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MULTIPLICITIES FORMULA FOR
GEOMETRIC QUANTIZATION, PART I

MICHELE VERGNE

1. Introduction. Let G be a compact Lie group with Lie algebra g acting on a
compact symplectic manifold M by a Hamiltonian action. If X g, we denote
by Xt the vector field on M induced by the action of G. We denote by tr the
symplectic form on M and by #: M--. g* the moment map. To simplify, we will
assume in this article that M has a G-invariant spin structure. We will show in
the appendix how to remove this assumption.

Let us assume that M is prequantized, and let ’ be the Kostant-Souriau line
bundle on M. We denote by R(G) the ring of virtual finite-dimensional represen-
tations of G. An element of R(G) is thus a difference of two finite-dimensional
representations of G. We associate to (M, &a) a virtual representation Q(M, )
R(G) of G constructed as follows: Choose a G-invariant Riemannian structure on
M. Let Se+ be the half-spin bundles over M determined by the spin structure and
the symplectic orientation of M. Let F(M, 6e+/-(R) a) be the spaces of smooth
sections of if’+/- (R) . Consider the twisted Dirac operator

D.: F(M, 6a* (R) .’) F(M, if’- (R) c,).

This is an elliptic operator commuting with the action of G. We define a virtual
representation Q(M, .) of G by the formula:

Q(M, .a) (_ 1)dimt/2([Ker D. ] [Coker D. ]).

The virtual representation Q(M, ) so obtained is independent of the choice of
the Riemannian structure on M. If M and have G-invariant complex structure,
then Q(M, ) (apart from a shift of parameters) is the direct image of the sheaf
(9(’) of holomorphic sections of by the map M point. In the differentiable
category, we employ as in Atiyah-Hirzebruch [3] the Dirac operator to define the
direct image Q(M, ) R(G) K(point) of K(M). If the group G is trivial,
then Q(M,) is the index of the operator D.. We call this number the
Riemann-Roch number of (M, ).
We are interested in describing the decomposition of Q(M, ) in irreducible

representations of G. Let G T be a torus. Let P c it* be the lattice of weights of
T. We have a decomposition

Q(M, ) n(, M, )e,,
iP
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where n(, M, ha) 7Z and is nonzero for a finite number of in the lattice
iP c t*.
The number n(, M, ) is called the multiplicity of the weight

The function n(, M, ’) defined on the lattice iP t* is the Fourier trans-
form of the character Tr Q(M, ) of T. It is the quantum analogue of the
function over #(M)c t* equal to the density #.(/M) of the pushforward by
of the Liouville measure /M of M. The value of the locally polynomial density
#.(//u) on a regular value t* of # is equal to the symplectic volume of the
reduced fiber Me T\#-() [12]. Let iP #(M). Assume furthermore that
T acts freely on #-t(). Then T\(AeI-<)) is a Kostant-Souriau line bundle
on the reduced symplectic manifold M, and Mg inherits a spin structure from
M. Guillemin-Sternberg [17] conjectured that the value of n(, M, Aa) at a
regular value iP #(M) is the Riemann-Roch number Q(M, .). They prove
this conjecture in the holomorphic case under some positivity assumptions
on

Recently, E. Witten [31] suggested a formula relating integrals over M x g of
some closed, equivariant cohomology classes (X) on M and integrals over the
reduced fiber M. Witten’s formula has been proved by Jeffrey-Kirwan [19]. We
realised [29] that the same idea of Witten can be employed modulo some elabo-
ration to the proof of the formula n(, M, &a) Q(M, .) for multiplicities. The
similarity between Jeffrey-Kirwan-Witten formula and multiplicities formulas was
also noticed independently and from a different viewpoint by V. Guillemin [14]
and E. Meinrenken 1-22]. In particular, E. Meinrenken [22] proved the formula
n(, M, La) Q(M, ’), including the case of locally free actions, where the
definition of Q(M, ) has to be suitably modified. Note that a simple proof of
the formula n(, M, )= Q(M, ) is obtained in the case of an St-action by
Jeffrey-Kirwan [20] using their residue formula.
Our proof relies directly on the universal formula for the character of Q(M, ).

Let us explain briefly our technique, which can be applied as well to other index
problems. Let us consider an open G-invariant subset U with smooth boundary B
of a compact spin manifold M. Let 2 be a G-invariant 1-form on M such that the
map #: M g* defined by #(X) (2, Xu) does not vanish at any point of the
boundary B. Let o be a G-equivariant complex vector bundle over M. In [9], the
formula of Atiyah-Segal-Singer for the equivariant index Q(M, o) of the twisted
Dirac operator D is reformulated in a neighbourhood of the identity of G in
terms of the equivariant cohomology ofM as follows:

Q(M, d)(exp X) (2ilr)-limM/2 | J1/2(M)(X)

Here ch(o)(X) is the equivariant Chern character of and J-I/2(M)(X) is the
equivariant A"-genus of M. The class J(M)(X) is invertible for X in a neighbour-
hood of 0 in g. Normalisations are as in [13]. Consider for IR the C functions
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TQ(U, , 2, t) on a neighbourhood of 0 6 g defined by:

TQ(U, o, 2, t)(X) (2i7c)-dimM/2 | e-italY(X)
J1/2(M)(X)

where dg d t(Xu) is the equivariant differential.
We conjecture that there exists an (infinite-dimensional) trace-class virtual rep-

resentation Q(U, , 2) of G such that we have the identity of generalised functions
on a neighbourhood of 0 in g:

Tr Q(U, d, 2)(exp x) lim TQ(U, o, 2, t)(X)
-,oo

(and similar identities near any point s 6 G).
In this article we prove the following theorem (Theorem 17):

Let T be a torus with Lie algebra t. Assume that there exists S t such that
(2, Su) > 0 on the boundary B of U. Then there exists a trace-class virtual repre-
sentation Q(U, , 2) of T such that

Tr Q(U, o, 2)(exp X) lim TQ(U, o, 2, t)(X).

Furthermore, the fixed-point formula of Atiyah-Segal-Singer is valid in the gen-
eralised sense. Let Mr be the submanifold of fixed points for the action of the
torus T. Our hypothesis implies that Mr c B . Consider the subset Mr c U.
Then we have the fixed-point formula for 0 exp X

ch()(X) -1Tr Q(U, o, 2)(0) j1/2(MT) Do+(s)(g),
TcU

where D(0) is a holomorphic function on Te with value-differential forms on Mr

and Dt+ts)(#) is the boundary value of the holomorphic function D-I(g) on an
open subset of T determined by S. Thus, the invariant form 2 allows us to
construct a trace-class virtual representation with character formula given by the
Atiyah-Segal-Singer fixed-point formula on U, suitably interpreted as a gener-
alised function.

Let us return to the case of a Hamiltonian manifold M under an action of
G S1. Let us indicate briefly how to write Q(M, ) as a sum of three infinite-
dimensional trace-class (virtual) representations related to the geometry of the
moment map #: M *. We consider 0 *, and we assume G acts freely on
-1(0).

Choosing a basis E of g, we consider the map f #(E) from M to IR. Choose r
a small, positive real number. Let

Mo (x; If(x)l < r}, M/ {; fx)> }, M_ (x; f(x) < -r}.
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Let (., .) be a G-invariant metric on M, and let 2(.) #(E)(Et, "). Then 2 is a
G-invariant 1-form on M. The value 2(Et)= #(E)IIEMII 2 is strictly positive on
the boundary of M/ and strictly negative on the boundary of M_. We can
thus construct with the help of the 1-form 2 virtual representations Q+/-(M, 5e)
Q(M+/-, ,., 2) with character formula given by Atiyah-Segal-Singer fixed-point
formula on M+/- expanded in the outer directions: it follows that the virtual cha-
racter Q+(M, ) is of the form Q+(M, ) .>oa,,e’. Similarly, Q_(M, )
,,<oa,,e’. In particular, neither Q+(M, ) nor Q_(M, ) contains the trivial
representation of G S.
We denote f-x(0) by P. Consider the principal fibration q: P-M G\P

with structure group G S x. Let 0o G\(5[.). Consider, for all n 6 ;E the
characters z.(exp OE)= e" of G, and let . be the associated line bundles on
G\P Mr. Then Q(M,, .L, (R) Y’.) is a positive or negative integer. Define
the virtual character Qo(M, ) of G by

Qo(M, ) Q(M,d, -d (R) ’--,,)e’’.
Tl.

In particular, the multiplicity of the trivial representation in Qo(M, ) is
Q(Mr,,,, o,).
As a corollary of Theorem 17 of this article and of a limit formula t la Witten

for integration of equivariant differential forms in a neighbourhood of f-l(0)
proved in [28], we obtain the following decomposition of Q(M, ..) associated to
the partition

M MoM+ M_

of M:

Q(M, &a) Qo(M &a) ) Q+(M, .L’) Q_(M,

If a group K commutes with the action of G, then this decomposition is a decom-
position of representations of G x K. As a result, the virtual representation
Q(M,) ofK is the virtual representation Q(Mr,,.,t, ,.,,.,) of K.
To extend the results to the action of a torus, as announced in [29], we can

apply successively the decomposition above to analyse the decomposition of
Q(M, ..) under the action of a torus T (S1)" to obtain n(, M,
for a regular value . This requires an extension of Theorem 17 to an open subset
V of some noncompact manifolds N. The basic example is T*G x M, where M
is a compact G x H manifold and V T*G x U. We will not give the details.
Instead, we will give in Part II of this article [30] a proof based directly on
a deformation of the Dirac operator itself. This proof, although requiring the
machinery of transversally elliptic symbols, requires almost no computation and
leads directly to the formula n(, M, ) Q(M, ’) in the more general case of
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orbifolds with torus actions. It is parallel to the method we used here. However,
we feel worthwhile to publish here a detailed and elementary proof for the case of
an St-action.
To state the results without spin hypothesis, it is necessary to modify as in [23]

the notion of Kostant-Souriau line bundle. This is explained in the appendix and
is only a technical modification. However, we believe results are more invariantly
stated in terms of quantum bundles as in [27]. Indeed, if z is a quantum bundle
on an even-dimensional, compact oriented manifold M, there is a virtual repre-
sentation Q(M, z) associated to z. Furthermore, there is a natural map
from quantum bundles on M to quantum bundles on the reduction Mred. Our
main result on multiplicities is the following.

