
J. Inst. Math. Jussieu : page 1 of 42. 1
doi:10.1017/S1474748012000734 c© Cambridge University Press 2012

BOX SPLINES AND THE EQUIVARIANT INDEX THEOREM

C. DE CONCINI1, C. PROCESI1 AND M. VERGNE2

1Dipartimento di Matematica, Università di Roma La Sapienza,
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Abstract In this article, we begin by recalling the inversion formula for the convolution with the box

spline. The equivariant cohomology and the equivariant K-theory with respect to a compact torus G
of various spaces associated to a linear action of G in a vector space M can both be described using
some vector spaces of distributions, on the dual of the group G or on the dual of its Lie algebra g. The

morphism from K-theory to cohomology is analyzed, and multiplication by the Todd class is shown to

correspond to the operator (deconvolution) inverting the semi-discrete convolution with a box spline.
Finally, the multiplicities of the index of a G-transversally elliptic operator on M are determined using

the infinitesimal index of the symbol.

Keywords: splines; box splines; deconvolution; index theory; equivariant K -theory;
equivariant cohomology; Riemann–Roch; elliptic operators

AMS 2000 Mathematics subject classification: Primary 65D07; 19L10; 19L47; 19K56

Introduction

0.1. Motivations

The motivation of this work is to understand the multiplicities of a representation of a
torus G in the virtual representation space Ker(A)− Coker(A) obtained as the index of a
G-invariant, elliptic, or more generally transversally elliptic, pseudo-differential operator
A, in terms of the symbol. For basic definitions and results, we refer to the Lecture Notes
of Atiyah (see [1]).

We shall restrict ourselves to the case of a torus G (with Lie algebra g) acting on a
vector space (to some extent this is the essential case). Let Λ be the lattice of characters
of G; for λ ∈ Λ, we denote by g→ gλ the corresponding function on G. According to
the theory of Atiyah and Singer (see [1]), in the case of a transversally elliptic operator,
Ker(A) and Coker(A) might be infinite dimensional, but the multiplicity of a character is
finite, and the difference of the two multiplicities in Ker(A) and Coker(A) is the Fourier
coefficient of the generalized function index(A) on G. We thus obtain a function indm(A)

mailto:vergne@math.jussieu.fr


2 C. De Concini, C. Procesi, M. Vergne

on Λ such that index(A)(g)=∑λ∈Λ indm(A)(λ)gλ. We call indm(A) the multiplicity index
map.

A cohomological formula for the equivariant index of elliptic operators was obtained
by Atiyah, Bott, Segal, and Singer. Using integrals of equivariant cohomology classes,
a formula for the equivariant index of transversally elliptic operators was obtained in
[7, 8, 24]. These formulae define (generalized) functions on G in terms of the Chern
character of the symbol of A. However, the behavior of multiplicities is our main interest.
Note that, even in the case of elliptic operators where we deal with finite-dimensional
representations, a ‘formula’ for the multiplicities is not easy to deduce from the
Atiyah–Bott–Segal–Singer fixed-point formulae, as index(A)(g) is given by different
formulae for each g ∈ G. A similar drawback of the formulae of [7, 8, 24] is that, for
each g ∈ G, they are defined only on a neighborhood of g (and with different formulae
for each g ∈ G). Thus, known formulae for the equivariant index were not adapted to the
study of the Fourier transform.

Our point of view is new. Instead of functions on G, we consider directly the
multiplicity index of an operator A, a function on Ĝ. Similarly, we associate directly
to the Chern character of the symbol of A a spline function on g∗. Here, splines (called
also multisplines in several variables) are the familiar objects in approximation theory:
piecewise polynomial functions with respect to a polyhedral subdivision of g∗ (see [12]).
Our main theorem (Theorem 5.17) says (essentially) that the multiplicity index is the
restriction of a suitable spline function to Λ, a lattice in g∗. Our inspiration comes from
the ‘continuous analogue’ of the index: the Duistermaat–Heckman measure, a piecewise
polynomial function on g∗, and from the ‘quantization commutes with reduction’ results
on multiplicities of twisted Dirac operators. The key point of our approach is explicit
computation of the index of some transversally elliptic operators in terms of vector
partition functions. We construct two piecewise polynomial functions, one obtained from
the multiplicity index and box splines, and the other from the Chern character using
our theory of the infinitesimal index [17], and we compare them on generators. Our final
theorem (Theorem 5.17) follows from a remarkable inversion formula, basically due to
Dahmen and Micchelli [10], for multisplines.

Let us first recall the basic formalism of our approach. Let M :=MX =⊕a∈X La be a
complex vector space with a linear action of G, where a ∈ X ⊂ Λ is a character and La

denotes the corresponding one-dimensional representation of G.
The vector partition function PX , a function on Λ which describes the multiplicity

of the action of the torus G on polynomial functions on M, is approximated by a
multispline distribution TX : the convolution of the Heaviside functions associated to the
half-line R+a, where a runs through the sequence X of weights of G in M (we assume
here in the introduction that all weights a are on one side of a half-space and span g∗).
The locally polynomial measure TX on g∗ is the Duistermaat–Heckman measure of the
Hamiltonian vector space MX .

In approximation theory, one introduces another special distribution, the box
spline BX , defined as convolution of the intervals [0, 1]a (thought of as measures
or distributions). An immediate relation between PX and BX is the fact that the
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convolution of the box spline BX with the partition function PX is the multispline
TX . The Todd operator, an infinite series of constant-coefficient differential operators,
acts on spline functions. It enters naturally in the ‘deconvolution’ formula, leading
to a ‘Riemann-Roch formula’ for PX in term of TX (at least in the special case of
X unimodular). We apply a series of constant coefficient operators to the piecewise
polynomial function TX and then restrict the function so obtained to the lattice. In this
way, we obtain the vector partition function PX .

