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0. INTRODUCTION 

LET A4 be a compact symplectic manifold provided with a Hamiltonian action of a compact 
Lie group G with Lie algebra g. We note by (M, cr, p) such a data where 0 is the symplectic 
form of M and ~1: M + g* is the moment map. Let us assume that the action of G on p-‘(O) 
is free. We can then consider the symplectic manifold Mred = G\p- ‘(0). It is a symplectic 
manifold, called the Marsden-Weinstein reduction of M, with symplectic form &d. It is 
important to be able to compute the integral jm,,d v,,d of a de Rham cohomology class v,,d 

on Mred . By a theorem of Kirwan [8], any cohomology class v,,d of Mrcd is obtained from an 
equivariant cohomology class v on M by restriction and reduction. In [12], Witten 
proposed a formula relating the integral over Mred of v,,d and an integral over M x g of an 
equivariant cohomology class given in terms of v and the equivariant symplectic form. 
Witten’s formula has been proven by Kalkman [7], Wu [13] in the case of circle actions and 
by Jeffrey and Kirwan [6] in the general case. As the localisation formula [l] is an efficient 
tool to compute integrals over M of equivariant cohomology classes, the formula of Witten 
can be used to compute H*(Mred) in some cases [7,6]. 

Let us explain Witten’s statement. Let a be a G-equivariant differential form on M, that 
is, tl is an equivariant map from g to the space d(M) of differential forms on M. Assume 
that for X E g, a(X) = ei”~‘X)/?(X) wh ere /I is a closed G-equivariant form on M depending 

polynomially on the variable X E g and a&X) = p(X) + cr is the value at X E g of the 
equivariant symplectic form of M. Let a,,d = eiOrcd Bred be the de Rham cohomology class of 
Mred determined by ~1. We denote by jM a the P-function on g such that its value at X E g is 
the integral of a(X) over M: 

Consider the Fourier transform P”(jM ~1) of jy a. This is a tempered distribution on g*. Let 
d< be a Euclidean measure on g*. Then Witten asserted the following: near 0, the generalised 
density 9( JM u) is a polynomial density P(t) dt and 

P(0) = (2in)dimG vol(G) 
s 

ared. (1) 

Mrcd 

In this formula dX is the Euclidean measure on g dual to dt, vol(G) is the volume of G for 
the Haar measure on G compatible with dX. Moreover, F( JM tl) (<) near 0 depends only on 
the equivariant cohomology class of the restriction of tx on pL- ‘(0) and is described explicitly. 
In other words, the Fourier transform is local at 0 (or near any regular value of the moment 

map). 
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In this note, we start by giving a short proof of the formula for P(t) following closely the 
Jeffrey-Kirwan proof [6] of Witten’s formula. Our main observation is the following. 
Consider the equivariant cohomology complex with C” coefficients (d$‘( g, M), d,). Denote 
by drr( g, M) the subspace of G-equivariant differential forms depending poIynomially on 
X E g. Consider a G-equivariant differential form a E &‘z(g, M) such that for X E g, 
a(X) = ei(NvX)y(X) where y is a G-equivariant form on M depending polynomially on the 
variable X E g. The subspace 

dg(g, M) = (a(X) = e "“*"y(X); y E dr’(g, M)) 

of such forms is a subcomplex of (&‘$ (9, M), d,). Let xg(g, M) be the corresponding 
cohomology space. Let a E zZ$( g, M) and let FG(IM a) be the Fourier transform of SM a. Then 
the map A = FjM:&g(g, M) + &!-“(g*)G d e fi nes a map from the equivariant cohomol- 

ogy space %‘g(g, M) to the space of G-invariant distributions on g*. We remark that the 
map A is local in cohomology: if U is a G-invariant open subset contained in the set of 
regular values of p, then A defines a map from Y?:( g, CL- ’ (U)) to the space of G-invariant 
P-densities on U. It is then easy to describe the map A using local coordinates on p- 1 (U). 

The Jeffrey-Kirwan formula implies Witten’s asymptotic estimates, when E tends to 0 of 

for q$E(X) = e-E~~x~~2/2 a Gaussian function on g and c1 a closed element of &( g, M). 

For applications to multiplicities formula, we need more generally to give a formula for 

Ih&x(X)NX)dX f or any P-function 4 (with adequate decay properties) on g and any 
G-equivariant closed form u on M with P-coefficients. Thus in the second part of this 
article (which is independent of the first part) we study more systematically the P-function 
(jM a) considered as a generalised function on g. 

Let MO be an open tubular neighbourhood of p-i(O) in M. Then G acts freely on MO. 

We show that the partition M = MO u (M - MO) leads to a decomposition of the C”- 
function Jo a as a sum of two generalisedfinccions Go and O,,, on g. These two generalised 
functions are obtained by a limit formula as in Witten: let us consider the G-invariant 
function 3 I[~/[ 2 and its Hamiltonian vector field H. Let us choose a G-invariant metric ( -, - ) 
on M and consider the G-invariant l-form AM on M given by 

For any t E R and X E g, let 

n”( -) = (H,.). 

O(M, t)(X) = 
s 

,-itdwlM @(x) 

M 

where dx = d - 2(X,) is the equivariant differential. As c1 is a closed form, O(M, t)(X) is 
independent of t. Let us break the integral formula for O(M, t) in two parts 

@(MO, t)(X) = [ e-irdwiM e(X) (2) 

and 

O(M - M,,@(X) = 
s M 

,-itdxlM @(_y). (3) 
Ma 

We prove the following theorem (Theorem 19). 
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THEOREM 1. Let a be a closed G-equivariant form on M. The limits OO and O,,, 

when t -+ 00 of @(MO, t) and O(M - MO, t) exist in the space of generalisedfinctions on g. We 

have 

s 
01 = 00 + O,“,. 

M 

The generalised function O0 is of support 0 and we describe it explicitly. Let 
W: C” ( g)G + H*(M,,,) be the Chern-Weil homomorphism associated to the principal 
fibration pL- ’ (0) + Mred. If cl,,,, is the form on Mrcd obtained from tl and if $J is a G-invariant 
test function on g, then 

s 
O,(X)r#(X)dX = (2i$dimG vol(G) 

s 
ared w(d)a 

9 MWd 

Let us stress that this description of O0 follows easily from the determination in [9] of the 
equivariant cohomology with generalised coefficients of a space with free G-action. How- 
ever, we will give here a self-contained proof. This formula for @, implies, for example, the 
Jeffrey-Kirwan formula for F&a) when o! E %g(g, M), giving a second proof of the 
Jeffrey-Kirwan-Witten formula. 

We give also an integral formula for the generalised function O,,, as an integral over 
M - MO with a boundary term added. In short O,,,(X) is the integral of an equivariant 
cohomology class over the noncompact manifold M - MO with a cylindrical end attached 

to it. It would be interesting to give a more explicit description of O,,. Such a description is 
suggested by Witten as an integral over the critical set of the function 11 p 11’. An explicit 
description of this kind is given in case of the integrals Z(E) considered by Witten when 
furthermore G is a circle S’ acting on M with isolated fixed points in 1121. 

For some of our purposes, this rough determination of Oout will be sufficient: we present 
in [l l] an application of the decomposition of the function jy a as a sum of two generalised 
functions to a proof of the Guillemin-Sternberg conjecture [4] on multiplicities when G is 
a torus. 

1. JEFFREY-KIRWAN LOCALISATION FORMULA 

1.1. Local Fourier transforms 

Let G be a Lie group acting on a manifold M. Let g be the Lie algebra of G and g* the 
dual vector space. 

In this article the letter X denotes either a point X E g or the map X H X from a subset 
of g to g. The similar ambiguity is allowed for the letter 5 which denotes either a point of g* 
or, more often, the map 5 H < from a subset of g* to g*. In particular, (5, X) is either a scalar 

(the value at X E g of the linear form 5 E g*), or a function on g* depending linearly on 
X E g, or, more often, a map from g to the space of functions on g*. 