THEOREM 1. Let G be a torus. Let K be a compact Lie group. Let M be a
G x K Hamiltonian manifold. Let . be a Kostant-Souriau quantum line bundle for
G x K. Let Q(M, .’) R(G x K) be the quantized space. Let #: M- I* be the
moment map for the G-action. Assume that G acts freely on #-1(0). Consider the
K-Hamiltonian manifold Mr,d G\,u-I(O) with Kostant-Souriau quantum line
bundle -rd. Then the virtual representation Q(M, .’) is isomorphic to the virtual
representation Q(Mrd, rd) of K.

I am thankful to Michel Duflo for discussion on this problem. The inspiration
of this work is our common conjecture [27] on universal formula for characters.
Indeed, the character Q(U, , 2) obtained by a limit procedure is the universal
character formula for the manifold U with a cylindrical end attached to it.

2. Quantization on compact manifolds. In this section, we recall some well-
known facts due mainly to Atiyah-Bott i-ll, [2-1, Atiyah-Segal-Singer [5-1, [4-1, [6-1,
and Berline-Vergne i-9] on the equivariant index of the Dirac operator.

Let G be a compact Lie group acting on a compact even-dimensional orient-
able manifold M. For simplicity, we assume first that M has a G-invariant spin
structure. We will remove this assumption in the appendix. If is a vector bundle
over M, we denote by F(M, ) the space of its smooth sections. Let K(M) be the
Grothendieck group of G-equivariant complex vector bundles over M.
We denote by R(G) the ring of virtual finite-dimensional representations of

G. If V -+ are two finite-dimensional representation spaces of G, then I-V-I
i-V+] -I-V-] is an element of R(G). We denote dim V dim V+ -dim V-. If
G { 1 }, we identify R(G) to Z by the function dim V.

Let o be a G-invariant orientation of M. There is a well-defined quantization
map

QO: K(M)--. R(G).

This map can be constructed as follows: Choose a G-invariant metric on M.
Let 6e 6+ 6e- be the spinor bundle (conventions on gradings are as in [7]).
Let be a G-equivariant complex vector bundle over M. Let 6a-+(R) be the



148 MICHELE VERGNE

twisted spinor bundle. With the help of a G-invariant connection & on , we can
construct a twisted Dirac operator D,. This gives an elliptic operator

D,: F(M, 6e+ (R) ov) - F(M, 6a- (R)

which commutes with the natural action of G. The index space of D. is by
definition the virtual representation of G in [Ker D,] [Coker Df,-l. The vir-
tual representation of G so obtained is independent of the choice of the metric
on M and of the connection & on o. It depends only on the bundle and on the
orientation o of M. We define

(1) Q(M, e)= (-1)aimvt/Z([Ker D] [Coker D,]).

In particular, if G is reduced to the identity and is a bundle over M, then
Q(M, o) 7z is a number. This number will be called the Riemann-Roch number
of the bundle over M.

Indeed, the direct-image map QO is the C-version of the direct-image map in
algebraic geometry. If M is a complex manifold of complex-dimension d, and is
a holomorphic vector bundle, then the space Q(M, o) coincides up to a sign e(o)
with the virtual space

d

H(M, g (R) p*) (-1)k[Hk(M, (9(g (R) p*))]
k=O

of cohomology of the sheaf of holomorphic sections of o (R) p*, where p is the
square root of the line bundle of (n, 0)-forms. The line bundle p exists, from our
assumption on existence of spin structure. In particular, if is sufficiently posi-
tive, the space Q(M, o) is up to sign the space of holomorphic sections of (R) p*.
Our convention on orientations is such that if is a sufficiently positive line
bundle and o the orientation of M induced by the symplectic form determined
by the curvature of &a, then Q(M, &’) H (M, (R) p*).

Let be the Lie algebra of G. If X , we denote by XM the vector field on M
produced by the infinitesimal action of :

d
(Xt) (exp- eX)" xl=o.

A G-equivariant differential form on M is a smooth G-equivariant map, defined on
the Lie algebra 9, with values in the space (M) of smooth differential forms
on M. We denote the space of G-equivariant differential forms by (fl, M)=
C(9, (M))G. Here X will denote a point on 9 or the function X - X. Thus, we
may denote a map : 9 (M) by the notation (X). Similar notations will be
common for functions on manifolds, where the notation f(x) will denote (depend-
ing on the context) either the value of the function f at the point x M or the
function f itself.
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We will consider equivariant differential forms (X), which are defined only for
X belonging to a G-invariant open subset W c ft. We denote by a’(W, M)=
C(W, (M)) the space of these forms. An element of Coo(W, a’(M)) will also be
referred to as a differential form on M depending on X W. The equivariant
coboundary dg: z(W, M) (W, M) is defined for o(l/V, M) and X W
by

(ar)(x) t((x))- (x,)((x)),

where t(Xt) is the contraction with the vector field Xt.
A closed equivariant form is by definition a G-equivariant differential form

satisfying dg 0.
We also write dx for the operator d t(Xt) acting on forms.
Let G be a compact Lie group acting on a symplectic manifold M by a Hamil-

tonian action. We denote by (M, a, #) such a data, with a the symplectic form on
M and #: M fl* the moment map. For X g, let

(2) x %(x)= v(x) +

be the equivariant symplectic form. It is a closed G-equivariant differential form
on M.

Let g be a G-equivariant vector bundle with G-invariant connection A. Let F
be the curvature of A. For X , let #(X) F(M, End(o)) be the moment of X
with respect to the connection A [7]. Let X F(X) #(X) + F(X g) be its
equivariant curvature. Then ch(o, A)(X)= Tr(erx)) is a closed G-equivariant
differential form on M called the equivariant Chern character. For X 0, we
denote ch(6, A)(0) Tr(e) simply by ch(6r) leaving implicit the choice of connec-
tion. The form ch(g) is up to normalisation factors of2 the usual Chern character.

Definition 2 (Kostant-Souriau) [21], [25]. The Hamiltonian manifold (M, a, #)
is said to be quantizable, if there exists a G-equivariant line bundle &a M with
G-invariant connection A such that the equivariant curvature of 5e is iag(X).
Such a line bundle will be called a Kostant-Souriau line bundle.

Thus, if (, A) is a Kostant-Souriau line bundle, we have for X g,

(3) ch(, A)(X) el%x.

If G acts on a set E, we will denote by E the set of fixed points of G in E. If
s G, we denote by E(s) the subset of E fixed by s. We denote by G(s) the cen-
traliser of s in G. If s G, the set M(s) is a submanifold of M. We denote by
TM the tangent bundle to M. If N is a closed submanifold of M, we denote by
TNM TMIN/TN the normal bundle to N in M. If S I, we denote by M(S)
{m M; (St)m 0} the manifold of zeroes of the vector field St.
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Recall the localisation formula for G-equivariant differential forms with com-
pact support on an oriented G-manifold M. Let S e fl and consider the zero set
M(S). We choose a G(S)-invariant connection on TMs)M, and we denote by
R(TMs)M) its G(S)-equivariant curvature. Choose an orientation o on Tus)M.
We denote by Eulo(Tus)M) the G(S)-equivariant Euler form of Tus)M. We have
for Y 6 t(S)

Eulo(TMs)M) Y) (- 27r)-rank(TM(s)M)/2 deto/2R TMs)M) Y).

Let be a G(S)-invariant neighbourhood of S in fl(S). Let 0t e ’s)(//, M) such
that (X) cpt(M) for every X . We suppose that g is a closed G(S)-equi-
variant form on M. The form Eulo(Tuts)M)(Y)x is invertible for Y sufficiently near
S and x in the compact support of g. Then for Y 6 9(S) sufficiently close to S, we
have I-8], [10]; see also I-7, Chapter 7]

(4) ft fu z(Y)
cz(Y)

ts) Eulo(TMts)M)(Y)"

Here the orientations of M, M(S) and the orientation o on TMsM are chosen in a
compatible way.
Assume now that (Y) depends holomorphically on Y, for Y belonging to an

open set W in (S). Let U be the open subset of (S) consisting of those Y such
that Eulo(TMtsM)(Y) is invertible. Let W’ be the connected component of W U
containing S. By analytic continuation, we then have, for all Y e W’,

(5) z(Y) fu z(Y)
ts Eulo(TutsM)(Y)"

For example, if is analytic in a small ball W c g(S)e, we can apply Formula 5
to Y zS, with z a nonzero complex number of small norm.
A bouquet of equivariant-differential forms on M is a family 0s, where, for each

s e G, the form s is a G(s)-closed equivariant-differential form on M(s) satisfying
the following conditions of invariance and compatibility 1-13-1, I-11]; see also [27].

1. Invariance:

0ese-1 Q X

for all g 6 G and s G.
2. Compatibility: Let s G; then for all S 6 fl(s) and sufficiently small

tXses(Y Xs(S + Y)lM(ses)

for all Y e (seS).
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Remark 2.1. If S g(s) is sufficiently small, then M(ses) M(s)c M(S) and
g(ses) g(s) g(S) so that the right-hand side of the equality (2) has a meaning.

