~ I e -  2Trww*t e -  Tr( . . . .  )( . . . .  )* [l(IP)(w, v) f llZ ]dwl 2 ]dv[ 2" Ilq/ll~rcz) 
<(~. e -2w'~' '* '  e - T ~ *  II(IP(w, v + u w )  f l l  z Idw[: Idvl2)llOH~r 

which is obviously convergent, because IP is a polynomial. 
Let us verify b). The commutation relations with the elements of the form 

g(a), k(ct), n(u) follow immediately from the relations r 7) 6). The commutation 
relation with t(x) is obvious. The only problem is to check the action of a. We 
prove first: 

(4.2) Lemma. 

e ITrww'* e ixrw*w' e ixrww*z eXrWv*u(IP)(w, V)* Idw[ 2 

--Z-- 
U 
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Proof  As both members are holomorphic functions of z, it is enough to verify 
this for z = i y2, where y is a positive definite hermitian matrix. Using the change 
of variables w~--~y- ~ w, and the relation fl) for IP, it is enough to prove the formula 
for z = i .  i.e.: 

(4.3) e iTrww'* e iTrw*w" e-TrWW*eTrWV*"(IP(w, v))* Idwl 2 

or taking the adjoints of both members: 

(4.4) S e-iTrw""* e-iTrw*w' e--Tr,,.,'.,* eTrU*vw*p ( ( W ) , ~ )  [dw[2 

Let us consider the value u = 0, then it follows from the mean value relation for 
harmonic polynomials: 

(4.5) ~ e -  z,x. y) e -  ~x, ~) F(x)  dx  = rc "/2 e - ~y" y) F( - i y) 
F.n 

where F is an harmonic polynomial on IR" (extended holomorphically to C"), 
that: 

e e 1 ,dw,  

which is what we want, as P verifies the condition a). 
We consider this equality, as an equation between real analytic function 

of w'; by analytic continuation it follows that for any (Wl ,W2)~M(q ,k ;  117,) 
• M(q,  k; IE) that 

w 
~ e - ' T ~ w * ~ e - i W r ~ e - T ~ w w * p  ( ( i v ) , ~ ) l d w l 2  

=(2~)'tke-Trwltw2P((--iWlt'--iw2)\\ iv / 

as these two members are equal for the value (wl, wl). 
Let us now consider the values 

W l  = W ' - { - i u * v  

W 2 = ff~' 
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we obtain that the left hand side of (4.4) is equal to 

(2rc)qk e-Trw'W'*e-iTr"*vw'*P ( ( - iw '  +u*v) --i~') 
I1) 

Since P is in .~(2, z) and 

( 0 - i - i l u * )  ( iv)  = w '  (-iWi+vU*V). 

We obtain the equality (4.4). 

Now we have 

(if(P) L,(2)(a) qJ)(z, u)= ~ e-iT~w*~ eT,wv*, e-Tr~* ((IP)(w, v))* 

/ i ~qkit. 2iReTrww'* 
�9 t ~ )  t i e  O ( w ' ,  v) [dw'12) ldwl2 ldv l 2 . 

By Plancherel this is equal to 

( 1 ~  qk ( e 2iReTrww'* e iTrw*zw eT*~v*ulP(w, v)* ldwl 2) 
-2 iI 5 f. 

�9 e - T ~ v *  ~ , ( w ' ,  v ) I d w ' l  2 Idol 2 

applying the Lemma (4.2), we obtain that this is (T('c| O)(z, u). 
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5. Pluriharmonic Polynomials 

As seen in the preceding discussions, we will follow the same arguments as for 
Sp(n, ~,). 

We consider the system of differential equations 

(5.1) (Aof)(x,y)=O for l<i<p, l<j<q 

where 

k 02 
Ai'j= ~=,Y" cqxi~ Oyj~' xeM(p, k; IE), yeM(q, k; 117). 

We shall call a solution of this system pluriharmonic. We denote by .~ the space 
of all pluriharmonic polynomials on M(p, k; IE) x M(q, k; 117). 

The group GL(p, I1~) x GL(q, IE) x GL(k, IE) acts on M(p, k; 112) x M(q, k; t17) by 
(gl, g2, C)" (X, y) --o (gl X C- 1, 'g2 1 y 'c). 