Let II = dim g. Let E’, E*, . . . , E” be a basis of g. We write X E g as X = xi XiE’. Let 

El,&,. . ., E, be the dual basis of g*. We write < E g* as 5 = xi (‘EL. We denote by dX the 
density dxt dx2. . . dx, and by d< = dr’ dc*. . . dr”. We say that dX and d< are dual 

densities. 
If 4 is a (tempered generalised) function on g, its Fourier transform F(4) is the 

(generalised) density on g* such that 

s ei(r*X)F(4)(tj) = d(X). 
9’ 



246 Michele Vergne 

Let S(g*) be the symmetric algebra of g *. We identify an element P E S(g*) either to 
a polynomial function X H P(X) on g or to a differential operator with constant coefficient 
P(ZJ,) on g*. The identification is such that P(a()(e (5,x)) = P(X)e(t,X’.. Similarly S(g) is 
identified to the space of polynomial functions on g*. 

If X E g, we denote by X, the vector field on M produced by the infinitesimal action of g: 

d 
(X,), = -(exp --~X)-xl,=~. 

de 

A G-equivariant differential form on M is a smooth G-equivariant map, defined on the Lie 
algebra g, with values in the space d(M) of smooth differential forms on M. We denote the 
algebra of G-equivariant differential forms on M by &g(g, M) = C”(g, d(M))‘. Thus, if 
a E &z(g, M), the value a(X) of X E g is a differential form on M. Allowing the preceding 
ambiguity for the notation X, we will sometimes denote the map a: g -+ d(M) by a(X). In 
particular a P-function p(X) on M depending smoothly on X E g and in such a way that 

p( g . X) (g - m) = p(X)(m) for all X E g, m E M, g E G is an element of &g (g, M). 
For a E x2(M) we write a = 1 aIil for the decomposition of a in homogeneous forms of 

exterior degree i. 
The equivariant coboundary d, : &z (g, M) + ~42 (g, M) is defined for a E JG (g, M) and 

XEgby 
(d,a)(X) = d(a(X)) - l(XM)(a(X)) 

where c(X,) is the contraction with the vector field X,. We also write dx for the operator 
d - 2(X,) acting on forms. A closed equivariant form is by definition a G-equivariant 
differential form satisfying d,a = 0. We denote by 22 (g, M) the space Ker d,/Im d,. 

We denote by &r’( g, M) = (S( g*) @ d(M))’ the complex of G-equivariant forms a(X) 
depending polynomially on X E g. 

If M is a compact oriented manifold and a E JZZ’~ (g, M) an equivariant differential form, 
X H JM a(X) is an invariant P-function on g (the integral of an inhomogeneous form is by 
definition the integral of the term of maximum exterior degree). We denote by 
JM : &‘z (g, M) + C”(g)’ the map so obtained. We also denote by JM : x; (g, M) + C”(g)’ 
the map derived from JM in cohomology. 

Consider g* as a G-manifold via the adjoint action. Then the map X ~(5, X) is an 
element of &$ (g, g*). Let U c g* be a G-invariant open subset of g*. Let /I E &; (g, U) and 
let a E &z(g, U) be defined by a(X) = ei(SvX’j(X) for X E g. Then (d,a)(X) = 

ei((qx’(i(d4, X) + (d&(X)) with (dt, X) = Cidcl’xi. Thus if 1 E &r”‘(g, U), then 
(d,a)(X) = eiccsx)y(X) with y depending also polynomially on X E g. 

Definition 2. The subcomplex (&,$(g, U),d,) is defined to be 

dZ(g, U) = {a(X) = eicrqX)/?(X); /_I E &c’(g, U)>. 

Its cohomology is denoted by %$(g, U). 

To motivate the next definition, assume first that &g( g, g*) is compactly supported on 
g*. We choose an orientation on g *. Then the integral Jg.a(X)t,, of a(X) over g* is well 
defined and is a rapidly decreasing P-function on g. The Fourier transform 9( J9. a) is 
a P-density on g*. It is readily computed: let us write a(X),,, = ei’r,X)C,P,(X)a,(S)d5 
where P, E S(g*) and a,(t) E C”(g*). Then 
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Dejnition 3. Let a E &g(g, U) be a G-equivariant form on U. Let & = dtl A 

dt2 A. . . A d<“. We define V(a) E J.P(U)~ by 

if cl(X)t,] = ei(s,x) CaPa(X)a,(<)dS with P, E S(g*) and a,(<) E Cm(U). 

In abstract sense, V is equal to the composition of the integration 19. over g* and of the 
Fourier transform 9. However neither J9. nor 9 are generally defined. 

LEMMA 4. Let p E &g(g, U). Then V(d$) = 0. 

Proof: It is sufficient to prove this for /I of exterior degree n - 1. If /I(X) = 
ei(c3X)C;= 1 &(X, t)d<l A dt2 A dgk A. . . Ed<“, then 

V,BW),,, = I(- l)““(ixk)bk(x?t) +  I(- l)k+l&,bk(X, 5) eicesx)d5. 

k k > 

To compute V we must replace Xk by ia,, and we obtain V(d,B) = 0. 0 

By the preceding lemma, we can define the map 

V:Z&, U) + zP(U)G 

in cohomology. We will call V the local Fourier transform. 
Let M be a G-manifold. Let p: M + g* be a G-invariant map. Then m w@(m), X) is 

a function on M depending on X E g that we denote by (p, X). Then X H ei(“*x) is an 
element of &z(g, M). If j? E dr’( g, M) then cc(X) = eiu’YX)/?(X) is in _&$(g, M). The sub- 
space of such forms c1 is stable under d,. 

Dejinition 5. The subcomplex (&g( g, M), d,) is defined to be 

&g(g, M) = {E(X) = e i’“*x’/?(X); B E afr’( g, M)}. 

Its cohomology is denoted by Z,$( g, M). 

The space .%g(g, M) is a module over Zr’(g, M). 

Let p: M -+ g* be a proper map. Let U be a G-invariant open subset of g*. Assume that 
U is contained in the subset of regular values of .D. Then p is a fibration over U with compact 
fibres. Let N = ,Y l(U). Assume the fibration p: N + U has oriented fibres and that the 
action of G preserves the family of orientations o of the fibres. Let us denote by 
p*:&(N) + J&‘(U) the integral over the fibres (we leave implicit the choice of 0). If 
cl(X) = eiu’*X)/?(X) with b E &rr(g, N), then 

k&(X)) = ei’S*X’kMX)) 

belongs to &z(g) U). The integral over the fibre gives a map of complexes 

M~&i,N)4 + (4% U)J,) 

and a map 

?‘~,:~~(g,N)-+~“(U)G 

that we will call also the local Fourier transform. 
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We assume now M compact and oriented. Let us relate I’ll* and 91M. Let 
a(X) = ei(“~X’/?(X) with j?(X) = C,P,(X)w,. Then 

(s > 
fx (X)=CP,(X) ei(kx)w (I’ 

M LI 1 M 

The manifold M being compact, the push-forward /J*((O,)tdimM]) by p* of the P-density 

(Wa)[dim M] is a compactly supported Radon measure on g* and we identify it with a distribu- 
tion on g*. Writing jM = JB*p*, we see that 

Thus the Fourier transform of JMu is the distribution 

B (s ) @ = 1 P.(ia,).(~*(O,)[dirnMl). 
M (1 

(4) 

Near a regular value of p, the distribution p*(m,)[dimM] is a smooth density cx,(t)dt and 

9(jM cc) is equal to (C,P,(i&) - a,(<))d& Thus we obtain the following theorem. 