Recall the definition of the bouquet bch(, &) of Chern characters of a G-
equivariant vector bundle with G-invariant connection & [13], [11]; see also
[27]. By definition, bch(o, &) (chs(g, &))s6, where

(6) ch(o, &)(X) Tr(sgertX)lMs)) for X g(s).

If 2 is a G-invariant 1-form, then &(t) & it2I is also a G-invariant connec-
tion for all IR. We have

(7)

Let us give a formula for Tr Q(M, o) in the neighbourhood of s G in terms of
the equivariant cohomology of M(s). As M is oriented and has a G-invariant spin
structure, the submanifolds M(s) of M are orientable; see, for example, i-7] or
[27]. To explain the formula for Tr Q(M, o) in the neighbourhood of s G, we
recall the definitions of some other equivariant differential forms.

Let s be an orthogonal transformation of a Euclidean vector space 1/1 such
that (1 s) is invertible. In particular, detvl(1 s) > 0. Let o(V1)(s) be the space
of orthogonal transformations of V1 commuting with s. Define for Y o(V1)(s)

(8) D(V1)(Y) detvl(1 set).

If V1 is understood, we write D,(V1) Ds. The function D, has an analytic square
root on (o(V1)(s)),. We normalise it by D2/2(0) > 0.

If V1 is 2-dimensional with (el, e2) as orthonormal basis, and s’(el + ie2)=
e(e + ie2) with 0 not in 2rrZ, then

(9) D/Z(O) 21sin(O/2)l.

Let V be a G-equivariant Euclidean connection on TM. Then V determines
Euclidean connections Vo on TM(s) and V1 on Ttt)M. Let Ro(X), RI(X) be the
equivariant curvatures of Vo and V1. Then, we define the G(s)-equivariant form
J(M(s), V) on M(s) by

(10) J(M(s), V)(X) det (eax)/z-Ro(X)---e-ax)/2’

for X g(s). When V is understood, we write the equivariant differential form
J(M(s), V) simply as J(M(s)).
For X in a small neighbourhood of zero in the complexification of g(s),

J1/2(M(s), V)(X) is analytic and invertible.
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Let us still denote by s the transformation of Tn(s)M determined by s. Then,
at each point x e M(s), the transformation s is an orthogonal transformation of
(Tn(s)M)x and does not have any eigenvalue equal to 1. We define for X e g(s):

(11) Ds(Tnts)M, V)(X)= det(1 see’tx)).

When V is understood, we write the equivariant differential form Ds(Tns)M, V)
simply as Ds(Tns)M).
We denote by L(s, f, A) the G(s)-equivariantly closed form on M(s) defined on

a sufficiently small neighbourhood of zero in g(s) by

(12) L(s, g, A)(X) (2)-dimM(s)/2 chs(g, A)(X)J-/2(M(s))(X)D-/Z(TM(s)M)(X).

Let o be an orientation of M and o’ an orientation of M(s). The action of s on the
spin bundle b determines a sign e(s, o, o’) which is a locally constant function on
M(s). If S is small, then M(es) M(S). The element S determines an orientation
Os of the normal bundle Tns)M and e(es, o, o’) 1 in the case where the orienta-
tions o, o’, o-s are compatible. The convention for Os is as in [13].

THEOREM 3. Let be a G-equivariant vector bundle over an even-dimensional
compact spin manifold M. Choose a G-invariant connection A on . Then, for each
s G, there exists a neighbourhood Us(O) of 0 in g(s) such that we have

Tr Q(M, o)(s exp X)

/-dim M[2 ;M (2/r)-dim M(s)/2

(s),o’

e(s, o, o’) chs(, A)(X)
j1/2(M(s)) (X)D/2(Tn()M)(X)

for every X e U(O).

We also write this formula

(13) Tr Q(M, N)(s exp X) -dimM/2 M e(S, O, o’)L(s, o, A)(X)
(s),o’

with L(s, o, A) given by (12). The formula (13) determines Tr Q(M, o) in a neigh-
bourhood of s e G.

Remark 2.2. Let us denote by e(M) the space of bouquets of equivariant
differential forms. We have defined in [13] (see also [27]) a direct image (or
bouquet-integral) map

,.oq(M) -’-} C(G).
b
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We can restate the formula of Theorem 3 for the equivariant index of the twisted
Dirac operator in function of the bouquet integration as follows

Tr Q(M, ) -dimM/2 bch(6, A).
Let g ses with S fl(s) small. Let Y l(s)c I(S). Then the two integral ex-

pressions for Tr Q(M, o#)(sets+r)) Tr Q(M, )(seSer), either as an integral for-
mula over M(s) (formula for the s-part) or over M(s)c M(S) (formula for the
seS-part), agree, as follows from the bouquet condition on chs(6", A) and the
localisation formula. For example, the two formulas for Tr Q(M, )(ets/r))
Tr Q(M, o)(eSe r) coincide: for s es with $ small, we have M(s) M(S) G(s)
G(S) and the following relation between the G(S)-equivariant forms over M(S):

(14) (2)-dim M/2
ch(, &)(S + Y)lmts

J1/2(M)IMts)(S + Y)Eulo_s(TMts}M)(S + Y)

(27)-dimM(S)/2 chs(f, &)(Y)
j1/2(M(S))(y)D/2(Tuts}M)(y)

for all Y e fl(S) sufficiently small.
Taking X 0 in Formula (13), we obtain the Atiyah-Segal-Singer formula for

the equivariant index of the Dirac operator.

(15) Tr Q(M, )(s) -dimM/2 M (27r’)-dimM(s)/2
(s),o’

e(s, o, o’)ch,(g, A)(0)
J1/2(M(s))(0)D/2(T M)(0)"

When G {1}, we identify the index Q(M, ) with the natural number
Tr Q(M, g)(1) dim Q(M, ). We have

(16) Q(M’ ) (2iz)-dimM/2 M ch()J-1/2(M)"

We have denoted J-1/2(M) (O) simply by J-1/2(M). The form J-1/2(M) is a charac-
teristic form on M which coincides up to normalisation factors of 2 with the
A-genus.
When (M, a, #) is a Hamiltonian manifold and a Kostant-Souriau line

bundle on M, the virtual representation Q(M, ) is then the quantized space of
the manifold (M, a, #). Here the orientation 0 will always be the symplectic orien-
tation, and we will sometimes omit 0 in our notation. If the group G is connected,
the bouquet of Chern characters bch(, &) is entirely determined by (tr, #); thus,
we could write Q(M, .W) Q(M, a, #). The (virtual) representation Q(M, r, #)
has indeed some deep relations with the original symplectic space (M, a). For
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example, if the A-genus of the manifold M is equal to 1 (as is the case when M is
a regular coadjoint orbit of G), then the dimension of Q(M, tr, #) is equal to the
symplectic volume of M. In particular, this volume is an integer. One of the aims
of this article is to describe the decomposition of Q(M, a, bt) in function of the
moment map/.
Of course, Atiyah-Singer-Segal’s pointwise formula (15) for Tr Q(M, o*) deter-

mines it. However, as the dependence of s on the set M(s) is quite chaotic, it is
difficult to employ directly this formula for the geometric study of multiplicities.
To compute, for example, the multiplicity of the trivial representation of G, we
have to compute G Tr Q(M, o)(s) ds. The equivariant-index formula has a better
behaviour: the dependence in X on the integral formula for Tr Q(M, g)(sex) is
Coo in X. However, there are still some difficulties, as it seems not possible to give
a unique global integral formula valid on G and with C-dependence on s (the
formula given above is only valid in a neighbourhood of each point s G).

Consider the particular case of a manifold M with a trivial action of a
torus T.

Let T be a torus. Let t be the Lie algebra of T. Let P c it* be the set of
differentials of unitary characters of T. We will call an element of P a weight of T.
If P, we denote by e, T the corresponding character of T. For X t, we have
e(exp X)= et’x). Then R(T) is the free Z-module with basis e, P. Let d’
be a T-equivariant vector bundle over M. The vector bundle is a sum of its
subbundles o such that T acts on by e. Let & be the connection induced
by the T-invariant connection & on ,. Thus, the function s - chs(,, &)(0)=
Tr(se) e(s)ch(o, &)(0) is a regular function on T with value differential
forms on M. We denote it by ch(g)(s), leaving implicit the choice of &. The
equivariant index Q(M, ) of o is the element of R(T) such that for s T

(17) Tr Q(M, g)(s) (2iI)-dimM/2 fM ch(g)(s)J-1/2(M)"

In particular, the set of weights appearing in the virtual representation Q(M, )
is contained in the set of weights such that is nonzero.

Let G be a compact, connected Lie group. Atiyah-Segal-Singer’s formula (15)
gives us a formula similar to Hermann Weyl’s formula for the character of
Q(M, ). Let T be the maximal torus of G.
We have a decomposition

Tr Q(M, o)(s) n(, M, o)e(s)

where n(, M, o) Z and is nonzero only for a finite number of . The number
n(, M, o) is called the multiplicity of the weight e in Q(M, ).

Let Mr be the set of fixed points of the action of T in M. Let o’ be an orienta-
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tion ofMr. Let yV" be the normal bundle ofMr in M. The formula

(18) Tr Q(M, g)(s) -dimM/2 f (2)_(dimMr)/2 e(s, o, o’) ch(g, A)(O)
jt/2T,o, (MT) (O)D)/Z(W)(0)3

is valid for the dense set of s e T such that M(s) Mr.
Let - be the set of connected components of Mr. For a e ’, we denote by Mo

the corresponding connected component of Mr. We denote by g, the restriction
of the vector bundle g on Ma. Let Ua be the normal bundle TMaM.

Definition 4. We say that s is a-regular if detxa(1 s) 4= 0.

We denote by Treg,, the set of a-regular elements of T. We fix an orientation Oa
on M,. We consider the part of Formula (18) for Tr Q(M, ) coming from inte-
gration on the connected component Ma ofMr.

