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Introduction 

Let G be a Lie group and g its Lie algebra. We denote by V the underlying 
vector space of g. 

There is a canonical isomorphism between the ring Z(g) of the biinvariant 
differential operators on G and the ring I(g) of the constant coefficient operators 
on V which are invariant by the adjoint action of G. When g is semi-simple, this 
is the "Harish-Chandra isomorphism"; for a general Lie algebra, this was 
established by Duflo I-4]. 

We shall prove here, that when G is solvable the Duflo isomorphism extends 
to an isomorphism �9 of the algebra of "local" invariant hyperfunctions under 
the group convolution and the algebra of invariant hyperfunctions on V under 
additive convolution (the exact result will be stated below). This gives a partial 
answer to a conjecture of Rais 1-12]. 

The existence of such an isomorphism �9 is of importance for the harmonic 
analysis on G, and for the study of the solvability of biinvariant operators on G 
(see [7]). It reflects and explains the "orbit method" ([8, 9]), i.e. the cor- 
respondence between orbits of G in V*, the dual vector space of V, and unitary 
irreducible representations of G: let T be an irreducible representation of G, 
then the infinitesimal character of T is a character of the ring Z(fl). Let t~ be an 
orbit in V*, the map p~(P)=P(f) (f~ (9) is a character of the ring I(g) (I(g) being 
identified with the ring of invariant polynomials on V*). The principle of the 
orbit method is to assign to a (good) orbit tV a representation T~ of G (or g), 
whose infinitesimal character corresponds to p~ via the isomorphism ~. This is 
the technique used by M. Duflo to construct the ring isomorphism ~. 

Furthermore let t~ be (when defined) the distribution on V which is the 
Fourier transform of the canonical measure on the orbit 0, then t~ is clearly an 
invariant positive eigendistribution of every operator P in I (g) of eigenvalue p~(P). 
Kirillov conjectured that the global character of the representation T~ (when 

* Supported in part by N.S.F. Contract number MCS76-02762 



250 M. Kashiwara and M. Vergne 

defined) should be intimately connected with the "orbit distribution" ~ -  1 (to) ' as 
proven in numerous cases. It is an essential result of Duflo [4] that these "orbit 
distributions" are indeed eigenfunctions for every biinvariant operator P in 
Z(g); as in Rais [11], this implies the local solvability of P [4]. 

We will here derived the existence of �9 from a property of the Campbell- 
Hausdorff formula, that we conjecture and can prove in the solvable case. It is 
then a natural corollary of our conjecture, that biinvariant operators are locally 
solvable and that "orbit distributions" are eigendistributions for Z(g). Hence the 
correspondence between orbits and representations is already engraved in the 
structure of the multiplication law. 

Let us describe with some details our technique and results: We denote by gt 
the Lie algebra whose underlying vector space is V itself and in which the 
bracket [ * , ' I  is given by IX, Y],=t[X,  Y]. Then g, gives a deformation 
between g and the abelian Lie algebra, in which the fact is trivial. 

In the course of the proof we encounter the following problem: Let L be the 
free Lie algebra generated by two indeterminates x and y and L its completion. 
Since x + y - l o g  eye x belongs to [l'~, l'~], by Campbell-Hausdorff formula, we can 
write it in x+y-19geYeX=(1-e-m~)F+(e~ar-1)G for F and G in f,. F and G 
are not uniquely determined by this property. 

Conjecture. For any Lie algebra g of finite dimension, we can find F and G such 
that they satisfy 

a) x + y-logere~ =(1-e-~a~)F +(e ~dr- 1)G. 

b) F and G give g-valued convergent power series on (x, y) ~ g x ff 

c) tr ((ad x) (a~ F); g) + tr ((ad y) (~y G); g) 

/ adx ady adz 1; g) 
=�89 ~e~--~-Z-i-l-~e~aY_l e~aZ_l D 

Here z=log e~e y and O~F (resp. 8rG) is the End(g)-valued real analytic function 
defined by 

d (resp. g~a~--~ff--fG(x,y+ta)l,~o), g ~ a~'~ ~f  F (x + t a, y)[t= o 

and tr denotes the trace of an endomorphism of g. 

When g is nilpotent, this conjecture is easily verified because (ad x)(~xF), 
1- (adx/ (e  adx- 1)) etc. are nilpotent endomorphisms of g so that their traces 
vanish. However, we get the following fact. 

Proposition 0. I f  g is solvable, then Conjecture is true. 

Let K be a non-empty closed cone in g. Let •(K) (resp. ~(K)) be the vector 
space of the germs at the unit element e~ G (resp. the origon 0e g) of the 
functions (i.e. either distributions, or hyperfunctions or micro-functions) u(g) 
(resp. t~(x)) such that suppu c exp K (resp. supp ~ c K) infinitesimally (see w 2) and 
that u(ghg- 1)= ]det(Ad(g); g)l- 1 u(h) (resp. ~(Ad(g)x)= Idet(Ad(g); g)l- 1 ~(x)). 
We shall set j(x)= det ((1 -e-~dX)/ad x; g) for x ~ g sufficiently near the origin. We 
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define the isomorphism 4: J ( K ) ~ J ( K )  by (~u)(x)=j(x)l/2u(e ~) for u~ J(K).  If 
two closed cones K 1 and K 2 satisfy K 1 n ( - K 2 ) =  {0}, then we can define the 
product J (KI )  x J ( K 2 ) ~ J ( K  1 +K2) (resp. J(K1) x f ~ ( K 2 ) ~ ) ( K  1 +K2) ) by 
the convolution ,, i.e. 

(u*v)(g)=Su(h)v(h- lg)dh and ( f i ,g) (x)=Sf i (y)O(-y+x)dy .  
G g 

The exact statement which we shall prove is the following: 

Theorem. I f  Conjecture is true for the group G, then we have 

(4  u) �9 (4  v) = r  �9 v) 

for u~J(K1) and v~J(Kz). 

If we apply this theorem when v is supported at the origin, then we obtain 
the following corollary: 

Corollary 0. Suppose that Conjecture is true for G, then with any biinvariant 
differential operator P on G we can associate a constant coefficient differential 
operator P on ~ so that ~fic~(u)=~(Pu) holds for any ue J(g). 

In paragraph 4, we will prove directly this particular case of our theorem. In 
fact, applying the same technique, we can prove a more precise result, giving a 
partial answer to a conjecture of Dixmier. 

Let ~(P)=fl(D(jl/2)P) the Duflo isomorphism from I(g) to Z(g), where fl is 
the symmetrization map and D (jl/2) the "differential" operator (of infinite order) 
defined by jl/2, let us look at the operator v(P) as a biinvariant differential 
operator on G; we denote by (exp)*(v(P)) the differential operator on g with 
analytic coefficients, which is the inverse image of ?(P) by the exponential 
mapping. Let D be the ring of the germs at 0 of differential operators with 
analytic coefficients. We consider the left ideal .~ of D generated by the elements 
([A, x], ~x)+tr(adA; fl), A ~ ~ (here ([A, x], ~x) is the adjoint vector field given 

d 
by ~ ~(exp eA. x)l~= 0)- Every invariant distribution on g is annihilated by ~ .  

