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0. INTRODUCTION

LET M be a compact symplectic manifold provided with a Hamiltonian action of a compact
Lie group G with Lie algebra g. We note by (M, g, 1) such a data where ¢ is the symplectic
form of M and u: M — g* is the moment map. Let us assume that the action of G on u~(0)
is free. We can then consider the symplectic manifold M,.,q = G\u~*(0). It is a symplectic
manifold, called the Marsden—Weinstein reduction of M, with symplectic form o,.q4. It is
important to be able to compute the integral f, ., veqa Of 2 de Rham cohomology class v,c4
on M,.4. By a theorem of Kirwan [8], any cohomology class v,.4 of M, 4 is obtained from an
equivariant cohomology class v on M by restriction and reduction. In [12], Witten
proposed a formula relating the integral over M,., of v,.4 and an integral over M x g of an
equivariant cohomology class given in terms of v and the equivariant symplectic form.
Witten’s formula has been proven by Kalkman [7], Wu [13] in the case of circle actions and
by Jeffrey and Kirwan [6] in the general case. As the localisation formula [1] is an efficient
tool to compute integrals over M of equivariant cohomology classes, the formula of Witten
can be used to compute H*(M,.4) in some cases {7,6].

Let us explain Witten’s statement. Let « be a G-equivariant differential form on M, that
is, o is an equivariant map from g to the space /(M) of differential forms on M. Assume
that for X e g, a(X) = €*®)B(X) where B is a closed G-equivariant form on M depending
polynomially on the variable X € g and o,(X) = u(X) + ¢ is the value at X € g of the
equivariant symplectic form of M. Let a4 = €“*B,.4 be the de Rham cohomology class of
M, .4 determined by «. We denote by [, « the C*-function on g such that its value at X € g is

the integral of a(X) over M:
<j a>(X)=J a(X).
M M

Consider the Fourier transform & ([ a) of [y a. This is a tempered distribution on g*. Let
d¢ be a Euclidean measure on g*. Then Witten asserted the following: near 0, the generalised
density & (fy o) is a polynomial density P(£)d¢ and

P©) = 2in)*™% vol(G) j Ured- (0
M:ed

In this formula dX is the Euclidean measure on g dual to d¢&, vol(G) is the volume of G for

the Haar measure on G compatible with dX. Moreover, % ([ %) () near O depends only on

the equivariant cohomology class of the restriction of « on x~*(0) and is described explicitly.

In other words, the Fourier transform is local at O (or near any regular value of the moment

map).
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244 Michéle Vergne

In this note, we start by giving a short proof of the formula for P(¢) following closely the
Jeffrey—Kirwan proof [6] of Witten’s formula. Our main observation is the following.
Consider the equivariant cohomology complex with C* coefficients (2 (g, M), d,). Denote
by 5" (g, M) the subspace of G-equivariant differential forms depending polynomially on
X e g Consider a G-equivariant differential form « € &/&(g, M) such that for X eg,
a(X) = e Xy(X) where y is a G-equivariant form on M depending polynomially on the
variable X € g. The subspace

(g, M) = {a(X) = “Fy(X); y € L& (9, M)}

of such forms is a subcomplex of (& (g, M), d,). Let #g(g, M) be the corresponding
cohomology space. Let « € o/%(g, M) and let F ({,; ) be the Fourier transform of {4 a. Then
the map A = %[y L4(g, M) — M~ *(g*)¢ defines a map from the equivariant cohomol-
ogy space #4(g, M) to the space of G-invariant distributions on g* We remark that the
map A is local in cohomology: if U is a G-invariant open subset contained in the set of
regular values of y, then A defines a map from #%(g, ™' (U)) to the space of G-invariant
C>-densities on U. It is then easy to describe the map A using local coordinates on ™! (U).

The Jeffrey—Kirwan formula implies Witten’s asymptotic estimates, when & tends to 0 of

2= f «(X)$,(X)dX

for ¢.(X) = e*!¥1/2 3 Gaussian function on g and « a closed element of 24(g, M).

For applications to multiplicities formula, we need more generally to give a formula for
fu fs0(X)$(X)dX for any C*-function ¢ (with adequate decay properties) on g and any
G-equivariant closed form o on M with C®-coefficients. Thus in the second part of this
article (which is independent of the first part) we study more systematically the C*-function
(fa @) considered as a generalised function on g.

Let M, be an open tubular neighbourhood of 1 ~'(0) in M. Then G acts freely on M,.
We show that the partition M = My, U (M — M,) leads to a decomposition of the C*-
function [, « as a sum of two generalised functions @, and ©,,, on g. These two generalised
functions are obtained by a limit formula as in Witten: let us consider the G-invariant
function $ || #||? and its Hamiltonian vector field H. Let us choose a G-invariant metric (-,-)
on M and consider the G-invariant 1-form 2™ on M given by

My =(H,-).
For any te R and X € g, let
OM,t)(X) = j e Tt (X))
M

where dy = d — 1(Xy) is the equivariant differential. As « is a closed form, @(M, £)(X) is
independent of t. Let us break the integral formula for ®(M, t) in two parts

O (Mo, 1)(X) = j e 5(X) @
Mo
and
OM — My, 1) (X) = f g ~itdx i o(X). (3)
M- M,

We prove the following theorem (Theorem 19).
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THEOREM 1. Let o be a closed G-equivariant form on M. The limits @y and O,
when t — o0 of ©(Mg,t) and O(M — M, 1) exist in the space of generalised functions on g. We
have

J’ o= @0 +®out-
M

The generalised function ®, is of support 0 and we describe it explicitly. Let
W:C*(g)® - H*(M,.q) be the Chern-Weil homomorphism associated to the principal
fibration = 1(0) = M,q. If a4 is the form on M, 4 obtained from o and if ¢ is a G-invariant
test function on g, then

[ ©ux)#()X = 2in¥ev0l6) | s W10

8 Micy

Let us stress that this description of @, follows easily from the determination in [9] of the
equivariant cohomology with generalised coefficients of a space with free G-action. How-
ever, we will give here a self-contained proof. This formula for @, implies, for example, the
Jeffrey—Kirwan formula for & ([y;a) when a € #4(a, M), giving a second proof of the
Jeffrey—Kirwan-Witten formula.

We give also an integral formula for the generalised function ©®,,, as an integral over
M — M, with a boundary term added. In short @,,(X) is the integral of an equivariant
cohomology class over the noncompact manifold M — M, with a cylindrical end attached
to it. It would be interesting to give a more explicit description of @,,,. Such a description is
suggested by Witten as an integral over the critical set of the function | z]|%. An explicit
description of this kind is given in case of the integrals Z(¢) considered by Witten when
furthermore G is a circle S* acting on M with isolated fixed points in [12].

For some of our purposes, this rough determination of ®,,, will be sufficient: we present
in [11] an application of the decomposition of the function {) « as a sum of two generalised
functions to a proof of the Guillemin—Sternberg conjecture [4] on multiplicities when G is
a torus.

1. JEFFREY-KIRWAN LOCALISATION FORMULA
1.1. Local Fourier transforms

Let G be a Lie group acting on a manifold M. Let g be the Lie algebra of G and g* the
dual vector space.

In this article the letter X denotes either a point X € g or the map X +— X from a subset
of g to g. The similar ambiguity is allowed for the letter £ which denotes either a point of g*
or, more often, the map & — & from a subset of g* to g*. In particular, (£, X)) is either a scalar
(the value at X € g of the linear form & e g*), or a function on g* depending linearly on
X € g, or, more often, a map from g to the space of functions on g*.