Definition 5. Let a ’. Let (R)a(M, o) be the function on Ta, reg given by

(19) (R)(M’ )(s) i-dimM/2 fM (27r,)_(dimMa)/2
e(s, o, oo)chs(oo, A)(0)
j1/2 (Ma)(0)Dsl/2 (ffa)(0)"

a, Oa

Remark 2.3. (R)a(M, o)(s) does not depend of the choice of 0a.

LEMMA 6. The function (R)a(M, ) is the restriction to Teg, of a rational func-
tion on T.

Proof. We need to analyse the behaviour in s of the terms of the above inte-
gral formula for (R)a(M, ). Recall that we have chosen G-invariant connections V
on TM and A on . The function s --} chs(go, A)(0) ch(ga)(S) is a regular func-
tion on T with value-differential forms on Ma.

Let us describe the function s - D/2(a)(0). For x Ma, the representation of
T on the vector space (ffa),, (R) breaks up into nonzero weights. These weights
and their multiplicities are independent of the point x Ma. We denote by A the
set of weights appearing in the action of T in (ffa), (R) for some x Ma.
They are all nonzero weights. For e Ao, let ffa() be the subbundle of ff (R) ,
where T acts by a multiple of the weight e,. Let na(O be the rank of Ca(). The set
T,reg is the set of elements T such that (1 e,(t)) :/: 0 for all Ao. Let Ra, be
the curvature of the connection determined by V on ra().

Weights of T on Ya appear in pairs __+ k. If So e t is such that i(Sa) :/: 0 for all
ff Aa, then we define

(20) A+(So) {a e Ao; ia(So) < 0}.

Definition 7. A subset A+ of A such that there exists Sae t with A+ Aa+(So)
is called a positive system.
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Then A, A+ w (-Aa+). For a positive system, we denote

C(Aa+) {S e t; ia(S) < 0, for all e A+).

We fix a positive system Aa+ and define

(21) a/ a+ a()"

We denote by R+ the curvature of the connection determined by V on a+.
The fact that the representation of T on M lifts to the spin bundle implies that

there exists a T-equivariant line bundle + over Ma such that

(.:)2 Amax.a+
Let

1 a na(X)g.(22) pa+ , +

Then pa+ is a weight of T.
+Let r (1/2),a+ Trxata)Ra,. Then ra+ is a 2-form on Ma. We have

ch(a+)(s) eo+ (s)e"+a.

We have (see Formula (9))

D/2(V’.)(O) i"+ e_o+a (S)e-’+. e(s, A+. det.+(1 sea+a),

where e(s, A.+) is a sign. The system A.+ determines an orientation on .: we
choose as oriented basis el, ez, e3, e4, a basis such that el ie2, e3 ie4,.., is
a basis of +. Define

(23) e(o, o., A+) +/- 1

according to the cases where the orientations on a given by Aa+ and 0/0 coin-
cide or not. We have e(s, o, Oa)e(s, A+ (o, Oa, A+a ). Thus,

+ :n+(s, o, Oa)D/2(a)(O) (o, Oa, Aa ), e-o+ (s)e-‘+a deta+(1 se1+

and

(24)

la(M’ )(s) (2i)-dimMa ]MI
a,

,(0, Oa,
ch(ga (R) .+)(s)

deta+(1 seR+a).Ja(m.)
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Thus, we see on this formula that Oa(M, oV)(s) is a rational function of s on
We have used a positive system to give a rational expression. However, Oa(M, g)(s)
is independent of the choice of positive system.

Let us say that s e T is M-regular if s is a-regular (Definition 4) for all a e -.
LEMMA 8.

equality
For an arbitrary choice of positive systems A+a of Aa, we have the

Tr Q(M, f)(s) (R).(M, o)(s)

for any M-regular element s T.

Proof. The character of the finite-dimensional virtual representation Q(M, )
is an analytic function on T. The preceding formula holds for all s T such that
M(s) Mr. By analyticity, it holds for all M-regular elements of T. m
A choice of positive system Aa+ determines a natural extension of the function

(R)a(M, ) defined on T,reg as a generalised function on T.

Definition 9. We denote by R-(T) the set of generalised characters of T. An
element 0 R-(T) is a sum nce of characters of T with coefficients n in Z
and such that the coefficients n have, at most, polynomial growth. The support
of 0 is the set of P such that n 0. For 0 e R-(T), we denote by Tr 0 the
generalised function

Tr O(t) n,e(t).

Let Aa+ be a choice of positive systems for Aa. Let ff+ be the T-equivariant
vector bundle given by Formula (21). Let S(ff+) o SS(a+) be the series of
complex, finite-dimensional vector bundles obtained from the symmetric powers
of a+. If is a T-equivariant bundle on Ma, then the equivariant index
Qa(Ma, ) is an element of R(T).

Definition 10. Define the series of characters of T:

A(M, St, Aa+) e(o, Oa, A:) E Qa(Ma, a ( sk(dffa+) ( "’a+)"
k=O

It is easy to see that Aa(M, o, Aa+) is in R-(T).

PROPOSITION 11. For S . Ta, reg, we have

(R)a(M, oV)(s) Tr(A(M, o, Aa+))(s).

Proof. Using Formula (24), this formula is a consequence of the formula
det+(1 seR+a

.a Trsta/)(se 1 and of the index formula for a manifold with
trivial T-action (Formula (17)).
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Let T (I*)dimT be the complexification of T. Elements of R(T) extend on
holomorphic functions on T. Let

T(Aa+) {# exp(X + iY); X e t, Y C(A+)}.

Remark that for # e T(Aa+), then det+(1 #eRa+) is not 0, as (1 e(#)) : 0 for
all a e A,.
LEMMA 12. The generalised function Tr A(M, of, Aa+) is the boundary value of

a holomorphic function q/, on Te(Aa+). We have for g e Te(Aa+):

po(g) (2i)-imM t.. e(O, O, A+)
ch(gr (R) Aa+)(g)

det+(1 #eR+ ).I/(M)
a’a

Proof. For each k, the function # Tr Qa(M,, fa (R) S*(a+) (R) ’a+)(#)
extends holomorphically to T. Furthermore, the series

, Tr Qa M a @ S*(’V’a+ @ "Cfi’a+ #
*=0

defines a holomorphic function on T(Aa+). Indeed, writing # exp(X + iY) with
Y e C(A,+) and decomposing ff,+ in line bundles, this follows from the fact that
for any e Aa+,

E eka(X+iY
k=O

defines a holomorphic function on T(A.+) as ia(Y) < 0 for Y e C(A.+).
Consider the case where (M, a, #) is a quantizable symplectic manifold. Then

/z: M--* t* takes constant values /. on each connected component M. of Mr.
Furthermore, it follows from the definition of the Kostant-Souriau line bundle
with connection (o, A) that T acts by e. on .. In particular, i#. is a weight. By
definition of A(M, , ) and the remark following Formula (17), we have the
following lemma.

LEMMA 13. The support of A(M, o, A) is contained in the set

iNa q- P+a q- {Z na; na > O, Aa+}"

Let a Aa+ be an arbitrary choice of positive systems for Aa+, when a varies in-. Then, over the open subset of M-regular elements, we have, from Lemma 8
and Proposition 11, the equality

(25) Tr Q(M, g)(s) Tr A.(M, f, A.+)(s).

However, in general, the equality above does not hold over T.
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Let S t be an element such that (S) # 0 for all )a Aa. The element S
determines a consistent choice of positive systems A+(S) of Aa when a varies in -.

PROPOSITION 14 (Guillemin-Lerman-Sternberg [15], Guillemin-Prato [16]).
Let " be the set of connected components of Mr. Let S t be an element such
that (S)= 0 for all U Aa. We have the identity of 9eneralised functions
over T:

Tr Q(M, 6r)(s)= Tr A(M, , A+(S))(s).
a

Proof. Let us give a proof using the integral expression (13) for
Tr Q(M, o)(s exp X), as this proof will generalise easily to a proof of Theorem
17. Consider the function s Tr Q(M, o)(s). It extends holomorphically to T.
We can choose S such that M(S)= Mr. Let be a small positive number. We
have Tr Q(M, 6)(s) limt-.o Tr Q(M, o)(s exp itS).
The differential form L(s, , &)(X) extends holomorphically in a neighbour-

hood of 0 in re. It is clear that

Tr Q(M, )(s exp itS) -dimM/2 fM 8(S, o, o’)L(s, , &)(itS)
(s),o’

for every t sufficiently small.
We now use the localisation formula (5) (applied to M M(s) and Y itS),

and we obtain, for any small positive t,

i-dimM/2 fM e(S, O, o’)L(s, , &,)(itS)
(s),o’

i-dimM/2 I F,(S, O, 0’). tJMa,a

L(s, , &)(itS)

Eulo,/oa(TvtM(s))(itS)"

We can check by calculations similar to those of Lemma 6 that on M

(26)
L(s, , )(itS)lMai-dimM/2F,(S, O, 0’)

Eulo,/o(TMaM(s) itS)

(2ix)-dim Mag,(O, Oa A+a ch(f (R) ’a+)(s exp itS)
J/(Ma) deter+(1 s exp itSeR+a).