So Corollary 0 is implied by: 

Corollary 1. Suppose that Conjecture is true for G, then 

(exp)*(y(P))-j(x)- ~ Pj(x) �89 

Since Conjecture is solved in the solvable case the above theorem and its 
corollaries are true for a solvable group G. Recall that the result stated in 
CoroUary0 holds for g semi-simple as proved by Harish-Chandra [6]. Howe 
[16] says that he proved Theorem for a nilpotent group G and a restricted class 
of functions u, v. 

Acknowledgement. We wish to thank Weita Chang, Dixmier, Duflo, Rais, and acknowledge that their 
questions and their work have stimulated our work. 
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w 

For The Theory of Microfunctions, we Refer to [1, 10, 15]. Let G be a Lie group, 
g its Lie algebra and exp: g ~ G  the exponential map. Let M be a real analytic 
manifold on which G acts real analytically. A hyperfunction u(x) on M is called 
a relative invariant with respect to a character X of G if u(gx)= z(g)u (x) holds 
on G x M. Here u(gx) is the pull-back of u by the map r: G x M ~ M  defined 
by (g, x)v--~g x, and ~(g)u(x) is the product of a real analytic function x(g) on 
G x M and the pull-back of u by the projection from G x M onto M. More 
generally, let A be a subset of M, G A = { g e G ;  gA=A}.  A hyperfunction u(x) 
defined in a neighborhood U of A is called relative invariant locally at A if there 
is a neighborhood W of G a x A  such that r ( W ) c U  and that u(gx)=x(g)u(x) 
on I4,7. 

For  any Xeg,  we denote by D x the vector field defined by (Dxu)(x)= 
d 

~5~ (X) = ~-~ Z (exp t X)[, = o). 
d 

u (exp ( - t  X)x)lt = o, and by bX the derivative of Z \i.e. 

Lemma 1.1. I f  u is a relative invariant locally on A hyperfunction then (D x + fix (X))u 
= 0  in a neighborhood of A for any X e  g. 

Proof. We define the map q~: F, x M-- ,G x M by (t, x)~-~(exp(-tX),x). Then the 
pull-back of u(gx) is the pull-back (rq~)*u of u by the map roq~, and the pull- 
back of z(g)u(x) is x(e-'X)u(x). Since rot# has maximal rank, this is justified. 
Thus (to q~)*u=x(e-tX)u(x). If we differentiate the both-sides with respect to t, 
and restrict them at the variety t = 0  in F, x M, we obtain Dxu from the left hand 
side and -tSx(X)u from the right hand side. Q.E.D. 

w 

Let G be a Lie group, g its Lie algebra and exp: g ~ G  the exponential map. We 
denote by dg the left invariant Haar  measure and by dx  the Euclidean measure 
on g. After the normalization, dg and tlx are related under the exponential map 
by the formula: d(d')=j(x)dx.where j(x)=det((1-e-~aX)/adx;~) in a neigh- 
borhood of x = 0 ,  because the derivative of expx at x is given by ( 1 - e - ~ X ) / a d x  
when we identify T G  with g x G by the left translation. We define the character 
Xo(g) of G by Idet(Ad(g); g)l, we denote by dXo the corresponding character of g, 
i.e. d ~o(X) = tr(ad x; g). 

Let A a n d  B be subsets of a Cl-manifold M, x a point in M. Take a local 
coordinate system (x 1 . . . . .  xt) of M. The set of limits of the sequence an(yn-zn) 
where an>0, yneA, zneB and y,, z n converge to x when n~oo ,  is denoted by 
C~(A;B) regarded as a closed subset of the tangent space T~M of M at x. 
C~(A; {x}) is simply denoted by C~(A). If f is a differential map from M to a C 1 
manifold N, then we have (df)~(Cx(A;B))cCytx~(fA;fB). If Cx(A;B)r~ 
Ker df (x )c  {0}, then there is a neighborhood U of x such that 

(dr) x Cx(A; B ) = C/.tx~(f(A c~ U);f(B n U)). 
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If C~(A;B)= {0}, then x is an isolated point of .4 and/~. C~(A; B)=~f if and only 
if A n B;kx. 

Let K be a closed cone of g. We shall denote by J ( K )  (resp. J ( K ) )  the space 
of the germs of function u(g) (resp. fi(x)) on G (resp. on g) at e~G  (resp. 0eg) 
satisfying 

(2.1) C~(suppu)=Kcg=TeG (resp. C o ( s u p p t ~ ) = K c g = T o g  ) 

and 

(2.2) u is a relative invariant locally at e with respect to the character go(g)-1. 

Let K 1 and K z be two closed cones in g such that K l n ( - K z ) = { 0  }. If 
u e J ( K 1 )  and veJ(K2), then (suppu)n(suppv)  -1 is contained in {e} locally. 
Suppose that u and v are defined on a neighborhood U o of e. For  any open 
neighborhood U c U o of e, we can find neighborhoods W and V of e such that 
W c  U, W-  1 c U, {he W; hesupp u, h- 1 esupp v} c {e} and that the map (g, h)w-~g 
from {(g,h)eV• W;h- 1 gesuppv, hesuppu} to V is a proper map. Hence we can 
define (u �9 v)(g) by 

Su(h)v(h-lg)dh on geV. 
W 

This gives the bilinear homomorphism J ( K 1 )  x J ( K z ) ~ J ( K  1 +Kz) because 
Ce((supp u). (supp v))c K 1 + K z. In the same way, we can define the convolution 

(~ �9 0 (x )  = S ~(y) ~ ( - y + x )  ay 
g 

which gives the homomorphism J ( K 1 )  x 3 ( K 2 ) ~ ( K  1 +Kz). 
Note that if u belongs to J (g) ,  then we have Xo(g)u(g)=u(g). In fact, if we 

restrict the identity u(glgg~)=Zo(gO-lu(g) on the submanifold {(gt, g )eG 
x G; g~ =g-~},  then we obtain the above identity. Hence we have u(g) 
=Xo(g) x u(g) for any 2elE. We shall define the isomorphism 4:  J ( K ) ~ ) ( K )  by 
(~u)(x)=j(x)�89 The above remark shows us (~u)(x)=Xo(e~)aj(x)~u(e ~) for 
any 2. 

