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Abstract

We present a simple proof of a precise version of the localization
theorem in equivariant cohomology. As an application, we describe
the cohomology algebra of any compact symplectic variety with a
multiplicity-free action of a compact Lie group. This applies in partic-
ular to smooth, projective spherical varieties.

1 A precise version of the localization theorem

Let X be a topological space with an action of a compact torus T . Let
H∗

T (X) be the equivariant cohomology algebra of X with coefficients in the
field Q of rational numbers. The equivariant cohomology algebra of the
point is denoted by ST ; then H∗

T (X) is a ST -algebra. Any weight of T
defines an element of degree 2 of ST ; this identifies ST with the symmetric
algebra over Q of the group of weights of T .

Let Γ ⊂ T be a subtorus, let XΓ ⊂ X be its fixed point set and let

iΓ : XΓ → X, iT,Γ : XT → XΓ

be the inclusion maps. They define homomorphisms of ST -algebras

i∗Γ : H∗
T (X) → H∗

T (XΓ), i∗T,Γ : H∗
T (XΓ) → H∗

T (XT ).

Recall that the ST -algebra H∗
T (XΓ) is isomorphic to ST ⊗ST/Γ

H∗

T/Γ(XΓ).

In particular, the ST -module H∗
T (XT ) = ST ⊗Q H∗(XT ) is free.

The following statement is a variant of a result of Chang and Skjelbred
(see [4] §2 and also [8] p. 63).
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Theorem 1 Assume that
(i) there exists a T -equivariant embedding of X in the space of a real repre-
sentation of T , and that
(ii) the ST -module H∗

T (X) is free.
Then the homomorphism of ST -algebras

i∗T : H∗
T (X) → H∗

T (XT )

is injective, and its image is the intersection of the images of the

i∗T,Γ : H∗
T (XΓ) → H∗

T (XT )

where Γ ranges over all subtori of codimension one of T .

This reduces the description of the algebra H∗
T (X) to the case where T is

one-dimensional; examples will be given below. Chang and Skjelbred’s result
has been generalized to equivariant intersection cohomology by Goresky,
Kottwitz and MacPherson (see [6]); a version for equivariant Chow groups
of smooth, projective algebraic varieties is given in [3].

Assumption (i) holds if X is a compact differentiable manifold. If more-
over X is a Hamiltonian T -manifold, then (ii) holds, too (see [5]).

Our proof of Theorem 1 is based on the following consequence of the
localization theorem (see [8] Theorem (III.1’)).

Lemma 1 For any subgroup Γ ⊂ T , the ST -algebra homomorphism

i∗Γ : H∗
T (X) → H∗

T (XΓ)

becomes an isomorphism after inverting finitely many weights of T which
restrict non trivially to Γ.

We give a proof of Lemma 1 for completeness. First we consider the
case where XΓ is empty. Then, because X embeds into the space of a
representation of T , we can cover X by finitely many T -invariant subsets
X1, . . . ,Xn such that every Xj admits a T -equivariant map Xj → T/Γj

where Γj ⊂ T is a closed subgroup which does not contain Γ. For any T -
invariant subset Uj ⊂ Xj , the space H∗

T (Uj) is a module over the algebra
H∗

T (T/Γj) = H∗
Γj

(pt). The latter is the quotient of ST by its ideal generated
by all weights of T which restrict trivially to Γj. For any j, choose such a
weight χj which restricts non trivially to Γ. Then multiplication by χj is
zero in H∗

T (Uj). By Mayer-Vietoris, multiplication by the product of the χj

is zero in H∗
T (X). This implies our assertion.
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In the general case, let Y ⊂ X be a closed T -stable neighborhood of XΓ

in X. Let Z be the closure of X \ Y in X; then Z is T -stable and ZΓ is
empty. By the first step of the proof and Mayer-Vietoris, it follows that
restriction H∗

T (X) → H∗
T (Y ) is an isomorphism after inverting a finite set

F of characters of T . Moreover, F is independent of Y . To conclude the
proof, observe that H∗

T (XΓ) is the direct limit of the H∗
T (Y ).

Proof of Theorem 1. By Lemma 1 applied to Γ = T , the homomorphism

i∗T : H∗
T (X) → H∗

T (XT )

becomes an isomorphism after inverting a finite family F of non-zero weights.
We may assume that these weights are primitive (that is, not divisible in
the weight lattice). Because the ST -module H∗

T (X) is free, it follows that
i∗T is injective.

