

Topology Vol. 35, No. 1, pp. 243-266, 1996 Copyright © 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved 0040-9383/96 \$15.00 + 0.00

0040-9393(95)00007-0

A NOTE ON THE JEFFREY-KIRWAN-WITTEN LOCALISATION FORMULA

MICHÈLE VERGNE

(Received 27 June 1994)

0. INTRODUCTION

LET *M* be a compact symplectic manifold provided with a Hamiltonian action of a compact Lie group *G* with Lie algebra g. We note by (M, σ, μ) such a data where σ is the symplectic form of *M* and $\mu: M \to g^*$ is the moment map. Let us assume that the action of *G* on $\mu^{-1}(0)$ is free. We can then consider the symplectic manifold $M_{red} = G \setminus \mu^{-1}(0)$. It is a symplectic manifold, called the Marsden-Weinstein reduction of *M*, with symplectic form σ_{red} . It is important to be able to compute the integral $\int_{M_{red}} v_{red}$ of a de Rham cohomology class v_{red} on M_{red} . By a theorem of Kirwan [8], any cohomology class v_{red} of M_{red} is obtained from an equivariant cohomology class v on *M* by restriction and reduction. In [12], Witten proposed a formula relating the integral over M_{red} of v_{red} and an integral over $M \times g$ of an equivariant cohomology class given in terms of v and the equivariant symplectic form. Witten's formula has been proven by Kalkman [7], Wu [13] in the case of circle actions and by Jeffrey and Kirwan [6] in the general case. As the localisation formula [1] is an efficient tool to compute integrals over *M* of equivariant cohomology classes, the formula of Witten can be used to compute $H^*(M_{red})$ in some cases [7, 6].

Let us explain Witten's statement. Let α be a *G*-equivariant differential form on *M*, that is, α is an equivariant map from g to the space $\mathscr{A}(M)$ of differential forms on *M*. Assume that for $X \in g$, $\alpha(X) = e^{i\sigma_{\mathfrak{a}}(X)}\beta(X)$ where β is a closed *G*-equivariant form on *M* depending polynomially on the variable $X \in g$ and $\sigma_{\mathfrak{g}}(X) = \mu(X) + \sigma$ is the value at $X \in g$ of the equivariant symplectic form of *M*. Let $\alpha_{red} = e^{i\sigma_{red}}\beta_{red}$ be the de Rham cohomology class of M_{red} determined by α . We denote by $\int_M \alpha$ the C^{∞} -function on g such that its value at $X \in g$ is the integral of $\alpha(X)$ over *M*:

$$\left(\int_M \alpha\right)(X) = \int_M \alpha(X).$$

Consider the Fourier transform $\mathscr{F}(\int_M \alpha)$ of $\int_M \alpha$. This is a tempered distribution on g^* . Let $d\xi$ be a Euclidean measure on g^* . Then Witten asserted the following: near 0, the generalised density $\mathscr{F}(\int_M \alpha)$ is a polynomial density $P(\xi) d\xi$ and

$$P(0) = (2i\pi)^{\dim G} \operatorname{vol}(G) \int_{M_{\operatorname{red}}} \alpha_{\operatorname{red}}.$$
 (1)

In this formula dX is the Euclidean measure on g dual to $d\xi$, vol(G) is the volume of G for the Haar measure on G compatible with dX. Moreover, $\mathscr{F}(\int_M \alpha)(\xi)$ near 0 depends only on the equivariant cohomology class of the restriction of α on $\mu^{-1}(0)$ and is described explicitly. In other words, the Fourier transform is local at 0 (or near any regular value of the moment map). In this note, we start by giving a short proof of the formula for $P(\xi)$ following closely the Jeffrey-Kirwan proof [6] of Witten's formula. Our main observation is the following. Consider the equivariant cohomology complex with C^{∞} coefficients $(\mathscr{A}_{G}^{\infty}(\mathfrak{g}, M), d_{\mathfrak{g}})$. Denote by $\mathscr{A}_{G}^{\mathfrak{pol}}(\mathfrak{g}, M)$ the subspace of G-equivariant differential forms depending polynomially on $X \in \mathfrak{g}$. Consider a G-equivariant differential form $\alpha \in \mathscr{A}_{G}^{\infty}(\mathfrak{g}, M)$ such that for $X \in \mathfrak{g}$, $\alpha(X) = e^{i(\mu, X)}\gamma(X)$ where γ is a G-equivariant form on M depending polynomially on the variable $X \in \mathfrak{g}$. The subspace

$$\mathscr{A}_{G}^{\mu}(\mathfrak{g},M) = \{\alpha(X) = \mathrm{e}^{\mathrm{i}(\mu,X)}\gamma(X); \, \gamma \in \mathscr{A}_{G}^{\mathrm{pol}}(\mathfrak{g},M)\}$$

of such forms is a subcomplex of $(\mathscr{A}_{G}^{\infty}(\mathfrak{g}, M), d_{\mathfrak{g}})$. Let $\mathscr{H}_{G}^{\mu}(\mathfrak{g}, M)$ be the corresponding cohomology space. Let $\alpha \in \mathscr{A}_{G}^{\mu}(\mathfrak{g}, M)$ and let $\mathscr{F}(\mathfrak{f}_{M}\alpha)$ be the Fourier transform of $\mathfrak{f}_{M}\alpha$. Then the map $A = \mathscr{F}_{\mathfrak{f}_{M}}: \mathscr{A}_{G}^{\mu}(\mathfrak{g}, M) \to \mathscr{M}^{-\infty}(\mathfrak{g}^{*})^{G}$ defines a map from the equivariant cohomology space $\mathscr{H}_{G}^{\mu}(\mathfrak{g}, M)$ to the space of G-invariant distributions on \mathfrak{g}^{*} . We remark that the map A is local in cohomology: if U is a G-invariant open subset contained in the set of regular values of μ , then A defines a map from $\mathscr{H}_{G}^{\mu}(\mathfrak{g}, \mu^{-1}(U))$ to the space of G-invariant C^{∞} -densities on U. It is then easy to describe the map A using local coordinates on $\mu^{-1}(U)$.

The Jeffrey-Kirwan formula implies Witten's asymptotic estimates, when ε tends to 0 of

$$Z(\varepsilon) = \int_{\mathcal{M}} \int_{\mathfrak{g}} \alpha(X) \phi_{\varepsilon}(X) \, dX$$

for $\phi_{\varepsilon}(X) = e^{-\varepsilon \|X\|^2/2}$ a Gaussian function on g and α a closed element of $\mathscr{A}_{G}^{\mu}(g, M)$.

For applications to multiplicities formula, we need more generally to give a formula for $\int_M \int_g \alpha(X) \phi(X) dX$ for any C^{∞} -function ϕ (with adequate decay properties) on g and any G-equivariant closed form α on M with C^{∞} -coefficients. Thus in the second part of this article (which is independent of the first part) we study more systematically the C^{∞} -function $(\int_M \alpha)$ considered as a generalised function on g.

Let M_0 be an open tubular neighbourhood of $\mu^{-1}(0)$ in M. Then G acts freely on M_0 . We show that the partition $M = M_0 \cup (M - M_0)$ leads to a decomposition of the C^{∞} -function $\int_M \alpha$ as a sum of two generalised functions Θ_0 and Θ_{out} on g. These two generalised functions are obtained by a limit formula as in Witten: let us consider the G-invariant function $\frac{1}{2} \|\mu\|^2$ and its Hamiltonian vector field H. Let us choose a G-invariant metric (\cdot, \cdot) on M and consider the G-invariant 1-form λ^M on M given by

$$\lambda^{M}(\cdot)=(H,\cdot).$$

For any $t \in \mathbb{R}$ and $X \in \mathfrak{g}$, let

$$\Theta(M,t)(X) = \int_M e^{-it\,d_X\,\lambda^M}\,\alpha(X)$$

where $d_x = d - \iota(X_M)$ is the equivariant differential. As α is a closed form, $\Theta(M, t)(X)$ is independent of t. Let us break the integral formula for $\Theta(M, t)$ in two parts

$$\Theta(M_0,t)(X) = \int_{M_0} e^{-it \, d_X \, \lambda^M} \, \alpha(X) \tag{2}$$

and

$$\Theta(M-M_0,t)(X) = \int_{M-M_0} e^{-it\,d_X\lambda^M}\,\alpha(X). \tag{3}$$

We prove the following theorem (Theorem 19).

THEOREM 1. Let α be a closed G-equivariant form on M. The limits Θ_0 and Θ_{out} when $t \to \infty$ of $\Theta(M_0, t)$ and $\Theta(M - M_0, t)$ exist in the space of generalised functions on g. We have

$$\int_{M} \alpha = \Theta_0 + \Theta_{\text{out}}$$

The generalised function Θ_0 is of support 0 and we describe it explicitly. Let $W: C^{\infty}(\mathfrak{g})^G \to H^*(M_{red})$ be the Chern-Weil homomorphism associated to the principal fibration $\mu^{-1}(0) \to M_{red}$. If α_{red} is the form on M_{red} obtained from α and if ϕ is a G-invariant test function on \mathfrak{g} , then

$$\int_{\mathfrak{g}} \Theta_0(X)\phi(X)\,dX = (2\mathrm{i}\pi)^{\dim G}\,\mathrm{vol}(G)\int_{M_{\mathrm{red}}}\alpha_{\mathrm{red}}\,W(\phi).$$

Let us stress that this description of Θ_0 follows easily from the determination in [9] of the equivariant cohomology with generalised coefficients of a space with free G-action. However, we will give here a self-contained proof. This formula for Θ_0 implies, for example, the Jeffrey-Kirwan formula for $\mathscr{F}(\int_M \alpha)$ when $\alpha \in \mathscr{H}^{\mu}_G(\mathfrak{g}, M)$, giving a second proof of the Jeffrey-Kirwan-Witten formula.

We give also an integral formula for the generalised function Θ_{out} as an integral over $M - M_0$ with a boundary term added. In short $\Theta_{out}(X)$ is the integral of an equivariant cohomology class over the noncompact manifold $M - M_0$ with a cylindrical end attached to it. It would be interesting to give a more explicit description of Θ_{out} . Such a description is suggested by Witten as an integral over the critical set of the function $\|\mu\|^2$. An explicit description of this kind is given in case of the integrals $Z(\varepsilon)$ considered by Witten when furthermore G is a circle S^1 acting on M with isolated fixed points in [12].

For some of our purposes, this rough determination of Θ_{out} will be sufficient: we present in [11] an application of the decomposition of the function $\int_M \alpha$ as a sum of two generalised functions to a proof of the Guillemin-Sternberg conjecture [4] on multiplicities when G is a torus.

1. JEFFREY-KIRWAN LOCALISATION FORMULA

1.1. Local Fourier transforms

Let G be a Lie group acting on a manifold M. Let g be the Lie algebra of G and g^* the dual vector space.

In this article the letter X denotes either a point $X \in g$ or the map $X \mapsto X$ from a subset of g to g. The similar ambiguity is allowed for the letter ξ which denotes either a point of g^* or, more often, the map $\xi \mapsto \xi$ from a subset of g^* to g^* . In particular, (ξ, X) is either a scalar (the value at $X \in g$ of the linear form $\xi \in g^*$), or a function on g^* depending linearly on $X \in g$, or, more often, a map from g to the space of functions on g^* .

Let $n = \dim g$. Let E^1, E^2, \ldots, E^n be a basis of g. We write $X \in g$ as $X = \sum_i x_i E^i$. Let E_1, E_2, \ldots, E_n be the dual basis of g^* . We write $\xi \in g^*$ as $\xi = \sum_i \xi^i E_i$. We denote by dX the density $dx_1 dx_2 \cdots dx_n$ and by $d\xi = d\xi^1 d\xi^2 \cdots d\xi^n$. We say that dX and $d\xi$ are dual densities.

If ϕ is a (tempered generalised) function on g, its Fourier transform $\mathscr{F}(\phi)$ is the (generalised) density on g* such that

$$\int_{\mathfrak{g}^*} \mathrm{e}^{\mathrm{i}(\xi, X)} \mathscr{F}(\phi)(\xi) = \phi(X).$$

Let $S(g^*)$ be the symmetric algebra of g^* . We identify an element $P \in S(g^*)$ either to a polynomial function $X \mapsto P(X)$ on g or to a differential operator with constant coefficient $P(\partial_{\xi})$ on g^* . The identification is such that $P(\partial_{\xi})(e^{(\xi,X)}) = P(X)e^{(\xi,X)}$. Similarly S(g) is identified to the space of polynomial functions on g^* .