The element s exp its is in Tz(Aa+) for any t > 0. Thus, we obtain that for any
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t>0,

Tr Q(M, )(s exp itS) Pa(S exp itS),
a.

and we conclude by Lemma 12. m

3. Quantization of manifolds with boundaries. Consider a compact G-mani-
fold M (oriented and with G-invariant spin structure), and let U be a G-invariant
open subset of M. If (f, &) is a G-equivariant vector bundle over M with connec-
tion , we would like to give a meaning to the quantized space Q(U, , ).
Consider the character formula (13) for Q(M, ). Let s G and Y Us(0) a small
neighbourhood of 0 in (s); then

Tr Q(M, , &)(s exp Y) -dimM/2 fM /3(S, o, o’)L(s, , &)(Y).
(s),o’

It would be naive to try to define a character Tr Q(U, , ) by a truncated
formula:

Tr Q(U, , Ak)(s exp Y) -dimM/2 fU g(S, o, o’)L(s, , &)(Y).
(s),o’

This will never define a character on G nor even a global function O on G,
because the localisation formula (which relies on Stokes’s theorem) does not hold
for manifolds with boundaries.

Consider a G-invariant 1-form 2 on M. As suggested by Witten’s localisation
procedure, we introduce for every IR the connection (t) - it2I on . By
Formula (7) we have L(s, o, (t))(Y) e-’rL(s, o, Ak)(Y).
We consider

Tr Q(M, , &(t))(s exp Y) -dimM/2 fM 8(S, o, o’)e-i’drXL(s, , &)(r).
(s),o’

The integral is independent of t as seen from the fact that e-ita’ is congruent to 1
in equivariant cohomology. However, for every s G, the truncated integral

TQ(U, , , 2, s, t)(Y) -dimM/2 fV t(S, o, o’)e-’nYL(s, , &)(Y)
(s),o’

is a C-function on Us(0) depending on t.
We assume that U {x e M; f(x) > 0}, where f is a G-invariant function from

M to IR such that zero is a regular value of f.
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LEMMA 15. Assume that the map #4: M 9* given by #4(X)= I(XM) does
not vanish at any point of the boundary B of U. Then for each s G, the limit
O(U, , A, , s) when of TQ(U, , , , s, t) exists in the space of gen-
eralised functions on Us(O).

Proof. For s G, the boundary of U(s) is smooth and given by B(s). Indeed,
we have B f-l(0). Then the differential df vanishes on (1 s)TxM for x M(s).
It follows that zero is a regular value for the restriction off to M(s).

Let be any closed G(s)-equivariant form on M(s). We write (s)= 3. For
Y 3, write O(s, t)(Y) vts)e-tdr4(Y) Then we have

d
e-i%4 id,(;te-,a,4)..d

We then obtain

Integration over U(s) and using Stokes’s formula leads to

Let us see that when tends to o, W(B, s, t)(Y) -ints)o 2e-ar4(Y) du has a
limit in the sense of generalised functions given by

W(B,s)(Y)=-ifn f2e-iaY4(Y) du.
(s)

Consider a test function on 3. Let, for f e 3", ()(f)= eiYtr)(Y)(Y)dY.
Then (4)(f) is a differential form on M depending on f e 3*. When f , this
differential form converges uniformly to 0 on M. We have dr2 -#4(Y) + d2 by
definition of #4 so that e-"nY4= e"Utr)e-"d4. The restriction of #4: M 9" to
M(s) is valued in 3*. Thus,

(27) f W(B, s, t)(Y)(Y) dY -i ;te-’a4(g)(u#4(m)) du.

In this integral expre/ssion, we see that W(B, s, t) has a limit. Indeed, for m e B(s),
the differential form ()(u#4(m)) is rapidly decreasing in u (as #4(m) is never zero
on B(s)) while e-ia4 is polynomial in u.
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Applying this calculation to TQ(U, o, A, 2, s, t), we see that TQ(U, , A, 2, s, t)
has limit when the generalised function (R)(U, o, A, 2, s) given for Y Us(0)
by:

(28) (R)(U, o, A, 2, s)(Y)= i-dimM/2(fU ,(S, O, o’)L(s,o,A)(Y)
(s)

fn(s) (f 2e-iUaY’e(s, o, o’)L(s, o, )(Y) du))
We conjecture that under the same hypothesis as Lemma 15, there exists a

virtual trace class representation Q(U, o, A, 2) of G such that for every s G, we
have for Y Us(0):

Tr Q(U, , , 2)(s exp Y) lim TQ(U, o, A, 2, s, t)(Y) (R)(U, o, , 2, s)(Y).
t-*

Remark that it is not even clear that there exists a G-invariant generalised
function (R) on G such that, for Y Us(0),

O(s exp Y) O(U, , &, 2, s)(Y).

Remark 3.1. It is possible to understand Formula (28) for (R)(U, g, A, 2, s) in
the framework of bouquet integrals. Let us consider the manifold M M x IR
where G acts trivially on IR. We embed M in M x IR by m (m, 0). We write
(m, u) an element of M. We consider the differential form 2 u2 as a differential
form on M. Let us consider C = M the cylinder with base B:

C=BxlR+

The boundary of C in M x IR is equal to the boundary of U, both being the
manifold B. If R is a tubular neighbourhood of B in M, we can identify C to the
open subset R U of M. This gives an orientation Oout to C.

Define

(29) Z U k_) (C, Oout).

Then Z is an oriented cycle in M. It can be also identified to the manifold U with
the cylindrical end C attached to it. Consider on M the pullback o of the vector
bundle o with connection A i,. Then Formula (28) for (R)(U, o, , 2, s)(Y)
is nothing but the s-part of the universal formula for -dimM/2 rvuc bch(oT, ,).Jb
The conjecture above is then: There exists a virtual trace-class representation
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Q(U u C, o, A) Q(U, o, A, 2) such that

(30)
UC

Tr Q(U, o, A, 2) -dimM/2 bch(o7, ,).

This conjecture is consistent with the hope (see [27]) that for good noncompact
manifolds and good bouquets, then the bouquet integration produces global (gen-
eralised) functions on G.

We will prove this conjecture together with an explicit formula for Q(U, , A, 2)
in a simple case. The following localisation formula for the manifold U with
boundary B is due to Kalkman 1-18].

LEMMA 16. Let be a closed G-equivariant differential form on M. Assume
there exists a central element S g such that (2, SM) does not vanish on B. Then for
every Y g sufficiently close to S

z(Y)
(d)(Y)

g(Y)
g(Y)

ts) Eulo(Tuts)M)(Y)"

Proof. Our hypothesis implies M(S) B . Recall (see, for example, [13])
that we may write (Y)= fl(Y)+ dgv(Y), where fl() is supported in a small
neighbourhood of M(S). Using a G-invariant partition of unity, we may write also
v(Y) vo(Y)+ vl(Y), where vo(Y) is supported on a neighbourhood of B and
Vl(Y) is identically 0 on B. Applying the localisation formula (4) to the compactly
supported closed form (Y) fl(Y) + (dgv)(Y) on U, we obtain

fv zi (Y) fv zi (Y)
ts Eulo(TMtsM) (Y)

As 1 is in the same cohomology class as ,

t

z(Y) Iv z(Y)
) Eulo(TMs)M)(Y) s) Eulo(TMs)M)(Y)"

Let o(Y) (dvo)(Y). It remains to show that

zo(y) f 2

(d2)(Y)
z(Y).

We have o(Y)= dr(2(dr2)-o(Y)) as o(Y) is compactly supported near B and
dr2 invertible on B. Let n dim M. This implies that the term of maximal degree
of o(Y) is exact and equal to d(2(dr2)-io(Y))t,_l. By Stokes’s theorem, we ob-
tain to(Y) B2(dr2)-10o(Y). But o on B, and we obtain our result, m
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Assume that (Y) depends holomorphically on Y for Y belonging to an open
subset W of g. Let U be the open subset consisting of the elements Y e such
that dg2(Y)le and Eulo(Tuts)M)(Y) are invertible. Let W’ be the connected com-
ponent of S in W U. Then for all Y e W’, we have

(31) g(Y) (dg2)(Y or(Y)
ts) Eulo(Tuts)M)(Y)"

We consider now a compact manifold M with an action of a torus T. Let U be
a T-invariant open subset of M with smooth boundary B. Assume that there
exists S 6 t such that #(S)> 0 on B. The element S 6 t can be assumed suffi-
ciently generic so that M(S)= Mr. We have Mr c B . Let - be the set of
connected components of Mr. Let -(U) be the subset of connected components
of Mr, which are contained in U. The element S t determines positive systems
Aa+(S) defined by Formula (20). Recall Definition 10 for Aa(M, , A+(S)) and For-
mula (28) for (R)(U, , A, 2, s)(X). The main theorem of this section is as follows.

THEOREM 17. Let T be a torus. Let U be a T-invariant open subset of M with
boundary B. Let 2 be a T-invariant 1-form on M such that there exists S t with
(2, SM) > 0 on B. Define

Q(U, < A, 2) , Aa(M, o, A+, (S)).
’(U)

Then for each s T, there exists small neighbourhood Us(O) of 0 t, such that in
c-(u(o)):

Tr Q(U, o, , 2)(s exp X) O(U, , A, 2, s)(X).

Remark 3.2. If M U, then B is empty, and we obtain the formula of
Guillemin-Lerman-Sternberg, Guillemin-Prato (Proposition 14).

Proof. Let s e T. Let (R)(s) (R)(U, , A, 2, s). Then by Formula (28),

l)(s)(X) i-dimM/2(F(U, s)(X) + tiC(B, s)(X))

with

F(U, s)(X) fv e(s, o, o’)L(s, , &)(X)
(2)

and

(s)
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The form L(s, , )(X) is analytic on a neighbourhood of zero in re. Let t > 0
be a small positive number. Define

Ft(U, s)(X) ft e(s, o, o’)L(s, , &)(X + itS).
(s)

Then

lim F(U, s)(X) F(U, s)(X).
--0

Define dt2(X + itS) -l(X + itS) + d2. Define

Pt(B,s)(X)=-i;sf2e-iUttx+use(s,o,o’)L(s,o,)(X+itS)du.
We have

lim q?(B, s)(X) W(B, s)(X)
tO

in the space of generalised functions.
Let > 0. As (#4, S) > 0 on B, the function u e-Utt’s) is rapidly decreasing

on B(s) x IR+. Now

q?t(B, s)(X) -i fn f; 2e-i"’ata)’x+its)e’(s’ o, o’)L(s, g, )(X + itS)du
(s)

=-ifnf;2e-Ut(u’S)eiU(X)e-iUae(s,o,o’)L(s,g,_&)(X+itS)du
(s)

is an analytic function of X Us(0). We have

W(B, s)(X)
(dt2)(X(s) + its)

e(s, o, o’)L(s, , &)(X + itS).