For  any t~(x) in J(g) ,  we have dXo(X)~(x)=O. In fact, by Lemma 1.1, we have 
([A,x],ax)fi(x)=-dXo(A)fi(x) for any Aeg. Here, for any g-valued real ana- 
lytic function E(x) on g, (E(x), a~) is the vector field defined by (E(x), O~)u(x) 

d 
=~-[u(x + tE(x))l,= o. Thus, we have the identity ([A, x], d~) 1J(x) = -dXo(A) ~(x) 

on (x ,A)~gxg.  If we restrict this on the submanifold A=x, we obtain 
dXo(X)fi(x)=O. These observations also show the following: 

Let us denote by Go the kernel of Xo and g0 its Lie algebra. Then, G O is a 
unimodular group. For  any u e J ( g ) ,  we can find an absolute invariant v on Go 
such that u= v 6(Xo). Similarly, for any f i ~ ( g ) ,  we can find an absolute invariant 

on go such that t~=O6(dZo). Thus we can reduce the study of ~r and ) ( g )  
into the case where the group is unimodular, although we will not employ this 
fact. 



254 M. Kashiwara and M. Vergne 

w 3. We Shall Prove Theorem 

Take  two closed cones K 1 and K 2 of  g such that K 1 : ' ~ ( -K2)={0  } and two 
functions u in •(K1) and v in J (K2) .  Set w(g)=~u(h)v (h - lg )dh ,  and t~=~u ,  
= ~ v ,  ~,= ~w. c 

In order  to prove Theorem we shall compute  ~. 

~,(z) =j (z)  �89 ~ u(h) v(h- 1 e ~) dh 
G 

=j(z)  �89 S u(e ~) v(e -~ e~)j(x) dx  
g 

=J(z) �89 S dx S d y u(e ~) v(er) j(x) tS(y - log e -  ~ e~). 
g g 

Lemma 3.1. 6(y - log e -  ~ e z) =j(y) j (z ) -  1 6(z - log e ~ er). 

Proof We have t S ( y - f ( z ) ) = [ J f l - 1 6 ( z - f - l ( y ) )  where J f  is the Jacobian of  f. 
Setting f ( z ) =  log e -x  e ~, we shall apply this. We have, for aEg 

f ( z + e a ) = l o g e - ~ e  ~+~ 

which equals l o g e - X e Z e x p ( e ( 1 - e - ~ ) / a d z )  a modulo  e2. As we can set y 
= log e -  ~ e z, this is equal to 

a d y  1 - e  -~d~ 
l o g e r e x p ( e ( 1 - e - ~ ) / a d z ) a  = y + e  l _ e _ ~ d  r a d ~ a  m o d u l o e  2. 

a d y  1 - e  -~dz 
Thus  we obtain J f = d e t l _ e _ ~ r  adz  ' which implies the desired 

result. Q.E.D. 

By this lemma, we have 

(3.1) ~(z) -- SS u(e~) v(ey)j(x)J(y)J(z) - �89 ~(z - log e x e ~) dx dy  

[J(x)j(y)\�89 . . . . . . . . . .  r" =IS ~] u ( x ) v t y : o t z - , o g e  e j d x d y .  

We want  to prove that  this integral equals 

- (a �9 ~ ) ( z ) =  ~fi(x) ~(y)  ~ ( z  - x  - y)  dx dy. 

Given a vector  space V and two functions fi and ~ on V, given a s t ructure # 
of  Lie algebra on V, we want  to prove for the Lie algebra g = (V, #) the equali ty:  

If  we consider the Lie algebra gt = (V, t~) i.e. [x, Y]t = t [x, y], the first member  of 
the equali ty becomes 

[j( tx)j( ty)\~ . . . . . . .  [z 1 tx t \ (3.2) ~o,(z)= I ~ ~ .] utx~vty~o ~ - t l o g e  er )  d x d y ,  
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a n d  this m u s t  be equal  to the s econd  m e m b e r  which  is the  value  o f  ~0 t for t = 0 .  
There fo re  it is e n o u g h  to s h o w  tha t  ~0 t does  no t  d e p e n d  o n  t, o r  equ iva len t ly  

~-~ ~o t = 0. Le t  us ca lcula te  this derivative.  

L e m m a 3 . 2 .  Let F(x,y) and G(x,y)" be two g-valued real analytic functions on 
(x, y)sf l  x g defined in a neighborhood of the origin. Suppose that F(O, 0 ) =  G(0, 0) 
=0 and that 

x + y - log e y e x = (1 - e-"dx) F(x, y) + (e ~ay- 1) G(x, y). 

Then, we have 

Here (A (x), t~x) is the derivation defined by 

((A (x), ~x ) u)(x) = d~ u (x + e A (x))l~ = o. 

Proof. Set Ft=t - lF( t x ,  ty) a n d  G,=t- IG( tx ,  ty). Then ,  the r ight  h a n d  side o f  
(3.3) is the value o f  

d 
t - 1 dee log exp (t x + e [t  x, Ft]) exp (t y + e [t y, Gt]) 

at e = 0. W e  shall  ca lcula te  

A =exp(tx + e[t x, Ft]) exp(t y + e[t y, Gt]) 

m o d u l o  e 2. W e  have  
1 - e  -"at~ 

exp (t x + e [ t  x, Ft] ) = e '~ exp e I t  x, F,] 
ad( tx)  

= e  t* expe (1 - - e -~d '* )F t  m o d u l o  e 2, 

a n d  similar ly exp(t  y + e [t  y, G,]) = exp e(e ~ty - 1) G, exp t y m o d u l o  e 2. Thus ,  we 
have  

A = gx  exp e((1 - e -  ~dtx) Ft + (e~dty _ 1) G,) e ty 

/ 1 t . , \  
= e ~ 1 7 6  exp e ~ y - t  log  e y e ) e ty 

= e  <'+0~ e .y e x p e  [ Y - t  log  e e Y) 

e t, + ~)~ e <, +,)r exp - e  (1 log  e 'x etY] m o d u l o  e 2. 
\ t  I 
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We have therefore 

log A = log e (t +"~x e(t +,~r _ ~_ log e t x etr 
t 

t log e (t + ox e 0 + or. 
= t + ~  

This implies Lemma 3.2. Q.E.D. 

This lemma shows in particular 

(3.4) 0---6 (z-~loget~etr)=(([x, Ft],Ox)+([y,G,],Or))3 (z-~loget~e tr) 
at 

Therefore, integrating by parts, we have the equality 

Pl:S \(j(tx)j(ty)~�89 O---fi ( z - l  , Ot (3.5) 

= - S  {(< [x, F~], dx) + <[Y, Gt], 0,) + divx [x, FJ 

(j(tx)j(ty)~ �89 ~(y)} 3 - t  +div , [y ,  GJ )~  ~ ] ~(x) (z llogetXetY) dxdy. 

Here div,, (resp. divy) signifies the divergent with respect to the variable x (resp. 
y), i.e. the function dirgE(x) is the sum of the vector field (E(x),Ox) and its 
formal adjoint. 

If a function q~(x) satisfies ~o(Ad(g)x)=)~(g)~o(x) with a character Z(g), then 
we have 

<[A,x],O~>q~=(fx)(A)rp(x) for Aefl. 