If $X \in \mathfrak{g}$, we denote by X_M the vector field on M produced by the infinitesimal action of \mathfrak{g} :

$$(X_M)_x = \frac{d}{d\varepsilon} (\exp -\varepsilon X) \cdot x|_{\varepsilon=0}$$

A G-equivariant differential form on M is a smooth G-equivariant map, defined on the Lie algebra g, with values in the space $\mathscr{A}(M)$ of smooth differential forms on M. We denote the algebra of G-equivariant differential forms on M by $\mathscr{A}_{G}^{\infty}(g, M) = C^{\infty}(g, \mathscr{A}(M))^{G}$. Thus, if $\alpha \in \mathscr{A}_{G}^{\infty}(g, M)$, the value $\alpha(X)$ of $X \in g$ is a differential form on M. Allowing the preceding ambiguity for the notation X, we will sometimes denote the map $\alpha: g \to \mathscr{A}(M)$ by $\alpha(X)$. In particular a C^{∞} -function $\mu(X)$ on M depending smoothly on $X \in g$ and in such a way that $\mu(g \cdot X)(g \cdot m) = \mu(X)(m)$ for all $X \in g$, $m \in M$, $g \in G$ is an element of $\mathscr{A}_{G}^{\infty}(g, M)$.

For $\alpha \in \mathscr{A}(M)$ we write $\alpha = \sum \alpha_{[i]}$ for the decomposition of α in homogeneous forms of exterior degree *i*.

The equivariant coboundary $d_g: \mathscr{A}_G^{\infty}(\mathfrak{g}, M) \to \mathscr{A}_G^{\infty}(\mathfrak{g}, M)$ is defined for $\alpha \in \mathscr{A}_G^{\infty}(\mathfrak{g}, M)$ and $X \in \mathfrak{g}$ by

$$(d_{\mathfrak{g}}\alpha)(X) = d(\alpha(X)) - \iota(X_M)(\alpha(X))$$

where $\iota(X_M)$ is the contraction with the vector field X_M . We also write d_X for the operator $d - \iota(X_M)$ acting on forms. A closed equivariant form is by definition a G-equivariant differential form satisfying $d_g \alpha = 0$. We denote by $\mathscr{H}^{\infty}_G(\mathfrak{g}, M)$ the space Ker $d_g/\operatorname{Im} d_g$.

We denote by $\mathscr{A}_{G}^{\text{pol}}(\mathfrak{g}, M) = (S(\mathfrak{g}^*) \otimes \mathscr{A}(M))^G$ the complex of G-equivariant forms $\alpha(X)$ depending polynomially on $X \in \mathfrak{g}$.

If M is a compact oriented manifold and $\alpha \in \mathscr{A}_{G}^{\infty}(\mathfrak{g}, M)$ an equivariant differential form, $X \mapsto \int_{M} \alpha(X)$ is an invariant C^{∞} -function on g (the integral of an inhomogeneous form is by definition the integral of the term of maximum exterior degree). We denote by $\int_{M} : \mathscr{A}_{G}^{\infty}(\mathfrak{g}, M) \to C^{\infty}(\mathfrak{g})^{G}$ the map so obtained. We also denote by $\int_{M} : \mathscr{H}_{G}^{\infty}(\mathfrak{g}, M) \to C^{\infty}(\mathfrak{g})^{G}$ the map derived from \int_{M} in cohomology.

Consider g^* as a *G*-manifold via the adjoint action. Then the map $X \mapsto (\xi, X)$ is an element of $\mathscr{A}_G^{\infty}(\mathfrak{g}, \mathfrak{g}^*)$. Let $U \subset \mathfrak{g}^*$ be a *G*-invariant open subset of \mathfrak{g}^* . Let $\beta \in \mathscr{A}_G^{\infty}(\mathfrak{g}, U)$ and let $\alpha \in \mathscr{A}_G^{\infty}(\mathfrak{g}, U)$ be defined by $\alpha(X) = e^{i(\xi, X)}\beta(X)$ for $X \in \mathfrak{g}$. Then $(d_{\mathfrak{g}}\alpha)(X) = e^{i(\xi, X)}(i(d\xi, X) + (d_{\mathfrak{g}}\beta)(X))$ with $(d\xi, X) = \sum_i d\xi^i x_i$. Thus if $\beta \in \mathscr{A}_G^{pol}(\mathfrak{g}, U)$, then $(d_{\mathfrak{g}}\alpha)(X) = e^{i(\xi, X)}\gamma(X)$ with γ depending also polynomially on $X \in \mathfrak{g}$.

Definition 2. The subcomplex $(\mathscr{A}_{G}^{\mathscr{F}}(\mathfrak{g}, U), d_{\mathfrak{g}})$ is defined to be

$$\mathscr{A}_{G}^{\mathscr{F}}(\mathfrak{g},U) = \{\alpha(X) = \mathrm{e}^{\mathrm{i}(\xi,X)}\beta(X); \ \beta \in \mathscr{A}_{G}^{\mathrm{pol}}(\mathfrak{g},U)\}.$$

Its cohomology is denoted by $\mathscr{H}^{\mathscr{F}}_{G}(\mathfrak{g}, U)$.

To motivate the next definition, assume first that $\mathscr{A}_{\mathcal{G}}^{\mathscr{F}}(\mathfrak{g},\mathfrak{g}^*)$ is compactly supported on \mathfrak{g}^* . We choose an orientation on \mathfrak{g}^* . Then the integral $\int_{\mathfrak{g}^*} \alpha(X)_{[n]}$ of $\alpha(X)$ over \mathfrak{g}^* is well defined and is a rapidly decreasing C^{∞} -function on \mathfrak{g} . The Fourier transform $\mathscr{F}(\int_{\mathfrak{g}^*} \alpha)$ is a C^{∞} -density on \mathfrak{g}^* . It is readily computed: let us write $\alpha(X)_{[n]} = e^{i(\zeta, X)} \sum_a P_a(X) \alpha_a(\zeta) d\zeta$ where $P_a \in S(\mathfrak{g}^*)$ and $\alpha_a(\zeta) \in C^{\infty}(\mathfrak{g}^*)$. Then

$$\mathscr{F}\left(\int_{\mathfrak{g}^*}\alpha\right) = \left(\sum_a P_a(\mathrm{i}\partial_{\xi})\cdot\alpha_a(\xi)\right)d\xi.$$

Definition 3. Let $\alpha \in \mathscr{A}_{G}^{\mathscr{F}}(\mathfrak{g}, U)$ be a *G*-equivariant form on *U*. Let $d\xi = d\xi^{1} \wedge d\xi^{2} \wedge \cdots \wedge d\xi^{n}$. We define $V(\alpha) \in \mathscr{A}^{n}(U)^{G}$ by

$$V(\alpha) = \left(\sum_{a} P_{a}(\mathrm{i}\partial_{\xi}) \cdot \alpha_{a}(\xi)\right) d\xi$$

if $\alpha(X)_{[n]} = e^{i(\xi, X)} \sum_{a} P_{a}(X) \alpha_{a}(\xi) d\xi$ with $P_{a} \in S(\mathfrak{g}^{*})$ and $\alpha_{a}(\xi) \in C^{\infty}(U)$.

In abstract sense, V is equal to the composition of the integration \int_{g^*} over g^* and of the Fourier transform \mathscr{F} . However neither \int_{g^*} nor \mathscr{F} are generally defined.

LEMMA 4. Let $\beta \in \mathscr{A}_{G}^{\mathscr{F}}(\mathfrak{g}, U)$. Then $V(d_{\mathfrak{g}}\beta) = 0$.

Proof. It is sufficient to prove this for β of exterior degree n-1. If $\beta(X) = e^{i(\xi, X)} \sum_{k=1}^{n} \beta_k(X, \xi) d\xi^1 \wedge d\xi^2 \wedge d\xi^k \wedge \cdots \wedge d\xi^n$, then

$$(d_{\mathfrak{g}}\beta(X))_{[n]} = \left(\sum_{k} (-1)^{k+1} (iX_{k})\beta_{k}(X,\xi) + \sum_{k} (-1)^{k+1}\partial_{\xi_{k}}\beta_{k}(X,\xi)\right) e^{i(\xi,X)} d\xi.$$

To compute V we must replace X_k by $i\partial_{\xi_k}$ and we obtain $V(d_{\alpha}\beta) = 0$.

By the preceding lemma, we can define the map

$$V: \mathscr{H}^{\mathscr{F}}_{G}(\mathfrak{g}, U) \to \mathscr{A}^{n}(U)^{G}$$

in cohomology. We will call V the local Fourier transform.

Let *M* be a *G*-manifold. Let $\mu: M \to g^*$ be a *G*-invariant map. Then $m \mapsto (\mu(m), X)$ is a function on *M* depending on $X \in g$ that we denote by (μ, X) . Then $X \mapsto e^{i(\mu, X)}$ is an element of $\mathscr{A}_G^{\infty}(g, M)$. If $\beta \in \mathscr{A}_G^{\text{pol}}(g, M)$ then $\alpha(X) = e^{i(\mu, X)}\beta(X)$ is in $\mathscr{A}_G^{\infty}(g, M)$. The subspace of such forms α is stable under d_g .

Definition 5. The subcomplex $(\mathscr{A}_{G}^{\mu}(\mathfrak{g}, M), d_{\mathfrak{g}})$ is defined to be

$$\mathscr{A}_{G}^{\mu}(\mathfrak{g},M) = \{\alpha(X) = \mathrm{e}^{\mathrm{i}(\mu,X)}\beta(X); \beta \in \mathscr{A}_{G}^{\mathrm{pol}}(\mathfrak{g},M)\}.$$

Its cohomology is denoted by $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, M)$.

The space $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, M)$ is a module over $\mathscr{H}^{pol}_{G}(\mathfrak{g}, M)$.

Let $\mu: M \to g^*$ be a proper map. Let U be a G-invariant open subset of g^* . Assume that U is contained in the subset of regular values of μ . Then μ is a fibration over U with compact fibres. Let $N = \mu^{-1}(U)$. Assume the fibration $\mu: N \to U$ has oriented fibres and that the action of G preserves the family of orientations o of the fibres. Let us denote by $\mu_*: \mathscr{A}(N) \to \mathscr{A}(U)$ the integral over the fibres (we leave implicit the choice of o). If $\alpha(X) = e^{i(\mu, X)}\beta(X)$ with $\beta \in \mathscr{A}_G^{\text{pol}}(g, N)$, then

$$\mu_*(\alpha(X)) = e^{i(\xi, X)} \mu_*(\beta(X))$$

belongs to $\mathscr{A}_{G}^{\mathscr{F}}(\mathfrak{g}, U)$. The integral over the fibre gives a map of complexes

$$\mu_*: (\mathscr{A}^{\mu}_G(\mathfrak{g}, N), d_\mathfrak{g}) \to (\mathscr{A}^{\mathscr{Y}}_G(\mathfrak{g}, U), d_\mathfrak{g})$$

and a map

$$V\mu_*: \mathscr{H}^{\mu}_{G}(\mathfrak{g}, N) \to \mathscr{A}^n(U)^G$$

that we will call also the local Fourier transform.

We assume now *M* compact and oriented. Let us relate $V\mu_*$ and \mathscr{F}_{M} . Let $\alpha(X) = e^{i(\mu, X)}\beta(X)$ with $\beta(X) = \sum_a P_a(X)\omega_a$. Then

$$\left(\int_{M} \alpha\right)(X) = \sum_{a} P_{a}(X) \int_{M} e^{i(\mu, X)} \omega_{a}$$

The manifold *M* being compact, the push-forward $\mu_*((\omega_a)_{\{\dim M\}})$ by μ_* of the C^{∞} -density $(\omega_a)_{\{\dim M\}}$ is a compactly supported Radon measure on g* and we identify it with a distribution on g*. Writing $\int_M = \int_{g^*} \mu_*$, we see that

$$\left(\int_{M} \alpha\right)(X) = \sum_{a} P_{a}(X) \int_{\mathfrak{g}^{*}} e^{\mathbf{i}(\xi, X)} \mu_{*}((\omega_{a})_{[\dim M]})$$

Thus the Fourier transform of $\int_M \alpha$ is the distribution

$$\mathscr{F}\left(\int_{M}\alpha\right) = \sum_{a} P_{a}(i\partial_{\xi}) \cdot (\mu_{*}(\omega_{a})_{[\dim M]}).$$
(4)

Near a regular value of μ , the distribution $\mu_*(\omega_a)_{[\dim M]}$ is a smooth density $\alpha_a(\xi) d\xi$ and $\mathscr{F}(\int_M \alpha)$ is equal to $(\sum_a P_a(i\partial_\xi) \cdot \alpha_a(\xi)) d\xi$. Thus we obtain the following theorem.

THEOREM 6. Let M be a compact oriented G-manifold and $\mu: M \to g^*$ be a G-invariant map. Let U be a G-invariant subset of g^* contained in the set of regular values of μ . Let $\alpha \in \mathscr{A}^{\mu}_{G}(g, M)$. Then over U we have the equality:

$$\mathscr{F}\left(\int_{M}\alpha\right)=V(\mu_{*}\alpha).$$

In particular, if α is closed, then $\mathscr{F}(\int_M \alpha)$ over U depends only on the cohomology class of α in $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, \mu^{-1}(U))$.

Thus for $\alpha \in \mathscr{H}^{\mu}_{G}(\mathfrak{g}, M)$, in order to determine $\mathscr{F}(\mathfrak{f}_{M}\alpha)$ near a regular value f of μ we need only to determine the class of α in $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, \mu^{-1}(U))$ where U is a G-invariant tubular neighbourhood of the orbit \mathcal{O} of f. In this sense the Fourier transform is local over $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, M)$.