We write Aa+ (S) A+. As S C(Aa+), the element 9 s exp(X + itS) is in T(Aa+).
We can define also (see Lemma 12):

Tr Aa(M, , Aa+)(s exp(X + itS))

and

lim Tr A(M, , A+)(s exp(X + itS)) Tr Aa(M, , A+)(s exp X)
t0

in the space of generalised functions.
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To prove the theorem, we must see that if Pt(X) F(U, s)(X) + Wt(B, s)(X):

i-dimM/2Pt(X) Z Tr A(M, oz, A+)(s exp(X + itS))
(U)

for any > 0.
Define a(Z) a(s, o, o’)L(s, , )(Z) for Z in a small neighbourhood of zero in

t. Then a(Z) depends holomorphically on Z. For > 0,

Pt(X) ft (X+itS)-fn 2

t (dr2) (X + itS)
o(X + itS).

Recall from our assumption on S that U(s)(S)= Ur ,w)M.. Consider
the localisation formula (31) (with U replaced by U(s)). We can apply it to
Y X + itS. As X is of small norm, W’ contains Y X + zS with Izl 1. Fur-
thermore, as X is real, it contains elements Y X + itS with # 0. We obtain

Pt(X) w) f (s, o, o’)L<s, g, )(X + itS)

a, Oa Eulo,/o,(TMaM(s))(X + itS)

Comparing with the formula in Lemma 12 for Tr Aa(M, o, Aa+)(g), with

9 s exp(X + itS),

it remains to be seen that on Ma

i_aimM/2
e(S, O, o’)L(s, , )[ta(X + itS)

Eulo,/%(TuM(s))(X + itS)

(2iTg)-dimMas,(O, Oa, m+a ch(" (R) "2a+)(g)
det+(1 gelS+a).

/2(Ma)
l

4. Geometry of the moment map and decomposition of the quantized representa-
tion for an S-action. Let G {eO; 0 IR. Let Lie(S) IRE with E such
that exp OE ei. Let (M, or, #) be a G-Hamiltonian manifold with symplectic
form a and moment map . Let f: M IR be the G-invariant map

f(m) l(E) (m)

We assume that (M, a, #) is prequantized, and let &’ be a Kostant-Souriau line
bundle (Definition 2) with its connection g,. As before we assume for simplicity
that M carries a G-invariant spin structure. We fix the orientation o given by the
symplectic structure and write Q(M, ) instead of Q(M, ). Our aim is to under-
stand the decomposition of Q(M, ) in irreducible representations of G in func-
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tion of the geometry of the map f. Let be a regular value of f. Let P f-l().
We assume that G acts freely on f-l(). We then can consider the manifold
Mred() G\P. It is a symplectic manifold with symplectic form tr. Then, as we
will show in Lemma 26, the manifold Mred() carries also a spin structure. Con-
sider the line bundle . Then d()= (G\AeI,) is a line bundle on Ma(),
which is a Kostant-Souriau line bundle for tr. In this section, we show the follow-
ing theorem.

THEOREM 18. Let G S. Let * such that i is a weight of G. Assume that
G acts freely on f-l(). Then the multiplicity n(i, M, q’) of ei in Q(M, .) is
equal to Q(Mrd(),

By changing the moment map # to/z , we can suppose that 0. We will
then denote Med(0) simply by Ma, and Laa(0) simply by a.
To study the multiplicity of the trivial representation in Q(M, ), we will de-

compose the virtual character Q(M, -q’) as the sum of three infinite-dimensional
virtual characters 0o, 19+ and 19_.

We denote f-(0) by P. Consider the principal fibration q: P--. Md G\P
with structure group G S1. Let n Z. Consider the character zn(exp OE) e
of G, and let be the associated line bundle on G\P Mrea. Then
Q(Md, ed n) is a relative integer.

Definition 19. Define the virtual character Qo(M, Ae) of G by

Qo(M, .’) Q(M,d, (R) --)e’.

The multiplicity of the trivial representation in Qo(M,
It follows from Atiyah-Singer’s formula (16) that the function n Q(Ma,

qa,d (R) ’--n) is polynomial in n so that Qo(M, ) is indeed a trace-class virtual
representation. Furthermore, Tr Qo(M, ) defines a generalised function on G
supported at the identity of G.

Let be the set of connected components of Mr. Let a and let Ma be a
connected component of Mr. Then f is constant on Ma. Let -+ (respectively,
--) be the set of a e - such that f(Ma)> 0 (respectively, f(M,)< 0). Then- -+ w ’-. We then choose for each component a - the following outer
order:

Aut {a e Aa, ia(E)f(Ma) < 0}.

More precisely, for a -+ we choose A+ A+(E) {0 A, i(E) < 0}, while
we choose for each component a -- the order A+(-E).

Recall the definition of the element A(M, ’, Aa+) in R-(G) (Definition 10).
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Definition 20. Define Q+_(M, &f) R-(G) by

Q+(M, .f) + A,(M, f, AUt).

Q_(M, f) A,(M, .cf, A,O,t).
a-

By definition of +, the constant value #a of #(E) on Ma is a positive integer.
By definition of Aa+ (E), the number Pa -iP,+ (E) is a positive integer. The follow-
ing lemma follows from Lemma 13.

LEMMA 21. Let m > 0 be the minimum of all numbers #a "+" Pa for a +. The
virtual character Q+(M, Lf) is of the form Q+(M, q’)= a,ei’ with n > m. In
particular, Q/(M, .f) does not contain the trivial representation of G S1.

Similarly, the virtual character Q_(M, ) is of theform Q_(M, .L) n<o anei
and Q_(M, L’) does not contain the trivial representation of S G.

The main theorem of this section is the following.

THEOREM 22. We have the decomposition

Q(M, Lf) Qo(M, Lf) O) Q+(M, Zf) ( Q_(M,

It is clear that this theorem implies Theorem 18 for the case of an action of S.
Furthermore, this theorem should allow us to compare multiplicities when we
cross a singular value of f.
Remark 4.1. This writing of Q(M, Zf) is in agreement with Formula (25) for

Q(M, ). Indeed, we know from Lemma 8 that Tr(Q(M, a)_ Tr(Q+(M, &a)
Q_(M, a))) is a generalised function supported on singular elements. Theorem 22
is an explicit description of this generalised function in function of the fiber f-(0).

Proof. Choosing a basis E of 9, we consider the map f #(E) from M --* IR.
Let r be a small positive number. Let

Mo {x; If(x)l < r}, M+ {x; f(x)> r}, M_ (x; f(x) <

We can choose r such that S acts freely on oo. Thus, the vector field EM does
not vanish on M---g. As in Witten, consider the function w (1/2)f 2. Then w gives
rise to the Hamiltonian vector field Hw #(E)EM fEM. Let (., .) be a G-
invariant metric on M. Let

(32) 2(’) (Hw, .)= f(EM, .)

be the G-invariant 1-form determined by Hw and the choice of G-invariant metric
(., .) on M.
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Remark that 2(Eu)= #(E)IIEMll 2 is strictly positive on the boundary of M/
and strictly negative on the boundary of M_.
We associated to Mo, M/, and M_ three generalised functions on G with the

help of 2 by truncating formulas for the s-part of the character of Q(M, , &(t))
with _&(t) _& it2 on . Clearly, as Q(M, , (t)) is independent of for all
s G and all IR, and X g small, we have

Tr Q(M, L’)(s exp X) TQ(Mo, &’, , 2, s, t)(X) + TQ(M+, &’, , 2, s, t)(X)

+ TQ(M_, .’, , 2, s, t)(X).

Furthermore, Lemma 15 and Theorem 17 imply that

lim TQ(M+, oq, , 2, s, t)(X) Tr Q+ (M, &a, &)(s exp X)
t--

and

lim TQ(M_, ’, , 2, s, t)(X) Tr Q_ (M, 5e, )(s exp X).

Thus, it remains to see the next lemma.

LEMMA 23. For each s e G and X Us(O) a small neiohbourhood of 0 in g, we
have in C-(Us(0)):

Tr Qo(M, .q)(s exp X) lim TQ(Mo, 2’, &, 2, s, t)(X).
t-- oO

Proof. By our hypothesis on the free action, TQ(Mo, , &, 2, s, t)(X) is equal
to 0 for s # 1 as Mo(s) . The generalised function Tr Qo(M, ) is supported
at 1, thus Tr Qo(M, )(s exp X)= 0 for s # 1 and X small. We need only to
verify the formula of Lemma 23 for s 1. Let s 1 and let us study the limit in
the space of generalised functions on U1 (0) of the truncated integral

(t))(X)
TQ(Mo, t, 1)(X) (2i7r,)-dimM/2 |

o JX/Z(M)(X)3M

As &(t) it2, we have ch(.Sa, l(t))(X) e-inx ch(.oga, )(X).
Let k be a test function on g with support in Ux(O) so that Jm(M)(X) is inver-

tible on the support of k. We have

(33) ; TQ(Mo, t, 1)(X)(X) dX fuo (fe-’nxL(X)tk(X) dX)
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with

L(X) (2i)-dimM/2 ch(&o, A)(X)J-1/2(M)(X)

a closed G-equivariant-differential form on M.
Let us recall the results of [28]. As G acts freely on P, there exists an isomor-

phism W: H(g, P) H*(Mr). If 09 is a connection form with curvature f for
the fibration q: P ---} Mrea, then W coincides on S(9") with the Chern-Weil homo-
morphism b -} b(f). The inverse of W is simply given by q*.