Here, 6 Z is the derivative of Z. Hence, if q~ is an absolute invariant, q~ and 
([A, x], 0~5 commute.  Since (j(x)j(y)/j(z)) �89 is an absolute invariant 

< Ix, FJ, 0,> + < [y, G,], Or> + dlvx Ix, Ft] + divr [y, Gt] 

commutes  with this function. Since a(x) is a relative invariant with respect to the 
character Idet(Ad(g); g)- 1[, we have 

<[A, x], 0,> ~(x) = - tr(ad A) ~(x). 

Thus, we obtain 

(3.6)  v l  = - I ( t r ( a d ( F ,  + G,), g) + div, Ix, Ft] 

+div,[y,G,])(j(tx)j(ty)/j(tz)) �89 ~(x)~(y) , (z-~ loget~ e '') dx dy. 

0 ( adx  
L e m m a 3 . 3 . - ~ l o g j ( t x ) = t r  \et~X_ 1 ~). 
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Proof. 

1 - e  -"at~ a d t x  ~ 1 - e  -"at~ 
dt  l~ ad(tx) = t r l - e - ' a ' x  at adtx 

[ adx .  
= t r  \ d - x _  1 ~)" 

By this lemma we have 

{ adx  ady  adz l j( tx)j( tY),=�89 \d,a ~ - ~ - -  d~=_l  
~t \ j(tz) / - 1  d ~ r - 1  

We obtain finally 

Ot q~t = - ~ di% [x, Ft] + div, [y, Gt] + tr ad(F t + G,) 

/ adx ady  adz 1) /  

{j(tx)j(ty)~ �89 1 
"\  j(tz) I u(x)v(Y)6(z-tl~ dxdy" 

In order to see that 8 q>t/a t vanishes, it is enough to show 

(3.7) di% Ix, F,] + div r [y, G,] + tr ad (F t + G,) 

/ adx ady  adz 1 \ =  0 
-�89 ~et~--~-~_l-~ e t ~ r _  1 e t a = -  1 

1 tx ty when z = - l o g  e e . Since the left hand side of this formula is homogeneous of 
t 

degree 1 when we assign degree - 1 to t and degree 1 to x and y, it is enough to 
show (3.7) when t = 1. 

For a g-valued function A(x), let us denote by 0xA the endomorphism of g 
d 

defined by g 9 a ~ - ~ -  A (x + t a)It = o. Then di% A (x) = tr t3x A (x). 

Since d~ Ix, A(x)] = (ad x)d~ A -  adA, the formula (3.7) is equivalent to 

1 adx  ady  adz ) 
(3.8) tr(adx)(d~F)+tr(ady)(drG)=�89 [e~--~fS-~_l q e.~Y_l e ~ _  1 1 

with z = log e ~ eL This completes the proof of Theorem. 

w 4. Biinvariant Differential Operators 

We consider the algebra I(g) of the G-invariant elements of S(g). We identify 
S(g) with the algebra of constant coefficient differential operators on g, hence 
I(g) is identified with the ring of constant coefficient differential operators on g 
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invariant by the action of G. We consider the universal enveloping algebra U(g) 
of g and its center Z(g). We identify U(g) with the algebra of the left invariant 
differential operators, hence Z(g) will be identified with the ring of biinvariant 
differential operators on G. 

We denote by ~ the Dirac function on G supported at the unit e, then u ,  
=t$ �9 u =u. On the other hand, we have P(u �9 v)=u �9 Pv for PeU(g).  This shows 
that P u = u , P &  We shall denote by the same letter 6 the Dirac function on g 
supported at the origin. Similarly if PeS(g), P u = u , P t $ = P 6 , u .  We shall 
denote by (exp)* (resp. (exp),) the pull-back of functions or differential operators 
on G to those on g (resp. the inverse of (exp)*), by the exponential map. 

We shall denote by fl the linear mapping from S(g) onto U(g) obtained by 
symmetrization. We have (fl(P)q~)(e)=(P(o)(O) with r~(x)=rp(e~), hence 
(fl (P) 3) (e ~) = j  ( - x) - I  (p ~5) (x). 

For a real analytic function f ( x )  on g defined on a neighborhood of the 
origin, and PeS(g), we define 

D(f)P~S(g)  by ( ( D ( f ) P ) f ) ( x ) = f ( - x ) P 6 ( x ) ,  

or  

((D ( f )  P) tp) (0) = P (x ~--~f (x) tp (x)) (0). 

We shall denote by 7 the map from I(g) onto Z(g) defined by P~-~fl(D(j�89 
Duflo [4] has proved that for any Lie algebra g, ~ is an isomorphism of the 

rings I(g) and Z(g). 
We have seen that for any PeI(g), 

g o (e~) (P t$) (x) = P 6 (x), 

and hence Zo(e ~) and P commute. In fact, 

Zo ( e~- r) (P 6) (x - y) = (P t$) (x - y) 

and this implies 

Zo (e~) (P 6) (x - y) = Zo (ey) (P 6) (x - y). 

Let us denote by g o = { A e g ; t r a d A = 0 } ,  this implies that PeS(go) (see also [3, 
13]). In particular, we havej(x) �89 (P6) x) = j ( -  x) �89 (P t$) ,x), asj(x) = (det e-  adx)j (--X). 
So we have ~(~(P)6)=P6.  If we take v=7(P)6  then we can get from Theorem 
the following proposition. 

Proposition 4.1. I f  Conjecture is true for g, then for every ~EJ(g)  and PeI (g)  

((exp)* 7(P)) ~ = (j(x)- �89 Pj(x) �89 ft. 

(In particular y is an isomorphism of  the ring I(g) and Z(g).) 

However, we can get a more precise result applying the same method as in 
the preceeding paragraphs. Let us denote by D the ring of the germs of the 
differential operators at the origin. 
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Proposition 4.2. Suppose that Conjecture is true for g, then for any PeI(g)  

j(x)�89 * y(P))j(x)- ~ -  P 

is contained in the left ideal of D generated by the (([A, x], Ox)+ tr adA)'s (A e g). 

(As we have (([A,x],3~)+tritdA)~(x)=O for every ~e~(g),  this implies 
Proposition 4.1.) 