Remark 1.1. Let $\alpha \in \mathscr{H}_{G}^{\mu}(\mathfrak{g}, M)$. Assume that G is connected. Let T be a maximal torus of G. By the localisation formula [1], the integral $\int_{M} \alpha$ of α over M depends only on the restriction of α to the submanifold M^{T} of fixed points of T. In the equality

$$\mathscr{F}\left(\int_{M}\alpha\right)=V(\mu_{*}\alpha)$$

near an orbit \mathcal{O} , the first member depends only on $\alpha|_{M^T}$ while the second member depends only on $\alpha|_{\mu^{-1}(U)}$. This equality between these two localisations formulas has already been fruitfully employed in [6, 7, 13] to compute $H^*(M_{red})$ if (M, σ, μ) is a Hamiltonian manifold.

In the next section, we determine explicitly the map $V\mu_*$ near $0 \in g^*$ when the action of G on $\mu^{-1}(0)$ is infinitesimally free.

1.2. Local Fourier transforms and free actions

Let P be a compact manifold with a free left action of a compact Lie group G. Let $q: P \to G \setminus P$ be the quotient map. Recall (see for example [3]) that $H_G^{\infty}(g, P)$ is isomorphic to

the de Rham cohomology $H^*(G \setminus P)$ by the pull-back q^* . Let ω be a connection form on $P \to G \setminus P$. Let $\Omega \in \mathscr{A}(P) \otimes \mathfrak{g}$ be the curvature of ω . If ϕ is a polynomial function on \mathfrak{g} , then $\phi(\Omega)$ is a differential form on P. If ϕ is an invariant polynomial function on \mathfrak{g} , then $\phi(\Omega)$ is a basic form which determines a closed de Rham cohomology class on $G \setminus P$. More generally, if $X \mapsto \alpha(X)$ is a G-equivariant differential form on P, then $\alpha(\Omega)$ is a form on P. If α is a closed G-equivariant differential form, the horizontal component $h(\alpha(\Omega))$ of $\alpha(\Omega)$ defines a closed de Rham form on $G \setminus P$. Then define

$$\alpha_{\rm red}=h(\alpha(\Omega)).$$

The cohomology class of the differential form α_{red} depends only on the cohomology class of α in $\mathscr{H}^{\infty}_{G}(\mathfrak{g}, P)$ and not on the choice of connection ω . Furthermore the map $\alpha \mapsto \alpha_{red}$ is the inverse of q^* in cohomology.

Choose a G-invariant Euclidean norm $\|\cdot\|$ on g. Let U be a G-invariant open ball centred at 0 in g^{*}. Consider the manifold

$$N = P \times U.$$

We denote $G \setminus P$ by N_{red} (the motivation for this notation will become clear). We denote by $\mu: N \to U$ the second projection. If $\alpha \in \mathscr{A}_G^{\mu}(\mathfrak{g}, N)$, the restriction of α to P is a G-equivariant differential form on $P = \mu^{-1}(0)$, thus determines a form α_{red} on N_{red} .

We assume that P has a G-invariant orientation o^P that we will leave implicit most of the time. Choose a basis E^1, E^2, \ldots, E^n of g. Let us write the connection form

$$\omega = \sum_{k} \omega_{k} E^{k}.$$
(5)

Let

$$\Omega = \sum_{k} \Omega_k E^k \tag{6}$$

be the curvature of ω . If $\xi = \sum_k \xi^k E_k \in g^*$, then $(\Omega, \xi) = \sum_k \Omega_k \xi^k$ is a form on *P*. Let

$$v_{\omega} = \omega_1 \wedge \omega_2 \wedge \cdots \wedge \omega_n. \tag{7}$$

Then v_{ω} is a vertical form on P of degree $n = \dim G$.

The basis E^i of g determines a volume form $dX = dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n \in \Lambda^n g^*$. Our convention on dual orientations is as follows. We choose as dual positive element $d\xi \in \Lambda^n g$ the element $d\xi$ such that

$$E_1 \wedge E^1 \wedge E_2 \wedge E^2 \wedge \dots \wedge E_n \wedge E^n = dX \wedge d\xi \tag{8}$$

that is $d\xi = (-1)^{n(n-1)/2} d\xi^1 \wedge d\xi^2 \wedge \cdots \wedge d\xi^n$. The next theorem determines the application $V\mu_*: \mathscr{H}^{\mu}_{G}(\mathfrak{g}, N) \to \mathscr{A}^{n}(U)^{G}$.

THEOREM 7. Let P be a compact G-oriented manifold with a free action of G. Let U be an open ball centred at 0 in g^{*}. Let $N = P \times U$ and let μ be the second projection $P \times U \rightarrow U$. Let $N_{red} = G \setminus P$. Let ω be a connection form on P with curvature Ω . Let $\alpha \in \mathscr{A}_{G}^{\mu}(\mathfrak{g}, N)$ be a closed equivariant differential form. Let α_{red} be the element of $H^{*}(N_{red})$ determined by $\alpha|_{P}$. Then

$$V(\mu_*\alpha) = \mathrm{i}^n \left(\int_P \alpha_{\mathrm{red}} \mathrm{e}^{-\mathrm{i}(\Omega,\,\xi)} v_\omega \right) d\xi.$$

In this formula the elements v_{ω} and $d\xi$ are determined by an oriented basis of g by formulas (7) and (8).

As Ω is a 2-form, Theorem 7 shows in particular that $V(\mu_*\alpha)$ is a polynomial density.

Proof of Theorem 7. If v is a form of $G \setminus P$ or P we still denote by v its pull-backs to P and $P \times g^*$. The connection form ω gives us the 1-form (ω, ξ) on $P \times g^*$

$$(\omega,\xi) = \sum_{i} \xi^{i} \omega_{i}.$$
 (9)

We denote this 1-form by λ :

$$\lambda = (\omega, \xi). \tag{10}$$

Consider the differential form $e^{-id_g\lambda}$ on $P \times g^*$. By definition of ω , $\iota(X_P)\omega = X$. Thus for $(x,\xi) \in P \times g^*$, we have $(d_g\lambda)_{x,\xi}(X) = -(\xi, X) + ((d\omega)_x, \xi) - (\omega_x, d\xi)$. It follows that

$$e^{-i(d_g\lambda)(X)} = e^{i(\xi,X)}e^{-i(d\omega,\xi)+i(\omega,d\xi)}$$
(11)

gives an element of $\mathscr{A}^{\mu}_{G}(\mathfrak{g}, N)$. As the element $e^{-id_{\mathfrak{g}}\lambda}$ is invertible, we have

$$\mathscr{A}_{G}^{\mu}(\mathfrak{g},N)=\mathrm{e}^{-\mathrm{i}d_{\mathfrak{g}}\lambda}\,\mathscr{A}_{G}^{\mathrm{pol}}(\mathfrak{g},N).$$

The form $e^{-id_g\lambda}$ is obviously closed.

Remark 1.2. We have

$$e^{-id_{g}\lambda} = 1 + d_{g}\left(\lambda\left(\frac{e^{-id_{g}\lambda}-1}{d_{g}\lambda}\right)\right)$$

so that $e^{-id_g\lambda}$ is congruent to 1 in $\mathscr{H}^{\infty}_{G}(\mathfrak{g}, N)$ (but not in $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, N)$).

Let $\alpha \in \mathscr{A}_{G}^{\mu}(\mathfrak{g}, N)$ be a closed equivariant differential form. We may write $\alpha = e^{-id_{\mathfrak{g}}\lambda}\beta$ with β a closed element of $\mathscr{A}_{G}^{pol}(\mathfrak{g}, N)$. By the Poincaré lemma, as U is contractible, the equivariant cohomology space $\mathscr{H}_{G}^{pol}(\mathfrak{g}, P \times U)$ is isomorphic to $\mathscr{H}_{G}^{pol}(\mathfrak{g}, P)$ by the restriction map, thus to $H^{*}(N_{red}) = H^{*}(G \setminus P)$ as G acts freely on P. As $\lambda = 0$ on P, we see that, if $\alpha = e^{-id_{\mathfrak{g}}\lambda}\beta$, then $\alpha_{red} = \beta_{red}$ and $\alpha \in \mathscr{A}_{G}^{\mu}(\mathfrak{g}, N)$ is $d_{\mathfrak{g}}$ -equivalent in $\mathscr{A}_{G}^{\mu}(\mathfrak{g}, N)$ to $\alpha_{red}e^{-id_{\mathfrak{g}}\lambda}$.

Remark 1.3. It is easy to see that $\mathscr{H}^{\mu}_{G}(\mathfrak{g}, N)$ is a free module over $H^{*}(N_{red})$ with generator $e^{-id_{\mathfrak{g}}\lambda}$.

We only need to prove Theorem 7 for such an element $\alpha = \alpha_{red} e^{-id_g \lambda}$. We have

$$\alpha(X) = \alpha_{\rm red} e^{i(\xi, X)} e^{i(d\omega, \xi) + i(\omega, d\xi)}.$$

Let us remark for later use that

$$\alpha(X) = e^{i(\xi, X)}v \tag{12}$$

where $v = \alpha_{red} e^{-i(d\omega, \xi) + i(\omega, d\xi)} \in \mathcal{A}(N)$ is independent of X.

The form α_{red} is a form on $G \setminus P$. It is independent of $(\xi, d\xi)$. Let us write $e^{i(\omega, d\xi)} = \sum_J i^{|J|} \varepsilon_J \omega_J d\xi_J$ where J are multi-indexes and ε_J signs. We thus have

$$\mu_{*}(\alpha(X)) = e^{i(\xi, X)} \sum_{J} i^{|J|} \varepsilon_{J} \left(\int_{P} \alpha_{red} e^{-i(d\omega, \xi)} \omega_{J} \right) d\xi_{J}.$$
(13)

To compute $V(\mu_*\alpha)$ we must take the component of maximal degree in $d\xi$ of $\mu_*\alpha$. With our conventions of orientations, we have

$$(\mu_*\alpha(X))_{[n]} = i^n e^{i(\xi,X)} \left(\int_P \alpha_{\rm red} e^{-i(d\omega,\xi)} v_\omega \right) d\xi$$

where $d\xi$ is the element dual (formula (8)) to the element dX determined by the oriented basis of g. Let $\Omega = d\omega + \frac{1}{2}[\omega, \omega]$ be the curvature of ω . As $\omega_i \wedge v_\omega = 0$ we have

$$\alpha_{\rm red} e^{-i(d\omega,\,\xi)} v_{\omega} = \alpha_{\rm red} e^{-i(\Omega,\,\xi)} v_{\omega}.$$

Thus

$$(\mu_* \alpha(X))_{[n]} = i^n e^{i(\xi, X)} \left(\int_P \alpha_{\text{red}} e^{-i(\Omega, \xi)} v_\omega \right) d\xi.$$
(14)

By definition of V, we have $V(\mu_* \alpha) = i^n (\int_P \alpha_{red} e^{-i(\Omega,\xi)} v_\omega) d\xi$ and we obtain Theorem 7. \Box

Remark 1.4. If the action of G on P is only infinitesimally free, it is easy to see that every element $\alpha \in \mathscr{H}_{G}^{\infty}(\mathfrak{g}, P)$ is congruent to a basic form α_{red} (i.e. a form which is independent of $X \in \mathfrak{g}$, horizontal and G-invariant.) We can choose a connection form ω on P and Theorem 7 is valid.

We may reformulate Theorem 7 more intrinsically using integration over $N_{red} = G \setminus P$ instead of integration over P. First of all, if G is abelian then $e^{-i(\Omega, \xi)}$ is a form on N_{red} and we obtain the following.

LEMMA 8. Let G be a torus, then with the same notations as in Theorem 7

$$V(\mu_*\alpha) = (2i\pi)^n \left(\int_{N_{\rm red}} \alpha_{\rm red} e^{-i(\Omega,\,\xi)}\right) d\xi.$$

In this formula the orientation on N_{red} is the orientation o^P/v_{ω} and the normalisation for the density dX is such that $\text{vol}(G) = (2\pi)^n$ (we choose this normalisation for dX only in the case of the torus).

More generally, if G is not abelian, we write $(V\mu_*\alpha)/d\xi = L(\alpha)(\xi)$ where $L(\alpha)(\xi) \in S(g)^G$ is a polynomial function of ξ . We denote by (P, Q) the duality between S(g) and $S(g^*)$ given by

$$(P,Q) = P(\partial_{\xi})Q(\xi)|_{\xi=0}$$

for $P \in S(g^*)$ and $Q \in S(g)$. Then $L(\alpha)$ is determined by the duality between $S(g)^G$ and $S(g^*)^G$. Consider the principal fibration $P \to G \setminus P$. If $\phi \in S(g^*)^G$, then $\phi(-i\Omega)$ is a closed form on N_{red} (its de Rham cohomology class is independent of ω). Using the same notations as Theorem 7, we have the more invariant formulation of Theorem 7:

THEOREM 9. For $\phi \in S(\mathfrak{g}^*)^G$,

$$(\phi, (V\mu_*\alpha)/d\xi) = \mathrm{i}^n \operatorname{vol}(G) \int_{N_{\mathrm{red}}} \alpha_{\mathrm{red}} \phi(-\mathrm{i}\Omega).$$

Proof. By Theorem 7 and by definition of the duality, we obtain

$$(\phi, (V\mu_*\alpha)/d\xi) = \mathrm{i}^n \int_P \alpha_{\mathrm{red}} \phi(-\mathrm{i}\Omega) v_\omega.$$

The forms $\phi(-i\Omega)$ and β_{red} are forms on $G \setminus P$ so that the integration of the factor v_{ω} gives the term vol(G) and we obtain Theorem 9.