These algebraic formulae are well known (see Khovanskĭı and Pukhlikov [19], Dahmen
and Micchelli [11], Brion and Vergne [9], De Concini and Procesi [14]), and they are
equivalent to the Riemann–Roch theorem for line bundles over toric varieties.

Our aim in this article is to show that the same deconvolution formula allows
us to compute the index of any transversally elliptic operator on MX in term of a
piecewise polynomial function on g∗ associated to its symbol by applying to it the Todd
differential operator.

0.2. Summary of results

Let M be a manifold, T∗M its cotangent bundle, and p : T∗M → M the canonical
projection. Given now a pseudo-differential operator A between the sections of two
vector bundles E+, E−, one constructs its symbol Σ = Σ(x, ξ), which is a bundle map
Σ : p∗E+→ p∗E−.

If M has a G action, we denote by T∗GM the union of the conormals to the G orbits.
Thus T∗GM is a closed subset of T∗M. Then a G-equivariant pseudo-differential operator
A is called G-transversally elliptic if the symbol Σ restricted to T∗GM minus the zero
section is an isomorphism of bundles.

The symbol Σ(x, ξ) of the pseudo-differential transversally elliptic operator A on M
determines two topological objects.

(1) An element of the equivariant K-theory group K0
G(T
∗
GM).

(2) The Chern character ch(Σ) of Σ , which is an element of the G-equivariant
cohomology with compact supports of T∗GM.

The index of A, denoted index(A), depends only on the symbol, and defines a map
from K0

G(T
∗
GM) to the space of generalized functions on G. The Fourier transform of

index(A) is the multiplicity index map indm(A), a function on Λ⊂ g∗.
In [17], we have associated to ch(Σ) a distribution on g∗, its infinitesimal index,

denoted infdex(ch(Σ)).
Assume now that M is a real vector space with a linear action of G. The list of weights

of G in the complex vector space M⊗RC is X ∪ −X for some list X ⊂ Λ. For simplicity,
assume that X generates g∗.

For any Σ ∈ K0
G(T
∗
GM), we prove that the distribution infdex(ch(Σ)) is piecewise

polynomial on g∗. Furthermore (Proposition 5.14), the following identity of locally
L1-functions of ξ ∈ g∗ holds:∑

λ∈Λ
indm(A)(λ)BX∪−X(ξ − λ)= 1

(2iπ)dim M
infdex(ch(Σ))(ξ). (1)
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In other words, infdex(ch(Σ)) is (up to a multiplicative constant) the spline function
obtained from convoluting a box spline with the discrete measure

∑
λ indm(A)(λ)δλ. It is

easy to check this formula on the Atiyah symbols AtF, and these elements generate the
R(G)-module KG(T∗GM). In some sense, as explained in Part 2, this formula is the Fourier
transform of the Berline–Paradan–Vergne formulae.

Apply the Todd operator associated to X∪−X to the spline function infdex(ch(Σ))(ξ).
We obtain again a spline function p on g∗. Our final result (Theorem 5.17) says
essentially that the restriction of this function p to Λ is the multiplicity index. This
follows from a ‘deconvolution’ formula for splines functions produced by convolution
with box splines.

0.3. Outline of the article

• In Part 1, we recall some results obtained by Dahmen and Micchelli in the
purely combinatorial context of semi-discrete convolution with the box spline. Let
X = [a1, a2, . . . , aN] be a finite list of vectors in a vector space V. The box spline BX

is the image measure of the hypercube [0, 1]N by the map (t1, t2, . . . , tN)→∑
i tiai.

We assume next that X spans a lattice Λ. Convoluting a discrete measure supported
on the lattice Λ by BX produces a locally polynomial function on V. The first step is to
prove a deconvolution formula. Define the Todd operator

∏
a∈X

∂a
1−e−∂a . Then we prove in

Theorem 2.15 that, if we apply (in an appropriate sense) the Todd operator Todd(X) to
the box spline and restrict the resulting spline to the lattice, we obtain the δ function of
the lattice Λ in the case of a unimodular system (a slightly more complicated formula is
obtained for any X):

Todd(X) ∗ BX|Λ = δ0.

We prove this result using our knowledge of Dahmen–Micchelli spaces (see [14, 15]).
We show that the Khovanskĭı–Pukhlikov formula and more generally the

Brion–Vergne formula for the partition function PX are particular cases of the
deconvolution formula.
• In Part 2, we consider M :=MX as a real G-manifold, and we recall our description

of K0
G(T
∗
GM) as well as of H∗G,c(T∗GM) as vector spaces of distributions, on the dual of the

group G or on the dual of its Lie algebra g (see [16] and [18], respectively). We compute
the infinitesimal index of the Chern character of the Atiyah symbol AtF and descent
formulae associated to a finite subset of elements of g ∈ G. We use all these ingredients to
give a general formula, in (34), for the index of a transversally elliptic operator A in term
of the infinitesimal index of the Chern character of the symbol of A.