Let n = dimg. Let E*,E?,. .., E" be a basis of g. We write X eg as X =¥, x;E". Let
E,,E,,. .., E,be the dual basis of g*. We write e g* as £ = Z,.éiEi. We denote by dX the
density dx,dx;---dx, and by d& = dé'dE?- - -dE". We say that dX and d¢ are dual
densities.

If ¢ is a (tempered generalised) function on g, its Fourier transform % (¢) is the
(generalised) density on g* such that

j EENF(g)(E) = B(X).



246 Michéle Vergne

Let S(g*) be the symmetric algebra of g*. We identify an element P e S(g*) either to
a polynomial function X + P(X) on g or to a differential operator with constant coefficient
P(3;) on g* The identification is such that P(d;)(e* ") = P(X)e“X". Similarly S(g) is
identified to the space of polynomial functions on g*.

If X € g, we denote by X, the vector field on M produced by the infinitesimal action of g:

() = o (exp —eX) o,

A G-equivariant differential form on M is a smooth G-equivariant map, defined on the Lie
algebra g, with values in the space </ (M) of smooth differential forms on M. We denote the
algebra of G-equivariant differential forms on M by &/ (g, M) = C*(g, o (M ))¢. Thus, if
ae ZL(g, M), the value «(X) of X € g is a differential form on M. Allowing the preceding
ambiguity for the notation X, we will sometimes denote the map a:g — /(M) by a(X). In
particular a C*-function u(X) on M depending smoothly on X € g and in such a way that
u(g-X)(g-m) = pu(X)(m) for all X e g, me M, g € G is an element of /& (g, M).

For a € o/ (M) we write & = ¥ ay;; for the decomposition of a in homogeneous forms of
exterior degree i.

The equivariant coboundary d,: & (g, M) - & (g, M) is defined for a € «/5 (g, M) and
Xegby

(dy0)(X) = d(@(X)) — 1(Xn) (2(X))

where 1(X,) is the contraction with the vector field X,,. We also write dy for the operator
d — (X)) acting on forms. A closed equivariant form is by definition a G-equivariant
differential form satisfying d,« = 0. We denote by ¢ (g, M) the space Kerd,/Imd,.

We denote by /2" (g, M) = (S(g*) ® o (M))C the complex of G-equivariant forms a(X)
depending polynomially on X € g.

If M is a compact oriented manifold and o € /& (g, M) an equivariant differential form,
X [y a(X)is an invariant C*-function on g (the integral of an inhomogeneous form is by
definition the integral of the term of maximum exterior degree). We denote by
far: A E (8, M) — C*(g)¢ the map so obtained. We also denote by [y : #& (g, M) - C*(g)¢
the map derived from f, in cohomology.

Consider g* as a G-manifold via the adjoint action. Then the map X — (¢, X) is an
element of /X (g, g*). Let U = g* be a G-invariant open subset of g*. Let f € &/’ (g, U) and
let ae (g, U) be defined by a(X)=e¢¥p(X) for Xeg Then (dya)(X)=
e COG(dE, X) + (d,f) (X)) with (dEX)=Y,d¢'x;. Thus if fe &i(‘;c'l(g, U), then
(d,2) (X) = e'®®y(X) with y depending also polynomially on X € g.

Definition 2. The subcomplex (/¢ (g, U),d,) is defined to be
#E(3,U) = {a(X) = & VB(X); fe (g, U}
Its cohomology is denoted by #°% (g, U).
To motivate the next definition, assume first that &/ (g, g*) is compactly supported on
g*. We choose an orientation on g*. Then the integral {. a(X);, of «(X) over g* is well
defined and is a rapidly decreasing C*-function on g. The Fourier transform & ({,.a) is

a C*-density on g*. It is readily computed: let us write a(X), = '¢® ¥ P,(X)a,(£)dé
where P, € S(g*) and «,(£) € C*(g*). Then

F (J > = (Z Pa(ia;)-a,,(:)> de.
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Definition 3. Let ae€ % (g,U) be a G-equivariant form on U. Let df = d¢'a
dEXA- - - AdE". We define V() e #"(U)¢ by

V() = <Z P,(id;)- aa(f)> d¢
if a(X)py = 4Py, Po(X)o,(€)dE with P, e S(g*) and «,(&) e C*(U).

In abstract sense, V' is equal to the composition of the integration f;. over g* and of the
Fourier transform % . However neither [« nor # are generally defined.

LemMA 4. Let e oZ(g,U). Then V(d,p) = 0.

Proof. It is sufficient to prove this for f of exterior degree n— 1. If B(X)=
OOy BUX,E)AELAEE AdEFA- - - AdE, then

(s B(X N = (Z (= D*1AX0) Bul(X, ) + 3 (— 1)F 710, Bul(X, é))ei“‘x’dé-
k k
To compute V' we must replace X by id;, and we obtain V(d,f) = 0. O

By the preceding lemma, we can define the map
ViHg (9, U)—> A"(U)°

in cohomology. We will call V the local Fourier transform.

Let M be a G-manifold. Let u: M — g* be a G-invariant map. Then m — (u(m), X) is
a function on M depending on X e g that we denote by (g, X). Then X —¢e!®*) is an
element of /& (g, M). If B € &5 (g, M) then a(X) = ¢ HB(X) is in #F (g, M). The sub-
space of such forms « is stable under d,.

Definition 5. The subcomplex (#5(g, M), d,) is defined to be
A48, M) = {x(X) = = IB(X);, Be A& (g, M)}.

Its cohomology is denoted by #%(g, M).

The space #%(g, M) is a module over #5"(g, M).

Let y: M — g* be a proper map. Let U be a G-invariant open subset of g*. Assume that
U is contained in the subset of regular values of u. Then p is a fibration over U with compact
fibres. Let N = u~'(U). Assume the fibration u:N — U has oriented fibres and that the
action of G preserves the family of orientations o of the fibres. Let us denote by

Uy (N)— &/ (U) the integral over the fibres (we leave implicit the choice of o). If
a(X) = e XB(X) with B e & (g, N), then

pa(2(X) = €€ Pp (B(X))
belongs to &% (g, U). The integral over the fibre gives a map of complexes
Hy:(5(8,N), dg) > (8 (8,U),d,)
and a map
Vity: #2(g,N) — 4"(U)°

that we will call also the local Fourier transform.
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We assume now M compact and oriented. Let us relate Vu, and #iy. Let
a(X) = e'*PB(X) with B(X) = ¥, P(X)w,. Then

(JM a) X)= ; P(X) ‘[M el Xg,.

The manifold M being compact, the push-forward u, ((04)iaima) BY #y Of the C*-density
(@a)(aim a7 15 @ compactly supported Radon measure on g* and we identify it with a distribu-
tion on g*. Writing [, = [,«u,, we see that

<'[M 0‘) (X) = Z Py(X) '[. ei(c'X)“*((wa)[dimM])'

Thus the Fourier transform of [y a is the distribution

d (.[M a> =Y. Pa(i0e) - (14 (@a)igimm1)- @

Near a regular value of y, the distribution i, (®s)aim s 1S @ smooth density «,(£)d¢ and
F ([ o) is equal to (T, P.(i0;) - ,(£)) d€. Thus we obtain the following theorem.

THEOREM 6. Let M be a compact oriented G-manifold and u:M — g* be a G-invariant
map. Let U be a G-invariant subset of g* contained in the set of regular values of u. Let
o € Z5(8, M). Then over U we have the equality:

?(JM cx> = V(u,).