1.3. Jeffrey-Kirwan localisation theorem

In this section (M, σ, μ) is a compact symplectic manifold with Hamiltonian action of a compact Lie group G. We assume that 0 is a regular value of μ . We note $P = \mu^{-1}(0)$.

Let σ_g be the equivariant symplectic form. It is the closed G-equivariant differential form on M defined for $X \in g$ by $\sigma_g(X) = \mu(X) + \sigma$. Thus $e^{i\sigma_g(X)} = e^{i(\mu, X)}e^{i\sigma}$ is a closed element in our complex $\mathscr{A}^{\mu}_{G}(g, M)$. As it is an invertible element, we have

$$\mathscr{A}^{\mu}(\mathfrak{g},M) = \{ \mathrm{e}^{\mathrm{i}\sigma_{\mathfrak{g}}(X)}\beta(X); \ \beta \in \mathscr{A}_{G}^{\mathrm{pol}}(\mathfrak{g},M) \}.$$

We first consider the particularly important closed element $e^{i\sigma_0(X)} = e^{i(\mu, X)}e^{i\sigma}$ of $\mathscr{A}_G^{\mu}(g, M)$. Let dim M = 2d. Let $\beta_M = (d!)^{-1}(2\pi)^{-d}\sigma^d$ be the Liouville form on M. Near the regular value 0 the push-forward $\mu_*(\beta_M)$ of the Liouville measure of M is a C^{∞} -density on g^* .

The manifold P is a compact manifold. Furthermore, the fact that 0 is a regular value of μ is equivalent to the fact that the action of G on $P = \mu^{-1}(0)$ is locally free. The orbifold $M_{\text{red}} = G \setminus P$ is the Marsden-Weinstein reduction of M.

As 0 is a regular value, there exists a G-invariant open ball $U \subset g^*$ such that $\mu^{-1}(U)$ is diffeomorphic to $P \times U$ by a G-invariant diffeomorphism. Let $N = \mu^{-1}(U) = P \times U$. We apply the results of the preceding section. In our case the manifold $N_{red} = G \setminus P$ is the reduced manifold M_{red} . By definition of V, $\mu_*(\beta_M)$ is the density $i^{-d}(2\pi)^{-d}V(\mu_*(e^{i\sigma_s}))$. Let ω be a connection form on P and let Ω be the curvature of ω . The restriction of $\sigma_g(X) = \mu(X) + \sigma$ to $P = \mu^{-1}(0)$ is simply $\sigma|_P$. By definition, it is the pull-back of the symplectic form σ_{red} of the Marsden-Weinstein reduction M_{red} of M at 0. The dimension of M_{red} is $2d_0 = 2(d - n)$ $(n = \dim G)$. We obtain from Theorem 7 $\mu_*(\beta_M) = i^{-d_0}(2\pi)^{-d}$ $(\int_P e^{i(\sigma_{red} - (\xi, \Omega))} v_{\omega}) d\xi$. Checking out useful exterior degrees, we have:

PROPOSITION 10. Near 0, the push-forward of the Liouville form $\mu_*(\beta_M)$ is given by

$$\mu_*(\beta_M) = (2\pi)^{-d} (d_0!)^{-1} \left(\int_P (\sigma_{\text{red}} - (\xi, \Omega))^{d_0} v_\omega \right) d\xi$$

If G is a torus,

$$\mu_*(\beta_M) = (2\pi)^{-d_0} (d_0!)^{-1} \left(\int_{M_{\rm red}} (\sigma_{\rm red} - (\xi, \Omega))^{d_0} \right) d\xi.$$
(15)

The formula above for a torus G is the Duistermaat-Heckman formula [2]. For a general compact Lie group G, this is due to Jeffrey and Kirwan [6]. Jeffrey and Kirwan deduce this formula from the normal form theorem [10,5] which asserts that if U is sufficiently small there exists a symplectic diffeomorphism of $(\mu^{-1}(U), \sigma)$ to $U \times P$ equipped with the symplectic form $\sigma^P = \sigma_{red} - (\xi, \Omega)$.

It follows from Theorem 14 in the next section that $\mu_*(\beta_M)$ is an analytic density on each connected component of the set of regular values of μ . This fact follows also obviously from the localisation formula [1]. In particular, $\mu_*(\beta_M)$ will be a polynomial density on the connected component of 0 in the open subset of regular values of μ . In the case of a torus action it is a polynomial density on each connected component of the open subset of regular values of μ . This is obvious from the previous result as in the case of a torus action we can translate μ to $\mu - \xi_0$ and displace ourselves at 0. Furthermore if G is a torus, the preceding formula determines entirely the push-forward of the Liouville measure of M if we assume that no connected subgroup of T acts trivially on M. Indeed in this case it is easy to see that the push-forward of the Liouville measure can be written as $f(\xi) d\xi$ where $f(\xi)$ is a continuous function on the closed convex set with nonzero interior $\mu(M) \subset t^*$. If G is nonabelian, the knowledge of $\mu_*\beta_M$ on regular values does not determine $\mu_*\beta_M$. For example, an orbit $\mathcal{O} \subset g^*$ of the coadjoint representation is an Hamiltonian space with moment map μ the canonical injection $\mathcal{O} \to g^*$. The set of regular values of μ is $g^* - \mathcal{O}$ and $\mu_*\beta_{\mathcal{O}}$ is 0 outside \mathcal{O} , but is not 0 as a distribution.

Consider now a general element $\alpha \in \mathscr{A}^{\mu}_{G}(\mathfrak{g}, M)$. From Theorems 6 and 7, we obtain:

THEOREM 11 (Jeffrey and Kirwan [6]). Let α be a closed element in $\mathscr{A}_{G}^{\mu}(\mathfrak{g}, M)$. Let α_{red} be the cohomology class of M_{red} determined by $\alpha|_{P}$. Near $0 \in \mathfrak{g}$ the Fourier transform of the integral $\int_{M} \alpha$ of α over M is given by

$$\mathscr{F}\left(\int_{M}\alpha\right) = \left(\mathrm{i}^{n}\int_{P}\alpha_{\mathrm{red}}\mathrm{e}^{-\mathrm{i}(\xi,\Omega)}v_{\omega}\right)d\xi.$$

In particular for $\xi = 0$, the Jeffrey-Kirwan result gives the particularly beautiful following formula. For α a closed element of $\mathscr{A}_{G}^{\mu}(g, M)$:

$$\mathscr{F}\left(\int_{M} \alpha\right)(0) = \mathrm{i}^{n}(\mathrm{vol}\,G) \int_{M\mathrm{red}} \alpha_{\mathrm{red}}.$$

Consider the function $\|\mu\|^2$ on *M*.

LEMMA 12. Let R be the largest number u such that all $f \in g^*$ such that $|| f ||^2 < u$ are regular values of μ . Then R is also the smallest critical value of the function $|| \mu ||^2$.

Proof. Indeed x is a critical point of $\|\mu\|^2$ if and only if x is a zero of the vector field $\mu(x)_M$. Let us consider $\gamma \in g$ a nonzero element and let $M(\gamma)$ be the manifold of zeroes of the vector field γ_M on M. Let $M(\gamma)^a$ be a connected component of $M(\gamma)$. Then $\mu(M(\gamma)^a)$ is contained in an affine plane orthogonal to γ . Thus, identifying g with g^* , the nearest point to 0 in this plane is proportional to γ . Changing γ in a proportional vector, we thus see that R is also the smallest value of $\mu(x)$ for those x such that there exists $\gamma \neq 0$ such that $x \in M(\gamma)$ and $\mu(x) = \gamma$.

It follows from the localisation formula [1] that $\mathscr{F}(\int_M \alpha)$ is an analytic density on each connected component of the set of regular values of μ . This follows also from Theorem 14 of the next section. By analyticity and Lemma 12 above, the Jeffrey-Kirwan formula (Theorem 11) remains valid for $||\xi|| < R$.

Witten [12] studied the asymptotic behaviour when $\varepsilon \mapsto 0$ of

$$Z(\varepsilon) = \int_{M} \int_{\mathfrak{g}} e^{i\sigma_{\mathfrak{g}}(X)} \beta(X) e^{-\varepsilon \|X\|^{2}/2} dX$$

where $\beta(X)$ is a G-equivariant closed form on M with polynomial coefficients. Let $\alpha = e^{i\sigma_{\varepsilon}}\beta$. Then the value of $Z(\varepsilon)$ at $\varepsilon = 0$ is $(2\pi)^n (\mathscr{F} \int_M \alpha)(0)$.

THEOREM 13 (Witten [12]). Let (M, σ, μ) be a compact symplectic manifold with a Hamiltonian action of a compact group G. Assume that the action of G on $\mu^{-1}(0)$ is free. Let Ω be the curvature of the fibration $\mu^{-1}(0) \rightarrow M_{red} = G \setminus \mu^{-1}(0)$. Let R be the smallest critical value of $\|\mu\|^2$. Let r be a positive number such that r < R. Then for any G-equivariantly closed form β on M with polynomial coefficients, there exists a constant C such that

$$Z(\varepsilon) = (2i\pi)^{\dim G} \operatorname{vol}(G) \left(\int_{M_{red}} e^{i\sigma red} \beta_{red} e^{-\varepsilon \|\Omega\|^2/2} \right) + N(\varepsilon)$$

with $|N(\varepsilon)| \leq C e^{-r/2\varepsilon}$ for any $\varepsilon > 0$.

Proof. Let $\alpha(X) = e^{i\sigma_s(X)}\beta(X)$ and let $w(X) = \int_M \alpha(X)$. Recall from formula (4) that the Fourier transform $\mathscr{F}(w)$ of w is a derivative of compactly supported Radon measures on g^* . Furthermore for $\|\xi\| < R \in \mathfrak{g}$, $\mathscr{F}(w)$ is a polynomial density given (Theorem 11) by

$$\mathscr{F}(w) = \mathrm{i}^n \left(\int_P \mathrm{e}^{-\mathrm{i}(\Omega,\,\xi)} \mathrm{e}^{\mathrm{i}\sigma\mathrm{red}} \beta_{\mathrm{red}} v_\omega \right) d\xi.$$

We have

$$Z(\varepsilon) = \int_{\mathfrak{g}} w(X) \mathrm{e}^{-\varepsilon \, \|X\|^2/2} \, dX$$

and by Fourier transforms

$$Z(\varepsilon) = \int_{\mathfrak{g}^*} \mathscr{F}(w)(\xi) \varepsilon^{-n/2} (2\pi)^{n/2} \mathrm{e}^{-\|\xi\|^2/2\varepsilon}$$

Thus by partition of unity, we see that modulo a rest $N(\varepsilon)$ less than $Ce^{-r/2\varepsilon}$,

$$Z(\varepsilon) = \int_{\mathfrak{g}^{\bullet}} \mathrm{i}^{n} \left(\int_{P} \mathrm{e}^{-\mathrm{i}(\Omega,\,\xi)} \mathrm{e}^{\mathrm{i}\sigma\mathrm{red}} \beta_{\mathrm{red}} v_{\omega} \right) \varepsilon^{-n/2} (2\pi)^{n/2} \mathrm{e}^{-\|\xi\|^{2}/2\varepsilon} d\xi + N(\varepsilon).$$

By the inversion formula

$$\int_{\mathfrak{g}^*} i^n e^{-i(\Omega,\,\xi)} \varepsilon^{-n/2} (2\pi)^{n/2} e^{-\|\xi\|^2/2\varepsilon} d\xi = (2i\pi)^n e^{-\varepsilon \|\Omega\|^2/2}$$

and one obtains Witten's estimate.

1.4. Induction formula

In this section, we prove an induction formula for the map $V\mu_*$. This section will not be used in the remainder of this article.

Let $\mathcal{O} \subset \mathfrak{g}^*$ be an orbit of the coadjoint representation. Let $f \in \mathcal{O}$. Let $G_0 = G(f)$ and $\mathfrak{g}_0 = \mathfrak{g}(f)$. Let $n = \dim \mathfrak{g}$ and $n_0 = \dim \mathfrak{g}_0$. Let

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{r} \tag{16}$$

be a G_0 -invariant decomposition of g. Let dim $r = 2r = \dim \mathcal{O}$.

Using decomposition (16), we consider $g_0^* \subset g^*$. Thus g_0^* is a G_0 -invariant supplementary subspace to the tangent space $r^* = g_0^\perp = g \cdot f$ to the orbit \mathcal{O} at f.