THEOREM 6. Let M be a compact oriented G-manifold and p: M + g* be a G-invariant 

map. Let U be a G-invariant subset of g* contained in the set of regular values of p. Let 

a E zIg(g, M). Then over U we have the equality: 

9 a 
(s > 

= V(p*a). 
M 

In particular, ifu is closed, then F(jM a) over U depends only on the cohomology class of a in 

@xg+-W)). 

Thus for a E Zi( g, M), in order to determine F(jM a) near a regular value f of p we need 
only to determine the class of a in S?g( g, p-l (U)) where U is a G-invariant tubular 
neighbourhood of the orbit 0 of f: In this sense the Fourier transform is local over 

x:(8, M). 

Remark 1.1. Let a E A?:( g, M). Assume that G is connected. Let T be a maximal torus of 
G. By the localisation formula [l], the integral jMtx of a over M depends only on the 
restriction of a to the submanifold MT of fixed points of T. In the equality 

near an orbit 0, the first member depends only on al MT while the second member depends 

only on a(,-~~~,. This equality between these two localisations formulas has already been 

fruitfully employed in [6,7,13] to compute H* (Mrcd) if (M, a, p) is a Hamiltonian manifold. 

In the next section, we determine explicitly the map VP* near 0 E g* when the action of 
G on p-i(O) is infinitesimally free. 

1.2. Local Fourier transforms and free actions 

Let P be a compact manifold with a free left action of a compact Lie group G. Let 
q : P + G\P be the quotient map. Recall (see for example [3]) that Hz (g, P) is isomorphic to 
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the de Rham cohomology H*(G\P) by the pull-back q*. Let w be a connection form on 
P + G\P. Let 0 E z&‘(P) @ g be the curvature of o. If 4 is a polynomial function on g, then 

4(n) is a differential form on P. If 4 is an invariant polynomial function on g, then &2) is 
a basic form which determines a closed de Rham cohomology class on G\P. More 
generally, if X H a(X) is a G-equivariant differential form on P, then a(Q) is a form on P. If 
a is a closed G-equivariant differential form, the horizontal component h(a(R)) of a(n) 
defines a closed de Rham form on G\P. Then define 

The cohomology class of the differential form a,,,, depends only on the cohomology class of 
a in Sp( g, P) and not on the choice of connection w. Furthermore the map a H a,,d is the 
inverse of q* in cohomology. 

Choose a G-invariant Euclidean norm II-II on g. Let U be a G-invariant open ball 
centred at 0 in g*. Consider the manifold 

N=PxU. 

We denote G\P by Nred (the motivation for this notation will become clear). We denote by 
p: N + U the second projection. if a E &i(g, N), the restriction of a to P is a G-equivariant 
differential form on P = p-‘(O), thus determines a form a,,d on Nred. 

We assume that P has a G-invariant orientation op that we will leave implicit most of the 
time. Choose a basis E’, E*, . . . , E” of g. Let us write the connection form 

o = 1 okEk. (5) 
k 

Let 
R=xfikEk (6) 

k 

be the curvature of 0. If 5 = II, <‘Ek E g*, then (a, 5) = xkfik{I’ iS a form on P. 
Let 

U,=01A02h...AW”. (7) 

Then u, is a vertical form on P of degree n = dim G. 
The basis 23’ of g determines a volume form dX = dx, A dx2 A. . . A dx, E A”g*. Our 

convention on dual orientations is as follows. We choose as dual positive element dr E A”g 
the element dt such that 

E1~E’~Ez~E2~. . .AE,AE”=~XA~~ (8) 

that is d< = (- i)n(n-1)‘2 dcl A d12 A. . . A dt”. The next theorem determines the application 
V/J, : %;( g, N) + &“( U)G. 

THEOREM 7. Let P be a compact G-oriented manifold with afree action of G. Let U be an 
open ball centred at 0 in g*. Let N = P x U and let p be the second projection P x U + U. Let 
Nred = G\P. Let w be a connection form on P with curvature R. Let a E &,$(g, N) be a closed 

equivariant diflerential form. Let ared be the element of H*(N,,,) determined by alp. Then 

In this formula the elements v, and d[ are determined by an oriented basis of g by formulas 

(7) and (8). 

As R is a 2-form, Theorem 7 shows in particular that V(p,a) is a polynomial density. 
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Proof of Theorem 7. If v is a form of G\P or P we still denote by v its pull-backs to P and 
P x g*. The connection form o gives us the l-form (w, 4) on P x g* 

(O, 5) = 2 timi. (9) 

We denote this l-form by A: 

a. = (a, 4). (10) 

Consider the differential form emidgi on P x g*. By definition of o, r(X,)o = X. Thus for 

(x, r) E P x g*, we have (d,&,,(X) = -(&X) + ((do),, 5) - (ox, d<). It follows that 

,-i&1)(X) = ei(e,X)e-i(d~J,5)+i(w,dg) 
(11) 

gives an element of &‘G(g, N). As the element eeidni is invertible, we have 

&‘$(g,N) = emid,’ zZ$“(g,N). 

The form eeidg’ is obviously closed. 

Remark 1.2. We have 

so that eeid8’ is congruent to 1 in Sz(g,N) (but not in Sg(g,N)). 

Let a E d,$(g, N) be a closed equivariant differential form. We may write a = e-idgig 

with /? a closed element of &r’(g, N). By the Poincare lemma, as U is contractible, the 
equivariant cohomology space %‘p”‘( g, P x U) is isomorphic to &‘r’( g, P) by the restriction 
map, thus to H*(N,,,) = H*(G\P) as G acts freely on P. As 1 = 0 on P, we see that, if 
a = e-idg’p, then ared = ared and a E dg( g, N) is d,-equivalent in &g(g, N) to a,,de-idn1. 

Remark 1.3. It is easy to see that &?L(g, N) is a free module over H*(N,,,) with 
generator eeidsi. 

We only need to prove Theorem 7 for such an element a = a,,de-idR”. 
We have 

a(X) = a,,dei(~,X)ei(do,e)+i(w,d~) 

Let us remark for later use that 

a(X) = ei(c*x)v (12) 

where v = a,,de-i’do’t’+i’o’d5’ E d(N) is independent of X. 
The form a,,d is a form on G\P. It is independent of (t,dt). Let us write 

ei(m,dC) _ - CJilJIaJoJdc, where J are multi-indexes and .sJ signs. We thus have 

p*(a(X)) = eicsvx) C iiJle, arede 
-i(dw,<) 

OJ &J. 

> 

(13) 
.I 

To compute V(p,a) we must take the component of maximal degree in dt of ~.+a. With 
our conventions of orientations. we have 

(p,a(X)),,, = inei(S*X) 
(s 

%de 
-i(dw.t) 

P 
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where & is the element dual (formula (8)) to the element dX determined by the 

basis of g. Let R = do + f [w, 01 be the curvature of o. As wi A u, = 0 we have 

Thus 
kd e 

-i(dwOyo = x,,de-WLS)U,. 

(p,a(X)),,, = i”ei(S,X) 
(S 

%ede 
-i(%S)u 

P 

251 

oriented 

(14) 

By definition of P’, we have P’(p,ol) = i”(Jpu,,de -icn~S)uo) d< and we obtain Theorem 7. 0 

Remark 1.4. If the action of G on P is only infinitesimally free, it is easy to see that every 
element a E 2; (g, P) is congruent to a basic form CL,,~ (i.e. a form which is independent of 
X E g, horizontal and G-invariant.) We can choose a connection form o on P and 
Theorem 7 is valid. 

We may reformulate Theorem 7 more intrinsically using integration over Nred = G\P 
instead of integration over P. First of all, if G is abelian then e-i(n*S) is a form on Nred and we 

obtain the following. 

LEMMA 8. Let G be a torus, then with the same notations as in Theorem 7 

V( pL* a) = (Zirr)” 
(S 

&de 
-i(%<) dr. 