The system (5.1) is invariant by this action; so .~ is a representation space 
of GL(p, IE) x GL(q, ~2) x GL(k, t12). 

(5.2) Let us denote by X the variety M(p,k;IE)xM(q,k;tE) and by IE[X] 
the space of all polynomials on X. We note by IE [x ty] the subspace of IE [X] 
generated by (xty)i,fi 1 NiNp, 1 NjNq. We introduce, for 2 an irreducible holo- 
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morphic representation of GL(k;~) ,  C[X](2) ( resp .  8(2)) the space of all 
V~-valued polynomials (resp. pluriharmonic polynomials) such that P(x c, ytc-1) 
= 2 (c)-  1 P(x ,  y). 

We have 

= | ~(,~)|  
,IE GL(k, 02) A 

On 112 [X], we consider the inner product (P;  Q) deduced from the inner product 
Trx  x* + T r y y *  on X =M(p, k; IE) x M(q, k; 112). 

In the same way as Lemma (II.5.3), we know: 

(5.3) Lemma. IE[X]=lE[xty]  8.  

(5.4) Corollary. IE IX] (2) = 112 [x ty] ~ (2). 

(5.5) We shall denote by S the subset of 26 U(k) A such that ~ (2):~ 0. This condi- 
tion is equivalent to IE [X] (2) :t: 0 (5.4) and hence to ~ (2 )#0 ,  as the subspace 

is dense in ~(2). 
For 2ei ;  we denote by z(2) the representation of GL(p, ~ ) x  GL(q, It) on 

.~ (2) given by ((gl, g2)" P)(x, y) = P(gi- 1 x, tg 2 y). 

(5.6) Proposition. z = z(2) is an irreducible representation of GL(p, I17)x GL(q, 112). 
c~) Let us suppose first that p =q. Let P e C  [X], we consider the real poly- 

nomial P' on M(p, k;l12) given by 

[_x+iy x - i y ]  
P ' (x+iy)=P \ l~ ~ , ~ ], for x, yeM(p,k;N).  

Then 

If P, Q are pluriharmonic polynomials, it follows from (II.5.5) that 

(P, Q) = const. ~ e - T~ww* P'(w) Q'(w) ldw [ 2 �9 

It follows then by the same line of argument as in the proof of the Proposi- 
tion (II.5.7) that if kN_p the representation z is irreducible. 

fl) Let p, q, k be arbitrary; let f(x, y) on M(p, k; II2) x M(q, k: C) be a highest 

weight vector of .~(2)with respect to the Borel subalgebra ""-___(~)x (O N) o f  

gl(p, ll~)xgl(q;ll2); Let us choose N>=k,p,q; then the function f(2,~) on 

k;ll~) x M(N, k;112) defined by f ( ( x ) ,  ( ~ ) ) = f ( x ,  y ) i s a  highest weight M(N, 
k - - i i  

vector of the corresponding representation of GL(N, C)x GL(N, ~), hence f 
is unique up to a scalar multiple by ~) and so is f .  
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(5.7) For 2eZ, we define a Hom(.~(2), Va)-valued polynomial P~(x,y). by 
Pz(x, y)" f = f(x,  y). 

It is immediate that Pze.~(2, ~). Hence we get a map ~ = ~ ( P ~ )  intertwining 
the representation Lk(2 ) and T(v | 

(5.8) Proposition. The map ~z is injective. 

Proof Let qJeL~'(2) such that ~ = 0 ,  i.e. for any f s ~ = ~ ( 2 )  and (z,u)sD, we 
have 

O= ( (~z ~)(z, u), f )v. 
=S eiTrw*zw eTrwv*u e- Trvv* (1~ (W' V), IP(w, v)f)[dwl 2 Idvl 2 

:Se-Trvo* I~(W,V),e-~T~w~'*eT~"*v~* f (( iW),w))[dwl2ldv[  z" 

It is then sufficient to prove that the closure L~ of the space generated by the 
functions: 

~ (z, u, f)(w, v)= e_ ,T~e.,w. eT~,~,, f (( iw),  # )  

for (z, u)~D, f~.~(2) is s 
It is easy to see that for any polynomial P the partial derivatives 

of the function ~k are in L. Hence ~ contains all functions of the form 

e- e tt w )ij, tVW*)kl)f iv " 

We have (5.4) IF[X](2)=ll2[xty]f3(2). It follows that any polynomial 

1 Q iv ' ~ in 112 [X] (2) is a linear combination of polynomials of the form 

P((w w*)i j, (v w*)kt) f iv ~ ' fe.~(2). So ~ contains in particular the functions 

which are dense in s 

6. Description of .~(2) 

Now we shall describe the set 2; and the correspondence 2~--~(2) in terms of 
highest weight. 