Let $\xi \in g_0^*$. We denote by $B_{\xi} \in \Lambda^2 r^*$ the alternate bilinear map $B_{\xi}(R_1, R_2) = -(\xi, [R_1, R_2])$. Let $dR \in \Lambda^{2r} r^*$ be a volume form on r and let $D_0(\xi)$ be the G_0 -invariant polynomial function (depending of dR) on g_0^* such that

$$D_0(\xi) \, dR = (r!)^{-1} B_{\xi}^r$$

As B_f is nondegenerate on r = g/g(f), the value of $D_0(\xi)$ at f is nonzero.

Consider U_0 a G_0 -invariant small ball around 0 in g_0^* . Then

$$\mathscr{W} = \{ g \cdot (f + \xi_0); \, \xi_0 \in U_0 \}$$

is a tubular neighbourhood of \mathcal{O} isomorphic to $G \times_{G_0} U_0$ by $(g, \xi_0) \mapsto g \cdot (f + \xi_0)$. Any G_0 -invariant function $L(\xi_0)$ on U_0 extends to a G-invariant function \tilde{L} on \mathscr{W} by $\tilde{L}(g \cdot (f + \xi_0)) = L(\xi_0)$. If L is polynomial, the extension \tilde{L} is a G-invariant algebraic function (it is rational on a $|\mathcal{W}|$ -cover, where $|\mathcal{W}|$ is the order of the Weyl group of g). In particular, if L is polynomial, \tilde{L} is analytic. The function $\xi_0 \mapsto D_0(f + \xi_0)$ does not vanish for $\xi_0 \in U_0$. It admits a G-invariant analytic extension to \mathscr{W} .

Consider a G_0 -oriented manifold P_0 where G_0 acts infinitesimally freely. Let $N_0 = P_0 \times U_0$. Let $\mu_0: N_0 \to U_0$ be the second projection. The element $f \in \mathfrak{g}_0^*$ is G_0 -invariant, thus the map $f + \mu_0$ is a G_0 -invariant map from N_0 to \mathfrak{g}_0^* . We consider the induced manifold $N = G \times_{G_0} N_0$. We denote by $[g, n_0]$ the image of the element (g, n_0) in the quotient manifold $N = (G \times N_0)/G_0$. The manifold N is fibred over G/G_0 . Its fibre above the base point of G/G_0 is N_0 . Thus we consider N_0 as a G_0 -invariant submanifold of N. The map $\mu(g, n_0) = g \cdot (f + \mu_0(n_0))$ is a G-invariant fibration from N to $\mathscr{W} = G \times_{G_0} U_0$ with typical fibre P_0 .

Consider the restriction map

$$r_0: \mathscr{A}^{\infty}_G(\mathfrak{g}, N) \to \mathscr{A}^{\infty}_{G_0}(\mathfrak{g}_0, N_0)$$

given by $r_0(\alpha)(Y) = \alpha(Y)|_{N_0}$ for $\alpha \in \mathscr{A}_G^{\mu}(\mathfrak{g}, N)$ and $Y \in \mathfrak{g}_0$. We have $r_0(\mu)(Y) = (f, Y) + \mu_0(Y)$. If $\alpha \in \mathscr{A}_G^{\mu}(\mathfrak{g}, N)$, then $\beta(Y) = r_0(\alpha)(Y)$ is in $\mathscr{A}_{G_0}^{f+\mu_0}(\mathfrak{g}_0, N_0)$. The element $e^{-i(f, Y)}r_0(\alpha)$ is in $\mathscr{A}_{G_0}^{\mu_0}(\mathfrak{g}_0, N_0)$.

Consider the maps

$$V\mu_*:\mathscr{H}^{\mu}_{G}(\mathfrak{g},N)\to\mathscr{A}^n(\mathscr{W})^G$$

and

$$V_0(\mu_0)_*:\mathscr{H}^{\mu_0}_{G_0}(\mathfrak{g}_0,N_0)\to\mathscr{A}^{n_0}(U_0)^{G_0}.$$

An element $h \in \mathscr{A}^{n}(\mathscr{W})^{G}$ is a G-invariant map from \mathscr{W} to $\Lambda^{n}g$. It is thus determined by its restriction $\xi_{0} \mapsto h(f + \xi_{0})$ to $f + U_{0}$. An element $\phi \in \mathscr{A}^{n_{0}}(U_{0})^{G_{0}}$ is a G_{0} -invariant map from U_{0} to $\Lambda^{n_{0}}g_{0}$. Let $dR \in \Lambda^{2r}r^{*}$ and $dR^{*} \in \Lambda^{2r}r$ be the dual element. Thus if $\phi \in \mathscr{A}^{n_{0}}(U_{0})^{G_{0}}$, and $\xi_{0} \in U_{0}$ then $D_{0}(f + \xi_{0})^{-1}\phi(\xi_{0}) \wedge dR^{*}$ is an element of $\Lambda^{n}g$. Note that it is independent of the choice of dR.

THEOREM 14. Let $N_0 = P_0 \times U_0$ where G_0 acts infinitesimally freely on P_0 . Let $N = G \times_{G_0} N_0$. Let $\alpha \in \mathscr{H}^{\mu}_G(\mathfrak{g}, N)$. Let $\beta = e^{-if} r_0(\alpha) \in \mathscr{H}^{\mu_0}_{G_0}(\mathfrak{g}_0, N_0)$. Then

$$V(\mu_*\alpha)(f+\xi_0) = i^r D_0(f+\xi_0)^{-1} (V_0(\mu_0)_*\beta)(\xi_0) \wedge dR^*.$$

Proof. Decomposition (16) determines a connection form θ for the fibration $G \mapsto G/G_0$. Let $\Theta \in \Lambda^2 \mathfrak{r}^* \otimes \mathfrak{g}_0$ be the curvature of θ at $e \in G$. Then $\Theta(R_1, R_2)(\xi_0) = -(\xi_0, [R_1, R_2])$ for $R_i \in \mathfrak{r}$ and $\xi_0 \in \mathfrak{g}_0^*$.

Let Z_0 be a G_0 -manifold. Let Z be the induced manifold $G \times_{G_0} Z_0$. We constructed in [2] a homomorphism of differential algebras $W_{\theta}: \mathscr{A}_{G_0}^{\infty}(\mathfrak{g}_0, Z_0) \to \mathscr{A}_G^{\infty}(\mathfrak{g}, Z)$ which gives the inverse in cohomology to $r_0: \mathscr{A}_G^{\infty}(\mathfrak{g}, Z) \to \mathscr{A}_{G_0}^{\infty}(\mathfrak{g}_0, Z_0)$. The formula for $W_{\theta}(\beta)$ is given as follows: we identify a neighbourhood of $z_0 \in Z_0$ in Z to a neighbourhood of $(0, z_0)$ in $\mathfrak{r} \times Z_0$ by the map $(R, z_0) \to [\exp R, z_0]$. Thus the tangent space to Z at $z_0 \in Z_0$ is identified to $\mathfrak{r} \oplus T_{z_0} Z_0$.

Let $X \in \mathfrak{g}$. We write X = Y + R with $Y \in \mathfrak{g}_0$ and $R \in \mathfrak{r}$. By definition

$$(W_{\theta}\beta)_{z_0}(X) = \beta(Y+\Theta)_{z_0} \in \Lambda r^* \otimes \Lambda T^*_{z_0} Z_0.$$
⁽¹⁷⁾

By G-invariance, this formula determines $W_{\theta}\beta$ everywhere.

PROPOSITION 15. The map $\alpha \mapsto r_0(\alpha)$ induces an isomorphism from $\mathscr{H}^{f+\mu_0}_{G}(\mathfrak{g},N)$ to $\mathscr{H}^{f+\mu_0}_{G_0}(\mathfrak{g}_0,N_0)$.

Proof of Proposition 15. Let us see first that $W_{\theta}(e^{if + \mu_0})(X) = e^{i(\mu, X)}v$ where $v \in \mathscr{A}(N)$ is independent of $X \in \mathfrak{g}$. Indeed at $n_0 \in N_0$ and for X = Y + R, we have $(f + \mu_0(n_0), X) = (f + \mu_0(n_0), Y)$ as $f + \mu_0(n_0) \in \mathfrak{g}_0^*$. Thus $W_{\theta}(e^{if + \mu_0})_{n_0}(X) = e^{i(\mu, X)}v$ with

Michèle Vergne

 $v = e^{i(f + \mu_0(n_0),\Theta)}$ independent of X. By G-invariance the result follows. Thus W_{θ} sends $\mathscr{A}_{G_0}^{f + \mu_0}(\mathfrak{g}_0, N_0)$ to $\mathscr{A}_{G}^{\mu}(\mathfrak{g}_0, N_0)$. The explicit formula for $\alpha - W_{\theta}(r_0\alpha)$ given in [3] gives the proposition.

It follows that any closed element of $\mathscr{A}_{G}^{\mu}(\mathfrak{g}, N)$ is congruent to an element $\alpha = W_{\theta}(e^{if}\beta)$ with β a closed element of $\mathscr{A}_{G_0}^{\mu_0}(\mathfrak{g}_0, N_0)$. It remains to prove Theorem 14 for

$$\alpha = W_{\theta}(\mathrm{e}^{\mathrm{i}f}\beta).$$

If $m_0: Z_1 \to Z_2$ is a fibration of G_0 -manifolds, and m is the induced fibration $G \times_{G_0} Z_1 \to G \times_{G_0} Z_2$, the map W_{θ} satisfies $m_* W_{\theta} = W_{\theta}(m_0)_*$. Thus we obtain

$$\mu_* \alpha = \mu_* W_{\theta}(\mathrm{e}^{\mathrm{i}f}\beta) = W_{\theta}((\mu_0)_*(\mathrm{e}^{\mathrm{i}f}\beta)) = W_{\theta}(\mathrm{e}^{\mathrm{i}f}(\mu_0)_*\beta).$$

Let $Y \in \mathfrak{g}_0$. In the proof of Theorem 7 we have seen (formula (12)) that we can suppose that $\beta \in \mathscr{A}_{G_0}^{\mu_0}(\mathfrak{g}_0, N_0)$ is such that $\beta(Y) = e^{i(\mu_0, Y)}v$ with v independent of Y. Thus $(\mu_0)_*\beta(Y) = e^{i(\xi_0, Y)}(\mu_0)_*v$ where $(\mu_0)_*v \in \mathscr{A}(U_0)$ is a form independent of $Y \in \mathfrak{g}_0$. The highest exterior degree term $((\mu_0)_*v)_{[n_0]}$ of $(\mu_0)_*v$ is by definition equal to $V_0(\mu_0)_*\beta$. As before, we see that $\mu_*\alpha = W_{\theta}(e^{if}(\mu_0)_*\beta) = W_{\theta}(e^{i(f + \xi_0, Y)}(\mu_0)_*v)$ is such that $\mu_*\alpha(X) = e^{i(\xi, X)}\kappa$ where $\kappa \in \mathscr{A}(\mathscr{W})$ is independent of X. In particular there will be no differentiation in computing $V(\mu_*\alpha) = V(W_{\theta}(e^{if}(\mu_0)_*\beta))$ and we can restrict ourselves to the slice $f + U_0$ of \mathscr{W} . Consider the map $r \times U_0 \mapsto \mathscr{W}$ given by $(R, \xi_0) \mapsto \exp R \cdot (f + \xi_0)$. In the local coordinates $r \times U_0$ then by definition of W_{θ} (formula (17)),

$$W_{\theta}(\mathrm{e}^{\mathrm{i}f}(\mu_0)_{*}\beta)_{(0,\,\xi_0)}(X) = \mathrm{e}^{\mathrm{i}(f+\xi_0,\,Y+\Theta)} \wedge (\mu_0)_{*}v.$$

The highest exterior degree term of $W_{\theta}(e^{if}(\mu_0)_*\beta)_{(0,\xi_0)}(X)$ is

$$i^{r}e^{i(f+\xi_{0},Y)}D_{0}(f+\xi_{0})dR \wedge ((\mu_{0})_{*}v_{[n_{0}]}).$$

We rewrite $W_{\theta}(e^{if}(\mu_0)_*\beta)_{(0,\xi_0)}(X)$ in the coordinates $\xi = \exp R(f + \xi_0)$. The image of $(0,\xi_0)$ under this map is the point $f + \xi_0$. The Jacobian of this change of coordinates at the point $(0,\xi_0)$ is $D_0(f + \xi_0)^{-2}$ and we obtain

$$(W_{\theta}(\mathrm{e}^{\mathrm{i}f}(\mu_{0})_{*}\beta)_{[n]})_{f+\xi_{0}}(X) = \mathrm{i}^{r}\mathrm{e}^{\mathrm{i}(f+\xi_{0},Y)}D_{0}(f+\xi_{0})^{-1}dR^{*}\wedge((\mu_{0})_{*}\nu_{[n_{0}]}).$$

This formula implies Theorem 14.