Nrcd > 

In this formula the orientation on Nred is the orientation o’/u, and the normalisation for 
the density dX is such that vol(G) = (2x)” (we choose-this normalisation for dX only in the 
case of the torus). 

More generally, if G is not abelian, we write (Vp,a)/dl = L(a)(r) where L(a)({) E S(g)G 

is a polynomial function of <. We denote by (P, Q) the duality between S(g) and S(g*) given 

by 

U'>Q) = fV,)Q(S)lc=o 

for P E S(g*) and Q E S(g). Then L(a) is determined by the duality between S(g)G and 
S(g*)G. Consider the principal fibration P + G\P. If 4 E S(g*)G, then & - ifi) is a closed 
form on Nred (its de Rham cohomology class is independent of 0). Using the same notations 
as Theorem 7. we have the more invariant formulation of Theorem 7: 

THEOREM 9. For C,!J E S(g*)‘, 

(4, (vcL* a)/&) = in vol(G) 

Proof: By Theorem 7 and by definition of the duality, we obtain 

The forms &I( -in) and /Ired are forms on G\P so that the integration of the factor u, gives 

the term vol(G) and we obtain Theorem 9. El 

1.3. Jeffrey-Kirwan localisation theorem 

In this section (M, r~, p) is a compact symplectic manifold with Hamiltonian action of 
a compact Lie group G. We assume that 0 is a regular value of p. We note P = ,a- ‘(0). 
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Let (T* be the equivariant symplectic form. It is the closed G-equivariant differential form 
on M defined for X E g by a,(X) = p(X) + 0. Thus eiag(x) = e i(r*x)eiO is a closed element in 
our complex &g(g, M). As it is an invertible element, we have 

d”(g, M) = (ei”~(X)P(X); fi E dr’(g, M)}. 

We first consider the particularly important closed element ei”scx) = ei(fl’x)ei” of 
&E(g, M). Let dim M = 2d. Let PM = (d!)-‘(2x)- dad be the Liouville form on M. Near the 
regular value 0 the push-forward pL*(pw) of the Liouville measure of M is a P-density on 

9** 
The manifold P is a compact manifold. Furthermore, the fact that 0 is a regular value of 

p is equivalent to the fact that the action of G on P = p- ’ (0) is locally free. The orbifold 
Mrcd = G\P is the Marsden-Weinstein reduction of M. 

As 0 is a regular value, there exists a G-invariant open ball U c g* such that cl-‘(U) is 
diffeomorphic to P x U by a G-invariant diffeomorphism. Let N = ,u- ‘(U) = P x U. We 
apply the results of the preceding section. In our case the manifold Nred = G\P is the 
reduced manifold Mred . By definition of V, P*(/?~) is the density i-d(2rr-dV(&eiba)). Let 
o be a connection form on P and let R be the curvature of o. The restriction of 
a,(X) = p(X) + 0 to P = p-l(O) is simply (~1~. By definition, it is the pull-back of the 
symplectic form (T,,d of the Marsden-Weinstein reduction Mrcd of M at 0. The dimension of 
Mred is 2do = 2(d - n) (n = dim G). We obtain from Theorem 7 ,u*(P~) = i-do(2x)-d 

(Ipe i(ored-(C~R))uo) d& Checking out useful exterior degrees, we have: 

PROPOSITION 10. Near 0, the push-forward of the Liouville form ,u*(/I~) is given by 

/A+&) = (24-d(do!)-’ 
U 

@red - (t,fi))“‘%a &. 
P > 

Zf G is a torus, 

,~*(BA.I) = (24-d”(do9-’ 
(s 

@red - (5, Q))do 
> 

&. (15) 
Mrcll 

The formula above for a torus G is the Duistermaat-Heckman formula [Z]. For 
a general compact Lie group G, this is due to Jeffrey and Kirwan [6]. Jeffrey and Kirwan 
deduce this formula from the normal form theorem [lo, 51 which asserts that if U is 
sufficiently small there exists a symplectic diffeomorphism of ( ,uL- ’ (U), a) to U x P equipped 
with the SyIIIpkCtiC fOrIn CT’ = (Tred - (t,n). 

It follows from Theorem 14 in the next section that P*(/?~) is an analytic density on each 
connected component of the set of regular values of p. This fact follows also obviously from 
the localisation formula [l]. In particular, I.+ will be a polynomial density on the 
connected component of 0 in the open subset of regular values of p. In the case of a torus 
action it is a polynomial density on each connected component of the open subset of regular 
values of p. This is obvious from the previous result as in the case of a torus action we can 
translate p to p - &, and displace ourselves at 0. Furthermore if G is a torus, the preceding 
formula determines entirely the push-forward of the Liouville measure of M if we assume 
that no connected subgroup of T acts trivially on M. Indeed in this case it is easy to see that 
the push-forward of the Liouville measure can be written as f (0 d< where f (0 is a continu- 
ous function on the closed convex set with nonzero interior ,u(M) c t*. If G is nonabelian, 
the knowledge of j+& on regular values does not determine ~~8~. For example, an orbit 
0 c g* of the coadjoint representation is an Hamiltonian space with moment map ~1 the 
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canonical injection 6 + g*. The set of regular values of p is g* - 0 and pL,/IO is 0 outside 0, 
but is not 0 as a distribution. 

Consider now a general element a E D’$( g, M). From Theorems 6 and 7, we obtain: 

THEOREM 11 (Jeffrey and Kirwan [6]). Let u be a closed element in &‘g(g, M). Let ared be 

the cohomology class of Mted determined by alp. Near 0 E g the Fourier transform of the 
integral jMa of a over M is given by 

9 ( jM a) = (in Jp @...,e”:J%Jdy. 

In particular for 5 = 0, the Jeffrey-Kirwan result gives the particularly beautiful follow- 
ing formula. For CI a closed element of &(g, M): 

s 
&cd. 

bfr.a 

Consider the function 11 p 11’ on M. 

LEMMA 12. Let R be the largest number u such that all fE g* such that II f/l2 < u are 
regular values of p. Then R is also the smallest critical value of the function II p II 2. 

Proof: Indeed x is a critical point of II p II 2 if and only if x is a zero of the vector field 
am. Let us consider y E g a nonzero element and let M(y) be the manifold of zeroes of the 
vector field yM on M. Let M(y)’ be a connected component of M(y). Then p(M(y)“) is 
contained in an affine plane orthogonal to y. Thus, identifying g with g*, the nearest point to 
0 in this plane is proportional to y. Changing y in a proportional vector, we thus see that R is 
also the smallest value of p(x) for those x such that there exists y # 0 such that x E M(y) and 

P(X) = Y. 0 

It follows from the localisation formula [l] that 9&a) is an analytic density on each 
connected component of the set of regular values of p. This follows also from Theorem 14 of 
the next section. By analyticity and Lemma 12 above, the Jeffrey-Kirwan formula (The- 
orem 11) remains valid for II 5 II < R. 

Witten [12] studied the asymptotic behaviour when E HO of 

where b(X) is a G-equivariant closed form on M with polynomial coefficients. Let a = e’“~j?, 

Then the value of Z(E) at E = 0 is (2@“(4tjMa)(0). 

THEOREM 13 (Witten [12]). Let (M, o,p) be a compact symplectic manifold with a Hamil- 
tonian action of a compact group G. Assume that the action of G on p- ’ (0) isfree. Let R be the 

curvature of thejbration p-‘(O) + Mrcd = G\p-‘(0). Let R be the smallest critical value of 

II p II 2. Let r be a positive number such that r < R. Then for any G-equivariantly closed form 
j3 on M with polynomial coeficients, there exists a constant C such that 

Z(e) = (2i@dimG vol(G) eiured 
B rede 

-&11ni1’/2 + N@) 

with IN(s)1 I Ce-“2E for any E > 0. 
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Proof Let a(X) = eirrs(‘) B(X) and let w(X) = JMcr(X). Recall from formula (4) that the 
Fourier transform 9(w) of w is a derivative of compactly supported Radon measures on g*. 
Furthermore for II 5 I( < R E g, 9(w) is a polynomial density given (Theorem 11) by 

We have 

9(w) = i” 
(S 

,-i(f2,<),iurea 
B red% 8. 