We consider the Borel subalgebra b~ (resp. b~-, b~) of g l(k; ~E)(resp. g l(p, IE), 
gl(q,~E)) as the upper (resp. lower, upper) triangular subalgebra; GL(p, IE) 
x GL(q, ~E) x GL(k; ~E) acts on ~ by ((gl, g2, c) . f ) (x ,y)=f(g~ 1 xc, tgzytc-1 ). 
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We set 

Aj(x)=det ( Xl1' "" 'Xl j )  O ~ j ~ k , p ,  
\Xjl ~ , xjj [ 

Z~j(y) = de  t (Yl,k-j+l . . . . .  Ylk] O ~ j ~ k , q .  
\Yj.R-j+ 1, "", Yjk /" 

(6.1) Proposition. Let f(x,y)~.~ be a highest weight vector. Then f is of the form: 

(6.2) A~'(x) ... AT'(x)" JI(y)~' ...A]~(y) 

with O<__i<p, O<j<=q, i+j<k ,  ai, fli non negative integers. 

Proof It is easy to see that these functions are pturiharmonic and highest weight 
vectors. 

To prove the proposition, we follow the same argument as in Chapter II, 
Proposition (6.6); i.e. We suppose first that p=q and that k<p. 

Let 2 be any representation of GL(k; C), we parametrise 2 by its highest 
weight vector with respect to b,, i.e. 

2=(ml ,m2,  ... ,ml, 0, .... 0 , - n j ,  . . . , - n  l) 

ml>mz>...>mi=>O; n l > . . . > n  f l  i+j<=k<=p 

then the function A l(x) "'-m2 ... AT'(x). Al(y) "-"~ ... Jj(y)"J is a highest weight 
vector under GL(k; ~)  of type 4; As the representation z(2') is irreducible, it 
follows that this f is the unique element of S5 highest weight vector for b k x bp x bq 
of type 4, with respect to GL(k;  r 

If p,q,k  are arbitrary, we take N>=p,q, k, the function f(Yc,~)=f(x,y) with 

2 =  ( x ) , ~ =  (Y), is a pluriharmonic function and is a highest weight vector for 

the group GL(N, t17) x GL(N, IE) x GL(k; IE). Hence f is of the form (6.2), which 
implies that so is f. 

We parametrise now an irreducible representation z = z l |  2 of GL(p, t12) 
x GL(q, IE) by its highest weight vector with respect to the product of upper 
triangular Borel subalgebras bp + x b~-. 

We have then 

(6.3) Theorem. 
a) 2;= {2 =(nl, ..., ni, 0, ..., 0, - m  1, - m 2 ,  ..., -mj )  n 1 > . . .  >n~> 0, 

O<ml <=mz <=...<=mj, O<=i<q, O<=j<=p, i+ j< k .  
b) I f  2eZ,  the representation z(2) is 

za(O, 0 . . . .  ,0, - m  a, - m  z . . . . .  -mj ) |  ..., ni, O, .. . ,  0). 
c) For any k, the map 2~--~z(2) is injective. 

7. Decomposition of the Representation .LP k 

(7.1) We have proved that the unitary representation ~k(2) is imbedded as a 
subrepresentation of the representation T(z(2)| Since z ( i ) |  k is an irre- 
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ducible representation, we see that Lk(2 ) is an irreducible unitary representation 
of G of highest weight z(2)| k. 

On the other hand we have ~k = @ L'~k(2)| V~, and hence --qqk = @(dim V~) .LCk(2 ). 
Z e Z  J,E,~ 

Since 2~--~z(2) is injective (6.3) we have 

(7.2) Theorem. 1) For 2~Z, the representation Lk(,~ ) appears in Lkdim Vctimes, 
and we have 

L k = ~ (dim Vz) L k ( 2  ) .  

2) For 2eS, the representation Lk(,~ ) is an irreducible unitary representation 
of G of highest weight z(2)@6 k. 