Let us come back to the situation where (M, σ, μ) is a Hamiltonian manifold. Let f be a regular value of μ . Let \mathcal{O} be the orbit of f. Let $G_0 = G(f)$. Let $P_0 = \mu^{-1}(f)$. Then G_0 acts by an infinitesimally free action on P_0 . If $U_0 \subset g_0^*$ is a sufficiently small ball, the manifold $N_0 = \mu^{-1}(f + U_0)$ is a submanifold of M diffeomorphic to $P_0 \times U_0$. We denote by μ_0 the projection of N_0 on U_0 . The manifold $N = \mu^{-1}(\mathcal{W})$ is diffeomorphic to the G-manifold $G \times_{G_0} N_0$. Applying Theorems 7 and 14 we conclude:

COROLLARY 16. Let (M, σ, μ) be a symplectic manifold with a Hamiltonian action of G. Let $\alpha \in \mathscr{H}^{\mu}_{G}(\mathfrak{g}, M)$. Then the Fourier transform $\mathscr{F}(\mathfrak{f}_{M}\alpha)$ of the function $\mathfrak{f}_{M}\alpha(X)$ is an analytic density on each connected component of the set of regular values. It is a polynomial density on the connected component of 0.

More precisely, we know that if f is a regular value and $g_0 = g(f)$, then $\mathscr{F}(\int_M \alpha) = L(\xi) d\xi$ where on the transverse subspace $f + U_0$ to the orbit \mathcal{O} ,

$$L(f + \xi_0) = i' D_0 (f + \xi_0)^{-1} L_0(\xi_0)$$

is the quotient of two G_0 -invariant polynomials. The polynomial L_0 is computed in function of the G_0 -Hamiltonian manifold $\mu^{-1}(f + U_0)$. This result can also be proven directly using Harish–Chandra relations between the Fourier transform on g and g_0 . However the above proof is a local proof.

2. ON WITTEN'S LOCALISATION FORMULA

2.1. An integral formula for free actions

Let G be a Lie group acting on a manifold M.

If M is a compact oriented manifold and $\alpha \in \mathscr{A}_{G}^{\infty}(\mathfrak{g}, M)$ an equivariant differential form, $X \mapsto \int_{M} \alpha(X)$ is an invariant C^{∞} -function on g. It determines a fortiori a generalised function on g denoted $\int_{M} \alpha$. If ϕdX is a test density on g, the formula

$$\int_{\mathfrak{g}} \left(\int_{\mathcal{M}} \alpha \right) (X) \phi(X) \, dX = \int_{\mathcal{M}} \int_{\mathfrak{g}} \alpha(X) \phi(X) \, dX$$

defines the generalised function $\int_M \alpha$.

We can define a generalised function $(\int_M \alpha)(X)$ when M is a noncompact manifold by the same formula as above provided the differential form $\int_{\mathfrak{g}} \alpha(X)\phi(X) dX$ is integrable over M. We formalise this notion as follows. If $\mathscr{V} \to P$ is a vector bundle over a compact manifold P, we say that an equivariant differential form $\alpha \in \mathscr{A}^{\infty}_G(\mathfrak{g}, \mathscr{V})$ is rapidly decreasing in g-mean if for any test function ϕ on \mathfrak{g} , $\int_{\mathfrak{g}} \alpha(X)\phi(X) dX$ is a differential form on \mathscr{V} rapidly decreasing over the fibres of $\mathscr{V} \to P$. Assume the total space \mathscr{V} is oriented. Then the generalised function $(\int_{\mathscr{V}} \alpha)(X)$ is well defined: if ϕ is a test function on \mathfrak{g} ,

$$\int_{\mathfrak{g}} \left(\int_{\mathscr{V}} \alpha \right) (X) \phi(X) \, dX = \int_{\mathscr{V}} \left(\int_{\mathfrak{g}} \alpha(X) \phi(X) \, dX \right).$$

Let P be a manifold where G acts freely. We employ the notations of Section 1.2. Consider the manifold

$$N = P \times \mathfrak{g}^*.$$

Let us first describe a particular closed G-equivariant differential form on $N = P \times g^*$ which is rapidly decreasing in g-mean over the fibre g^* .

Let ω be a connection form for $P \to G \setminus P$. Let $\lambda = (\omega, \xi)$ (see formula (10)).

LEMMA 17. The differential form $e^{-id_g\lambda}$ on N is rapidly decreasing in g-mean.

Proof. We have (see formula (11))

$$e^{-i(d_g\lambda)(X)} = e^{i(\xi,X)}e^{-i(d\omega,\xi)+i(\omega,d\xi)}$$

and for a test function ϕ on g,

$$\int_{\mathfrak{g}} e^{-\mathrm{i}(d_{\mathfrak{g}}\lambda)(X)} \phi(X) dX = \hat{\phi}(\xi) e^{-\mathrm{i}(d\omega,\xi) + \mathrm{i}(\omega,d\xi)}$$

where $\hat{\phi}(\xi) = \int_{\mathfrak{g}} e^{i(\xi, X)} \phi(X) dX$ is the Fourier transform of the test function ϕ . The form $e^{-i(d\omega, \xi) + i(\omega, d\xi)}$ is polynomial in ξ . As the Fourier transform $\hat{\phi}(\xi)$ of the test function ϕ is rapidly decreasing in ξ we obtain the lemma.

Let $\alpha \in \mathscr{A}_{G}^{\infty}(\mathfrak{g}, P)$. Then $e^{-id_{\mathfrak{g}}\lambda}\alpha$ is rapidly decreasing in g-mean over N: in local coordinates m_{i} on P, we have $\alpha(X) = \sum_{I} \alpha_{I}(X, m) dm_{I}$ where $\alpha_{I}(X, m)$ depends smoothly on X, m. By the same calculation as before $\int_{\mathfrak{g}} e^{-i(d_{\mathfrak{g}}\lambda)(X)}\alpha(X)\phi(X) dX$ is rapidly decreasing in ξ for any test function ϕ on g. The generalised function $(\int_{N} e^{-id_{\mathfrak{g}}\lambda}\alpha)(X)$ is well defined.

THEOREM 18. Assume that G acts freely on P. Let $\alpha \in \mathscr{A}_{G}^{\infty}(\mathfrak{g}, P)$ be a closed G-equivariant differential form on P. Then, if ϕ is a test function on \mathfrak{g} ,

$$\int_{\mathfrak{g}} \left(\int_{N} e^{-id_{\mathfrak{g}}\lambda} \alpha \right) (X) \phi(X) \, dX = (2i\pi)^{\dim G} \int_{P} \alpha_{\operatorname{red}} \phi(\Omega) \wedge v_{\omega}.$$

In this formula if the orientation of P is o^P , the orientation of N is $o^P \wedge d\xi$, where v_{ω} and $d\xi$ are determined by formulas (7) and (8). If G acts only infinitesimally freely on P, we obtain the same theorem.

If ϕ is a G-invariant test function, then $\phi(\Omega)$ is a form on N_{red} and we obtain the more invariant formulation of Theorem 18:

$$\int_{\mathfrak{g}} \left(\int_{N} e^{-\mathrm{i} d_{\mathfrak{g}} \lambda} \alpha \right) (X) \phi(X) \, dX = (2\mathrm{i} \pi)^{\dim G} \operatorname{vol}(G) \int_{N^{\mathrm{red}}} \alpha_{\mathrm{red}} \phi(\Omega).$$

In this formula the volume of G is computed using the Haar measure on G compatible with dX. The orientation of N_{red} is o^P/v_{ω} .

Proof of Theorem 18. Let $\beta \in C_{cpt}^{\infty}(\mathfrak{g}, \mathscr{A}(P))$ be a smooth map with compact support from \mathfrak{g} to the space of differential forms $\mathscr{A}(P)$ on a compact manifold P. Define for $\xi \in \mathfrak{g}^*$ the Fourier transform $\hat{\beta}(\xi) = \int_{\mathfrak{g}} e^{\mathbf{i}(\xi, X)} \beta(X) dX$. It is a differential form on P depending on ξ . When ξ tends to ∞ , the form $\hat{\beta}(\xi)$ converges uniformly to 0 on P.

Let $u \in \mathscr{A}(P) \otimes \mathfrak{g}$ be an even form without constant term. For $\beta \in C^{\infty}(\mathfrak{g}, \mathscr{A}(P))$, we can define $\beta(u) \in \mathscr{A}(P)$ via the Taylor expansion of β at 0. We still have the Fourier inversion formula for $\beta \in C^{\infty}_{cpt}(\mathfrak{g}, \mathscr{A}(P))$:

$$(2\pi)^{-n}\int_{\mathfrak{g}^{\bullet}} e^{-\mathbf{i}(u,\,\xi)}\hat{\beta}(\xi)\,d\xi = (2\pi)^{-n}\int_{\mathfrak{g}^{\bullet}} \left(\int_{\mathfrak{g}} e^{\mathbf{i}(X-u,\,\xi)}\beta(X)\,dX\right)d\xi = \beta(u). \tag{18}$$

Let ϕ be a test function on g. We have to compute $\int_N \int_g \alpha(X) e^{-id_X \lambda} \phi(X) dX$. This integral depends only of the equivariant cohomology class of α in $\mathscr{H}_G^{\infty}(g, P)$. Indeed if $\alpha = d_g \beta$, then $\alpha(X)e^{-id_X \lambda} = d_X(\beta(X)e^{-id_X \lambda})$. The term of maximal exterior degree of $\alpha(X)e^{-id_X \lambda}$ is equal to $d((\beta(X)e^{-id_X \lambda})_{\text{[dim }N-1]})$. Thus

$$\left(\int_{\mathfrak{g}} \alpha(X) \mathrm{e}^{-\mathrm{i} d_X \lambda} \phi(X) \, dX\right)_{[\dim N]} = d\left(\int_{\mathfrak{g}} (\beta(X) \mathrm{e}^{-\mathrm{i} d_X \lambda})_{[\dim N-1]} \phi(X) \, dX\right).$$

The same calculation as in Lemma 17 shows that the form on N given by $v = \int_{\mathfrak{g}} \beta(X) e^{-id_X \lambda} \phi(X) dX$ is rapidly decreasing in ξ , so that $\int_N dv = 0$.

We choose as representative of the cohomology class of α the form α_{red} which is independent of $X \in g$. Let us choose an orientation on g and let E^1, E^2, \ldots, E^n be an oriented basis of g. This determines the form v_{ω} (formula (7)). We denote by $\int_{N/P}$ the integral over the fibre g* of the fibration $N \to P$. Then

$$\int_{N}\int_{\mathfrak{g}}\alpha(X)\mathrm{e}^{-\mathrm{i}d_{X}\,\lambda}\phi(X)\,dX=\int_{P}\alpha_{\mathrm{red}}\int_{N/P}\int_{\mathfrak{g}}\mathrm{e}^{-\mathrm{i}d_{X}\,\lambda}\phi(X)\,dX.$$

Consider $e^{-id_X\lambda} = e^{i(\xi, X)}e^{-i(d\omega, \xi)+i(\omega, d\xi)}$. Its term of maximal degree in $d\xi$ is equal to $c d\xi_1 \wedge d\xi_2 \wedge \cdots \wedge d\xi_n \wedge v_\omega = c d\xi \wedge v_\omega$ where $c = i^n \varepsilon$ and ε is a sign.

Then

$$\int_{N/P} \int_{\mathfrak{g}} e^{-\mathrm{i} d_X \lambda} \phi(X) dX = c \int_{N/P} e^{-\mathrm{i} (d\omega, \xi)} \left(\int_{\mathfrak{g}} e^{\mathrm{i} (\xi, X)} \phi(X) dX \right) d\xi v_{\omega}.$$

Let $\Omega = d\omega + \frac{1}{2}[\omega, \omega]$ be the curvature of ω . As $\omega_i \wedge v_\omega = 0$, for all *i*, we have $e^{-i(d\omega,\xi)}v_\omega = e^{-i(\Omega,\xi)}v_\omega$. We obtain

$$\int_{N/P} \int_{\mathfrak{g}} e^{-\mathrm{i} d_X \lambda} \phi(X) \, dX = c \int_{N/P} e^{-\mathrm{i} (\Omega, \xi)} \left(\int_{\mathfrak{g}} e^{\mathrm{i} (\xi, X)} \phi(X) \, dX \right) d\xi v_{\omega}$$

and Fourier inversion formula gives

$$\int_{N/P}\int_{\mathfrak{g}} e^{-i(\Omega,\xi)} e^{i(\xi,X)} \phi(X) \, dX \, d\xi = (2\pi)^n \phi(\Omega).$$

We obtain Theorem 18.

Remark 2.1. It is in fact more natural to use the equivariant cohomology space $\mathscr{H}_{G}^{-\infty}(\mathfrak{g}, P)$ with generalised coefficients [9]. Let $\gamma_{\omega} \in \mathscr{A}_{G}^{-\infty}(\mathfrak{g}, P)$ defined by

$$\gamma_{\omega}(X) = v_{\omega} \wedge \delta(X - \Omega)$$

where δ is the δ -function at 0 on g: i.e.

$$\int_{\mathfrak{g}}\gamma_{\omega}(X)\phi(X)\,dX=v_{\omega}\wedge\phi(\Omega)$$

Then $\gamma_{\omega}(X)$ is a closed equivariant differential form on *P*. It is proved in [9, Proposition 79] that γ_{ω} is a generator of $\mathscr{H}_{G}^{-\infty}(\mathfrak{g}, P)$ over $H^{*}(M_{red})$ and that

$$\int_{N/P} e^{-id_g \lambda} = \varepsilon (2i\pi)^n \gamma_{\omega}$$

where ε is a sign. Theorem 18 follows.