P > 

Z(E) = w(X)e-“‘~X’12’2 dX 

and by Fourier transforms 

Z(E) = I ~(w)(~)~-“/2(2~)“/2e-l1511*/2~, 

9* 

Thus by partition of unity, we see that modulo a rest N(E) less than Ce-r/2E, 

Z(E) = i” 
s (s 

e-i(Q,<)eiorcd 
B 

-n/2(2~)“/2e-115112/2Ed~ + N(E)_ 

9’ P 

By the inversion formula 

I 
i~e-i(R,t)E-fl/2 (2~)“/2e-IItI12/2&d~ = (2i~)“e-“IIRl12/2 

9’ 

and one obtains Witten’s estimate. 0 

1.4. Induction formda 

In this section, we prove an induction formula for the map VP*. This section will not be 
used in the remainder of this article. 

Let 0 c g* be an orbit of the coadjoint representation. Let f~ 0. Let G,, = G(f) and 
go = g(f). Let n = dim g and no = dim go. Let 

9=9oOr (16) 

be a Go-invariant decomposition of g. Let dim r = 2r = dim 0. 
Using decomposition (16), we consider go* c g *. Thus g$ is a Go-invariant supple- 

mentary subspace to the tangent space r* = g$ = g *f to the orbit 0 at f: 
Let <Ego*. 2 * We denote by B, E A r the alternate bilinear map B,(R,, R2) = 

-(<, CR,, R,]). Let dR E A2’ * r be a volume form on r and let Do(<) be the Go-invariant 
polynomial function (depending of dR) on go* such that 

D,(t)dR = (r!)+B;. 

As Bf is nondegenerate on r = g/g(f), the value of Do([) at fis nonzero. 
Consider U. a Go-invariant small ball around 0 in g$. Then 

is a tubular neighbourhood of 0 isomorphic to G x c,,Uo by (g, to) H g - (f + co). Any 
Go-invariant function L(<,) on V. extends to a G-invariant function 2 on w by 
z(g. (f + co)) = L(<,). If L is polynomial, the extension z is a G-invariant algebraic 
function (it is rational on a I WI-cover, where I WI is the order of the Weyl group of g). In 
particular, if L is polynomial, z is analytic. The function to H Do(f + to) does not vanish 
for to E Uo. It admits a G-invariant analytic extension to 9P”. 
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Consider a Go-oriented manifold PO where Go acts infinitesimally freely. Let 
No = PO x U,. Let p. : No + U. be the second projection. The element f~ go* is Go-invariant, 
thus the map f + p. is a Go-invariant map from No to go*. We consider the induced manifold 
N = G x G, No. We denote by [g, no] the image of the element (g, no) in the quotient 
manifold N = (G x N,)/G,. The manifold N is fibred over G/Go. Its fibre above the base 
point of G/G, is No. Thus we consider No as a Go-invariant submanifold of N. The map 
p(g, no) = g - (f + po(no)) is a G-invariant fibration from N to -W = G x G,, U. with typical 
fibre PO. 

Consider the restriction map 

ro:d;(g,N)+&&go,No) 

given by IO@) ( Y) = a( Y) IN, f orcrE&g(g,N)and YE~~. Wehavero(p)(Y) = (f; Y) + pa(Y). 
If tl E &(g,N), then p(Y) = ro(tl)(Y) is in &~,“‘“(go,No). The element e-i(fVY)ro(a) is in 

d$(go, No). 
Consider the maps 

VP, : #$( g, N) -+ SZP’(~V)’ 
and 

An element h E sP’(?#‘)~ is a G-invariant map from w to A”g. It is thus determined by 
its restriction to ~h(f+ to) to f+ Uo. An element 4 E sQ”~(Uo)G~ is a Go-invariant map 

from U. to Anogo. Let dR E A2’r* and dR* E A2’r be the dual element. Thus if 
4 E ~Po(U~)~O, and to E U. then Do(f+ <o)-‘+([o) A dR* is an element of A”g. Note that it 
is independent of the choice of dR. 

THEOREM 14. Let No = PO x U. where Go acts infinitesimally freely on PO. Let 

N = G xGONo. Let a E Sg(g,N). Let B = emifro(u) E &f$(go,No). Then 

Qc*a)(f+ to) = i’Do(f+ ~o)-‘(~o(~o)*B)(~o)A~R*. 

Proof: Decomposition (16) determines a connection form 13 for the fibration G H G/Go. 
Let 0 E A2r* @ go be the curvature of 8 at e E G. Then @(RI, R,)(<,) = -(lo, [RI, R,]) for 
Ri E t and 50 E go*. 

Let Z. be a Go-manifold. Let 2 be the induced manifold G x co Zo. We constructed in 

[2] a homomorphism of differential algebras We: &zO( go, Z,) + SS?~ (g, Z) which gives the 
inverse in cohomology to r. : S/Z (g, Z) + &gO( go, Z,). The formula for W, (/I) is given as 
follows: we identify a neighbourhood of z. E Z. in Z to a neighbourhood of (0, zo) in t x Z. 
by the map (R, zo) + [exp R, zo]. Thus the tangent space to Z at z. E Z. is identified to 

r 0 Z,Z0. 

Let X E g. We write X = Y + R with YE go and R E r. By definition 

(W,&,(X) = B(Y + O),, E Ar* 0 AT,*,Zo. 

By G-invariance, this formula determines W,a everywhere. 

(17) 

PROPOSITION 15. The map a H ro(tl) induces an isomorphism ffom Sg(g, N) to 

&+“(go, No). 

Proof of Proposition 15. Let us see first that WO(eif’~o)(X) = e’@*% where v E &Q(N) 
is independent of X E g. Indeed at no E No and for X = Y + R, we have (f + 
po(no),X) = (f+ po(no), Y) as f+ po(no) E 92. Thus WO(eif’ro),,(X) = eiCflVXb with 
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v = ei(/+ro(no)Se) independent of X. By G-invariance the result follows. Thus W, sends 
&~~“‘(gc,Nc) to &g(gc,Nc). The explicit formula for a - &@,,a) given in [3] gives the 
proposition. 0 

It follows that any closed element of &( g, N) is congruent to an element a = W$(e”fi) 

with fi a closed element of &zO( gc, No). It remains to prove Theorem 14 for 

a = Ws(eifB). 

If mo:Z1 + Zz is a fibration of G,-manifolds, and m is the induced fibration 
Gxc,Z1+Gx c, Z2, the map W, satisfies m, W, = W,(m,),. Thus we obtain 

p*a = ~*%(e’% = K((pc)*(e’%) = K(e’%c)*P). 

Let YE go. In the proof of Theorem 7 we have seen (formula (12)) that we can suppose that 
#I E zz’$(g,,,N,,) is such that /3(Y) = ei(Po*y) v with v independent of Y. Thus 

(P&B(Y) = e”So*Y’(~O), v where (pc)*v E &(Uc) is a form independent of YE go. The 

highest exterior degree term ((~c)* v)tnQl of (pc)* v is by definition equal to Vc(pc)*/I. As 

before, we see that pL*a = W,(eiS(p,,),j?) = Ws(ei(ffco~Y)(,uo)*v) is such that 
p&X) = ei(t,X) K where K E d(w) is independent of X. In particular there will be no 
differentiation in computing V(p*a) = V( WO(eif(po),j?)) and we can restrict ourselves to 
the slice f + U, of %‘-. Consider the map r x Uc H w given by (R, &,) H exp R - (f + to). In 
the local coordinates r x Uc then by definition of W, (formula (17)), 

WB(ei/(lLo),B)co,,,,(X) = ei(r+‘o~y+@)~(p,),v. 