3) The description of Z and r(2) is given in (6.3). 

8. Unitary Representation of U(p, q) with Highest Weight 

(8.1) Let k be an integer, let 2 s Z  k and z=z(2) the irreducible representation 
of GL(n, IE) associated to 2. 

We can then construct the map ~ :  ~k(2)~ (9(D, V~). 
We consider the Hilbert space 

~/ 'a={~0P); ~b~k(s with ll~(@)]12=ll@ll 2. 

Then ~t'~ is a Hilbert space of holomorphic functions for which point evaluation 
is continuous. Let A be the highest weight of the representation Z(2)| the 
corresponding infinitesimal module M of all K-finite vectors of the representa- 
tion T(z(2)| in sh'~ is equivalent to ~(A), hence AeP.  

We recall that AeD, i.e. the corresponding representation is a member of the 
discrete series if and only if (A + p, Hr,) < 0 (when q :t: 0). 

In particular we see on the description of A given by applying Proposition (6.3): 
- if k>  (p+ q) all the representations occurring in L k are members of the 

holomorphic discrete series 
- if k < q, none of the representations obtained are discrete. 
- if q < k < p + q ,  some of the representations obtained are discrete, some 

are not. 

(8.2) In the cases where A~D, i.e., where ( A + p ,  Hr,)<O, we know that the 
Hilbert space ~'z has to be ~(A). f 

In the coordinates (z = x + i y, u) of D, it comes for z = q | = z (2), dr = ~ f ;  
V~-valued holomorphic functions on D such that: 

1 - i___._U_U | z2(Y) . f ( x  + i y, u), f ( x  + i y, u 
2 "x 

�9 (dety)k-(~+~)dx dyldul 2 < 00~. 
J 
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(8.3) If 2 is not such that A ~D, it is not easy to give a description of the Hilbert 
space ~'~ obtained. For k = 1 and p = q = 2, for example the Hilbert space obtained 
are solutions of the Dirac and Maxwell equations (see [6]). 

We compute now the reproducing kernel Kx of the space Jr 

(8.4) Kx((zl, Ul) , (Z2, U2) ) 

= d e t ( Z l - Z ~ - i u * u l )  z 1 ( zl-z*+iu~ul-2i, i~)* 

lU  1 

| ( zl-z~-iu~u12i )- 1 

Proof We have under the correspondence 

F(z, u )=f  1 e -  1 , 

0 

F(i,O)=const. r ( ( ?  ~ ) , l ) - l f ( 1 ) .  

This gives the value Ka((z, u), (i, 0)) of the reproducing kernel the formula (8.4) 
follows then from the covariance properties of Ka. 

(8.5) Lemma. Let 2eI2, then 

Ka((zl, u O, (z2, Ug)) 

= S eiTrw*~zl- z9 w e Trwv*"l eT~"~ vw* e- T~"* IP(w, V)* IP(w, v)Idwl z Idvl z. 

Proof See (11.8.5). 

Let S be the space of all finite dimensional irreducible representation of 
GL(p, ~2)x GL(q, tE) of the form z(2)| k with some k and some 2eX. Then, if 
r6S. d)(z) contains a non-trivial unitary representation. 

(8.6) Proposition. 

S={r=(n l , . . . , np ) |  0 > n l >  ... >np, 0 < m l <  ... <mq, 

m__> min ( - n  1 . . . . .  ni+mj+...+mq 1 - ( q - j )  mq+p- i+ j -1 ) } .  
q--o<.i<= p 

l<--j<=q 

Proof. Let S' be the right-hand side. It is immediate that S' contains S. If mq > p + q, 
then z is contained in S. Suppose that m~ < p + q, and r is in S'. Then there is 
(i,j) ~ (19, q) such that 

mq> - n  I . . . . .  ni+mj+ ... +mq_ 1 - ( q - j )  rn~+p- i + j -  1, 

m q<-n  1 . . . . .  n,_l + m j + . . . + m q _ l - ( q - j ) m q + p - i +  j (if i~0),  

mq< -n~ . . . . .  ni+m~+l + . . . + m ~ _ ~ - ( q - j - 1 ) m q + p - i + j  (if j+q). 