2.2. Witten localisation formula

Let (M, σ, μ) be a compact symplectic manifold with a Hamiltonian action of a compact Lie group G. Let us assume that 0 is a regular value of μ . We assume to simplify that G acts freely on $P = \mu^{-1}(0)$. Let ω be a connection form on P with curvature Ω . Let $M_{red} = G \setminus P$ be the Marsden-Weinstein reduction of M. Let α be a closed G-equivariant differential form on M. We denote by α_{red} the de Rham cohomology class $(\alpha|_P)_{red}$ on M_{red} determined by $\alpha|_P$. In particular $(\sigma_g)_{red}$ is the symplectic form σ_{red} of M_{red} .

Following Witten, we introduce the function $\frac{1}{2} \|\mu\|^2$ and its Hamiltonian vector field *H*. This is a *G*-invariant vector field on *M*. Let us choose a *G*-invariant metric (\cdot, \cdot) on *M*. Let

$$\lambda^{M}(\cdot) = (H, \cdot).$$

Then λ^{M} is a G-invariant 1-form on M.

Let R be the smallest critical value of the function $\|\mu\|^2$. Let r < R and let

$$M_0 = \{ x \in M; \| \mu(x) \|^2 < r \}, \qquad M_{\text{out}} = \{ x \in M; \| \mu(x) \|^2 > r \}.$$
(19)

The manifold M is oriented by its symplectic form.

Let $\alpha(X)$ be a closed G-equivariant differential form on M. Let us consider

$$\Theta(M,t)(X) = \int_M e^{-itd_X\lambda^M} \alpha(X).$$

As α is a closed form and $e^{-itd_{\alpha}\lambda^{M}}$ congruent to 1 in cohomology, $\Theta(M, t)(X)$ is independent of t. Let us break the integral formula for $\Theta(M, t)$ in two parts:

$$\Theta(M_0,t)(X) = \int_{M_0} e^{-itd_X \lambda M} \alpha(X)$$
(20)

and

$$\Theta(M_{\text{out}},t)(X) = \int_{M_{\text{out}}} e^{-itd_X \lambda^M} \alpha(X).$$
(21)

The functions $\Theta(M_0, t)(X)$ and $\Theta(M_{out}, t)(X)$ are C^{∞} -functions on g.

THEOREM 19. For every $t \in \mathbb{R}$ and $X \in \mathfrak{g}$, we have

$$\left(\int_{M} \alpha\right)(X) = \Theta(M_0, t)(X) + \Theta(M_{\text{out}}, t)(X).$$

Furthermore, the limits Θ_0 and Θ_{out} when $t \to \infty$ of $\Theta(M_0, t)$ and $\Theta(M_{out}, t)$ exist in the space of generalised functions on g. If ϕ is a test function on g, we have

$$\int_{\mathfrak{g}} \Theta_0(X)\phi(X)\,dX = (2\mathrm{i}\pi)^{\dim G} \int_P \alpha_{\mathrm{red}}\,\phi(\Omega)v_\omega$$

Remark 2.2. If ϕ is G-invariant, we obtain

$$\int_{\mathfrak{g}} \Theta_0(X)\phi(X)\,dX = \mathrm{i}^{\dim G}(2\pi)^{2\dim G}\int_{M_{\mathrm{red}}} \alpha_{\mathrm{red}}\phi(\Omega).$$

Remark that Θ_0 is a generalised function with support $0 \in g$. Its Fourier transform is a polynomial on g^* .

Proof of Theorem 19. The fact that for every $t \in \mathbb{R}$, we have $(\int_M \alpha)(X) = \Theta(M_0, t)(X) + \Theta(M_{out}, t)(X)$ has already been mentioned. Thus we need only to prove that the limit Θ_0 when $t \to \infty$ of $\Theta(M_0, t)$ exists in the space of generalised functions on g.

We choose an orthornormal basis E^i of g. We write $\mu = \sum_i \mu(E^i) E_i$. We have $\frac{1}{2}d \|\mu\|^2 = \sum_i \mu(E^i) d\mu(E^i) = \sum_i \mu(E^i) \iota((E^i)_M) \sigma$ so that

$$H=\sum_i\mu(E^i)E^i_M.$$

 $\lambda^{M}(\cdot) = (H, \cdot).$

Let

Then
$$\lambda^M = \sum_i \mu(E^i) \omega_i^M$$
 where $\omega_i^M(\cdot) = ((E^i)_M, \cdot)$. We write $\omega^M = \sum_i \omega_i^M E^i$. Then $\lambda^M = (\omega^M, \mu)$.

On M_0 the action of G is infinitesimally free, as follows from Lemma 12. Thus we may choose our metric (\cdot, \cdot) such that $((E^i)_M, (E^j)_M) = \delta_i^j$ on M_0 . Thus on $M_0, \omega^M(X_M) = X$, for $X \in \mathfrak{g}$ so that ω^M is a connection form on M_0 . Furthermore on M_0 , we have $\lambda^M(X_M) = \mu(X)$.

Let $f_{\lambda^M}: M \to g^*$ be the map determined by $f_{\lambda^M}(X) = \lambda^M(X_M)$, then f_{λ^M} coincides with μ on M_0 . On M, we have

$$\langle f_{\lambda^{M}}, \mu \rangle = \sum_{i} \mu(E^{i})((E^{i})_{M}, H) = (H, H) \ge 0.$$

$$(22)$$

On M_0 , we have

$$d_X\lambda^M = -i(\mu, X) + d\lambda^M = -i(\mu, X) + (\mu, d\omega^M) - (\omega^M, d\mu)$$

and we study

$$\int_{M_0} \int_{\mathfrak{g}} e^{it(\mu, X) - it(\mu, d\omega^M) + it(\omega^M, d\mu)} \alpha(X) \phi(X) dX.$$
(23)

Let $\varepsilon > 0$ be a small number. Let $M_{\varepsilon} = \{x \in M; \|\mu(x)\| < \varepsilon\}$ and let $m \mapsto \chi(m)$ be a cut-off function on M identically 1 on $M_{\varepsilon/2}$ and identically 0 outside M_{ε} .

LEMMA 20. We have

$$\lim_{t\to\infty}\int_{\mathcal{M}_0}(1-\chi(m))\left(\int_{\mathfrak{g}}\mathrm{e}^{-\mathrm{i}td_X\,\lambda^M}\,\alpha(X)\phi(X)\,dX\right)=0.$$

Proof of Lemma 20. Let $\beta(X) = \phi(X)\alpha(X)$. Then $\beta \in C^{\infty}_{cpt}(\mathfrak{g}, \mathscr{A}(M))$. On M_0

$$\int_{\mathfrak{g}} e^{-itd_{\lambda}\lambda^{M}} \alpha(X)\phi(X) dX = \int_{\mathfrak{g}} e^{it(\mu,X)} e^{-itd\lambda^{M}} \alpha(X)\phi(X) dX = e^{-itd\lambda^{M}} \hat{\beta}(t\mu).$$

On the support of $1 - \chi$, the function μ satisfies $\|\mu(m)\| \ge \frac{1}{2}\varepsilon > 0$. Thus the differential form $\hat{\beta}(t\mu(m))$ tends rapidly to 0 when $t \mapsto \infty$. The differential form $e^{-itd\lambda^M}$ is polynomial in t so that we obtain our lemma.

Thus

$$\lim_{t\to\infty}\int_{M_0}\left(\int_{\mathfrak{g}}e^{-itd_X\lambda^M}\alpha(X)\phi(X)dX\right)=\lim_{t\to\infty}\int_{M_*}\chi(m)\left(\int_{\mathfrak{g}}e^{-itd_X\lambda^M}\alpha(X)\phi(X)dX\right).$$

Let

 $N = P \times g^*.$

We write any element of $N = P \times g^*$ as (x, ξ) . Let $\omega = \omega^M |_P$. Then ω is a connection form on P. Let

 $\lambda = (\omega, \xi)$

be the 1-form on $N = P \times g^*$ determined by the connection form ω (formula (10)). Choosing ε sufficiently small, we can identify in a G-invariant way M_{ε} to an open set of $N = P \times g^*$, the map μ becoming the second projection $(x, \xi) \mapsto \xi$. This isomorphism is the identity on P. As χ has compact support contained in M_{ε} , we consider the integral $\int_{M_{\varepsilon}} \chi(m) (\int_{g} e^{-id_{\chi} \lambda^{M}} \alpha(X) \phi(X) dX)$ as an integral over N. We still write ω^{M} for the 1-form on N corresponding to ω^{M} . We have $\omega^{M}|_{P} = \omega$. Thus

$$\lim_{t \to \infty} \int_{M_0} \left(\int_{\mathfrak{g}} e^{-itd_X \lambda^M} \alpha(X) \phi(X) dX \right)$$
$$= \lim_{t \to \infty} \int_{N} \chi(m) \left(\int_{\mathfrak{g}} e^{it(\xi, X)} e^{it(m^M, d\xi) - it(\xi, d\omega^M)} \alpha(X) \phi(X) dX \right).$$
(24)

Michèle Vergne

The differential form $e^{it(\omega^M, d\xi) - it(\xi, d\omega^M)}$ can be written $\sum_k P_k(t\xi, t \, d\xi) \mu_k$ where $P_k(\xi, d\xi)$ is a polynomial in the forms $\xi, d\xi$ while μ_k is a differential form on N independent of t. If $v_k(X) = \chi \mu_k \wedge \alpha(X) \phi(X)$, we need to study the limit when $t \mapsto \infty$ of

$$\int_{N} \left(\int_{\mathfrak{g}} e^{it(\xi, X)} P_{k}(t\xi, t\,d\xi) v_{k}(X)\,dX \right).$$

If $v \in C_{\text{cpt}}^{\infty}(\mathfrak{g}, \mathscr{A}(N))$ we write $v_0(X) = (v(X)|_P)$. Then $X \mapsto v_0(X)$ is a compactly supported C^{∞} -function on \mathfrak{g} , with values in $\mathscr{A}(P)$. Its Fourier transform $\xi \mapsto \hat{v}_0(\xi)$ is a differential form on P depending smoothly on ξ . We can consider $\hat{v}_0(\xi)$ as a differential form on $N = P \times \mathfrak{g}^*$.

LEMMA 21. Let $G(\xi, d\xi)$ be a polynomial. For any $v \in C^{\infty}_{cpt}(\mathfrak{g}, \mathscr{A}_{cpt}(N))$ we have

$$\lim_{t\to\infty}\int_N\left(\int_{\mathfrak{g}}\mathrm{e}^{\mathrm{i}t(\xi,X)}G(t\xi,t\,d\xi)\nu(X)\,dX\right)=\int_N G(\xi,d\xi)\hat{\nu}_0(\xi).$$

Proof of Lemma 21. For t > 0, let us consider the map h_t on $N = P \times g^*$ to N given by $h_t(m, \xi) \mapsto (m, t^{-1}\xi)$ for $m \in P$ and $\xi \in g^*$. Change of coordinates shows that

$$\int_{N} \left(\int_{\mathfrak{g}} e^{it(\xi, X)} G(t\xi, t \, d\xi) v(X) \, dX \right) = \int_{N} G(\xi, d\xi) \left(\int_{\mathfrak{g}} e^{i(\xi, X)} h_{t}^{*}(v(X)) \, dX \right).$$

We write the differential form $v(X) = v(X, \xi, d\xi, m_i, dm_i)$ for a local system of coordinates m_i on P. Then $h_t^*(v(X)) = v(X, \xi/t, d\xi/t, m_i, dm_i)$. For a smooth compactly supported function $\phi(X, x)$ of several variables we denote by $(F_1\phi)(\xi, x) = \int_g e^{i(\xi, X)}\phi(X, x) dX$ the Fourier transform of ϕ with respect to the first variable X. Then for any integer K, there exists a constant C_K such that $|F_1\phi(\xi, x)| \le C_K(1 + ||\xi||^2)^{-K}$ for all x, ξ . We have

$$\int_{\mathfrak{g}} e^{i(\xi, X)} h_t^*(v(X)) dX = (F_1 v)(\xi, \xi/t, d\xi/t, m_i, dm_i)$$

The function $\xi \mapsto (F_1 v)(\xi, \xi/t, d\xi/t, m_i, dm_i)$ is rapidly decreasing when ξ tends to ∞ . Furthermore for any K, there exists a constant C_K independent of t such that the function $\xi \mapsto (F_1 v)(\xi, \xi/t, d\xi/t, m_i, dm_i)$ is bounded by $C_K(1 + \|\xi\|^2)^{-K}$. The function $(F_1 v)(\xi, \xi/t, d\xi/t, m_i, dm_i)$ tends to $(F_1 v)(\xi, 0, 0, m_i, dm_i) = \hat{v}_0(\xi)$ when $t \mapsto \infty$. Thus by dominated convergence

$$\int_{N} G(\xi, d\xi) \int_{\mathfrak{g}} e^{i(\xi, X)} h_{i}^{*}(v(X)) dX = \int_{N} G(\xi, d\xi) (F_{1}v)(\xi, \xi/t, d\xi/t, m_{i}, dm_{i})$$

tends to $\int_N G(\xi, d\xi) \hat{v}_0(\xi)$.