The highest exterior degree term of w,(eif(~Lg)*P)co,c,,(X) is 

i’ei’~+SO~Y’Dc(f+ &,)dR A ((pO)*vI,,,). 

We rewrite W, (e’/( PO)* /ZQ,,, ,,(X) in the coordinates 5 = exp R( f + to). The image of (0,5c) 
under this map is the point f+ to. The Jacobian of this change of coordinates at the point 
(O,&,) is Dc(f+ &,)-’ and we obtain 

(w,(eif(llo)*D)t.l)/+t;,(x) = irei(f+to*Y)Do(f+ CO)-‘dR* * ((Po)*v[~,I). 

This formula implies Theorem 14. 0 

Let us come back to the situation where (M, (T, p) is a Hamiltonian manifold. Let f be 
a regular value of p. Let 0 be the orbit off: Let Go = G(f). Let PO = p-‘(f). Then Go acts 
by an infinitesimally free action on PO. If U. c 9: is a sufficiently small ball, the manifold 
No = p- ’ (f + Uo) is a submanifold of M diffeomorphic to PO x U,. We denote by p. the 
projection of No on U,. The manifold N = pL- l(W) is diffeomorphic to the. G-manifold 
G x co No. Applying Theorems 7 and 14 we conclude: 

COROLLARY 16. Let (M, o, a) be a symplectic manifold with a Hamiltonian action of G. Let 
a E ZG(g, M). Then the Fourier transform F( JMa) of the function JMa(X) is an analytic 
density on each connected component of the set of regular values. It is a polynomial density on 
the connected component of 0. 

More precisely, we know that if f is a regular value and go = g(f), then 
F( JM a) = L(r) d5 where on the transverse subspace f + U. to the orbit 0, 

L(f + to) = i’D0(f+ b-‘L0(50) 
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is the quotient of two G,-invariant polynomials. The polynomial Lo is computed in function 

of the Go-Hamiltonian manifold p- ’ (f + U,). This result can also be proven directly using 
Harish-Chandra relations between the Fourier transform on g and go. However the above 
proof is a local proof. 

2. ON WIlTEN’S LOCALISATION FORMULA 

2.1. An integral formula for free actions 

Let G be a Lie group acting on a manifold M. 

If M is a compact oriented manifold and a E JJ~ (g, M) an equivariant differential form, 
X HJMa(X) is an invariant P-function on g. It determines afortiori a generalised function 
on g denoted jya. If 4 dX is a test density on g, the formula 

ss 
a(X)&X)dX 

hf 9 

defines the generalised function jy a. 
We can define a generalised function ( Jw a)(X) when M is a noncompact manifold by the 

same formula as above provided the differential form jg a(X) 4(X) dX is integrable over M. 
We formalise this notion as follows. If Y + P is a vector bundle over a compact manifold P, 
we say that an equivariant differential form a E &; (g, Y) is rapidly decreasing in g-mean if 
for any test function 4 on g, J9 a(X)&(X)dX is a differential form on V rapidly decreasing 

over the fibres of V + P. Assume the total space Y is oriented. Then the generalised 
function ( Jy a)(X) is well defined: if $J is a test function on g, 

Let P be a manifold where G acts freely. We employ the notations of Section 1.2. 
Consider the manifold 

N = Pxg*. 

Let us first describe a particular closed G-equivariant differential form on N = P x g* which 

is rapidly decreasing in g-mean over the fibre g*. 
Let o be a connection form for P + G\P. Let A = (0, t) (see formula (10)). 

LEMMA 17. The difirential form e-“g’ on N is rapidly decreasing in g-mean. 

Proof: We have (see formula (11)) 

e-i(d,i)(X) = ei(C.X)e-i(do,C)+i(o,dC) 

and for a test function 4 on g, 

J9 

where &C;) = lgei(s*x) c#J(X)~X is the Fourier transform of the test function 4. The form 
e-i(dw*5)+i(o*dC) is polynomial in 5. As the Fourier transform &t;) of the test function 4 is 
rapidly decreasing in 5 we obtain the lemma. 0 
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Let a E &z( g, P). Then e-ido”a is rapidly decreasing in g-mean over N: in local 
coordinates llZi on P, we have a(X) = x1 crI(X, m) dm, where ar(X, m) depends smoothly on 
X, m. By the same calculation as before i9 e -i(dg’)(X)~(X)$(X)dX is rapidly decreasing in 
r for any test function 4 on g. The generalised function ( jNe-idg’a)(X) is well defined. 

THEOREM 18. Assume that G acts freely on P. Let a E &‘z (g, P) be a closed G-equivariant 

difirential form on P. Then, if 4 is a test function on g, 

(X)$(X)dX = (2i7C)dimG 
f 

&j+(Q) A V,. 

P 

In this formula if the orientation of P is op, the orientation of N is op A d<, where v, and 
dc are determined by formulas (7) and (8). If G acts only infinitesimally freely on P, we 

obtain the same theorem. 
If c!~ is a G-invariant test function, then 4(Q) is a form on Nred and we obtain the more 

invariant formulation of Theorem 18: 

Jg ( jN emidaia) (X)d(X)dX = (2irr)dimG vol(G) 
s 

ared~(n). 
Nr.C! 

In this formula the volume of G is computed using the Haar measure on G compatible 
with dX. The orientation of Nred is o’/v,. 

Proof of Theorem 18. Let p E CGt(g, d(P)) be a smooth map with compact support 
from g to the space of differential forms d(P) on a compact manifold P. Define for 5 E g* 
the Fourier transform j?(c) = J 9 eicePX)/3(X) dX. It is a differential form on P depending on 5. 
When 5 tends to co, the form j?(t) converges uniformly to 0 on P. 

Let u E &4(P) @ g be an even form without constant term. For /I E C”(g, d(P)), we can 
define b(u) E d(P) via the Taylor expansion of j? at 0. We still have the Fourier inversion 
formula for /J E C$( g, d(P)): 

(2z)_” 
s 

e-‘@*“/(~)d~ = (27t)-” 
9’ s (s 

ei’X-“‘S’B(X)dX 
8’ Cl > 

d< = b(u). (18) 

Let 4 be a test function on g. We have to compute jN jg a(X)e-idx “d(X) dX. This integral 
depends only of the equivariant cohomology class of a in JP~ (g, P). Indeed if a = d,j3, then 
a(X)eeidxi = dx(j?(X)e-id* “). The term of maximal exterior degree of a(X)e-idx’ is equal to 

d((P(X)e-‘d”‘)[dimN- 11). Thus 

a(_y)e-idxi 

4(X)dx)[dimN] = d ( jg (P(x)e-id”‘)[dimN-l]~(X)dX . 

) 

The same calculation as in Lemma 17 shows that the form on N given by 
v = J,/?(X)e-idX1~(X)dX is rapidly decreasing in I& so that rNdv = 0. 

We choose as representative of the cohomology class of a the form a,,,, which is 
independent of X E g. Let us choose an orientation on g and let E’, E’,. . . ,E” be an 
oriented basis of g. This determines the form v, (formula (7)). We denote by INIP the integral 
over the fibre g* of the fibration N + P. Then 

ss N g a(-%- idxl&X)dX = Jpared lN,p Jg eWidx’&X)dX. 
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Consider ,-idxi. = ei(t,x)e-’ r(do*C)+i(o,dr). Its term of maximal degree in d< 

cd~1r\dgzr\...Ad&r\v,=cd[Av,wherec=i”sandcisasign. 

Then 

s s e-id”i4(X)dX = 
NIP B 

c 6, eCi’dw*t)( Iq eiciVx)$(X)dX)dju,. 