Hence, l > - n  i if i4:0 and mj-m~<l  if j4:q. Therefore n 1 . . . . .  ni=O (for 
i 4: 0), and mj . . . . .  mq (for j + q). Hence, p -  i + j -  1 < mq < p -  i +j, which implies 
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that mq=p-i+j-1. Letting k=p-i+j-1,  we have 

~=(o .... , o , ~ )  | ""*,  k, . . . ,k) .  

and k=(p-i)+q-1). Thus, z is in S. Q.E.D. 

According to our results, it is natural to form the following conjecture. 

Conjecture. S equals the set P of the finite-dimensional irreducible representa- 
tions ~ of GL(p, r215  GL(q, ~) such that (9(z) contains non-zero unitary sub- 
representations. 

References 

1. Anderson, R.L., Fischer, J., Raczka, R.: Coupling problems for U(p, q) ladder representations. 
Proc. Roy. Soc., Series A, vol. 302, 491-500 (1968) 

2. Gelbart, S.: Harmonics on Stiefel manifolds and generalized Hankel transforms. B.A.M.S. 78, 
451-455 (1972) 

2a. Gelbart, S.: Holomorphic discrete series for the real symplectic group. Inventiones math. 19, 
49-58 (1973) 

3. Gindikin, S.: Invariant generalized functions on homogeneous domains. Functional analysis 
and its applications 9 (1), 56-58 (1975) 

4. Gross, K., Kunze, R.: Fourier Bessel transforms and holomorphic discrete series, Proceedings 
of the Maryland conference on Harmonic Analysis. Lecture Notes in Mathematics 266. Berlin- 
Heidelberg-New York: Springer 1977 

4a. Gross, K., Kunze, R.: Bessel functions and representation theory II. To appear in J. Funct. Anal. 
5. Harish-Chandra: Representations of Semi-simple Lie groups. IV. Am. J. Math. 77, 743-777 

(1955), V. Am. J. Math. 78, 1-41 (1956), VI. Am. J. Math. 78, 564-628 (1956) 
6. Jacobsen, H., Vergne, M.: Wave and Dirac operators and representations of the conformal 

group. To appear in J. Funct. Anal. 
7. Joseph, A.: The minimal orbit in a simple Lie algebra and its associated maximal Ideal. Annales 

Scientifiques de l'Ecole Normale Superieure 9, 1-30 (1976) 
8. Levine, D.A.: Systems of singular integral operators on spheres. Trans. Am. Math. Soc. 144, 

493-522 (1969) 
9. Mack, G.: All unitary Ray representations of the conformal group SU(2, 2) with positive energy. 

Preprint 
10. Rossi, H., Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple 

group. Acta Mathematica 136, 1-59 (1976) 
11. Segal, E.: Foundations of the theory of dynamical systems of infinitely many degrees of freedom. 

Mat. fys. Medd. Danske Vid. Selsk, 31 (12), 1-39 (1959) 
12. Shale, D.: Linear symmetrics of free boson fields. Trans. Am. Math. Soc. 103, 149-167 (1962) 
13. Sternberg, S., Wolf, J.: Hermitian Lie algebras. Preprint 
14. Strichartz, R.S.: The explicit Fourier decomposition of L2(SO(n)/SO(n-m)). Can. J. Math. 27, 

294-310 (1975) 
14a. Strichartz, R.S.: Bochner identities for Fourier transforms. Trans. A.M.S. 228, 307-327 (1977) 
15. Tuong-Ton-That: Lie group representations and harmonic polynomials of a matrix variable. 

Trans. Am. Math. Soc. 216, 1-46 (1976) 
16. Wallach, N.: Analytic continuation of the holomorphic discrete series II. To appear 
16a. Wallach, N.: On the unitarizability of Representations with Highest weights, non commutative 

Harmonic analysis. Lecture Notes, in Math. 466. Berlin-Heidelberg-New York: Springer 1975 
17. Weil, A.: Sur certains groupes d'operateurs unitaires. Acta Math. 111, 193-211 (1964) 
18. Duflo, M.: Representations unitaires irreductibles des groupes simples complexes de rank 2. 

Preprint 
19. Howe, R.: Remark on classical invariant theory. Preprint 
20. Saito, M.: Repr6sentations Unitaires des groupes symplectiques. Journ. Math. Soc. of Japan 

24, 232-251 (1972) 

Received February 15, 1977 