Proof Remark that for PeS(g), exp*(fl(P)) is the differential operator defined by 

((exp)* fl (P) u) (x) -- Py (u (log e ~ e0)It= 0, 

where Py means that P operates on the y variable. Hence 

Q = j (x)�89 ((exp)* 7 (P)) J (x)- �89 

is the operator: 

(Q u)(x)= u(log e x e ) )  . 
~j(log g' eY) �89 - ly= o 

As before we introduce the Lie algebra gt and the corresponding operator Q,, 
then 

(Q,u)(x)=Py [j(tx)'j(tY)' u (~loge'~e") ) . 
~j(log gx e,r)• ""  ly= o 

Let us remark that if we define the left ideal .L~~ of D generated by the 
element ([x, A],, 3~)+tr(ad,  A; g~) then for t=k0 .o9r t =Aq. Hence we have to prove 

that: Q,-P~Zp. As Qo=P, it is sufficient to prove that ~ t  Q, eSa, where 

e ty 
= PY ~-t j(log e t~ e " )  �89 u 

Let F and G be as in Lemma 3.2, 

F(tx, ty) G(tx, ty) 
F t (x, y) = - - ,  at(x, y) = - - ,  

t t 

and 

[ a d x  ady  adz ~) 
d(x,y,t)=�89 ~ - t  et,ar_l et~Z_l 

- tr((ad x) 0 x F t + (ad y) 0y G,) 

log e tx e ty 
where z = . Then we prove: 

t 
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/ 1  ,~ t \ \ 0 (j(tx)�89189189 u ( t l o g  e e r ) )  (4.1) ~ -  

=d(x,y,t)j(tx)�89189 '~ e'O-�89 (~ l~ e'~' e t ,)  

" / 1  ,x  t \ + ~ ~,,(x,y,O((<Eei, z],a~)+tradei).u) [T loge  e r)  
i = l  

+ ~ ([y, ej],O,), fl,(x,y,t)u (~ logetX e " ) .  

Here, ei( i=l ,2 , . . . ,n  ) is a basis of  the Lie algebra g, ([ei ,  z], 0 , )  denotes  the 
adjoint  field corresponding to e i, and ei(x,y,t), fli(x,y,t) are analytic functions 
defined near the origin. 

To  prove (4.1), we compute  as in L e m m a  3.2 

1 
- -  log e tt+~)x e u+")~ modulo  ~2 
t+e 

1 - ~! ~  
= -  log e tx e ex etr e ere l 

t 
l o g  e t  y e t  x 

1 log e '~ e t '  e ~(*-*~a'(x +'- t )) = - -  

t 

1 
= - log e t x  e t r  e e(e - t a a v ( ( 1  _ e - t a d  x ) F  t + ( e t ~ a v _  1 ) G , ) )  

t 

We write 

e -  '~dr((1 -- e-'~d~) Ft + (etmy _ 1) G,) 

=(1 - e -  ~d~l~ Ft + (1 -e- t 'dO(G,-Ft) .  

So we have 

(if Ft(x, y) = ~fi(x,  y, t) el, and I(x) = x 

We  write 
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[ a d x  ady adz ~) 
=�89 ~ - ~  d~Y-1  e '*~'-I  

�9 j(tx)�89189 e t~ etY) -�89 u (~ log e 'x e ty) 

+j(tx)�89189 ~__~ (j I logdXetY\ -~r 
t~ T ] u ( l l~  

by Lemma 3.3. 
Now if (Gt - Ft) (x, y) = ~ 2 i(x, y, t) e i we have 

([y, G, - F,], 0y) = ~ ([y, ei], 0y) 2i(x, y, t) - tr ad y 0y (G, -F,). 
i = l  

As j is an absolute invariant, j commutes with the adjoint fields. 
Hence from the preceeding calculation, we obtain that the left hand side of 

(4.1) is equal to 

l adx ady adz adyOy(G_Ft)) 
(~tr~d~-7-~S]-l+e,~Y_l et~Z_l ~ ) - t r  

�9 j(tx)�89189 '~ ety)-�89 (~ log e 'x d y) 

+j(t x)~j(t y)~j(log e '~ dY) - ~(([z, F,], 0,). u) (~ log e 'x dY) 

+ ~ ([y,e,],0y). (fl,(x,y,t)u (~log(e'*e'Y))). 

But, we have 

/ adx ady adz 1)_tradyOy(Gt_F, ) 
�89 ~ - L - j - + e t ~ Y _ l  et~Z_l 

= d (x, y, t) + tr (ad y 0y F t + ad x O x/7,). 

Let us remark here that if E is in L, we have g.E(x,y)=E(gx, gy) for every 
gEG. The operator (dxE)adx+(OyE)ady is the linear operator 

d 
c~-~-d-~e E (x + e[x, c], y + e[y,c])l,=o 

d 
=~ee E(exp ec. x, expe c. Y)l~m o 

d 
=-~e expec" E(x, y)]~=o 

= - [ E ( x ,  y ) ,  c ]  

hence is the operator - adE.  
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We then obtain that the left side of (4.1) is equal to 

1 tx  d(x,y,t)j(tx)�89 'x e'')-�89 ( t l o g e  etr) 

-j(tx)�89189189 (1 log e'~ err) 

+ ~ <[Y, ei],Or> fli(x,y,t)u log(e'~e '') , 
i = l  

which is of the required form. 
Now if our conjecture is true for g, then we can find F and G such that 

d(x,y,t)=O. Now we remfirk that if PeI(g), 

Py<[y, e,], Or> = <[y,  e,], Or> Pr 
hence (Pr<[Y, ei], ay> ~k(y))lr: o = 0. Let Ri(t ) denote the differential operator 

(R,(t)q~)(x)='Py (e,(x, y,t) q) (~ log etX etr) ) ,r=o 

We obtain from (4.1) 

a 
Q, = ~ R i(t)(< [ei, x], ax> + tr ad e/), 

i = l  

O 
i.e. ~-[Q, eL~'. Q.E.D. 

Remark. The same proof shows the corresponding fact for biinvariant integral 
operators. 

Remark. We will see in the next section that our conjecture is true for G 
solvable; we can easily deduce from Proposition4.1, the fact that every biin- 
variant operator on G is locally solvable, which was already obtained by 
Rouvi6re [14] and Duflo-Rais[5] .  In fact P being invariant by the action of G 
we can find a fundamental solution for P, which is invariant by G. It follows that 
(exp)* ?(P) has a local fundamental solution. If G is exponential solvable, the 
maps F a n d  G can be constructed in the whole space g hence the Pro- 
positions4.1 and 4.2 hold on the whole space g. So exp*(j(P)) has a fundamental 
solution on the space G, (Weita Chang [2] has proven recently that every 
biinvariant operator on an simply connected solvable group is globally solv- 
able). We recall that M. Duflo has shown that every biinvariant differential 
operator on a Lie group G is locally solvable [4]. 

w 5. Proof of Proposition 0 

First we shall translate our conjecture into another form. Let us write for an 
AEL 

2 (x + y -  log eS e~)=( (x + y - l o g  eY e~) + A ) + (x + y -  log eY eX)- A. 
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i) 

and 

Hence  we will consider A e f~ such that  (x + y -  log eye ~) + A is divisible by x (i.e. 
in [ x , L ] )  and ( x + y - l o g e Y e ~ ) - A  is divisible by y (i.e. in [y,f , ] ) .  As x + y  
-logeYe~=-�89 mod [ [ L , L ] ,  l'~] and Ix, y] is divisible by x and y, we may  
take A in [[L,L],L]. We will write x + y - l o g e Y e X + A = [ x , P ] ,  A - ( x + y  

a d x  i ady  
- log ere ~) = [y, Q], choose F =�89 1 "- ~-z-~ P, G = - i  ~ Q and translate our  
conjecture in terms of  A. 