In particular, if o is closed, then F ({y o) over U depends only on the cohomology class of  in
u -1
6(g,u” (U)).

Thus for o € #%(g, M), in order to determine & (fy, @) near a regular value fof u we need
only to determine the class of « in H#%(g,u”'(U)) where U is a G-invariant tubular
neighbourhood of the orbit @ of f In this sense the Fourier transform is local over
Hs(g, M).

Remark 1.1. Let a € #%(a, M). Assume that G is connected. Let T be a maximal torus of
G. By the localisation formula [1], the integral f) o of a over M depends only on the
restriction of « to the submanifold M7 of fixed points of 7. In the equality

?(JM a) = V(p,a)

near an orbit ¢, the first member depends only on «|,r while the second member depends
only on «|,-1(y,. This equality between these two localisations formulas has already been
fruitfully employed in [6, 7, 13] to compute H*(M,4) if (M, 0, 1) is a Hamiltonian manifold.

In the next section, we determine explicitly the map ¥y, near 0 € g* when the action of
G on u~ }(0) is infinitesimally free.

1.2. Local Fourier transforms and free actions

Let P be a compact manifold with a free left action of a compact Lie group G. Let
q: P - G\P be the quotient map. Recall (see for example [3]) that HZ (g, P) is isomorphic to
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the de Rham cohomology H*(G\P) by the pull-back g*. Let w be a connection form on
P > G\P. Let Q € o/ {P) ® g be the curvature of . If ¢ is a polynomial function on g, then
¢ (Q) is a differential form on P. If ¢ is an invariant polynomial function on g, then ¢(Q) is
a basic form which determines a closed de Rham cohomology class on G\P. More
generally, if X — a(X)is a G-equivariant differential form on P, then «(Q) is a form on P. If
a is a closed G-equivariant differential form, the horizontal component h(x(Q2)) of «(Q)
defines a closed de Rham form on G\P. Then define

Oreq = h(d(Q))

The cohomology class of the differential form «,.4 depends only on the cohomology class of
o in J#¢ (g, P) and not on the choice of connection w. Furthermore the map a — a4 is the
inverse of ¢* in cohomology.

Choose a G-invariant Euclidean norm | -] on g. Let U be a G-invariant open ball
centred at 0 in g*. Consider the manifold

N=PxU.

We denote G\ P by N,.4 (the motivation for this notation will become clear). We denote by
1: N - U the second projection. If « € &Z4(g, N), the restriction of « to P is a G-equivariant
differential form on P = u~1(0), thus determines a form & eq On Nieq.

We assume that P has a G-invariant orientation of that we will leave implicit most of the

time. Choose a basis E!, E?,. . ., E" of g. Let us write the connection form
w =) wkE~ (5)
k
Let
Q=Y QF ©)
k

be the curvature of w. If £ =Y, £*E, € g*, then (Q,¢) = ¥, Q,&* is a form on P.
Let
Vo =W AWz A - - A, 7

Then v, is a vertical form on P of degree n = dim G.

The basis E' of g determines a volume form dX = dx, Adx, A- - - Adx, € A"g*. Our
convention on dual orientations is as follows. We choose as dual positive element d € A"g
the element d& such that

E,AE*AE;AE*A- - -AE,AE"=dX nd¢ 8)

thatis d& = (—1)"®" V2 @EL AdE? A - - - AdE™. The next theorem determines the application
Vity: #5(g, N) - 4™(U)S.

THEOREM 7. Let P be a compact G-oriented manifold with a free action of G. Let U be an
open ball centred at 0 in g*. Let N = P x U and let u be the second projection P x U — U. Let
N,.a = G\P. Let w be a connection form on P with curvature Q. Let a € (g, N) be a closed
equivariant differential form. Let a4 be the element of H*(N,q) determined by o|p. Then

V(f‘t*a) = in (J‘ arede—itn‘{)va) d\i
P

In this formula the elements v,, and d¢ are determined by an oriented basis of g by formulas
(7) and (8).

As Q is a 2-form, Theorem 7 shows in particular that V(u,«) is a polynomial density.
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Proof of Theorem 1. If vis a form of G\ P or P we still denote by v its pull-backs to P and
P x g*. The connection form w gives us the 1-form (w, ) on P x g*
@9 =Y o, ©

We denote this 1-form by A:
A=(w,?). (10)

Consider the differential form e ~** on P x g*. By definition of o, 1(Xp)w = X. Thus for
(x,&) € P x g*, we have (d,A),,:(X) = —({, X) + ((dw),, &) — (w,, dE). It follows that

e 1K) — oill, X) g~ ildw, ) +i(w,dl) (11)

gives an element of «/4(g, N). As the element ¢ ~*%* is invertible, we have
(8, N) = e (g, N).

The form e ™*%* is obviously closed.

o e idad _
—idgs _
e =1, (3(5 )

so that e "'%* is congruent to 1 in #¢ (g, N) (but not in #%4(g, N)).

Remark 1.2. We have

Let a € o#4(g, N) be a closed equivariant differential form. We may write o = ¢ ~i%%g
with B a closed element of .«/5"'(g, N). By the Poincaré lemma, as U is contractible, the
equivariant cohomology space #5° (g, P x U) is isomorphic to #5° (g, P) by the restriction
map, thus to H*(N,.4) = H*(G\P) as G acts freely on P. As 4 =0 on P, we see that, if
o =e B then ey = Prea and a € 4(g, N) is d-equivalent in .2Z4(g, N) to aeqe™ %%

Remark 1.3. It is easy to see that #5(g,N) is a free module over H*(N,.4) with
generator e~ i%%,

We only need to prove Theorem 7 for such an element a = & .4~ %4
We have
a(X) = aredei(ﬁ, X) ei(d(u,nf)+i(w,df).

Let us remark for later use that
a(X) =el&Py (12)

where v = g, g€ "1+ ¢ o7(N) is independent of X.
The form a4 is a form on G\P. It is independent of (£,d&). Let us write
el@d) =y iMlg;,dE; where J are multi-indexes and ¢; signs. We thus have

mww»=é@“zwm<f
J

P

arede_i(dwyé)w.l>d€.l' (13)

To compute V(u,a) we must take the component of maximal degree in d¢ of p, a. With
our conventions of orientations, we have

(#*a(x))[n] = inei(i‘X) <J‘ arede_i(dw’é)vw> dé
P
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where d¢ is the element dual (formula (8)) to the element dX determined by the oriented
basis of g. Let Q = dw + ¥[w, w] be the curvature of w. As w; Av,, = 0 we have

arede-i(dw‘é)va) = arede—i(o‘i)vw'
Thus
(e (X)) = i"€' %) <J

P

a,ede_i(n‘“vw> dé. (14)
By definition of ¥, we have V(u, ) = i"(Jpoyeqe v, ) d¢ and we obtain Theorem 7. O

Remark 1.4. If the action of G on P is only infinitesimally free, it is easy to see that every
element a € #' 7 (g, P) is congruent to a basic form a4 (i.e. a form which is independent of

X € g, horizontal and G-invariant) We can choose a connection form w on P and
Theorem 7 is valid.

We may reformulate Theorem 7 more intrinsically using integration over N4 = G\P
instead of integration over P. First of all, if G is abelian then ¢ “i*% is a form on N,.4 and we
obtain the following.

LeEMMA 8. Let G be a torus, then with the same notations as in Theorem 7

V(.u'* a) = (2in)" (J arede_i(ﬂ-f)> dé.