As already pointed out, our results are motivated by previous results of Berline and
Vergne and of Paradan and Vergne. But our point of view is dual. We work with
functions on Ĝ or g∗. This way, we are dealing with very familiar objects: partition
functions and multispline functions. It is remarkable that the transversally elliptic
operators having multiplicity index Partition functions are the building blocks of ‘all
index theory’.
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1. Notation and preliminaries

Let V be an s-dimensional real vector space equipped with a lattice Λ ⊂ V. We choose
the Lebesgue measure dv on V for which V/Λ has volume 1. With the help of dv, we can
freely identify generalized functions on V and distributions on V. We denote by C[V] the
space of (complex-valued) polynomial functions on V.

We denote by S1 the circle group of complex numbers of modulus 1. The character
group of Λ, G := hom(Λ, S1), is a compact torus, and V can be identified to g∗, the dual
of the Lie algebra g of G. Of course, if we choose a basis of the lattice Λ, then we may
identify Λ with Zs, V with Rs, and G with (S1)

s.
Dually, if Γ ⊂ g = V∗ is the lattice of elements x ∈ g such that 〈x | λ〉 ∈ 2πZ for all

λ ∈ Λ, then the torus G is g/Γ . If x ∈ g, we shall denote by ex its class in G, and the
duality pairing G×Λ→ S1 will be given by

(ex, λ) 7→ ei〈x | λ〉.

Under this duality, Λ is the character group of G, and will sometimes be denoted by Ǧ.
We identify the space C∞(G) with the subspace of C∞(g) formed by functions periodic

under Γ . If g= ex ∈ G, we will sometimes write gλ for ei〈x | λ〉.
Lλ will denote the one-dimensional complex vector space with action of G given by gλ.

Notice that, as a real G linear representation, Lλ is isomorphic to L−λ by changing the
complex structure with the conjugate one.

More generally, we have the following definition.

Definition 1.1. Let X be a finite sequence of non-zero elements of Λ. Define the vector
space

MX :=
⊕
a∈X

La. (2)

Thus MX is a complex representation space for G, and every finite-dimensional
complex representation of G is of this form for a well-defined X.

Again, the space MX as a real G-representation depends only on the sequence X up to
sign changes. In fact, it will be very important to consider for a real representation space
M (with no G-invariant non-zero vector) all possible G-invariant complex structures on
M.

The space of C-valued functions on Λ = Ǧ will be denoted by C[Λ], while we shall set
CZ[Λ] to be the subgroup of Z-valued functions. We display such a function f (λ) also as
a formal series:

Θ(f ) :=
∑
λ∈Λ

f (λ)eiλ.

We denote by δ0 the function on Λ identically equal to 0 on Λ, except for δ0(0)= 1.
The subspace C[Λ] of the functions with finite support is the group algebra of Λ, but

it can be also considered as the coordinate ring of the complex torus g⊗RC/Γ as an
algebraic group. Finally, Z[Λ] := C[Λ] ∩ CZ[Λ] is the group ring of Λ, but it can also
be considered as the character ring of G or the Grothendieck group of finite-dimensional
representations of G. Due to this, we shall sometimes denote it by R(G). Indeed, if T is a
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representation of G in a finite-dimensional complex vector space, then Tr T(g) is a finite
linear combination of characters, and this gives the desired homomorphism.

If f (λ) is of at most polynomial growth, the series g→ ∑
λ∈Λ f (λ)gλ defines a

generalized function on the torus G. We denote by R−∞(G) the subspace of C[Λ]
consisting of these f (λ).

Let us point out that Λ acts on C[Λ] by translations; namely, if a ∈ Λ and f ∈ C[Λ],
(taf )(λ) := f (λ − a). This clearly corresponds to multiplication by eia on Θ(f ). It follows
that both C[Λ] and R−∞(G) are C[Λ]-modules, and of course CZ[Λ] is a Z[Λ]-module.
We also define the difference operator

∇a := id − ta.

Passing to the continuous setting, if we take the space of polynomial functions C[g]
on g (equal to the symmetric algebra S[g∗]), we are going to consider the space of
distributions D′(g∗) on g∗ as a S[g∗]-module, using differentiation. We denote by ∂a the
partial derivative in the a ∈ g∗ direction.

Part 1. Algebra

2. Box splines

2.1. Splines

Let X = [a1, a2, . . . , aN] be a sequence (a multiset) of N non-zero vectors in Λ.
The zonotope Z(X) associated to X is the polytope

Z(X) :=
{

N∑
i=1

tiai | ti ∈ [0, 1]
}
.

In other words, Z(X) is the Minkowski sum of the segments [0, ai] over all vectors ai ∈ X.
Recall that the box spline BX is the distribution on V such that, for a test function test

on V, we have the equality

〈BX, test〉 =
∫ 1

t1=0
· · ·
∫ 1

tN=0
test

(
N∑

i=1

tiai

)
dt1 · · · dtN . (3)

The box spline is a compactly supported probability measure on V, and we have∫
V

ei〈v,x〉BX(v)=
N∏

k=1

ei〈ak,x〉 − 1
i〈ak, x〉 . (4)

If X generates V, the zonotope is a full-dimensional polytope, and BX is given by
integration against a piecewise polynomial function on V, supported and continuous on
Z(X), that we still call BX .

Example 2.2. Let V = R be one dimensional, and let Xk = [1, 1, . . . , 1], where 1 is
repeated k times. Figure 1 gives the graphs of BX1 , BX2 , and BX3 .

Let us describe more precisely where this function is given by a polynomial formula.
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Figure 1. BX1 ,BX2 ,BX3 .

Figure 2. Topes for X := [e1, e2, e1 + e2].

Definition 2.3. An hyperplane of V generated by a subsequence of elements of X is
called admissible.

An affine admissible hyperplane is a translate λ+ H of an admissible hyperplane H by
an element λ ∈Λ.