We shall first give two prel iminary lemmata.  

L e m m a  5.1. 
adz  e a d ~ - I  

0~ l ~  1 a d x  

adz  1 - e  - ~ y  
ii) Or l ~  - ~ z  ady  

Here z = log e ~ e y. 

Proof. We have, modu lo  e 2, 
e a d x -  1 e a d x -  1 

l o g e ~ + ' " ) e r = l o g e  ~ g~ "eXer=loge ~ ~a~ "e �9 

adz e adx- 1 
= Z q - 8  - - a .  

e ~ z - 1  a d x  

The  formula ii) is shown in the same way. Q.E.D. 

L e m m a  5.2. Let aeg, f (2 )  and g(2) two power series on 2. Then 

/ g(O) g(adx)  \ 
tr ( f ( a d x )  Ox(g(adx)a)) = tr [ f ( a d x )  ada ;  O| 

a d x  / \ 

Proof. By linearity, we may assume g(2)=2".  If n = 0 ,  the lemma is evident. 
Suppose n > 1. Then  we have 

n - 1  

ad (x + e c)" a - (ad x)" a = e ~ (ad x)"- 1 - k (ad c) (ad x) k a 
k = O  

n - 1  

= - e ~ (ad x)"- 1 - k ad  ((ad x) k a) e 
k ~ O  

Thus we have 
n - - I  

Ox(g(adx)a ) = - y '  (adx)"-  t -k  ad((adx)ka). 
k~O 

modulo  e 2. 

If k > 0, tr f ( a d x ) ( a d x ) " - x - k  ad((ad x) k a) vanishes. In fact, if we set b = (adx) k- l a 
and q~(2)=2n-1-k f(2) ,  then 

tr cp (ad x) ad ((ad x) b) = trtp (ad x) (ad x ad b - ad b a d  x) = 0. 

Therefore,  we obtain 

t r f ( a d x )  O~g(adx)a = - tr f(adx)(adx)"-  l (ada).  Q.E.D. 
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Proposition 5.3. Conjecture is implied from the following: For any Lie algebra g, 
we can find A in [~ , ]L] ,  i~] satisfying the conditions i), ii) and iii): 

i) There is P in L such that A + x + y - l o g e Y e ~ = [ x , P ]  and that P gives a 
convergent power series on (x, y) e 0 x g. 

ii) There is Q in L such that A - ( x  + y-logere~)=[y,Q] and that Q gives a 
convergent power series on (x, y) ~ g x g. 

adx ady [ adz - l + � 8 9  
iii) tr 1 - e  - ~  OxA- t r  e~--~yL~_ 1 ayA = t r  ~e,a,_ 1 , 

where z = log e x e y. 

adx 
Proof. We have x+y-logeYeX=�89 P] -�89 Q]. Let F = � 8 9  1 - e  -~dx P and G =  

ady  
- ~ e  "ay-  1 Q" Then we have 

x + y - l o g  ere ~ =(1 - e-~dx) F +(e "dy- 1) G. 

We have Ix, P] '=2(1--e-~d~)F.  Therefore, by Lemma 5.2, we have 

adx adx 0 - ( 1  - e  -~x)  
tr i~e_,ax  O~[x, P] = 2 t r  1 - e  - ~  adx adF+2tr(adx)OxF 

= 2 tr (adx) O~F- 2 tr adF.  

Similarly, we have - tr" e ~adyy------i c3y[y,Q]=2tr(ady)OyG-2tradG. Set 

=logeYe ~, we have, by Lemma 5.1 

ad~ 1 - e  - ~  
1 - e  -aa~ adx  bOxA" O~ Ix, P]  = O~ (x + y - log e y e ~ + A) = 1 

Hence, we obtain 

adx adx  ( adx 
tr 1 -- ~-Z'~d~ 0~ IX, P ]  = tr 1 -  e-~X OxA + tr ~1 - e -  ~dx 

adx  {. adx 
= t r  1 _--~-~a~ O~A + t r  1 - e  -~a~ 

ad~ 
1 - e  -~di) 

adz "~ 
1 --'b-a-" ~ l " 

In th~ same way, we have 

ady  ady  r [ a d y  
-tr~--gT"---7Oy[Y,Q]=-tre~--~;Z~_lOyA+t e Y _ l  \ e ~ y -  1 ) 

e ~ - 1  " 

Thus, we obtained 

tr (ad x) (Ox F) + tr (ad y) (Oy G) 

adx  
= t r ( a d F ) + t r ( a d G ) + � 8 9  1 - e  -~ax OxA 

+�89 [ adx  ady  adz 
~l_e-~t~-t emY_l em~_l 

ady  cOyA) 
e ~'ly - 1 
adz '~ 

1 ---~'~ ! 
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[ adx ady adz l + � 8 9  
= t r ( a d F ) + t r ( a d G ) + � 8 9  ~l----~'ax § 1 - e  -'nz 

Since 2/(1 - e- 4) = 2/(e ~ _ 1) + 2 and tr adz = tr (adx + ady), this equals 

I adx ady  adz 1) 
tr(adF)+tr(adG)+�88189 [e~--~-L~_l-~ e,nY_l e,~Z_l _" 

Hence, it is enough to show that 

(5.1) tr (ad F) + tr (ad G) = �88 tr (ad y - ad x). 

However, adding a constant multiple of x (resp. y) to P (resp. Q), we may assume 
that P (resp. Q) is equal to ~y (resp. fix) modulo [L,L] .  However x + y  
- log e y e x - - �89 Ix, y] modulo [[1"., l'~], l'~] and hence P = �89 (resp. Q = �89 Thus, 
we have F=�88 (resp. G = - � 8 8  modulo [i'~,l'~]. Since t r a d [ L , L ] = 0 ,  (5.1) is 
satisfied. Q.E.D. 

Let A satisfy i), ii), iii), of the Proposition 4.3. We may remark that A'(x, y) 
=�88 y)-A(y,  x ) - A ( - x , - y ) + A ( - y , - x ) )  satisfies also 1), 2), and 3). This 
follows from the following observations: 

a) if m(x, y)= x + y - log  eY e ", then ra(x, y)= - m ( -  y, - x); 

re(x, y ) -  re(y, x) = log e~e y -  log eye x 

= (e ~ x -  1) log eye x 

= (1 - e "dy) log e~e y 

hence is divisible by x and y. 

[ adz a d z \  
b) if t(x,y)=tr ~e~-;~- 1 1 + - ~ - )  then t (x ,y)=t(y,x)=t(-x ,  -y). 

c) for any E s [1~, •], 

a d x  0 - ady  adx - E ady  A 
tr 1 - e - - - - - 7 -  ~/~ - tr ~ OyE = tr ~ O~ - tr 1 ---e --z-~i oy~. 

In fact the difference is 

tr (ad x O~ E + ad y Oy E) = tr (O~E ad x + 0y E ad y) 

= - tr adE(x, y) (see 4.2) 

= 0 a s  E ~ [ L ,  L ] .  