Applying Lemma 21 to the study of (24) we obtain, as $\chi|_P = 1$, $\omega^M|_P = \omega$,

$$\lim_{t\to\infty}\int_N\chi(m)\left(\int_{\mathfrak{g}}\mathrm{e}^{\mathrm{i}t(\xi,X)}\mathrm{e}^{\mathrm{i}t(\omega^M,d\xi)-\mathrm{i}t(\xi,d\omega^M)}\alpha(X)\phi(X)dX\right)=\int_N\mathrm{e}^{\mathrm{i}(\omega,d\xi)-\mathrm{i}(\xi,d\omega)}\phi\mathfrak{A}_0(\xi).$$

The last integral is equal to $\int_N \int_{\mathfrak{g}} e^{-id_X \lambda} \alpha_0(X) \phi(X) dX$. Thus the limit Θ_0 when $t \to \infty$ of $\Theta(M_0, t)$ exists and

$$\int_{\mathfrak{g}} \Theta_0(X) \phi(X) dX = \int_N \int_{\mathfrak{g}} e^{-id_X \lambda} \alpha_0(X) \phi(X) dX$$

We now apply Theorem 18 and obtain Theorem 19.

Let us give some immediate applications of Theorem 19. Let $\alpha = e^{i\sigma_s}\beta$ with β a form with polynomial coefficients. Let $\phi(X)$ be a rapidly decreasing function on g. Then the integral $\int_g e^{i\sigma_s(X)}\beta(X)\phi(X)dX$ is convergent and defines a form on M. We can thus consider $\int_M \alpha$ as a tempered generalised function. The same estimates show that Theorem 19 is valid for $\int_M \alpha$ in the space of tempered generalised functions: for all $t \in \mathbb{R}$,

$$\int_{M} \alpha = \Theta(M_0, t) + \Theta(M_{\text{out}}, t)$$

the limit of $\Theta_0 = \Theta(M_0, t)$ exists in the sense of tempered generalised functions and

$$\int_{\mathfrak{g}} \Theta_0(X)\phi(X)\,dX = (2i\pi)^n \int_P \alpha_{\rm red}\phi(\Omega)\,v_\omega.$$

Let

$$\phi(X) = \int_{\mathfrak{g}^*} \mathrm{e}^{-\mathrm{i}(\xi, X)} k(\xi) \, d\xi$$

where $k(\xi)$ is a C^{∞} -function supported on $\|\xi\| < r < R$. The function ϕ is rapidly decreasing on g. By definition

$$\int_{\mathfrak{g}}\int_{\mathcal{M}}\alpha(X)\phi(X)\,dX=(2\pi)^n\int_{\mathfrak{g}^*}\mathscr{F}\bigg(\int_{\mathcal{M}}\alpha\bigg)(\xi)k(\xi)\,d\xi.$$

We have

$$\int_{\mathfrak{g}} \Theta_0(X) \phi(X) \, dX = (2i\pi)^n \int_P \alpha_{\rm red} \int_{\mathfrak{g}^*} c^{-i(\Omega,\,\xi)} k(\xi) \, d\xi$$

Let us show that $\int_{\mathfrak{g}} \Theta(M_{out}, t)(X)\phi(X) dX$ is equal to 0 for all $t \ge 0$. Indeed

$$\int_{\mathfrak{g}} \Theta(M_{\text{out}},t)(X)\phi(X)\,dX = \int_{M_{\text{out}}} \int_{\mathfrak{g}} e^{-itd_X\,\lambda^M} e^{i\sigma_{\mathfrak{g}}(X)}\beta(X) \bigg(\int_{\mathfrak{g}^*} e^{-i(\zeta,X)}k(\zeta)\,d\zeta\bigg).$$

We have

$$e^{-id_{\chi}\lambda^{M}}e^{i\sigma_{g}(\chi)}=e^{i(\mu+tf_{\lambda}\mu,\chi)}e^{-itd\lambda^{M}}e^{i\sigma_{\chi}}$$

By (22), we have

$$\|\mu + tf_{\lambda^{M}}\|^{2} \ge \|\mu\|^{2} + t^{2}\|f_{\lambda^{M}}\|^{2}$$

as $\langle \mu, f_{\lambda^M} \rangle$ is positive. By the double Fourier inversion formula and our hypothesis on the support of k, we see that for every polynomial Q on g,

$$\int_{\mathfrak{g}} e^{i(\mu + tf_{\lambda^{M}}, X)} Q(X) \phi(X) dX = (2\pi)^{n} (Q(\mathrm{i}\partial_{\xi}) \cdot k) (tf_{\lambda^{M}} + \mu) = 0$$

on $M - M_0$ as $||tf_{\lambda^M} + \mu|| > r$ on $M - M_0$. Thus we obtain from Theorem 19 that for all $t \ge 0$,

$$\int_{M}\int_{\mathfrak{g}}\alpha(X)\phi(X)\,dX=\int_{\mathfrak{g}}\Theta(M_{0},t)(X)\phi(X)\,dX$$

Taking limits when t tends to $+\infty$, we obtain

$$\int_{\mathfrak{g}^*} \mathscr{F}\left(\int_M \alpha\right)(\xi)k(\xi) = \int_{\mathfrak{g}} \Theta_0(X)\phi(X)\,dX = \mathrm{i}^n \int_{\mathfrak{g}^*} \left(\int_P \alpha_{\mathrm{red}} \mathrm{e}^{-\mathrm{i}(\Omega,\,\xi)}\right)k(\xi)\,d\xi.$$

This gives another proof of the Jeffrey-Kirwan formula (Theorem 11). Remark that in this proof we obtain immediately that the Jeffrey-Kirwan formula holds on the ball $\|\xi\| < R$, with R equal to the smallest critical value of the function $\|\mu\|^2$ while we had to use some (easy) analyticity arguments in the previous proof.

2.3. The outer term

For further applications to multiplicity formulas, we give a rough analysis of the outer term Θ_{out} in the decomposition $\int_M \alpha = \Theta_0 + \Theta_{out}$. We consider the generalised function Θ_{out} on g given by

$$\Theta_{\rm out}(X) = \lim_{t \to \infty} \int_{M_{\rm out}} \alpha(X) e^{-itd_X \lambda^M}.$$

Let us consider the manifold $\tilde{M} = M \times \mathbb{R}$ where G acts trivially on \mathbb{R} . We embed M in $M \times \mathbb{R}$ by $m \mapsto (m, 0)$. We write (m, t) for an element of \tilde{M} . We consider the differential form $\tilde{\lambda}^M = t \lambda^M$ as a differential form on \tilde{M} . If α is a form on M we still denote by α its pull-back to $M \times \mathbb{R}$. Let us consider 0 < r < R and let

$$P_r = \{m \in M; \|\mu(m)\|^2 = r\}.$$

Let $C \subset \tilde{M}$ be the cyclinder with base P_r :

$$C = P_r \times \mathbb{R}^+.$$

The boundary of C in $M \times \mathbb{R}$ is equal to the boundary of M_{out} both being the manifold P_r . If U is a tubular neighbourhood of P_r in M, we can identify C to the open subset $U - \overline{M}_{out}$ of M. This gives an orientation o_{out} to C.

Define

$$Z = M_{\rm out} \cup (C, o_{\rm out}).$$

Then Z is an oriented cycle in \tilde{M} . We can also identify Z to the manifold M_{out} with a cylindrical end C attached to it.

THEOREM 22. The limit Θ_{out} when $t \to \infty$ of $\Theta(M_{out}, t)$ exists in the space of generalised functions on g. We have

$$\Theta_{\rm out}(X) = \int_{M_{\rm out} \,\cup\, C} e^{-id_X\,\tilde{\lambda}^M}\,\alpha(X)$$

Proof. We first give some more explicit expression for Θ_{out} . We have $d_X \tilde{\lambda}^M = dt \wedge \lambda^M + t \, d_X \lambda^M$ and $e^{-id_X \lambda^M} = (1 - i \, dt \wedge \lambda^M) e^{-itd_X \lambda^M}$. Thus

$$\int_C e^{-id_X \,\hat{\lambda}^M} \, \alpha(X) = -i \int_{P_r \times \mathbb{R}^+} dt \wedge \lambda^M e^{-itd_X \,\lambda^M} \, \alpha(X).$$

As $\tilde{\lambda}^M = 0$ on M,

$$\int_{M_{\text{out}} \cup C} e^{-id_X \,\tilde{\lambda}^M} \, \alpha(X) = \int_{M_{\text{out}}} \alpha(X) - i \int_{P_r \times \mathbb{R}^+} dt \wedge \lambda^M e^{-itd_X \,\lambda^M} \, \alpha(X).$$

On the other hand, we have

$$\frac{d}{dt}e^{-itd_{g}\lambda^{M}}\alpha=-id_{g}(\lambda^{M}e^{-itd_{g}\lambda^{M}}\alpha).$$

We then obtain

$$\mathrm{e}^{-\mathrm{i} s d_{\mathfrak{g}} \lambda^{\mathcal{M}}} \alpha = \alpha - \mathrm{i} d_{\mathfrak{g}} \left(\int_{0}^{s} \lambda^{\mathcal{M}} \mathrm{e}^{-\mathrm{i} t d_{\mathfrak{g}} \lambda^{\mathcal{M}}} \alpha \, dt \right).$$

Integration over M_{out} and using the Stokes formula leads to

$$\Theta(M_{\text{out}},s) = \int_{M_{\text{out}}} e^{-isd_X\lambda^M} \alpha(X) = \int_{M_{\text{out}}} \alpha(X) - i \int_{P_r} \left(\int_0^s \lambda^M e^{-itd_X\lambda^M} \alpha(X) dt \right).$$

When s tends to ∞ , and checking the orientations, we obtain our proposition.

As $d_X \lambda^M = -\mu(X) + d\lambda^M$ on P_r , we can also explicitly write the integral expression of Θ_{out} on test functions ϕ as follows:

$$\int_{\mathfrak{g}} \Theta_{\text{out}}(X)\phi(X)\,dX = \mathrm{i} \int_{P_r \times \mathbb{R}^+} \lambda^{M} \mathrm{e}^{-\mathrm{i} r d\lambda^{M}}(\hat{\alpha}\phi)(t\mu(m))\,dt + \int_{M_{\text{out}}} \int_{\mathfrak{g}} \alpha(X)\phi(X)\,dX.$$

In this integral expression, we see that Θ_{out} is indeed well defined as for $m \in P_r$, $(\hat{\alpha}\phi)(t\mu(m))$ is rapidly decreasing in t (as $\mu(m)$ is never 0 on P_r) while $e^{-itd\lambda^{n}}$ is polynomial in t.

Remark 2.3. Let $G = S^1$. If $E \in g$ is a basis of g, we denote by

$$M_{+} = \{x \in M; \ \mu(E)(x) > r\}, \qquad M_{-} = \{x \in M; \ \mu(E)(x) < -r\}$$

so that $M_{out} = M_+ \cup M_-$. It follows from the previous discussions that both

$$\Theta(M_+,t) = \int_{M_+} \alpha(X) \mathrm{e}^{-\mathrm{i} t d_X \,\lambda^h}$$

and

$$\Theta(M_{-},t)=\int_{M_{-}}\alpha(X)e^{-itd_{X}\lambda^{M}}$$

have limits when t tends to ∞ .

REFERENCES

- 1. N. BERLINE and M. VERGNE: Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C.R. Acad. Sci. Paris 295 (1982), 539-541.
- 2. M. DUFLO and M. VERGNE: Cohomologie équivariante et descente, Astérisque 215 (1993), 5-108.
- 3. J. J. DUISTERMAAT and G. HECKMAN: On the variation in the cohomology of the symplectic form of the reduced phase space, *Invent. Math.* 69 (1982), 259–268.
- V. GUILLEMIN and S. STERNBERG: Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538.
- 5. V. GUILLEMIN and S. STERNBERG: Symplectic techniques in physics, Cambridge Univ. Press, Cambridge (1984).
- 6. L. C. JEFFREY and F. C. KIRWAN: Localization for nonabelian group actions, Topology 34 (1995), 291-327.
- 7. J. KALKMAN: Cohomology rings of symplectic quotients, preprint, University Utrecht (1993).

Michèle Vergne

- 8. F. C. KIRWAN: Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Princeton, NJ (1985).
- 9. S. KUMAR and M. VERGNE: Equivariant cohomology with generalised coefficients, Astérisque 215 (1993), 109-204.
- C.-M. MARLE: Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Torino 43 (1985), 227-251.
- 11. M. VERGNE: Quantification géométrique et multiplicités, C. R. Acad. Sci. Paris 319 (1994), 327-332.
- 12. E. WITTEN: Two dimensional guage theories revisited, J. Geom. Phys. 9 (1992), 303-368.
- 13. S. WU: An integration formula for the square of moment maps of circle actions, preprint hep-th/921207, to appear in Lett. Math. Phys.

E.N.S. et UA 762 du CNRS DMI, Ecole Normale Supérieure 45 rue d'Ulm 75005 Paris France