Let e qCt] (9, M) be a G-equivariant closed form on M. The restriction 01, of 0
to P is a G-equivariant closed form on P. We denote by area the element W(0le).
Then 0re is a De Rham cohomology class on Mred.
We have the following proposition [28, Theorem 19 and Remark].

PROPOSITION 24. Let (9, M) be a G-equivariant closed form on M. Let
be a test function on 9. Then

limfM;ge-itdx(X)q(X)dX=i(2rc)2ftred
Remark 4.2. The form b(f) is defined via the Taylor series of b at zero. As f

is nilpotent, the form (f) involves only finitely many derivatives of b at zero.
Thus, the map q SMred 0red( is a distribution of support zero.

We then obtained that the limit when tends to oo of the generalised function
TQ(Mo, t, 1)(X) exists. We denote it by (R)o. We have by Proposition 24, for b a
test function on 9:

Oo(X)b(X) dX i(2n)2 fM Ledb(),
red

where L(X) (2ire)-dimt/2 ch(, A)(X)J-1/Z(M)(X).

LEMMA 25. We have

Lred (2iff)-dim M/:eiaredJ-1/Z (Mred).

Proof. Recall that tr[, is the pullback of the symplectic form O’red on Mred.

Thus, as/l, 0, we have ch(, -&)l e‘IP, and ch(, )l, is already in the form
q*(eiared).

Let J(Mred) be the J-genus of the tangent bundle to Mod. Let us see that

J(M)(X)le q*J(Mred)
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in cohomology. Indeed, TMIv TP @ P x g* and TP q*TMrea V, where
q*TMr,,a is identified to the horizontal tangent bundle and V to the vertical tan-
gent bundle via the connection form 09. Thus, TMIv q*TMr,d P x (g g*).
The equivariant J-genus of the trivial bundle P x (g @ g*) is identically 1. Thus,

J(M)le q*(J(Mr,,d)),

and we obtain our lemma, m

LEMMA 26. The manifold Mred has a spin structure.

Proof. Let 5e be the spin bundle of M. Consider the horizontal vector H
on a neighbourhood of P in M of the form P x {f ]u, v[}. Let V Eu be the
vertical vector field generated by E. Let Co be the endomorphism of 5ele obtained
by the Clifford action of H + iV on 5e. Then 5:o Ker Co c 5ely has typical fiber
over x the spinor space of Tq0,)Mred. It is a G-equivariant subbundle of 5ely. The
bundle 5#o/G over Mrd is a spinor bundle for Mrd.
As dim Mred dim M 2, we obtain the following expression of Oo:

Oo(X)q(X dX (2)(2in)-dimMred/2 ;M q(n)ei’rreaJ-X/2(Mra)"
red

As b(f)= k(fk/k!)((d/dX)kq)lx=o, we see that (R)o is a distribution on g with
support 0. Let us compute its Fourier expansion. Let 7,,(0)= e". We have
(R)o(exp OE) ,, a,,e’ with

a. (2z)-x f Oo(exp OE)7,_.(O)dO (2i/1;)-dimMred/2 M ei"raJ-i/2(Mrea)e-i"n"
red

The associated line bundle :-_, to 7,_, has Chern character e-"n. Thus, the
index Q(Mrod, ra (R) :--,,) of the twisted Dirac operator +Derd(R), on the spin
manifold Md is in 71. It is given by the integral formula (16):

Q(Mred, red () ’-n) (2ilr,)-dimMred/2 ;M ei’rrede-in"J-l/2(mred)"
red

We thus obtain Lemma 23 and hence Theorem 22. m
Assume that a compact group K acts on M commuting with the action of S

and such that (, &) is a K-equivariant vector bundle and that the action of
K preserves &. Then f is a K-invariant function. The manifold f-x(0) carries
a K-action, and Md is a K-Hamiltonian manifold with Kostant-Souriau line
bundle ed. All terms of Theorem 22 are virtual representations of G x K, and it
is clear that the same theorem holds as (virtual) representations of G x K.
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THEOREM 27. We have the decomposition

Q(M, L’) Qo(M, .’) Q+(M, ..) Q_(M,

as virtual representations of G x K.

The space Q(M, L’) is a virtual representation of K. We have the next
theorem.

THEOREM 28. Let G S1. Let K be a compact Lie group. Let M be a G x K
Hamiltonian manifold with a (G x K)-invariant spin structure. Let Z’ be a Kostant-
Souriau line bundle for G x K. Let Q(M, c,) R(G x K) be the quantized space.
Let f: M g* be the moment map for the G-action. Assume that G acts freely
on f-(O). Consider the K-Hamiltonian manifold Mred G\f-(O) with Kostant-
Souriau line bundle -ed. Then the virtual representation Q(M, L’) is isomorphic to
the virtual representation Q(Mrd, ’) of K.

Theorem 27 should be interpreted in the noncompact manifold M M x IR.
We embed M in M x IR by x (x, 0). Let us consider

C+ B+/- x IR+

where B+/- is the boundary of M+/-. We define orientations Oout on C+/- as explained
in formula (29). Define

Z+/- M+/- u (C+/-, Oout)

Zo (C_, -Oout)u Mo (C+, -Oou,).

Thus, Z0, Z+, Z_ are G-invariant oriented cycles in M. Clearly, as a sum of
oriented cycles, we have

M [Z_] + [Z0] + [Z+].

As shown in the preceding section (Formula (30)), the decomposition Q(M, )
Qo(M, .2’) Q/(M, .’) ) Q_(M, .’) as a sum of 3 virtual characters of G corre-
sponds to the decomposition M i-Z_] + I-Zo] + I-Z+] in M. Indeed, we have

Tr Q +/-(M, .o.) -dimZ/2 bch(Z+/-, .o’, &).

Tr Qo(M, L’) -dimZ/2 bch(Zo, , -).
O
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APPENDIX

5. The universal character formula for quantum bundles. In this appendix, we
state the universal character formula without the restrictive assumption of spin
structure on M.

Let G be a compact Lie group acting on a smooth oriented manifold M and
preserving the orientation of M. Let us recall the definition of a G-equivariant
quantum bundle over M.

If V is a real vector space, we denote by GL+(V) the group of linear transfor-
mations of V which are of positive determinant. We denote by j: ML+(V) --,

GL+(V) the 2-fold connected cover of GL+(V) and by e ML+(V) the nontrivial
element above 1 GL+(V).

Let W be a Hermitian space. Let U(W) be the group of unitary transforma-
tions of W. We denote by -I the transformation w -w of W. We embed Z/2Z
as a central subgroup Z in ML+(V) x U(W) obtained by sending (- 1) e Z/2Z to
(e, I) e ML+(V) x U(W). Let

ML+(V)w (ML+(V) x U(W))/Z.

We denote by [e, u] the class of the element (e,u)e ML+(V)x U(W) in
ML+(V). We call the group ML/(V)w the metalinear group with coefficients in
I4/. There are canonical morphisms

f: ML+(V)w GL+(V)

and

u" ML+(V)w --. U(W)/+_I.

If Vx @ V2 is a direct sum decomposition of V, the subgroup {g ML+(V @ v2)W;
f(9) GL+(Vi)} is isomorphic to ML+(V)w. We thus embed ML+(Vx)w and
ML+(V2)w as 2 commuting subgroups of ML+(V)w(R)w.

If P M is a principal space with group ML+(V)w, we denote by P the vector
bundle over M associated to the representation f of ML+(V)w in V.

Recall the following definition.

Definition 29. Let M be a manifold of dimension n. Let V be a real vector
space of dimension n. Let W be a Hermitian space. A quantum bundle : P M
over M with fiber W is a principal bundle over M with structure group ML+(V)w
such that the associated bundle PY is the tangent bundle TM.

In this definition, it is necessary that the manifold M is orientable for quantum
bundles to exist. The space W is called the fiber of the quantum bundle P, al-
though there is no true vector bundle W" with fiber W associated to P. However,
there is an associated bundle P" to P with structure group U(W)/+_I, i.e., a
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pseudovector bundle with fiber W in the terminology of [27]. In particular, as
the adjoint action of U(W) on End(W) factors through U(W)/+_-I, the bundle
End() is well defined.

It is clear that we can add two quantum bundles of fibers W1 and W2 and
obtain a quantum bundle of fiber W1 W2. We can tensor a quantum bundle
with fiber W with a Hermitian vector bundle with fiber E and obtain a quantum
bundle with fiber W (R) E.

Let G be a Lie group acting on M and preserving the orientation of M. A
G-equivariant quantum bundle is a quantum bundle with a left action of G such
that the associated action of G on the associated bundle pS is the natural action
of G on the tangent bundle TM.
We denote by F;(M) the set of G-equivariant quantum bundles on M (up

to isomorphism). We denote by K(M) the associated Grothendieck group. If
G { 1 }, we denote F(M) simply by Ft(M) and Kt(M) by Kt(M).
A G-equivariant quantum bundle with Hermitian connection is a couple (z, )

consisting of a G-equivariant quantum bundle and of a G-invariant connection
& on the associated bundle z" with group U(W)/+ I.

Let be a G-equivariant quantum bundle on M. If A is a G-equivariant con-
nection on P", the equivariant curvature F(X) of is a differential form on M
with values in the bundle End(CQ. Thus, we can define the Chern character
ch(z, A)(X) as in the case of vector bundles by the formula ch(z, A)(X) Tr(eVX)).
It is a G-equivariant closed form on the manifold M.