Remark 2.4. The zonotope is bounded by affine admissible hyperplanes.

Definition 2.5. An element v of V is called regular if it does not lie in any admissible
hyperplane. We denote by Vreg the open subset of V consisting of regular elements. A
connected component c of the set of regular elements will be called a (conic) tope.

An element v of V is called affine regular if it does not lie in any admissible affine
hyperplane. We denote by Vreg,aff the open subset of V consisting of affine regular
elements. A connected component τ of the set of affine regular elements will be called an
alcove (see Figure 2).

Definition 2.6. We will say that a locally L1 function b on V is piecewise polynomial
(with respect to (X,Λ)) if, on each alcove τ , there exists a polynomial function bτ on
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V such that the restriction of b to τ coincides with the restriction of the polynomial bτ

to τ .
If b is a piecewise polynomial function, we will say that the distribution b(v)dv is

piecewise polynomial.
We denote by P W(X,Λ)(V) the space of these piecewise polynomial functions on V.
When there is no ambiguity, we may drop Λ or X or both, and write simply P WX(V)

or P W(V).

Remark 2.7. • P W(X,Λ)(V) is preserved by the translation operators ta, a ∈Λ.
• The polynomial function bτ is uniquely determined by b and τ .
• The support of a piecewise polynomial function is a union of closures of alcoves.
• If X generates V, the box spline BX is a piecewise polynomial function supported

on the zonotope Z(X). Furthermore, if, for any a in X, X \ {a} still spans V, this
piecewise polynomial function extends continuously on V. In particular, this applies
if 0 is an interior point in Z(X).

A piecewise polynomial function h may be continuous. In this case, its restriction to
the lattice Λ is well defined. If not, we may define the ‘restriction’ of h to Λ by a limit
procedure, as follows.

Consider a piecewise polynomial function h on V. Let c be an alcove in V containing 0
in its closure. Then, for any λ ∈Λ, τ = λ+ c is an alcove on which h is the polynomial hτ .
We thus define a map limc : P W(V)→ C[Λ] by setting

lim
c

h(λ) := hτ (λ).

Example 2.8. Consider the box spline BX1 in Figure 1. If c is the alcove ]0, 1[, then
limc BX1(0) = 1, as we take the limit from the right, while lim−c BX1(0) = 0 for the
opposite alcove.

Notice that the operator limc on P W(V) commutes with translations by elements
of Λ.

It is convenient to think of an element in P W(X,Λ)(V) as a function only on the set
of affine regular points. As such, differentiating alcove by alcove, this space is a module
over the ring of formal differential operators of infinite order with constant coefficients.

Therefore, we may set the following definition.

Definition 2.9. Given an operator D of infinite order with constant coefficients and
b ∈ P W(X,Λ)(V), we shall denote by Dpwb ∈ P W(X,Λ)(V) the element defined by the
action of D on b alcove by alcove:

(Dpwb)τ = Dbτ .

Notice that the action Dpw on P W(V) commutes with the action of translation by
elements of Λ.

Warning We may apply to the function b ∈ P W(X,Λ)(V), thought of as a distribution,
a finite order differential operator. In general, we get a different result to that which we
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obtain by taking this function of affine regular points, applying the same operator, and
then considering the result as an L1 function. Indeed, the two coincide only on the set of
affine regular points.

Example 2.10. Consider again the box spline BX1 in Figure 1. Then, if we consider
BX1 as a distribution, we have ∂BX1 = δ0 − δ1, a difference of two delta functions, while
∂pwBX1 = 0.

If K is a polynomial function on V, we will say that the function λ 7→ K(λ) is a
polynomial function on Λ. The polynomial function K is determined by its restriction to
Λ. A function k on Λ for which there exists a sublattice Λ′ of Λ such that, for any ξ ∈Λ,
the function ν→ k(ξ + ν) is polynomial on Λ′ will be called a quasi-polynomial function
on Λ.

Definition 2.11. If f ∈ C[Λ], define the distribution BX∗df by

BX∗df =
∑
λ∈Λ

f (λ)tλBX .

When X spans the vector space V, this gives rise to the piecewise polynomial function

(BX∗df )(v)=
∑
λ∈Λ

f (λ)BX(v− λ).

The notation ∗d means discrete. BX∗df is the convolution of BX with the discrete
measure

∑
λ f (λ)δλ.

We denote (to emphasize the difference with the discrete case) the usual convolution
of two distributions θ1, θ2 (with some support conditions so that their convolution
exists) by θ1∗cθ2.

Our aim is to write an inversion formula for f → BX∗df . As this operator is not
injective, we will need a few other data.

Remark 2.12. If p ∈ C[V] is a polynomial, then, by the Taylor formula, we have
tbp= e−∂bp.

If Y is a sequence of vectors, we define the operator I(Y) on C[V] by

I(Y) :=
∏
a∈Y

(1− e−∂a)

∂a
. (5)

Then, by integrating the Taylor formula, we have∫ 1

t1=0
· · ·
∫ 1

tN=0
p

(
v−

(
N∑

i=1

tiai

))
dt1 · · · dtN = (I(Y)p)(v).

The operator I(Y) is an invertible operator on C[V]. We denote the inverse of I(Y) by
Todd(Y):

Todd(Y) :=
∏
a∈Y

∂a

(1− e−∂a)
. (6)
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Notice that

〈BX∗cf , test〉 =
∫ 1

t1=0
· · ·
∫ 1

tN=0

〈
f , test

(
v−

(
N∑

i=1

tiai

))〉
dt1 · · · dtN

for any distribution f on V. Thus we have the following proposition.