Nre

In this formula the orientation on N,.q4 is the orientation o /v, and the normalisation for
the density dX is such that vol(G) = (27)" (we choose this normalisation for dX only in the
case of the torus).

More generally, if G is not abelian, we write (Vu, a)/dé = L(x)(¢) where L(x) (£) € S(g)¢

is a polynomial function of £. We denote by (P, Q) the duality between S(g) and S(g*) given
by

(P,Q) = P(0:)Q(O)e=0

for P e S(g*) and Q € S(g). Then L(x) is determined by the duality between S(g)® and
S(g*)¢. Consider the principal fibration P - G\P. If ¢ € S(g*)®, then ¢(—iQ) is a closed
form on N, (its de Rham cohomology class is independent of w). Using the same notations
as Theorem 7, we have the more invariant formulation of Theorem 7:

THEOREM 9. For ¢ € S(g*)¢,
(¢, (Vuy)/d¢) = i"VOI(G)‘[ Zrea P(—1Q).

Nred

Proof. By Theorem 7 and by definition of the duality, we obtain

(6. (Vinp)/dg) = i" J tees (=)0,

The forms ¢(—iQ) and B,.q are forms on G\ P so that the integration of the factor v, gives
the term vol(G) and we obtain Theorem 9. O

1.3. Jeffrey—Kirwan localisation theorem

In this section (M, o, u) is a compact symplectic manifold with Hamiltonian action of
a compact Lie group G. We assume that 0 is a regular value of . We note P = u~*(0).
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Let o, be the equivariant symplectic form. It is the closed G-equivariant differential form
on M defined for X € g by 6,(X) = u(X) + 6. Thus e'»*® = ei»Xei" j5 3 closed element in
our complex #£(g, M). As it is an invertible element, we have

o*(g, M) = {eHB(X); pe L (g, M)}.

We first consider the particularly important closed element ei%™) = gitsXgic of

“(g, M). Let dim M = 2d. Let B, = (d!)~}(2r) %" be the Liouville form on M. Near the

regular value O the push-forward yu,(fB) of the Liouville measure of M is a C*-density on
g*.

The manifold P is a compact manifold. Furthermore, the fact that 0 is a regular value of
u is equivalent to the fact that the action of G on P = u~!(0) is locally free. The orbifold
M..q = G\P is the Marsden-Weinstein reduction of M.

As 0 is a regular value, there exists a G-invariant open ball U < g* such that p~*(U) is
diffeomorphic to Px U by a G-invariant diffecomorphism. Let N = u"}(U)= P x U. We
apply the results of the preceding section. In our case the manifold N,,; = G\P is the
reduced manifold M,.,. By definition of V, u,(By) is the density i~4(2r) =¥ (u,(e'*)). Let
@ be a connection form on P and let Q be the curvature of w. The restriction of
0,(X) = u(X)+ o to P =p"'(0) is simply o|p. By definition, it is the pull-back of the
symplectic form o,.4 of the Marsden—Weinstein reduction M,.4 of M at 0. The dimension of
M,eq is 2dy = 2(d — n) (n = dim G). We obtain from Theorem 7 p,(By)=i"*(2n)™*
(fpei@rea &My Yd¢. Checking out useful exterior degrees, we have:

ProrosiTiON 10. Near O, the push-forward of the Liouville form p,(By) is given by

~

(ared - (6! Q))do Uw) dé

v

el Ba) = 2m) " (do) ™! <

If G is a torus,

»

(6rea — (&, Q))"°)d€- (13)

Hy(Bu) = 2m) "% (doh) ™! (
J Mred

The formula above for a torus G is the Duistermaat—Heckman formula [2]. For
a general compact Lie group G, this is due to Jeffrey and Kirwan [6]. Jeffrey and Kirwan
deduce this formula from the normal form theorem [10,5] which asserts that if U is
sufficiently small there exists a symplectic diffeomorphism of (1~ *(U), o) to U x P equipped
with the symplectic form o = g,.4 — (£,Q).

It follows from Theorem 14 in the next section that u, () is an analytic density on each
connected component of the set of regular values of u. This fact follows also obviously from
the localisation formula [1]. In particular, u,(fBy) will be a polynomial density on the
connected component of 0 in the open subset of regular values of u. In the case of a torus
action it is a polynomial density on each connected component of the open subset of regular
values of p. This is obvious from the previous result as in the case of a torus action we can
translate u to u — &, and displace ourselves at 0. Furthermore if G is a torus, the preceding
formula determines entirely the push-forward of the Liouville measure of M if we assume
that no connected subgroup of T acts trivially on M. Indeed in this case it is easy to see that
the push-forward of the Liouville measure can be written as f(&)dé where (&) is a continu-
ous function on the closed convex set with nonzero interior u(M) < t*. If G is nonabelian,
the knowledge of u, By on regular values does not determine p, 5. For example, an orbit
0 < g* of the coadjoint representation is an Hamiltonian space with moment map u the
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canonical injection @ — g*. The set of regular values of p is g* — @ and p,f, is 0 outside 0,
but is not 0 as a distribution.
Consider now a general element « € &%(g, M). From Theorems 6 and 7, we obtain:

THeEOREM 11 (Jeffrey and Kirwan [6]). Let « be a closed element in <Z%(a, M). Let a,.4 be
the cohomology class of M,.q determined by o«|p. Near O € g the Fourier transform of the
integral [y o of o over M is given by

F (J oc) = <i"f a"de'i“’“)vw) dé.
M P

In particular for £ = 0, the Jeffrey—Kirwan result gives the particularly beautiful follow-
ing formula. For « a closed element of <7 (g, M):

F (f a) (0) = i*(vol G) Ored-
M Mrea

Consider the function | u||? on M.

LeMMaA 12. Let R be the largest number u such that all fe g* such that || f|* < u are
regular values of u. Then R is also the smallest critical value of the function || u||>.

Proof. Indeed x is a critical point of || u||? if and only if x is a zero of the vector field
1(x)y. Let us consider y € g a nonzero element and let M (y) be the manifold of zeroes of the
vector field y,, on M. Let M(y)* be a connected component of M(y). Then u(M(y)*) is
contained in an affine plane orthogonal to y. Thus, identifying g with g*, the nearest point to
0 in this plane is proportional to y. Changing y in a proportional vector, we thus see that R is
also the smallest value of u(x) for those x such that there exists y # 0 such that x e M(y) and
px) = 7. O

It follows from the localisation formula [1] that & (f);«) is an analytic density on each
connected component of the set of regular values of . This follows also from Theorem 14 of
the next section. By analyticity and Lemma 12 above, the Jeffrey-Kirwan formula (The-
orem 11) remains valid for || ¢] < R.

Witten [12] studied the asymptotic behaviour when & — 0 of

Z(e) = f I e ®IB(X)e 1 X112 gx
MJg

where B(X) is a G-equivariant closed form on M with polynomial coefficients. Let o = €'s§.
Then the value of Z(g) at € = 0 is 27)"(F [u ) (0).