As iT = iΓ ◦ iT,Γ it is clear that the image of i∗T is contained in the
intersection of images of the i∗T,Γ. To prove the opposite inclusion, choose a
basis (ek)k∈κ of the free ST -module H∗

T (X). For any k ∈ κ, let

e∗k : H∗
T (X) → ST

be the corresponding coordinate function. Then there exists a ST -linear
map

fk : H∗
T (XT ) → ST [1/χ]χ∈F

such that fk ◦ i∗T = e∗k.
Let χ ∈ F ; then its kernel ker(χ) ⊂ T is a subtorus of codimension 1.

Let u ∈ H∗
T (Xker(χ)). By Lemma 1 applied to Γ = ker(χ), there exist a

product Pχ of weights of T which are not multiples of χ, such that Pχu is
in the image of i∗ker(χ). Setting v := i∗T,ker(χ)(u), it follows that Pχv is in the

image of i∗T . Applying fk, we obtain Pχfk(v) ∈ ST . Thus, the denominator
of fk(v) is not divisible by χ.

If v ∈ H∗
T (XT ) is in the intersection of the images of the i∗T,ker(χ) for

all χ ∈ F , then fk(v) ∈ ST [1/χ]χ∈F but the denominator of fk(v) is not
divisible by any element of F ; whence fk(v) ∈ ST . It follows that v =
i∗T (

∑
k∈κ fk(v)ek) is in i∗T H∗

T (X).

2 Cohomology of multiplicity-free spaces

Let K be a compact connected Lie group and let X be a compact symplectic
manifold with a Hamiltonian action of K; let Φ : X → (LieK)∗ be the
moment map. The K-variety X is called multiplicity-free if the preimage
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under Φ of any K-orbit is a unique K-orbit (see [7] and [12] Proposition
A1). Under this assumption, we will describe the K-equivariant cohomology
algebra of X. Recall that this algebra H∗

K(X) is isomorphic to H∗
T (X)W

where T ⊂ K is a maximal torus with Weyl group W . The W -equivariant
map i∗T : H∗

T (X) → H∗
T (XT ) restricts to an injective homomorphism

ι : H∗
K(X) → H∗

T (XT )W .

To apply Theorem 1, we will need the following straightforward result.

Lemma 2 Let X be a multiplicity-free K-variety and let Γ be a subtorus of
T with centralizer KΓ in K. Then the number of connected components of
XΓ is finite, and each of them is a multiplicity-free KΓ-variety.

In particular, XT is finite, and Φ induces a bijection from XT /W onto
Φ(XT )/W . To describe the latter, choose a Weyl chamber C ⊂ (Lie T )∗ and
set

Φ(XT ) ∩ C = {λ1, . . . , λn} .

For 1 ≤ i ≤ n, choose xi ∈ XT such that Φ(xi) = λi and denote by Wi the
isotropy group of xi in W . Then the algebra H∗

T (XT )W identifies with the
subalgebra of ST ×· · ·×ST (n times) consisting of the (f1, . . . , fn) such that
each fi is invariant under Wi.

Let X1 ⊂ X be the union of fixed point subsets of subtori of codimension
one in T . Then Φ(X1) ∩ (Lie T )∗ consists of finitely many segments with
ends in W{λ1, . . . , λn}.

Theorem 2 Notation being as above, the algebra H∗
K(X) is isomorphic via

ι to the subalgebra of ST × · · · × ST (n times) consisting of the (f1, . . . , fn)
such that:
(i) each fi is invariant under Wi, and
(ii) fi ≡ w(fj) (mod λi − w(λj)) whenever the segment [λi, w(λj)] lies in
Φ(X1) ∩ (Lie T )∗.

Remarks. 1) The cohomology algebra H∗(X) (with coefficients in Q) is the
quotient of ιH∗

K(X) by its ideal generated by the (f, f, . . . , f) where f is
a non-zero homogeneous element of SW

T . Indeed, H∗(X) is the quotient
of H∗

K(X) by its ideal generated by the non-zero homogeneous elements of
H∗

K(point) (see [5]).

2) A special K-equivariant cohomology class is the class σ of the equivariant
symplectic form, and we have i∗T (σ) =

∑
x∈XT Φ(x)[x]. Thus, ι(σ) identifies

with (λ1, . . . , λn).
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3) Theorem 2 applies to smooth projective spherical varieties, and in partic-
ular to complete symmetric varieties. The equivariant cohomology algebra
of the latter has been described by Bifet, DeConcini, Littelmann and Procesi
via other methods (see [11] and references therein).