Proposition 2.13. For p a polynomial function on V, the usual convolution BX∗cp is
still a polynomial given by the formula BX∗cp = I(X)p, and its inverse is given by the
operator Todd(X).

2.14. Inversion formula: the unimodular case

Recall that a sequence X is unimodular if X spans V, and if any basis σ of V extracted
from X is a basis of Λ. We will prove now that, if X is unimodular, then the inverse of the
semi-discrete convolution by the box spline BX

K→ BX∗dK; C[Λ] → P W(V)

is obtained by applying the operator Todd (X)pw (see Definition 2.9) to the piecewise
polynomial function BX∗dK and then passing to a suitable limit.

Theorem 2.15. Assume that X is unimodular. Let c be an alcove in V containing 0 in
its closure and contained in Z(X). Then

(i) limc(Todd (X)pw BX)= δ0.
(ii) For any K ∈ C[Λ],

K = lim
c
(Todd (X)pw(BX∗dK)).

Remark 2.16. If 0 belongs to the interior of the zonotope Z(X), one can show that the
function Todd (X)pw BX extends to a continuous function on V. We will recall this result
in Remark 3.15.

Remark 2.17. The two items in Theorem 2.15 are equivalent statements. The first item
is the particular case of the second item applied to K = δ0, and the other is deduced from
the first one by writing K as a linear combination of translates of δ0. However, we list
them independently, as we want to emphasize this striking property of the box spline
function. Figure 3 describes Todd (X)pw BX for X = X1,X2,X5.

We will give the proof of this theorem in ğ 2.26, after having introduced some further
notions.

2.18. Dahmen–Micchelli spaces

Let us recall some facts on Dahmen–Micchelli polynomials.
If I is a sequence of vectors, we define the operators ∂I :=∏a∈I ∂a and ∇I :=∏a∈I ∇a.

These operators are defined on distributions B, since by duality we can set

〈taB, test〉 = 〈B, t−atest〉, 〈∂aB, test〉 = −〈B, ∂atest〉.
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Figure 3. Todd (X1)pw BX1 ,Todd (X2)pw BX2 ,Todd (X5)pw BX5 .

If Y is a subsequence of X, by X \ Y we mean the complement in X of the sequence Y. If
S is a subset of V, we also employ the notation X \ S for the sequence of elements of X not
lying in S, and X ∩ S for the sequence of elements of X lying in S. We have the following
equality of distributions (see [14], Proposition 7.14):

∂YBX =∇YBX\Y . (7)

A subsequence Y of X will be called long if the sequence X \ Y does not generate
the vector space V. A long subsequence Y, minimal along the long subsequences, is also
called a cocircuit. In this case, Y = X \ H, where H is an admissible hyperplane.

In particular, if Y = X \ H, using equation (7), we have that ∂YBX = ∇YBX∩H is
supported on the union of the affine admissible hyperplanes which are translates of
H by elements of Y. So the restriction of ∂YBX to any alcove τ is equal to 0.

Recall the following definitions.

Definition 2.19. (1) The space D(X) is the space of (generalized) functions B on V such
that ∂YB= 0 for all long subsequences Y of X.

(2) The space DM(X) is the space of integral-valued functions K on Λ such that
∇YK = 0 for all long subsequences Y of X.

Of course, it is sufficient to impose these equations for Y running along all cocircuits.
If X spans V, it is easy to see that D(X) is a finite-dimensional space of polynomial

functions on V, and that DM(X) is a free abelian group of finite rank of quasi-polynomial
functions on Λ [10] (see [14]).

In this paper, we often need to compare D(X) with DM(X). In order to do
this, it is more convenient to extend DM(X) to the spaces DM(X)R := DM(X)⊗ZR,
DM(X)C := DM(X)⊗ZC, respectively, of real or complex valued functions satisfying
the same difference equations as DM(X) (see Theorem 2.25). Sometimes, by abuse of
notation, we shall drop the subscript C, and just write DM(X) for DM(X)C. Similarly,
we could take complex-valued solutions of the differential equations getting the space
D(X)C := DM(X)⊗RC.
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The restriction of a function p ∈ D(X) (a polynomial) to Λ is in DM (X)R. If X is a
unimodular system, this restriction map is an isomorphism.

The space D(X) is invariant by differentiations. The space DM(X) is invariant by
translations by elements of Λ.

The following lemma follows from the definitions.

Lemma 2.20. If Y is a subsequence of X such that X \ Y still generates V, then ∂YD(X)
is contained in D(X \ Y), and ∇YDM(X) is contained in DM(X \ Y).

Remark 2.21. In fact, the operators ∂Y and ∇Y are surjective onto D(X \ Y) and
DM(X \ Y), respectively. This is a stronger statement that we proved in [16] (and over Z
for DM). We will not use this stronger statement, which is more delicate to prove.

If τ is an alcove contained in Z(X), then the polynomial BτX is a non-zero polynomial
belonging to D(X) (as seen from equation (7)).

Lemma 2.22. If K ∈ DM(X), then BX∗dK ∈ D(X).

Proof. Let H be an admissible hyperplane. Then

∂X\H(BX∗dK) = ∂X\HBX∗dK

= BX∩H∗d(∇X\HK)= 0. �

The following result is proved in [10] (see also [14], [25]).

Theorem 2.23. If K is the restriction to Λ of a polynomial k ∈ D(X), then BX∗dK is
equal to the polynomial I(X)k.