THEOREM 13 (Witten [12]). Let (M, o, u) be a compact symplectic manifold with a Hamil-
tonian action of a compact group G. Assume that the action of G on u~*(0) is free. Let Q be the
curvature of the fibration p~1(0) — M,.q = G\ u"'(0). Let R be the smallest critical value of
| #li%. Let r be a positive number such that r < R. Then for any G-equivariantly closed form
B on M with polynomial coefficients, there exists a constant C such that

Z(e) = (2in)*™C vol(G) ( j

Mred

eia"dﬁrede_g o 2/2> + N(a)

with |[N(e)] < Ce™ " for any ¢ > 0.
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Proof. Let a(X) = e"*®)B(X) and let w(X) = [p;a(X). Recall from formula (4) that the
Fourier transform & (w) of w is a derivative of compactly supported Radon measures on g*.
Furthermore for ||{]| < R € g, # (w) is a polynomial density given (Theorem 11) by

F(w) =1" <f g~ dgioreag vw> dé.
P

We have
Z(g) = J w(X)e e X%z gx
q

and by Fourier transforms
20)= | #o@s " anpren e
o
Thus by partition of unity, we see that modulo a rest N(g) less than Ce "%,
Z(e) = J i" (JP e""‘“’:’ei”""ﬁ,ede>s'"/2(21t)"/ze_‘52/2” d& + N(g).

o
By the inversion formula

j e DM 2 2e = 18122 gg — (Djmyre —e1RI2

o*
and one obtains Witten’s estimate. O

1.4. Induction formula

In this section, we prove an induction formula for the map Vu,. This section will not be
used in the remainder of this article.

Let @ < g* be an orbit of the coadjoint representation. Let fe @. Let G, = G(f) and
8o = g(f). Let n = dim g and ny, = dimg,. Let

g=goDrt (16)

be a Go-invariant decomposition of g. Let dimr = 2r = dim 0.

Using decomposition (16), we consider g§ = g*. Thus g¥* is a Gy-invariant supple-
mentary subspace to the tangent space t* = gg = g- f to the orbit 0 at f.

Let {egt. We denote by B;eA’r* the alternate bilinear map B,(R;,R,) =
—(&,[R1,R;]). Let dR € A*t* be a volume form on r and let Do(£) be the Gy-invariant
polynomial function (depending of dR) on g} such that

Do(£)dR = (r!)"'Bi.

As B, is nondegenerate on r = g/g(f), the value of Dy(&) at fis nonzero.
Consider U, a Go-invariant small ball around 0 in g}. Then

W ={g-(f+ &) Co€ Up}

is a tubular neighbourhood of ¢ isomorphic to G x g Uy by (g,&) —g-(f + &). Any
Go-invariant function L(£,) on U, extends to a G-invariant function L on % by
Lig-( f+ &) = L(&). If L is polynomial, the extension L is a G-invariant algebraic
function (it is rational on a | W|-cover, where | W| is the order of the Weyl group of g). In
particular, if L is polynomial, L is analytic. The function &, — Do(f + &) does not vanish
for &y € Up. It admits a G-invariant analytic extension to %"
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Consider a Ggy-oriented manifold P, where G, acts infinitesimally freely. Let
Ny = Py x Uy. Let puo: Ny — U, be the second projection. The element fe g3 is Go-invariant,
thus the map f + p, is a Go-invariant map from N, to g§. We consider the induced manifold
N =G xg,No. We denote by [g,no] the image of the element (g,n,) in the quotient
manifold N = (G x Ny)/G,. The manifold N is fibred over G/G,. Its fibre above the base
point of G/G, is Ny. Thus we consider N, as a G,-invariant submanifold of N. The map
u(g,no) = g+ (f + po(no)) is a G-invariant fibration from N to #” = G x ¢, U, with typical
fibre P,.

Consider the restriction map

ro:g (g, N)— ﬂg:,(go,No)

given by ro(@)(Y) = a(Y)|, for « € o/5(g, N) and Y € go. We have ro(u)(Y) = (£, ¥) + po(Y).
If o € 4(g, N), then B(Y) = ro(@)(Y) is in &% *(go, No). The element e~/ Yry(a) is in
A (80, No)-
Consider the maps
Vi, : #5(8,N) > L"(W)°
and
Volko)s: #6(80, No) = o ™(Up) .

An element h € o/"(# )€ is a G-invariant map from #” to A"g. It is thus determined by
its restriction &, > h(f + &) to f+ U,. An element ¢ € /" (U,)%° is a G,-invariant map
from U, to A"g,. Let dR e A*r* and dR* e A*r be the dual element. Thus if
¢ € " (Uy)%, and &, € Ug then Do(f + &o) (&) A dR* is an element of A"g. Note that it
is independent of the choice of dR.

THEOREM 14. Let Ny = Py x U, where G, acts infinitesimally freely on Py. Let
N =G xg,No. Let a € #4(g,N). Let f=e¢Vro(a) € #%(80, No). Then

V(@) (f + &o) = TDo(f + £0) ™! (Vo(Ho)s B) (o) AdR*.

Proof. Decomposition (16) determines a connection form 8 for the fibration G — G/G,.
Let ® € A2r* ® g, be the curvature of @ at e € G. Then @(R,, R,)(&o) = —(&o,[Ry, R, ]) for
R;erand &y egf.

Let Z, be a Go-manifold. Let Z be the induced manifold G x ¢, Z,. We constructed in
[2] a homomorphism of differential algebras W,: /¢, (80, Zo) = ¢ (g, Z) which gives the
inverse in cohomology to ro: ¢ (8, Z) = ¢, (80, Zo). The formula for W;(p) is given as
follows: we identify a neighbourhood of zy € Z, in Z to a neighbourhood of (0, z¢) in ¥ x Z,
by the map (R, zy) — [exp R, zo]. Thus the tangent space to Z at z, € Z,, is identified to
t®@ T, Zo.

Let X € g. We write X = Y + R with Y € g, and R € . By definition

(WaB)=o(X) = B(Y + ©),, € Ar* ® AT, Z,. 03]
By G-invariance, this formula determines W;f everywhere.

ProposITION 15. The map « v>ro(o) induces an isomorphism from #g(g,N) to
S+uo
H, (80> No)-

Proof of Proposition 15. Let us see first that Wy(e'/ *#0)(X) = ¢'®*®v where v € #(N)
is independent of X eg. Indeed at noeN, and for X =Y + R, we have (f+
po(no), X) = (f + po(no), Y) as f+ po(no) € g. Thus Wy(e/ "), (X) = e'*®y with
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v =i/ *#om)-®) jndependent of X. By G-invariance the result follows. Thus W, sends
le{;: #°(80, No) to =#4(go, No). The explicit formula for a — W;(rox) given in [3] gives the
proposition. a

It follows that any closed element of «#5(g, N) is congruent to an element o = W;(e'/ )
with B a closed element of #/£2(go, No). It remains to prove Theorem 14 for

a = W(ep).

If my:Z,—+Z, is a fibration of Gg-manifolds, and m is the induced fibration
G xg,Z, =G xg,Z,, the map W, satisfies m, W, = W,(my),. Thus we obtain

o = i Wo (€' B) = Wy ((1o)s (€' B)) = WileV (o)h).

Let Y € go. In the proof of Theorem 7 we have seen (formula (12)) that we can suppose that
Be A(g0,No) is such that B(Y)=e*¥)y with v independent of Y. Thus
(0)e B(Y) = €'CV(py), v where (po),v € o (Uy) is a form independent of Y € g,. The
highest exterior degree term (o) V)i, Of (fo)4 Vv is by definition equal to Vo(uo),B. As
before, we see that p.a= Wy(e" (uo)eB) = Wple'V 0 (po),v) is such that
pao(X) = e'©Xyc where k € o (#°) is independent of X. In particular there will be no
differentiation in computing V(o) = V(Wy(e' (10),B)) and we can restrict ourselves to
the slice f+ U, of #". Consider the map r x Uy — #" given by (R, &y) —expR-(f+ &). In
the local coordinates r x U, then by definition of W (formula (17)),

We(eif(llo)*ﬂ)(o,.fo)(x) =e!/*0 50 4 (o), v.