We will now construct A in [[[',, El, f,] such that 

A(x,y)= -A(y ,x)= - A ( - x ,  -y )  

and i) x + y - l o g  ere ~ +A(x, y)=  [x, P] and P gives a convergent power series on 
(x, y) E g • g. ((ii) follows then). If g is solvable we will be able to prove that A 
satisfies also the condition iii). 
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We consider now the condition i): 

x + y -  log eye ~ + A (x, y) = [x, P(x, y)]. 

Then for every t, we will have 

tx  + t y -  log e'Y e t~ + A (tx, ty) = t Ix, P(tx, ty)]. 

t ~x O Hence - f f ( tx  + t y - l o g e Y e  )+-~  A(tx,  t y ) e [x ,L]  and ~ A(tx, ty) satisfies the 

same antisymmetry relation as A. 
Let 0 be the vector field (x, ~ )  + (y, 0y) (or the derivation of i~ defined by 

0 ] L , = n i d L ,  where L. is the space of elements of L of degree n) then 

t ~ tB ( t x ,  ty)l,= ~ =OB, for B e L .  We compute 

adz adz  
O ( x + y - l ~  1 " y 1 - e  -~d~" x 

with 3 = log eye ~ and we will write O(x + y -  log ere x) as an antisymmetric element 
mod [x, L]. 

For any real analytic function g(2), we have g(adz)=e~"g(adz3e -~d', in 
particular g(adZ), x - g ( a d z ) ,  x modulo Ix, L] and 

g ( a d z ) - y - g ( a d Z ) e - ~ X y - g ( a d Z ) e - ~ d ~ . y  modulo [x,L] .  

Hence we write modulo Ix, L] 

adZ ~ adz e_~a~.y 
O(x+y-logeYe~)= 1 1 - - - ~ ]  " x + y -  1 - e  -~a~ 

2 
= f ( a d Z ) . x + f ( a d z ) . y ,  where f ( 2 ) = ( 1  1_~_~)  

- f ( a d ~ ,  x - f  (adz). y + 2f(adz) .  y. 

We write, as f(O)=O, 

f" "z" f (adz)  (e,a z 
taa ) �9 y = e~--~-S-i-1 - 1 ) y  

- f ( a d z )  t e~  
- e~---~-L~_ 1 , - 1 ) y ,  

/ f (adZ)  f (adz)  
therefore f (adz). y = - ~e~--~f-Z-]_ 1 - ~ - ~  ~ ) . y. 

As / f (adZ) f ( a d z ) )  
k e ~ _ t  ~ - ~ Z ~  . x = 0  we obtain that 

O(x + y - log e y e ~) = f ( a d  z). x - f ( a d  z). y + 2 / f ( a d  
\ e  "j~ - 1 

f (adz)  ~. (x + y). 
e ~a ' -  1 / 
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Let us denote by a(x, y) the second member of this equality. We have obviously 
0~(x, y)= -~(y, x), hence if we define fl(x, y)=5(ct(x, y ) + a ( - y ,  -x)), fl will satisfy 
the relation f l ( x , y ) = - f l ( y , x ) = - f l ( - x , - y )  and O(x+y-logeYeX)-fl(x,y) 

rood [x,f.]. We remark that the function h(2)= 1 1_~_ ~ ~ verifies h(;O 
1 1 

= - h ( - ; O -  1 as ~ = e - r 2 ~ _  1 + 1, hence 

[f(adz') f(adz) ] 
fl(x, y)=2 ke~a ~ _ 1 -  e ~a'- 11" (x + y)+5(f(adz')+ f ( - a d z ) ) ,  x 

-5 ( f (adz)+f ( -adz ' ) ) "  y. 

We can therefore define A(x, y) by the differential equation: 

adz ] 1 (1 ads ] 1 
(5.2) OA=2 (1 l_--~--~d~] ~ ( x + y ) - - 2  l_-~,a~ ] e~a~_l 

[ adz _ l ) . x + 5 (  i ads 
+5 \ e ~  L i _e_,a~ 

_ 5 (  1 - e  -~'adz 1 ) .y ,  

(x + y) 

/ad~" 1) 
1) . x -  5 ~e~a~_ 1 .y 

with the initial condition A(0,0)=0 (3=logere x, z=loge~eY), As the second 
member is a convergent power series at the origin, so is A(x, y). 

The preceding calculation implies now I) and 2) of the: 

Lemma 5.4. 
1) A ( x , y ) = - A ( y , x ) = - A ( - x , - y ) ,  
2) x+y- logeYe~+Ar  
3) A e[L, [L, s  

For 3) we remark that A e [L, s and the properties A (x, y) = - A ( -  x, - y) 
implies that A ~ [s [s L]]. The temma is proven. Q.E.D. 

Let q be a power series of the two non commutative variables x and y, i.e. q 
is in the completion of the tensor algebra ~'(x,y) of the vector space Cx+q~y. 
We denote by c(q) the image of q under the map ~(x, y)~g(x,  y)= C[[x, y]], i.e. 
c(q) is a power series in the commutative variables x and y. 

Lemma 5.5. U g is solvable, tr(q(adx, ady)) depends only on c(q). 

Proof. There is a basis of gc where the operators adx, ady are lower triangular, 
then ad [x, y] = adx a d y - a d y  adx have zeros on the diagonal, and the lemma 
follows. 

Let us write A =p(adx, ady). Ix, y l, where p is a convergent power series in 
the non commutative variables x and y. 

Lemma 5.6. Let g be solvable, then 

adx ady 
tr i - e  ~ ' ~  ~xA - t r  e~---~UL~-10yA 
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= _ t r ( ( e , a ~ _ l ) /  adx ] [  ady ~p(adx, ady)) 
~e "a~ - 1 ] ~e ~r _ 1 ] 

Proof. Let us consider the endomorphism 

d 
g~c~---,-d-~ep(adx+~adc, ady). I-x, Y]I~= o ; 

this is a sum of terms of the form 

pl (adx, ady) adcp2(adx, ady). Ix, y] 

= -p l ( adx ,  ady) ad(p2(adx, ady). Ix, y]). c. 

adx 
The trace of the endomorphism 1 - e- ~ ~ pl (ad x, ad y) ad (p2 (ad x, ad y). Ix, y]) 

vanishes by the preceding lemma. So the only term appearing in 
adx 

tr 1 _e_~---- ~ dxA will come from the trace of the endomorphism 

d adx 
p(adx, ad y)[x + ec, y]l~=o. c~-'de 1 - e  -~ax 

We obtain that the left side of the equality is: 

~[1 ad x ad y 
ady + e~-~2-i-_ 1 adx)  p(adx, ady) tr _e-,ax 

[ adx ] [ ady ](e~Z _ l )p (adx ,ady) .  
= - tr ~e~X _ 1 ] \e ~y - 1 ] 

If we restrict our attention when g is solvable, we have to prove: 

[ adz - 1 + � 8 9  [ adx ady (e ~ -  1)p(adx, ady)) = t r  \e~,tz_ 1 - t r  (e ~ 1 e ~ar- 1 

Hence, considering the commutative ring ~ [[x, y]] we need only to prove: 

( x+y x+y ~ 1 e~-I  eY-1 
e(p)(x,y)= 1 2 e~+--77-~-1f e~+Y-1 x y 

We denote by q(x, y) the right hand side. 
Let us consider the homomorphism h: [L, L]--. IL, L]/[[L, L], [L, L]] and 

let us write for m e I t ,  L], m = q~(adx, ady). [x, y] then clearly h(m) depends only 
on r Therefore, for f(x, y)er we shall write f (adx,  ady)[x, y] for 
the element go(adx, ady)[x, y] modulo IlL, L], I t ,  L]] with f=c(q~). 