Thus, on the space D(X), the operator BX∗′k := BX∗dK, called semi-discrete
convolution, is an isomorphism with inverse Todd(X).

We will need some structure theory on DM(X).
Let c be an alcove. Let us consider any point ε ∈ c. It is easy to see that the set

(ε − Z(X)) ∩Λ depends only of c. We give the following definition.

Definition 2.24. Let c be an alcove. We denote δ(c |X) := (ε − Z(X))∩Λ, where ε is any
element of c.

We finally recall the following important theorem of Dahmen and Micchelli [10, 11]
(see [14]).

Theorem 2.25. Let c be an alcove. For any ξ ∈ δ(c |X), there exists a unique
Dahmen–Micchelli element k(ξ)c ∈ DM(X) such that

k(ξ)c (ξ)= 1,

k(ξ)c (ν)= 0

if ν ∈ δ(c |X) and ν 6= ξ .
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2.26. Proof of the inversion formula

After these definitions, let us return to the proof of the inversion formula in the
unimodular case. We consider an alcove c contained in Z(X) and containing 0 in its
closure.

Proof. By Remark 2.17, it is enough to prove (i).
By definition, limc(Todd (X)pw BX)(λ) = (Todd(X)Bλ+c

X )(λ). If (λ + c) ∩ Z(X) = ∅, then
Bλ+c

X = 0, so limc(Todd (X)pw BX)(λ)= 0.
We now fix a point λ such that the alcove λ+ c does intersect Z(X). The point λ= 0 is

such a point, by our assumption on c.
The condition (λ + c) ∩ Z(X) 6= ∅ is equivalent to the fact that 0 ∈ δ(λ + c |X). Note

that λ= λ+ ε − ε, ε ∈ c is also in δ(λ+ c |X). By Theorem 2.25, there is a unique element
pλ,c := k(0)λ+c in DM(X) coinciding with δ0 on δ(λ+ c |X).

Let us compute (BX∗dpλ,c)(v) with v ∈ λ + c. Using the definitions, for such a v, we
have

(BX∗dpλ,c)(v)=
∑
η∈Λ

pλ,c(η)BX(v− η)=
∑

η∈δ(λ+c | X)
pλ,c(η)BX(v− η).

The second equality follows from the fact that the support of BX is Z(X). Since, on
δ(λ+ c |X), pλ,c vanishes except at 0, we obtain from Lemma 2.22

Bλ+c
X = BX∗dpλ,c.

At this point, we use the fact that X is a unimodular system, so that the
restriction map from D(X) to DM(X) is an isomorphism. Thus pλ,c is the restriction
to Λ of a polynomial still denoted by pλ,c belonging to D(X) and, by Theorem 2.23,
Bλ+c

X = I(X)pλ,c. It follows that Todd(X)Bλ+c
X = pλ,c and

pλ,c(λ)= lim
c
(Todd (X)pw BX)(λ).

Since pλ,c(λ)= 0, when λ 6= 0 and pλ,c(0)= 1, this proves our claim. �

2.27. Inversion formula: the general case

We keep the notation of ğ 1. G is a torus with a group of characters of Λ. For g ∈ G and
λ ∈Λ, define

Xg := {a ∈ X | ga = 1}, Gλ := {g ∈ G | gλ = 1}.
For each a ∈ X, the set Ga is a subgroup of codimension 1; these groups generate a

toric arrangement, AX , formed by all connected components of the intersections of these
groups Ga. Of particular importance are the vertices of the arrangement, which can also
be described as follows.

Definition 2.28. We say that a point g ∈ G is a toric vertex of the arrangement AX if
Xg generates V. We denote by V(X)⊂ G the set of toric vertices of the arrangement AX .

If g is a vertex, there is a basis σ of V extracted from X such that ga = 1, for all a ∈ σ .
We thus see that the set V(X) is finite. We also see that, if X is unimodular, then V(X) is
reduced to g= 1.
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For g ∈ G, we think of gλ ∈ C[Λ], and denote by ĝ the operator on C[Λ], given by
multiplication by gλ: (ĝK)(λ)= gλK(λ). If ν ∈Λ, then ĝtν ĝ−1 = gν tν .

We introduce next the twisted difference and differential operators.
We set, for a vector a or for a sequence Y of elements of Λ,

∇g
a := 1− g−ata, ∇(g,Y)=

∏
a∈Y

∇g
a , (8)

Dg
a := 1− g−ae−∂a , D(g,Y)=

∏
a∈Y

Dg
a. (9)

The operator ∇(g,Y) acts on functions on Λ. One has the formula

ĝ−1∇Y ĝ=∇(g,Y). (10)

The operator ∇(g,Y), being a linear combination of translation operators, also acts on
piecewise polynomial functions on V. The operator D(g,Y) acts on piecewise polynomial
functions on V by its local action D (g,Y)pw.

Be careful: The operators D(g,Y) and ∇(g,Y) coincide on C[V], but their action is
not the same on piecewise polynomial functions. Indeed, the operator f 7→ D (g,Y)pw f
respects the support of f , while the operator ∇(g,Y)f may move the support of f .

If ga 6= 1, then Dg
a = (1 − g−a) + g−a(1 − e−∂a) is an invertible operator on polynomial

functions with inverse given by the series of differential operators

(Dg
a)
−1 = (1− g−a)

−1
∞∑

k=0

(−1)k
(

g−a

1− g−a

)k

(1− e−∂a)
k
.