The highest exterior degree term of Wj(e' (po)yB0.c,)(X) is
i'e'S 20 Do (f + o) AR A ((Ho)s Viny))-

We rewrite Wy(e"/ (110)4 B)0.,)(X) in the coordinates ¢ = exp R(f + &,). The image of (0, &,)
under this map is the point '+ £,. The Jacobian of this change of coordinates at the point
(0,&0) is Do(f + &)~ 2 and we obtain

(%(eif(ﬂo)*ﬂ)[nﬂf+fo(x) =10 D(f+ &) 1dR* A ((K0)% Ving1)-

This formula implies Theorem 14. O

Let us come back to the situation where (M, 6, ¢) is a Hamiltonian manifold. Let f be
a regular value of u. Let @ be the orbit of f. Let G, = G(f). Let P, = u~(f). Then G, acts
by an infinitesimally free action on P,. If U, = g¥ is a sufficiently small ball, the manifold
Ny = p~1(f + Uy) is a submanifold of M diffeomorphic to P, x U,. We denote by u, the
projection of Ny on U,. The manifold N = p~!(#") is diffeomorphic to the G-manifold
G x ¢, No. Applying Theorems 7 and 14 we conclude:

CoRrOLLARY 16. Let (M, 6, u) be a symplectic manifold with a Hamiltonian action of G. Let
o € #G(8, M). Then the Fourier transform % ([y o) of the function {ya(X) is an analytic
density on each connected component of the set of regular values. It is a polynomial density on
the connected component of 0.

More precisely, we know that if f is a regular value and go = g(f), then
F(fm o) = L(£)dE where on the transverse subspace f+ U, to the orbit @,

L(f+ &) =iDo(f + £o) ™" Lo(&o)



THE JEFFREY-KIRWAN-WITTEN LOCALISATION FORMULA 257

is the quotient of two Gg-invariant polynomials. The polynomial L, is computed in function
of the Go-Hamiltonian manifold x4~ !(f + Uj). This result can also be proven directly using
Harish—Chandra relations between the Fourier transform on g and go. However the above
proof is a local proof.

2. ON WITTEN’S LOCALISATION FORMULA
2.1, An integral formula for free actions

Let G be a Lie group acting on a manifold M.

If M is a compact oriented manifold and a € &7 (g, M) an equivariant differential form,
X — [pa(X)is an invariant C*-function on g. It determines a fortiori a generalised function
on g denoted fya. If ¢ dX is a test density on g, the formula

L (L “) X)¢(X)dx = L{L «(X)$(X)dX

defines the generalised function {y a.

We can define a generalised function ( f,; o)(X') when M is a noncompact manifold by the
same formula as above provided the differential form §, a(X)@(X)dX is integrable over M.
We formalise this notion as follows. If ¥~ — P is a vector bundle over a compact manifoid P,
we say that an equivariant differential form a € &/ (g, ¥") is rapidly decreasing in g-mean if
for any test function ¢ on g, [, 2(X)¢(X)dX is a differential form on ¥ rapidly decreasing
over the fibres of ¥~ — P. Assume the total space ¥  is oriented. Then the generalised
function ( f, a)(X) is well defined: if ¢ is a test function on g,

L(J; a)(X)d)(X)dX = J;(L oc(X)d)(X)dX).

Let P be a manifold where G acts freely. We employ the notations of Section 1.2.
Consider the manifold

N = Pxg*

Let us first describe a particular closed G-equivariant differential form on N = P x g* which
is rapidly decreasing in g-mean over the fibre g*.
Let w be a connection form for P — G\P. Let 1 = (w, £) (see formula (10)).

LEMMA 17. The differential form ¢ ~'%* on N is rapidly decreasing in g-mean.

Proof. We have (see formula (11))

e—-i(dg}.)(x) = ei(f,X)e—i(dw,f)+i(w,dC)
and for a test function ¢ on g,
J e-i(dgi)(x)¢(x)dx = (j,(é)e—i(dw,é)ﬁ(w.d&)
g

where ¢(¢) = [,6'“X ¢(X)dX is the Fourier transform of the test function ¢. The form
g il ) *it,d) js nolynomial in &. As the Fourier transform ¢(£) of the test function ¢ is
rapidly decreasing in ¢ we obtain the lemma. O



258 Michele Vergne

Let a € #7(g,P). Then e '%*a is rapidly decreasing in g-mean over N: in local
coordinates m; on P, we have a(X') = Y, o;(X, m)dm; where a;(X,m) depends smoothly on
X, m. By the same calculation as before {e i ®q(X)p(X)dX is rapidly decreasing in
¢ for any test function ¢ on g. The generalised function ( fye~'**a)(X) is well defined.

THEOREM 18. Assume that G acts freely on P. Let a € 5 (g, P) be a closed G-equivariant
differential form on P. Then, if ¢ is a test function on g,

j ( f e-““a)(xw(xmx=(2in)‘“m6 f taea D(Q) A b
g N P

In this formula if the orientation of P is o, the orientation of N is o A d&, where v, and
d¢ are determined by formulas (7) and (8). If G acts only infinitesimally freely on P, we
obtain the same theorem.

If ¢ is a G-invariant test function, then ¢(Q) is a form on N,.4 and we obtain the more
invariant formulation of Theorem 18:

J (j e‘i"“oc) X)o(X)dX = (2in)tim€ vol(G)J %rea P(R2).
9 N Nred

In this formula the volume of G is computed using the Haar measure on G compatible
with dX. The orientation of N, is o/v,,.

Proof of Theorem 18. Let B e C& (g, o/(P)) be a smooth map with compact support
from g to the space of differential forms .« (P) on a compact manifold P. Define for £ € g*
the Fourier transform () = [,¢'©®g(X)dX. It is a differential form on P depending on ¢&.
When ¢ tends to oo, the form ﬁ(é) converges uniformly to 0 on P.

Let u € &/ (P) ® g be an even form without constant term. For f € C*(g, &/ (P)), we can
define B(u) € o7 (P) via the Taylor expansion of § at 0. We still have the Fourier inversion
formula for g € C3, (g, & (P)):

an [ ewopode = | ([ eoropooax)ar-pw v

Let ¢ be a test function on g. We have to compute [y f, a(X )e ™" *¢(X)dX. This integral
depends only of the equivariant cohomology class of a in )¢ (g, P). Indeed if « = d,f, then
a(X)e % = dy(B(X)e ™9 *), The term of maximal exterior degree of (X )e ™4 *is equal to
d((B(X)e™ ") gimn 1) Thus

( f a(X)e"““¢>(X)dX) - d( f (ﬂ(X)e'““)[dimN_u¢<X)dX>.

[dim N]
The same calculation as in Lemma 17 shows that the form on N given by
v=[B(X)e " *¢(X)dX is rapidly decreasing in &, so that [ydv = 0.

We choose as representative of the cohomology class of « the form «,.4 which is
independent of X €g. Let us choose an orientation on g and let E, E2,.. . E" be an
oriented basis of g. This determines the form v,, (formula (7)). We denote by fyp the integral
over the fibre g* of the fibration N — P. Then

J f a(X)e 4 ip(X)dX =J a,edj J e righ(X)dX.
NJg P N/P Jg
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Consider e~ * = gl Xlgilde.O+il.d) Ttg term of maximal degree in d¢ is equal to
cdéyndeyn-- - AdE A, = cdE Av, where ¢ = 1" and ¢ is a sign.