Let R = do + $[w, co] be the curvature of w. As Oi A v, = 0, for all 
e-i(dw.C)v,, = e-i(%Ov,. We obtain 

;, we have 

s s 
e -id”“4(X)dX = 

N/P B 
c jN,p e-icn,o ( jg eicc*“‘9(x)dX)d@_ 

and Fourier inversion formula gives 

r 1 
e-i(“*s)ei(s~x)~(X) dX dt = (2x)“4(R). 

JN/P 8 

We obtain Theorem 18. 0 

259 

is equal to 

Remark 2.1. It is in fact more natural to use the equivariant cohomology space 
Y?; “(9, P) with generalised coefficients [9]. Let y. E ~4; “(9, P) defined by 

&(X) = v, A 6(X - n) 

where 6 is the d-function at 0 on g: i.e. 

s y&WW)dX = vu * 4(Q). 
9 

Then y,(X) is a closed equivariant differential form on P. It is proved in [9, Proposition 791 
that yw is a generator of Z& “(9, P) over H*(M,,,) and that 

e -idgi. = +?ix)“y, 

where E is a sign. Theorem 18 follows. 

2.2. Witten localisation formula 

Let (M, C, ,u) be a compact symplectic manifold with a Hamiltonian action of a compact 
Lie group G. Let us assume that 0 is a regular value of CL. We assume to simplify that G acts 
freely on P = p-r(O). Let o be a connection form on P with curvature R. Let Mrcd = G\P be 
the Marsden-Weinstein reduction of M. Let a be a closed G-equivariant differential form 
on M. We denote by a,,d the de Rham cohomology class (alp),_, on Mred determined by alp. 
In particular (gg)_d is the symplectic form b,,d of Mred. 

Following Witten, we introduce the function ) II p II2 and its Hamiltonian vector field H. 
This is a G-invariant vector field on M. Let us choose a G-invariant metric ( -, -) on M. Let 

dM( .) = (H,.). 

Then EUM is a G-invariant l-form on M. 

Let R be the smallest critical value of the function II p /I ‘. Let r < R and let 

MO = b E M; II 14-4 II2 -= I>, Mout = 1~ E M II 144 II2 > I>. 

The manifold M is oriented by its symplectic form. 

(19) 
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Let a(X) be a closed G-equivariant differential form on M. Let us consider 

O(M, t)(X) = 
s 

emitdxAM a(X). 
M 

As a is a closed form and evitdgAM congruent to 1 in cohomology, O(M, t)(X) is independent 
of t. Let us break the integral formula for O(M, t) in two parts: 

and 

@(MO, t)(X) = 
5 

epirdx lM a(X) (20) 
MO 

O(M,,,,, t)(X) = eeirdx AM a(X). (21) 

The functions O(M,,, t)(X) and @(MO,,, t)(X) are P-functions on g. 

THEOREM 19. For every t E Iw and X E g, we have 

(s ) 
a (X) = @(MO, t)(X) + @(MO,,, t)(X). 

M 

Furthermore, the limits OO and O,,, when t + co ofO(M,, t) and @(MO,,, t) exist in the space 
of generalised functions on g. Zf r#~ is a test function on g, we have 

s 
@,(X)4(X) dX = (2in)dimG ared~(R)um. 

9 

Remark 2.2. If $J is G-invariant, we obtain 

I O,(X)4(X)dX = idi”G(2rr)2dimG ared&@h 

R 

Remark that O0 is a generalised function with support 0 E g. Its Fourier transform is 

a polynomial on g*. 

Proof of Theorem 19. The fact that for every t E [w, we have (J,a)(X) = 
O(M,,, t)(X) + @(MO,,, t)(X) has already been mentioned. Thus we need only to prove that 
the limit O0 when t + 00 of @(MO, t) exists in the space of generalised functions on g. 

We choose an orthornormal basis E’ of g. We write ,u = ‘&p(E’)Ei. We have 
id 11 p 11’ = &p(E’)dp(E’) = Ci,u(Ei)~((Ei)M)~ SO that 

Let 

H = c ,u(E’)EL. 
I 

P( .) = (H, .). 

Then AM = ‘jJip(Ei)~y where WY(-) = ((Ei)M,*). We write &’ = CioyEi. Then 

P = (0.P, 1(). 

On MO the action of G is infinitesimally free, as follows from Lemma 12. Thus we may 
choose our metric ( *, -) such that ((Ei)M, (EJ’)M) = Sj on M,,. Thus on MO, c#(X,) = X, for 
X E g so that gM is a connection form on MO. Furthermore on MO, we have 

A”(X,) = P(X). 
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Let hM : M + g* be the map determined by hi (X) = J”(XM), then j$ coincides with 

p on MO. On M, we have 

(JIM ,P) = c I@‘)((~‘),, H) = (H, H) 2 0. (22) 

On M,, we have 

dxlM = -i(p,X) + dP = -i(p,X) + (~,&I#) - (~“,dp) 

and we study 

ss 
eit(a,X)-it(r,do”)+ir(oM,dr) 

c4o#G)~X. (23) 
MO 9 

Let E > 0 be a small number. Let M, = {x E M; /[p(x) 11 < E} and let m HX(~) be 
a cut-off function on M identically 1 on M6,2 and identically 0 outside M,. 

LEMMA 20. We have 

lim 
s 

(1 - x(m)) eeitdx IM cr(X)4(X) dX = 0. 
f’m M, 

Proof of Lemma 20. Let p(X) = 4(X)a(X). Then /3 E C,“,,(g,d(M)). On M,, 

5 
,-itdxiM a(X)4(X)dX = 

I 
eiU&qX)e-i’d”” a(X)4(X)dX = e-i’d”“jj(tp), 

B 9 

On the support of 1 - x, the function p satisfies 11 p(m) 11 2 3~ > 0. Thus the differential form 
/?(tp(m)) tends rapidly to 0 when t H 00. The differential form emitdAM is polynomial in t so 

that we obtain our lemma. II 

Thus 

lim 
s U 

e -itdx’M a(X)+(X)dX = lim 
t-m M, !I 

) f’m jMS x(m) ( jg emirdwAM a(X)d(X)dX). 

Let 
N = P x g*. 

We write any element of N = P x g* as (x, <). Let o = I#(~. Then o is a connection form 
on P. Let 

be the l-form on N = P x g* determined by the connection form o (formula (10)). Choosing 
E sufficiently small, we can identify in a G-invariant way M, to an open set of N = P x g*, the 
map p becoming the second projection (x, 5) H 5. This isomorphism is the identity on P. As 
x has compact support contained in M,, we consider the integral jMM,X(m)( jgemidx 1M a(X) 
4(X) dX) as an integral over N. We still write gM for the l-form on N corresponding to m”. 
We have m”lp = o. Thus 

lim 
s (s 

eeifdw iM a(X)c$(X)dX 
f-m M, B 

eit(C.X)eifW ,dC)-it(C,doM ja(x)4(x)dx (24) 
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The differential form eit(oM ,di)-W.doM ) can be written &&(t& t d<)pk where P,(& do is 
a polynomial in the forms {,d< while pk is a differential form on N independent of t. If 
v,.(X) = xpk A a(X)cj(X), we need to study the limit when t H co of 

ei”s’x’Pk(t<, td&$‘,(X)dX 

If v E C,“,,(g,d(N)) we write vO(X) = (v(X)lP). Then X t-+vO(X) is a compactly sup- 
ported P-function on g, with values in d(P). Its Fourier transform 5 H O,(t) is a differen- 
tial form on P depending smoothly on 5. We can consider O,(t) as a differential form on 
N= Pxg*. 