If Y ⊂ X \ Xg, we also have D (g,Y)−1 =∏a∈Y (D
g
a)
−1, an infinite series of differential

operators.
For K ∈ C[Λ] and g ∈ V(X), we define the function

ωg(K) := BXg∗d(ĝ
−1∇X\XgK). (11)

The function ωg(K) is a piecewise polynomial function on V with respect to (Xg,Λ),
thus a fortiori with respect to (X,Λ).

Theorem 2.29. Let c be an alcove in V containing 0 in its closure and contained in
Z(X). Then

(i) δ0 =∑g∈V(X) ĝ limc

(
D (g,X \ Xg)−1 Todd(Xg)

)
pw(∇(g,X \ Xg)BXg).

(ii) For any K ∈ C[Λ], one has the following inversion formula:

K =
∑

g∈V(X)
ĝ lim

c
(D (g,X \ Xg)

−1 Todd(Xg))pw ωg(K).

Remark 2.30. The first assertion is a particular case of the second. Indeed, for K = δ0,
as ĝδ0 = δ0, we have

ωg(K)= BXg∗d(ĝ
−1∇X\Xg ĝδ0)= BXg∗d∇(g,X \ Xg)δ0;
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thus

ωg(δ0)=∇(g,X \ Xg)BXg . (12)

We will see later that the second assertion is a consequence of the first.

In order to prove Theorem 2.29, we shall follow essentially the same method of proof
used in the unimodular case.

Notice that the restriction K of a function k ∈ D(X) to Λ is an element of DM(X).
Recall the following structure theorem.

Theorem 2.31 (See [14] Formula 16.1 and Theorem 17.15).

(1) If g ∈ V(X) is a toric vertex of the arrangement X and k ∈ D(Xg), the function ĝK
belongs to DM(X).

(2) We have DM (X)C =
⊕

g∈V(X) ĝD (Xg)C.
(3) Let E(X)=⊕g6=1 ĝD(Xg). Then, for any K ∈ E(X), BX∗dK = 0.

Given an element g ∈ V(X), recall that the map ∇X\Xg sends DM(X) to DM(Xg). We
have the following lemma.

Lemma 2.32. Take g, h ∈ V(X).
(i) If h ∈ V(Xg), then

∇X\Xg ĥD(Xh)⊂ ĥD(Xh ∩ Xg). (13)

(ii) If h 6∈ V(Xg), then

∇X\Xg ĥD(Xh)= 0.

Proof. Let K be a function on Λ. An operator ∇Y acting on ĥK can be analyzed by
decomposing Y = Z ∪ R into the part Z of elements a ∈ Y such that ha = 1 and the
complement R. Then

∇Y ĥK = ĥ(ĥ−1∇Z ĥ)(ĥ−1∇Rĥ)K = ĥ∇Z∇(h,R)K. (14)

In particular, we apply this to Y = X \ Xg, which, for a point h of the arrangement, we
separate into the subsequences Z := Xh ∩ (X \ Xg) = Xh \ Xg and R := X \ (Xh ∪ Xg). We
obtain, from (14),

∇X\Xg ĥD(Xh)= ĥ∇Xh\Xg∇(h,R)D(Xh).

The operator ∇(h,R), a finite combination of translations, preserves the space D(Xh).
Thus, we get

∇X\Xg ĥD(Xh)⊂ ĥ∇Xh\XgD(Xh)= ĥ∇Xh\XgD(Xh), (15)

and (i) follows from Lemma 2.20.
Furthermore, by definition, a point h is a vertex of the arrangement Xg if and only if

the vectors in Xh ∩ Xg span V. So, if h 6∈ V(Xg), Xh \ Xg is a long subsequence of Xh and
∇Xh\Xg D(Xh)= 0, showing (ii). �
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Proposition 2.33. If K ∈ DM(X), then

ωg(K)= BXg∗d(ĝ
−1∇X\XgK) ∈ D(Xg).

Proof. Indeed, ∇X\XgK ∈ DM(Xg), and ĝ−1 preserves DM(Xg). Thus ωg(K) is a
polynomial belonging to D(Xg) by Lemma 2.22. �

Proposition 2.34. Let K ∈ DM(X). Write K = ∑g∈V(X) ĝKg, with kg ∈ D (Xg)C
restricting to Kg. Then we have

kg = D (g,X \ Xg)
−1 Todd(Xg)ωg(K).

Proof. Let kh ∈ D (Xh)C. Let us compute ωg(ĥKh) for each g ∈ V(X).
By Lemma 2.32, ∇X\Xg ĥKh is zero unless h is a vertex of Xg.
Assume now that h is a vertex of Xg. Then ∇X\Xg ĥKh = ĥZ, where Z is the restriction

of a polynomial z lying in D (Xg ∩ Xh)C.
Clearly, g−1h is also a vertex of Xg, and Xg ∩ Xg−1h = Xg ∩ Xh. We deduce using

Lemma 2.32(i) that, if g 6= h,

ĝ−1∇X\Xg ĥKh ∈ ĝ−1hD (Xg ∩ Xg−1h)C ⊂ E(Xg).

So, by Theorem 2.31,

ωg(ĥKh)= BXg∗d(ĝ
−1∇X\Xg ĥKh)= 0.

Finally, if h= g, we obtain that ĝ−1∇X\Xg ĝKg is the restriction to Λ of the polynomial
D(g,X \ Xg)kg ∈ D (Xg)C. By Theorem 2.23, the semi-discrete convolution acts by the
operator I(Xg) on D(Xg), so that we get

ωg(ĝKg)= D(g,X \ Xg)I(Xg)kg.

In conclusion,

ωg(ĥKh)=
{

0 if h 6= g

D(g,X \ Xg)I(Xg)kg if h= g.