Then
J J‘ e—idx}tqs(X)dX — CJ‘ e—i(dw,f)(J‘ ei(f.X)¢(X)dX>d€vw_
N/P Jg N/P ]

Let Q=dw + $[w,w] be the curvature of w. As w;Aav, =0, for all i, we have
g e d)y — g~i®8y  We obtain

J J C_idxl(b(x)dX — CJ e‘i(QvO(j ei(f'x)(i)(X)dX)dew
NP Jg NP 9

and Fourier inversion formula gives
f f e DX (X )dX dE = 2n)"P(Q).
JN/P Jg

We obtain Theorem 18. O

Remark 2.1. It is in fact more natural to use the equivariant cohomology space
HG *(g, P) with generalised coefficients [9]. Let 3, € &g ©(g, P) defined by

Yo(X) = 1, A X — Q)

where d is the é-function at 0 on g: i.c.

f 1o(X)BX)dX = v, A H(Q).

Then y,(X) is a closed equivariant differential form on P. It is proved in [9, Proposition 79]
that y,, is a generator of #; ©(g, P) over H*(M,.4) and that

f e” % = ¢(2in)"y,
N/P
where ¢ is a sign. Theorem 18 follows.

2.2. Witten localisation formula

Let (M, o, ) be a compact symplectic manifold with a Hamiltonian action of a compact
Lie group G. Let us assume that 0 is a regular value of u. We assume to simplify that G acts
freely on P = ;™ !(0). Let w be a connection form on P with curvature Q. Let M,.q4 = G\ P be
the Marsden—Weinstein reduction of M. Let « be a closed G-equivariant differential form
on M. We denote by «,.4 the de Rham cohomology class (|p),eq On M, determined by o|p.
In particular (g,),.q is the symplectic form 6,.4 of M,q.

Following Witten, we introduce the function 4|/ 4|2 and its Hamiltonian vector field H.
This is a G-invariant vector field on M. Let us choose a G-invariant metric (-,-) on M. Let

M) =(H,-).

Then 4™ is a G-invariant 1-form on M.
Let R be the smallest critical value of the function | u|%. Let r < R and let

Mo={xeM; |u()I* <r}, M= {xeM; |ux)|*>>r} (19)

The manifold M is oriented by its symplectic form.
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Let «(X) be a closed G-equivariant differential form on M. Let us consider
GMLﬂw)=f e i 5(X).
M

As o is a closed form and e %" congruent to 1 in cohomology, ®(M, t)(X ) is independent
of t. Let us break the integral formula for ®@(M,t) in two parts:

@(Mo,t)(X)=j e M (X)) 20)
Mo
and
O (Mo, 1) (X) = j e~ ¥ g (X), @)
MO“'.

The functions @(M,,t)(X) and @(M,,,, t)(X) are C*-functions on g.

THEOREM 19. For every t € R and X € g, we have

( La) (X) = O(Mo, )(X) + O (Mo, )(X).

Furthermore, the limits ®¢ and ©,,, whent - o0 of @(My, t) and O (M,,,, t) exist in the space
of generalised functions on g. If ¢ is a test function on g, we have

f Oo(X)$(X)dX = (2in)m6 f trea Q)0

Remark 2.2. If ¢ is G-invariant, we obtain

f Oo(X)$(X)dX = {#m6(2p)2eimG f teea ().

Mred

Remark that ©, is a generalised function with support 0 € g. Its Fourier transform is
a polynomial on g*.

Proof of Theorem 19. The fact that for every teR, we have ([ya)(X)=
O(M,,1)(X) + O(M,,, t)(X) has already been mentioned. Thus we need only to prove that
the limit @, when t - co of ®(M,,t) exists in the space of generalised functions on g.

We choose an orthornormal basis E of g. We write u=Y,u(E')E;,, We have
$dpl? = X, p(E) du(E') = T, m(E)((E )0 so that

H =¥ u(E")Ejy.
Let l
M(+)=(H,).
Then M = ¥, u(E*)wM where () = (E')p, +). We write o™ = ¥,wME". Then
M= (oM, ).

On M, the action of G is infinitesimally free, as follows from Lemma 12. Thus we may
choose our metric (-, ) such that ((E%)y, (E”)y) = 34 on M,. Thus on My, o™ (Xy) = X, for
Xeg so that w™ is a connection form on M,. Furthermore on M,, we have
M(Xy) = p(X).
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Let f.n: M — g* be the map determined by fiu (X) = A*(X), then fiu coincides with
4 on My. On M, we have

(s uy =3 WE)(Ey, H) = (H,H) 2 0. (22)

On M, we have

and we study
j J ei'(“'x)""(“‘d"’MHi‘(“’M'd“)a(X)d)(X)dX. (23)
Mo Jg

Let ¢ >0 be a small number. Let M, = {xe M; |u(x)|| <&} and let m — y(m) be
a cut-off function on M identically 1 on M,,, and identically O outside M,.

LemMa 20. We have
lim '[ a- X(m))(f g itdx ¥ oc(X)d)(X)dX) = 0.
Mo 8

Proof of Lemma 20. Let f(X) = ¢(X)x(X). Then f e CH(g, o (M)). On M,
J‘ &~ ¥ (X )(X)dX = j gt Ve =i 5 (XY B(X)dX = ¢~ (p),

On the support of 1 — y, the function y satisfies || u(m)| > 3& > 0. Thus the differential form
B(tu(m)) tends rapidly to O when ¢t — co. The differential form e ~*¥*" is polynomial in ¢ so

that we obtain our lemma. O
Thus
lim j (J g idx A a(X)¢(X)dX> = lim J x(m)(J‘ g idx M a(X)(b(X)dX).
oo M, g o JM, [
Let
N =Pxg*.

We write any element of N = P x g* as (x, &). Let @ = w™|p. Then w is a connection form
on P. Let

4= (%)

be the 1-form on N = P x g* determined by the connection form  (formula (10)). Choosing
¢ sufficiently small, we can identify in a G-invariant way M, to an open set of N = P x g*, the
map p becoming the second projection (x, &) + &. This isomorphism is the identity on P. As
x has compact support contained in M,, we consider the integral f, x(m)(f,e ™" ** a(X)
¢(X)dX) as an integral over N. We still write w™ for the 1-form on N corresponding to ™.
We have o™|p, = w. Thus

t— o0

lim <f g idx ¥ oc(X)qS(X)dX)
M, 8

=lim | x(m) ( J e"‘f'x)e“‘"’"‘"’f"i‘(‘f"“"“)a(X)¢(X)dX>. (24)
N ]

t— oo
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The differential form ei*@" -4 ~#&do") cap be written Y, Pi(tE, t d&)w, where P (&,dE) is
a polynomial in the forms £, d& while p, is a differential form on N independent of ¢. If
VilX) = i A (X))@ (X), we need to study the limit when t — oo of

j <J\ eit(g'x)Pk(té, td‘f)vk(X) dX) .
N \Ja

If ve Coul(g, 4 (N)) we write vo(X) = (v(X)|p). Then X +—v,(X) is a compactly sup-
ported C®-function on g, with values in o7 (P). Its Fourier transform & — $,(¢) is a differen-
tial form on P depending smoothly on & We can consider ¥y(¢) as a differential form on
N=Pxg*

Lemma 21. Let G(&,dE) be a polynomial. For any v € C3,(8, .p(N)) we have

lim f <J ei"i'X’G(tf,tdé)v(X)dX> = J G(&,dEYo(&).
N g N

| Smdle o}

Proof of Lemma 21. For t > 0, let us consider the map h, on N = P x g* to N given by
h(m, &) —(m,t~ &) for m € P and ¢ € g*. Change of coordinates shows that

f (j e“(f'x’G(té,tdé)v(X)dX>=f G(é,dé)(f e‘“""h;"(v(X))dX>.
N g N [

We write the differential form v(X) = v(X, &, d&, m;,dm;) for a local system of coordin-
ates m; on P. Then h*(v(X)) = v(X, &/t, d&é/t,m;,dm;). For a smooth compactly supported
function @(X,x) of several variables we denote by (Fy¢)(&,x) = [,e'“ ¥ ¢(X,x)dX the
Fourier transform of ¢ with respect to the first variable X. Then for any integer K, there
exists a constant Cy such that |Fy¢(&,x)| < Cx(1 + [|£]1*)™X for all x, . We have

f DR (X)) dX = (Fyv) (& /e, &/t ms, dmy).