Proof. Let Γ ⊂ T a subtorus of codimension one. Let χ be a weight of T
with kernel Γ and let Y be a connected component of XΓ. By Lemma 2,
the KΓ-variety Y is multiplicity-free. Set KΓ/Γ := L; then L is isomorphic
to S1, SU(2) or SO(3). Two cases can occur:
1) Y is two-dimensional. Then Y is isomorphic to complex projective line,
and Y T consists of two fixed points y, z. Restriction to these fixed points
identifies H∗

T (Y ) to the set of all (fy, fz) ∈ ST × ST such that

(1) fy ≡ fz (mod χ) .

If χ is not a root of (K,T ), then L ≃ S1 and Φ(Y ) is the segment
[Φ(y),Φ(z)]. Thus, this segment lies in Φ(X1) ∩ (Lie T )∗. On the other
hand, if χ is a root, let s ∈ W be the corresponding reflection and let
ns ∈ K be a representative of s. Then Y is invariant under ns, and

H∗
T (Y )s = {(fy, s(fy)) | fy ∈ ST }

(indeed, f − s(f) is divisible by χ for any f ∈ ST ).
2) Y is four-dimensional. Then L is isomorphic to SU(2) or SO(3), and

the L-variety Y is either a rational ruled surface, or the projectivization of a
three-dimensional complex representation of SU(2) (see [9] and [2] Chapter
IV, Appendix A). In the former case, Y T consists of four points y, s(y),
z, s(z) where s is the non-trivial element of the Weyl group of (L, T/Γ);
we may assume that the segment [Φ(y),Φ(z)] lies in Φ(Y ) ∩ (Lie T )∗. It is
easy to check that restriction to fixed points maps H∗

T (Y ) onto the set of all
(fy, fs(y), fz, fs(z)) ∈ S4

T such that

(2) fy ≡ fs(y) ≡ fz ≡ fs(z) (mod χ), fy + fs(y) ≡ fz + fs(z) (mod χ2) .

It follows that

H∗
T (Y )s = {(fy, fz) ∈ ST × ST | fy ≡ fz (mod χ)}.

In the latter case, we have similarly Y T = {y, s(y), z} where z = s(z),
and H∗

T (Y ) consists of the (fy, fs(y), fz) ∈ S3
T such that

(3) fy ≡ fs(y) ≡ fz (mod χ), fy + fs(y) ≡ 2fz (modχ2) .
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It follows that

H∗
T (Y )s = {(fy, fz) ∈ ST × Ss

T | fy ≡ fz (modχ} .

We conclude that the image of ι is defined by the congruences of Theorem 2.
Observe that the image of i∗T : H∗

T (X) → H∗
T (XT ) is defined by congruences

of the form (1), (2) or (3); this result is proved in [3] for equivariant Chow
groups of spherical varieties.

Example 1 (coadjoint orbits). Let X be the K-orbit of λ ∈ (LieK)∗; we
may assume that λ ∈ C. Then Φ : X → (LieK)∗ is the inclusion map,
whence Φ(XT ) ∩ C = {λ} and Φ(X1) ∩ (Lie T )∗ = W · λ. Then Theorem 2
reduces to the well-known isomorphism

H∗
K(K · λ) = SWλ

T .

Let Γ ⊂ T be the kernel of a weight χ. If χ is a root with corresponding
reflection sχ, then XΓ = KΓW · λ is a disjoint union of complex projective
lines containing wλ and sχwλ; otherwise, XΓ = XT . By Theorem 1, we
have

H∗
T (K · λ) = {(fµ)µ∈W ·λ | fµ ∈ ST , fµ ≡ fsαµ (mod α) for all roots α} .

Another description of this algebra is due to Arabia and Kostant-Kumar
(see [1] and [10]).

Example 2 (complete conics). Let V be the vector space of quadratic forms
on C3, let V ∗ be the dual space, and let P = P(V )×P(V ∗) be the product
of their projectivizations. Let X ⊂ P be the closure of the set of classes
([A], [A−1]) where A ∈ V is non-degenerate and A−1 ∈ V ∗ is the dual
quadratic form. Then X is a smooth projective variety, called the space of
complete conics. Moreover, X is multiplicity-free for the natural action of
the unitary group K := U(3), and Φ(X1)∩(Lie T )∗ is given by the following
picture.

2ρ − α1
2ρ

2ρ − α2
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It follows that the algebra H∗
K(X) consists of all triples (f, f1, f2) in

ST × Ss1

T × Ss2

T such that f ≡ f1 (mod α1), f ≡ f2 (mod α2) and that
f1 ≡ sα1+α2

(f2) (mod 2α1 + α2) where α1, α2 are the simple roots, with
corresponding reflections s1, s2. Other examples are given in [3].
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