LEMMA 21. Let G(<,d{) be Q polynomial. For any v E CCmpt(g, J&,,(N)) we have 

ei’(5*X)G(t<, t dt)v(X)dX 
> s 

= G(C;, dW,(O. 
N 

Proof of Lemma 21. For t > 0, let us consider the map h, on N = P x g* to N given by 
h,(m, [) ~(m, t- ‘0 for m E P and 5 E g*. Change of coordinates shows that 

eiL(t~X)G(t<, t dc)v(X) dX ) = il, G(I,IC)( ~sei(‘sx)V(v(X))dX). 

We write the differential form v(X) = v(X, 5, d<, ml, dmi) for a local system of coordin- 
ates mi on P. Then h:(v(X)) = v(X, t/t, d[/t, mi,dmi). For a smooth compactly supported 

function $(X,x) of several variables we denote by (F14)(& x) = j9e’“3X’$(X, x)dX the 
Fourier transform of 4 with respect to the first variable X. Then for any integer K, there 
exists a constant CK such that jFI$(&x)I 5 CK(l + I151/2)-‘L for all x,5. We have 

s eicsgx)h:(v(X))dX = (F~v) (5, t/t, dl/t, mi, dmi). 
9 

The function 5 ~(F~v)(c, @,d@, mi,dmi) is rapidly decreasing when < tends to co. Fur- 
thermore for any K, there exists a constant CK independent of t such that the function 
5 H(Flv)(r, l/t, dt/t, mi, dmi) is bounded by CK(l + 1) 5 l12)-K. The function (FIv)(& t/t, 

d</t, ml, dmi) tends to (F~v) (5, 0, 0, mi, dmi) = G,(c) w en h t H 00. Thus by dominated conver- 
gence 

JN G(L&) S, ei(<vX)h:(v(X))dX = IN G(5,dS)(Flv)(r,5/t,d5/t,mi,dmi) 

tends to jN G(5,Wo(5). 

Applying Lemma 21 to the study of (24) we obtain, as zip = 1, m”lp = o, 

0 

eittc,X)eif(~M,dS)-it(S,d~M ja(x)4(x)dx = 

> s 

ei(“.dt)-i(‘.d”)~610(5). 

N 
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The last integral is equal to JN Js e- idw “crc(X)+(X) dX. Thus the limit O0 when t -+ co of 
@(A&, t) exists and 

s 
O,(X)4(X)dX = e-idX’tlO(X)+(X)dX. 

B ss N g 

We now apply Theorem 18 and obtain Theorem 19. 0 

Let us give some immediate applications of Theorem 19. Let a = eibgj? with fl a form 
with polynomial coefficients. Let 4(X) be a rapidly decreasing function on g. Then the 
integral J, e i”~(X)jI(X)4(X)dX is convergent and defines a form on M. We can thus consider 
JM a as a tempered generalised function. The same estimates show that Theorem 19 is valid 
for JM c( in the space of tempered generalised functions: for all t E R, 

s 
u = O(M,, t) + @(MO,,, t) 

M 

the limit of O0 = O(M,, t) exists in the sense of tempered generalised functions and 

O,(X)4(X)dX = (2ix)” 
s 

E,,~~@)u,. 
P 

Let 

4(X) = 
s 

e-i’5*x’k(5)d< 
9* 

where k(t) is a Cm-function supported on 115 11 < I < R. The function 4 is rapidly decreasing 
on g. By definition 

ss a(X)4(X) dX = (2x)” 
B M 

j-/(jM+i)k(M. 

We have 

O,(X)$(X)dX = (2ix)” 

Let us show that J,O(M,,,,, t) (X)&X) dX is equal to 0 for all t 2 0. Indeed 

s @WO”,, t)v&#4w~x = s s ,-itdxAM eiog(X) 
B(X) 

9 Mout 9 

We have 
e - idw AM eiuSW) = ei(p+t/,Y,X) -itdP io e e 

By (22), we have 

HP+ th II2 2 lIPlIZ + t211& II2 

as (p, f& ) is positive. By the double Fourier inversion formula and our hypothesis on the 
support of k, we see that for every polynomial Q on g, 

s ei(p+tf^“*x)Q(X)q5(X)dX = (2x)“(Q(ia,).k)(thM + p) = 0 
9 
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on M - M,, as /I tjiM + p 11 > I on M - MO. Thus we obtain from Theorem 19 that for all 

t 2 0, 

O(M,,t)(X)4(X)dX. 

Taking limits when t tends to + co, we obtain 

This gives another proof of the Jeffrey-Kirwan formula (Theorem 11). Remark that in 
this proof we obtain immediately that the Jeffrey-Kirwan formula holds on the ball 
115 11 -c R, with R equal to the smallest critical value of the function )I p II2 while we had to use 
some (easy) analyticity arguments in the previous proof. 

2.3. The outer term 

For further applications to multiplicity formulas, we give a rough analysis of the outer 
term O,,, in the decomposition ju a = OO + O,,,. We consider the generalised function 
O,,, on g given by 

O,,,(X) = lim 
I 

a(x)e-itdxlM. 
1-m &“I 

Let us consider the manifold h;i = M x Iw where G acts trivially on I% We embed M in 
M x Iw by m ~(m, 0). We write (m, t) for an element of A?. We consider the differential form 
XM = t;lM as a differential form on A. If GI is a form on M we still denote by tl its pull-back to 
M x [w. Let us consider 0 < I < R and let 

P, = {m E M; ~~p(m)~~2 = I}. 

Let C c A? be the cyclinder with base P,: 

c= p,x[lB+. 

The boundary of C in M x [w is equal to the boundary of MOUt both being the manifold P,. If 
U is a tubular neighbourhood of P, in M, we can identify C to the open subset U - aoUt of 
M. This gives an orientation o,,, to C. 

Define 

Z = MO,, u (C, o,,A. 

Then Z is an oriented cycle in A?. We can also identify 
a cylindrical end C attached to it. 

Z to the manifold Mout with 

THEOREM 22. The limit O,,, when t + CO ofO(M,,,t, t) exists in the space of generalised 

functions on g. We have 

@O”,(X) = 
s 

,-idxiM cr(_y), 

Mout u c 

Proof: We first give some more explicit expression for a,,,. We have dxXna = 
dtr\AM + tdJM and eeidxAM = (1 - idtr\A”)e-irdxlM. Thus 

s 
,-idxiM cr(X) = _i 

c s 
p 
r 
x w+ dt A A”e-itdx 1M a(X). 
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As ZiM = 0 on M, 

e - idx iy a(x) = a(X) - i 
s 

dt A Peeitdx IM a(X). 
P,XR+ 

On the other hand. we have 

d -itd,P ze a = -id,(~“e-i’dsiM a). 

We then obtain 

(s 
s 

e -%lMa = ~1 _ id, AMe-% AM ,-J dt . 

0 > 

Integration over M,,,, and using the Stokes formula leads to 

@Mm, 4 = s ,-isdwiM cr(x) = 

M0,t s cl(X) - i 
Mout s (s 

s 

A”eVitdx IM a(X)dt . 
P, 0 

When s tends to co, and checking the orientations, we obtain our proposition. cl 

As dXAM = --p(X) + dlM on P,, we can also explicitly write the integral expression of 
O,,, on test functions C$ as follows: 

s O,,,(X)&X) dX = i l”e-i’d’ M (d4) (Mm)) dt + 4XMX)dX. 
!J r 

x W+ 

In this integral expression, we see that O,,, is indeed well defined as for m E P,, 
(c@) (t&n)) is rapidly decreasing in t (as p(m) is never 0 on Pr) while e-ird’” is polynomial in t. 

Remark 2.3. Let G = S’. If E E g is a basis of g, we denote by 

M+ = {x E M; P(E)(X) > r}, M- ={xEM;~(E)(x)< -r} 

so that M,,,, = M+ u M_. It follows from the previous discussions that both 

and 

O(M+, t) = 
s 

cr(X)e - ifdx AM M+ 

O(M_, t) = [ a(X)e-i’dm 1M 
JM 

have limits when t tends to co. 
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