The function & > (Fyv) (&, &/t dE/t, m;,dm;) is rapidly decreasing when & tends to co. Fur-
thermore for any K, there exists a constant Cx independent of ¢ such that the function
& (Fv)(&, &/t dEft,m;,dm;) is bounded by Cg(1 + ||£]|2) %, The function (Fyv)(¢, &/,
déjt,m;, dm;) tends to (F;v)(&,0,0,m;,dm;) = 94(£) when t +— oo, Thus by dominated conver-
gence

J G(, dé)f e COp¥(v(X))dX = J G(¢, dE)(Fy) (&, &/, dejt, m;, dm;)
N 9 N
tends to [y G(&,dE)Po(¢). =

Applying Lemma 21 to the study of (24) we obtain, as y|p = 1, o™|p = o,

Lm X(m) (f eit(f,X)eit(wM,dc)——it(é,de)a(X)¢(X)dX> — J ei(w,d{)—i(é.dw)qs&o(é).
N 9 N

t=> o
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The last integral is equal to fy f,e ™ ***ao(X)$(X ) dX. Thus the limit @, when t - oo of
O(M,, t) exists and

J Bo(X)(X)dX =j '[ ey (X)p(X)dX.
9 NJg
We now apply Theorem 18 and obtain Theorem 19. |

Let us give some immediate applications of Theorem 19. Let « = ¢'*f with 8 a form
with polynomial coefficients. Let ¢(X) be a rapidly decreasing function on g. Then the
integral f,e's®B(X) (X )dX is convergent and defines a form on M. We can thus consider
{u o as a tempered generalised function. The same estimates show that Theorem 19 is valid
for fy a in the space of tempered generalised functions: for all t € R,

[, %= ©o.0) + O
M
the limit of @, = @(M,, t) exists in the sense of tempered generalised functions and

f ®o(X)$(X)dX = (ﬁn)”j teea ()0,

Let
60 = | ek

g*

where k(£)is a C*-function supported on [ £| < r < R. The function ¢ is rapidly decreasing
on g. By definition

f f 2(X)$(X)dX = (2n)" j ff( f a>(é)k(é)d6-
aJM g* M
We have

j Oo(X)$(X)dX = Qin" f - f e TI0.0k(E) de.

g*

Let us show that (,@ (M, t)(X)$(X)dX is equal to O for all ¢ > 0. Indeed

J O (Mo, 1) (X)$(X) dX = f"‘""“”e“’“""ﬂ(x)q °““”"k(¢>d¢)'
9 [ q*

Mout

We have

e i M giog(X) _ oi(u+tfim. X) g —itdA™ gic
By (22), we have
i+ tha |2 2 Nlpll® + ) fim |12
as {y, fim » is positive. By the double Fourier inversion formula and our hypothesis on the

support of k, we see that for every polynomial Q on g,

[| et m00) 8002 = @m(Q(2) - W efir + 10 =0
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on M — M, as | tfiu + p]| > ron M — M,. Thus we obtain from Theorem 19 that for all
t=>0,

JMLa(X)d’(X)dX ='[ O (Mo, 1)(X)$(X)dX.

q

Taking limits when ¢ tends to + oo, we obtain

j 9<f a)(é)k(é)= j Oo(X)H(X)dX = i f ( j ande*““'f’)k(z)dc.

This gives another proof of the Jeffrey—Kirwan formula (Theorem 11). Remark that in
this proof we obtain immediately that the Jeffrey-Kirwan formula holds on the ball
€]l < R, with R equal to the smallest critical value of the function || 4 ||? while we had to use
some (easy) analyticity arguments in the previous proof.

2.3. The outer term

For further applications to multiplicity formulas, we give a rough analysis of the outer
term @,,, in the decomposition [y a = Oy + O,,,. We consider the generalised function
@, on g given by

Opu(X) = lim J a(X)e A
t7© JMout
Let us consider the manifold M = M x R where G acts trivially on R. We embed M in
M x R by m — (m,0). We write (m, t) for an element of M. We consider the differential form
IM = (M a5 a differential form on M. If o is a form on M we still denote by a its pull-back to
M x R. Let us consider 0 < r < R and let

P, ={meM; |um)|*=r}.
Let C = M be the cyclinder with base P,:
C=PxR"

The boundary of C in M x R is equal to the boundary of M, both being the manifold P,. If
U is a tubular neighbourhood of P, in M, we can identify C to the open subset U — M,,, of
M. This gives an orientation oy, to C.
Define
Z = Mout v (C’ 00“!)'

Then Z is an oriented cycle in M. We can also identify Z to the manifold M,,, with
a cylindrical end C attached to it.

THEOREM 22. The limit O, when t > 0 of O@(M,,,,t) exists in the space of generalised
functions on g. We have

Ouu(X) = j eI y(X),

MoutouC

Proof. We first give some more explicit expression for ©,,. We have dyi™ =
dt AIM + tdyAM and e = (1 — idt A AM)e "2 Thus

j e M g(X) = —if dt A AMe x4 g (X)),
C P, xR*
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As /M =0 on M,

j o= M (X) = f #(X) — i f dt A M= g(X),
Mo U € Mout P, xR

On the other hand, we have

ad_te—itdgﬂ" o= __idg(AMe—itdg/‘.M (1).
We then obtain
s
e i My = o —id, (J AMeidy 2 ozdt).
0

Integration over M,,, and using the Stokes formula leads to

O(Mous,s) = f e~ My (x) = f a(X) =i f (J AMe'“"”Ma(X)dt)
Mout Mout P, 0

When s tends to oo, and checking the orientations, we obtain our proposition. O

As dyM = —u(X) + d™ on P,, we can also explicitly write the integral expression of
®,, on test functions ¢ as follows:

f ®ou.(X)¢(X)dx=if M (46) (tu(m)) i + fa(X)qS(X)dx.

P, xR* Mout

In this integral expression, we see that ®,, is indeed well defined as for me P,,
(@) (tu(my) is rapidly decreasing in ¢ (as u(m) is never 0 on P,) while e 4% is polynomial in ¢,

Remark 2.3. Let G = S*. If E € g is a basis of g, we denote by
M, ={xeM; p(E)(x)>r}, M_ = {xeM; uy(E)(x) < —r}

so that M,,, = M, u M_. It follows from the previous discussions that both

OM,,t)= J a(X)eitdx M
M,
and

OM_,t)= f a(X)eirdx A

have limits when t tends to oo.
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