Remark 5.7. If f(x,y)eff~[[x,y]] is such that f (adx,  ady). Ix, 3,] =0  modulo 
IlL, L], [L, L]], then f(x, y)=0. In fact if ~(adx, ady). Ix, y] e [IL, L], [L, L]], 
with f = c ( ~ )  then tr(dxq~(adx, ady). Ix, y]; g)=0 for any solvable Lie algebra g. 
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On the other hand the same calculation as in Lemma 5.6 shows that 

tr (dx(tP (ad x, ad y). Ix, y]); 0) = - tr (tp (ad x, ad y) ad y; 0)- 

Considering the 2 dimension Lie algebra g with basis H, A and relation [H, A] 
=A, we have for x--xlH-bx2A , y.=ylH+Y2A, 

tr (q~(ad x, ady) ad y; g) =f(x 1 , Yl)Yl, 

hence f ( x  1, Yl)Yl =0, and so is f. 
Proposition 0 will result from the following lemma. 

Lemma 5.8. Let 

ct= (1 e~d~_l ) a d ~  a-~l .(x+y--z')+�89 

then 

1) h(~)=q(adx, ady). Ix, y], 
2) h(~) =h(A). 

Proof. 1) We have as (x + y -  ~) E [f,, ~], 

( adz ) 1  .(x+y-z')+�89 
ct= 1 e~dZ_l 

adz 1 
(i e~dZ_ l )~z  (X+y--z)--�89 

( adz ) 1  (z-~)-�89 
=- 1 e~d~_ 1 

and 1) will result from the following formula: 

adz e rex-1 e my-1 
(5.3) (Z--~)=e~dZ_l adx ad-----~ "Ix'y] 

Proof of (5.3). Let 

q~l(x, y)=(e~-e-Y) -1 (e~xl  

q~2(x, y)=(e y _ e-~)- 1 (1 -e-~x 

1-e-y) 
Y 

e y -  1_ ) 

Y 

modulo [lL, l'~], [l~, f,]]. 

adz \ 1 
J e ~az- 1 

modulo [[L, L], l-L, L]] 

then tpl and ~2 are analytic functions at the origin. We have 

a) x+y-~. =(pl(adx, ady). Ix, y], 
b) (x + y -  z) = tP2(adx, ady). Ix, y] mod [[1~, 1"~], [L, l'.]]. 

For a) we consider 

e~d~--e-'dy)(x + y-- ~)=(e~X--e-'dY)(x + y) 
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(as (e'aX--e-~dY)(z')=e-~Y(e 'd~- 1). ~=0) so 

( e~X- -e -~Y) (x+y- -~ )=(e~- -  1)+(1 --e-~dY) �9 (x+y)  

[e "t~- I 1--e-~dr~ 
= ~ - a d x  ady / ' [ x 'Y]  

and we obtain the equality a) by Remark 5.7. Now 

z -  $-(~01 -~o2)(adx, ady). Ix, y] 
but 

q~l=(eZ_l ) - l (eZxeY  er -1  t i (e~xl y /' r  - - 

w i t h  z = x + y,  and 

~ol_tp2=(eZ_ 1)- 1 ((e~-- 1)(ey-1) + (e~- 1)(eY-1) / 
x 7 / 

=(eZ .1)_~ z___ ( e~- 1)(e '-  1) 
xy  

and this proves Formula (5.3). 
Let us prove 2) in Lemma 5.8. We let 

(1 ad~ .~ 1 t ~ ~(x, y)= e ~d~- 1 ] ~ ( x+y-z" )+~z ,  

then ~(x, y)= ((x, y)-( (y ,  x). As x + y - s  [l'~, f~], we have 

((tx, ty) = (1 

-(1 
tad5 '~ 

d ~ -  1 ] t ~ z  (tx + t y - ~ ( t x ,  ty))+�89163 ty) 

tads ] 1 ( x + y - ~ s  ty))+�89163 ty) 
1! 

modulo [[f~, t ] ,  [i~i L]]. 

Here ~ still denotes log ere ~ and $(tx, ty)=log d r d  x. We have 

tz 1 z - 1 )  
Ot ( ( 1 - d ' - l ) ~ ) , . l = e ~ - I  ( 1 - e  -z " 

M. Kashiwara and M. Vergne 

e z _ e x 
y I '  

So 

,)1 
e~_i Z 1.) 1 - - "  a-~ (~-0~)+�89 

- e  - ~  e ~ -  1 

adZ, 1 . 0:~+�89 
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as 

( 1 - e  - ' ~  1 e~ ~_------~.5=�89 1 e ~ -  1 a-~" ~" 

Recalling that 

ad ~ ad ~ ad 
O Z = e ~ -  i " Y4 1 - e  -~a~ " X=e*a~- I (x + y)+adS, x, 

we obtain: 

[ ad~, 1) 1 (x+y)+ [ ad~ 
O((x,Y)=-~-l_--~,,t~ e~,t~_ 1 �9 ~,e~a~_ 1 1) e ~ "  (x+Y) 

ads ads 
[ ad~ -1  .X4�89 .y-~�89 + \e ~ -  1 1 

ad~ [ ad~ 1 .(x+y) e ~ _ l . ( x + y )  = 2  [ l _ e _ ~ - I  e.a~_------- ~ 

ads ad~ ad~ 1 

+e~--~-S~_l X - X q  ~ e ~ _ l  .y4 �89 l _ e _ ~  m .  X 

ads t ads [ ads 1 (x+y)_~�89 . x _ X _ ~ e ~ _  1 - 2 1 1 _ e _ m ~ - i  emi_ 1 y. 

After antisymmetrization, we obtain 

( ad~ ] 1 �9 (x + y) adz '~ 1 . (x+y) -2  1 _--~-~d~] e,~ Oct(x, y ) -  2 1 1 _--~,l~ ] e~_-----~ 1 --1 

(�89 adz ad~ ) (�89 ad~, adz ) 
+ e ~ _  1 1- �89 ~ 1 . x -  e~d~_l + ~ l _ e _ m  ~ 1 .y 

- OA. c.q.f.d. 
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