Let (M, a, #) be a symplectic manifold with Hamiltonian action of G. We
slightly modify the notion of the Kostant-Souriau line bundle.

Definition 30. We say that (M, a, #) is prequantizable if there exists a G-equi-
variant quantum line bundle (z, A) over M with equivariant curvature F(X)=
ia(X).

If the manifold M is a compact, even-dimensional manifold and has a G-
invariant orientation o, there is a well-defined quantization map

QO: K(M)- R(G).

This map can be constructed as follows: Let V be an oriented even-dimensional
Euclidean space. Let S S/ S- be the spinor space of V. Given a quantum
bundle z over M with fiber W, we can construct with the help of a G-invariant
metric on M, a graded G-equivariant Clifford bundle 6e, on M with typical fiber
S -+ (R) W. We denote by F(M, Sff) the space of its smooth sections. With the help
of a G-invariant connection A on pu, we can construct a twisted Dirac operator
Dv,,. This is an elliptic operator

D?., . r M, e - r M, 7),
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which commutes with the natural action of G. We define

Q(M, z) (- 1)dimn/2(l-Ker Dv,] I-Coker Dw,]).+

The virtual representation Q(M, ) depends only on the quantum bundle
and on the orientation o of M.
The character formula for Tr Q(M, ) is a slight modification of the character

formula 13 when M is a spin manifold. The crucial difference is that if we do not
assume the existence of a G-invariant spin structure, submanifolds M(s) are not
necessarily oriented; thus, we need to produce densities on M(s) rather than dif-
ferential forms. The Chern character of equivariant quantum bundles produces
such families as we now recall.

Recall that if s is an elliptic transformation of an oriented vector space V and if
is an element of ML+(V) above s, then g determines an orientation o of V/V(s).

The convention is as in [27].
If N is a manifold, we introduce the 2-fold cover Nor {(m, )} of N, where

rn 6 N and is an orientation of TmM. We say that is a folded differential form
on N if is a differential form on Nor such that -_. The term of maximum
exterior degree of a folded differential form g is a density on N. We can then
define N g.

Let v: P M be a G-equivariant quantum bundle over M with fiber W and
G-invariant Hermitian connection A. Then we can define the equivariant curva-
ture F(X) of A. For X 6 I, it is a differential form on M with values in End(/’). If
s G, m M(s), and p is an element of P above m, we denote by O(P, s) the
element 9(P, s) ML+(V)w such that sp PO(P, s). Let (g s w) ML+(V) U(W)
such that [g, sw] O(P, s). Let o’ be a local orientation of M(s). We write
sign(g, o, o’) _+ 1, depending on whether the orientations o, o, o’ are compatible
or not.

Definition 31. The Chern character bch(v,A)= (chs(z,A))so of the equi-
variant quantum bundle with G-invariant connection A is the family of folded
equivariant-differential forms

chs, o,(V, A)(X) sign(g, o, o’) Tr(sWerX)l")).

The Chern character bch(v, A) of a G-equivariant quantum bundle with G-
invariant connection A is an admissible bouquet in the sense of [13]. The inte-
gration t on the space of admissible bouquets is defined in [13].

THEOREM 32. Let be a G-equivariant quantum bundle over an even-dimen-
sional compact manifold M. Choose a G-invariant connection on . Then

Tr Q(M, z, ) -dimM/2 bch(z, ).
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The meaning of this formula is as follows. Let s G. There exists a neighbourhood
Us(O) of 0 in l(s) such that we have

(34)

Tr Q(M, z)(s exp X) -dimM/2 M (2)-dimMts)/2
(s)

ch,(z, &)(X)
j1/2(M(s))(X)D/2(M<s>M)(X)

for x u(o).

Remark that the term of maximal exterior degree under the integral sign is a
density on M(s), so that it can be integrated. If (M, a,/) is a prequantizable,
compact, symplectic manifold with Kostant-Souriau quantum line bundle z, the
virtual representation Q(M, , A) is the quantized space of the Hamiltonian space
(M, a, #).

Let (M, a, #) be a symplectic manifold with a Hamiltonian action of a compact
Lie group G. Let/: M--+ * be the moment map. Assume that G acts freely on
#-(0). We can then form the reduced manifold M,e. In the next subsection, we
show that there is a canonical map r "ered from Goequivariant bundles on M
to quantum bundles on Me. This is the generalisation of Lemma 26 and was
already observed in the symplectic context in [24].
The main result (Theorem 1) on multiplicities can thus be stated without spin

hypothesis on M (see [30, Part II] for the proof).
Denote #- (0) by P. A neighbourhood of P in M is diffeomorphic to P I*. In

the next subsection, we show that there is an isomorphism between G-equivariant
quantum bundles on P x * and quantum bundles on Mred G\P.

6. Reduction of quantum bundles. Let G be a compact Lie group with Lie
algebra I. Let P be a compact manifold that is a principal space for the. action of
G. Let N be the manifold

N=Pxg*

with diagonal action of G. Let Nred G\P be the quotient space. We assume that
the manifold Ned is oriented. We denote by q: P Ned the quotient map.
We denote an element of N by (x, ), where x P and *. We denote by

q: P x * Ned the map q(x, ) q(x). The fiber of q is G x *. In particular,
the manifold N is covered by open subsets of the form U x G x *, so that it
looks locally as the product of Ned by a cotangent space.

If is a vector bundle over Ned, then (q)* is a vector bundle over N. It is
provided with an action of G given by O’((x, ), v) ((Ox, 0"), v) for O e G, x e P,

*, v ,). Every G-equivariant vector bundle over P x * is isomorphic to
the pullback of a G-equivariant vector bundle over P. As the action of G on P is
free, every G-equivariant vector bundle over P is isomorphic to a bundle q*(fU).
Thus, every G-equivariant vector bundle over N is isomorphic to the pullback
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(qt).: of a bundle over Nred. We show that the same result is true for quantum
bundles over N P x g*.
To state the correspondence between quantum bundles over Nred and N, we

need some lemmas on the groups ML/(V).
Assume dim V 2d even. Let 0 be an orientation of V. Let fl, f2,..., f2a-1, f2d

be an oriented basis of V. Let

Sf2j -f2j-

The element r exp rcS of ML+(V) covers the element 1 of SL(V) and depends
only on the orientation 0 of V. We have (r)2 e, and r is central in ML/(V).

Let Vx be a real vector space. Let V V V*. On V, consider the orientation
0 Ovl.v given as follows. If E is a basis of Vx with dual basis E, then an
oriented basis is El, E, E2, E2, Consider the homomorphism d(g) (gt, g-)
of GL(V) into SL(V). Let ML/(V)c be the metalinear group with coefficients
in .
LEMMA 33. Let V be a real vector space. Let V VI V’. There exists a

homomorphism l: GL(V) ML+(V) such that fl(s) d(s).
We normalise this isomorphism when dim V1 is odd such that

3(-- 1) [r, idimVl].

If dim VI is even, we embed V in V O) ]R and normalise l such that

(g) (g, I).

Remark 5.1. If dim V is odd, we have [r, idimV’]2 [’3, 1] 1 in ML+(V)
so that the image of (- 1) is of order 2 as it should be.

Let no dim Nrd, and let d dim G. The dimension n of N is equal to no + 2d.
By the choice of a connection on P, the tangent bundle to the fiber of qt: N Nd
is isomorphic to N x ( g*). If (Nred, Ored) is oriented, we choose as orientation
of N the orientation

(35) o

Let Vo be a real vector space of dimension no. Let Zo: Ro Ned be a quantum
bundle on Nd with Hermitian fiber W. It is a principal bundle over Nrd with
structure group ML+(Vo)rr. Let V= Vogg*. Then V is of dimension
n no + 2d. Consider the natural homomorphism ho: ML+(Vo)rr ML+(V)rr

coming from the direct-sum decomposition V= Vogg*. Let R(zo)=
Ro xu./tVo)W ML+(V)re be the associated bundle to the homomorphism ho. The
group ML+(V)re acts on the right on R(zo). Thus, R(zo) is a principal bundle over
N,d with structure group ML+(V)re. We denote by I-r, a] the class of the element
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(r, a) r 6 Zo, a ML+(V)w in R(’co). Consider the adjoint action G GL(g). Con-
sider the homomorphism l: G ML+(g g*) given in Lemma 33. As the sub-
groups ML+(Vo)w and ML+(g g*)c commute, the space R(zo) is provided with
an action of G given by O x Jr, a] It, d(o)a]. The bundle (q’)*R(zo) is thus a
G-equivariant principal bundle over N with structure group DL+(V)w.
LEMMA 34. If Zo is a quantum bundle on Nred, the bundle (qt)*R(zo) is a G-

equivariant quantum bundle over N.

Proof. Let z (q’)*R(zo). We have to prove that the associated bundle zy

with fiber V Vo g g* is isomorphic to the tangent bundle to N. It is clear
that the associated bundle z’ is isomorphic to (qt)*TNred N x (g g*). Let us
choose a connection form for the principal fibration P Nd. This provides an
isomorphism between TN and (qt)*TNed N x (I 1") and identifies zs to TN
as G-equivariant bundles.

PROPOSITION 35. Every G-equivariant quantum bundle z on N is of the form
(pto)*R(zo) for a unique quantum bundle Zr on Nd.

The quantum bundle zd over the reduced manifold Nred such that (qt)*zrd
will be called the reduction of z. The associated bundle z is isomorphic to (q)*Zr,.u

It is also natural to consider the situation where a product of compact Lie
groups K x G acts on P, and G acts freely on P. Then there is an action of K on

N and we can similarly prove the following proposition.

PROPOSITION 36.
Fb (U).

The map o "-* (q’)*(R(zo)) is an isomorphism of Fk(Nr) and
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