This implies our claims. �

We are now ready to prove our main theorem, Theorem 2.29.
We compute the function j on Λ given by

j=
∑

g∈V(X)
ĝ lim

c
(D (g,X \ Xg)

−1 Todd(Xg))pw(∇(g,X \ Xg)BXg).

We proceed as in the proof of Theorem 2.15. The support of ∇(g,X \ Xg)BXg is
contained in Z(X). Indeed, if I is a subsequence of X \ Xg,

∑
i∈I ai + Z(Xg) ⊂ Z(X). So, if

λ ∈Λ and (λ+ c) ∩ Z(X) is empty, we see that j(λ)= 0.
Now, assume that (λ + c) ∩ Z(X) is not empty. Then, the points 0 and λ belong to

δ(λ+ c |X). Let pλ,c be the element of DM(X) which coincides with δ0 on δ(λ+ c |X). Let
us show that j(λ)= pλ,c(λ), so that we will obtain (i).
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We decompose pλ,c according to Proposition 2.34. It is sufficient to prove that the
polynomial ωg(pλ,c)(v) coincides with the piecewise polynomial function ∇(g,X \ Xg)BXg

on λ+ c. That is, if v ∈ λ+ c,

ωg(pλ,c)(v)= (∇(g,X \ Xg)BXg)(v). (16)

Indeed, by Proposition 2.34, we have

ωg(pλ,c)= BXg∗dĝ−1∇(X \ Xg)pλ,c = BXg∗d∇(g,X \ Xg)ĝ−1pλ,c,

so, since semi-discrete convolution commutes with translation,

ωg(pλ,c)=∇(g,X \ Xg)(BXg∗dĝ−1pλ,c).

For any subsequence I of X \ Xg, set aI =∑i∈I ai. In order to see (16), we need to show
that, for v ∈ λ+ c,

BXg(v− aI)= (BXg∗dĝ−1pλ,c)(v− aI). (17)

By definition, the right hand side of this expression equals∑
η∈Λ

g−ηpλ,c(η)BXg(v− aI − η).

Now the summand BXg(v − aI − η) is zero except if v − aI − η is in the zonotope Z(Xg).
But if this is the case, v− η ∈ Z(Xg)+ aI ⊂ Z(X), so necessarily η lies in δ(λ+ c |X).

Let us prove the second item. Define

j(K) =
∑

g∈V(X)
ĝ lim

c
(D (g,X \ Xg)

−1 Todd(Xg))pw BXg ∗ ĝ−1∇X\XgK

=
∑

g∈V(X)
ĝ lim

c
(D (g,X \ Xg)

−1 Todd(Xg))pw BXg ∗ ∇(g,X \ Xg)ĝ−1K.

Then K → j(K) is an operator of the form
∑

g ĝRgĝ−1K, where Rg is an operator
commuting with translations by elements of Λ. Thus the operator K→ j(K) commutes
with translation. Furthermore, it is clear that the formula for j(K)(λ) involves only a
finite number of values of K(ν) (contained in λ − Z(X)). Thus, to prove that j(K) = K,
it is sufficient to prove it for K with finite support. By translation invariance, this case
follows from the formula for δ0.

3. Partition functions and splines

3.1. The formula of Brion and Vergne
If Y is a sequence of elements of Λ generating a pointed cone Cone(Y), then we can
define the series

ΘY =
∏
a∈Y

∞∑
k=0

eka.

We write

ΘY =
∑
λ∈Λ

PY(λ)e
λ,
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where PY ∈ CZ[Λ] is, by definition, the partition function associated to Y. For any
subsequence S of Y, we then have

∇S PY = PY\S. (18)

In particular, ∇Y PY = δ0, the delta function on Λ.
Similarly, we can define the multivariate spline TY , which is the tempered distribution

on V, by

〈TY | f 〉 =
∫ ∞

0
. . .

∫ ∞
0

f

(
k∑

i=1

tiai

)
dt1 . . . dtk, (19)

where Y = [a1, a2, . . . , ak].
For any subsequence S of Y, we then have

∂STY = TY\S. (20)

In particular, ∂YTY = δ0, the δ-distribution on V.
Decomposing a ray as a sum of intervals, the following formula of Dahmen and

Micchelli follows.

Proposition 3.2.

TY(v)= (BY∗d PY)(v)=
∑
λ∈Λ

BY(v− λ)PY(λ).

Let us see that the formulae obtained in [9] are a corollary of the general inversion
formula of Theorem 2.29. We assume that X generates the vector space V and spans a
pointed cone (thus with non-empty interior). It follows that TX is a piecewise polynomial
distribution on V.

Let us apply the inversion formula of Theorem 2.29 to the partition function PX . From
the equations

ĝ−1∇X\Xg PX = ĝ−1PXg = PXg , BXg∗d PXg = TXg ,

we deduce the following from Theorem 2.29.

Theorem 3.3. Let c be an alcove contained in Cone(X) and having 0 in its closure. Then
PX coincides with

∑
g∈V(X)

ĝ lim
c

∏
b∈Xg

∂b

1− e−∂b

∏
a∈X\Xg

1
1− g−ae−∂a

TXg

 . (21)

More generally, given a sequence of non-zero vectors Y in Λ, where we do not
necessarily assume that Y spans a pointed cone, we can define polarized partition
functions as follows. Consider the open subset {u ∈ V∗ | 〈u, a〉 6= 0 for all a ∈ Y} of V∗.
A connected component F of this open set will be called a regular face for Y. An
element φ ∈ F decomposes Y = A ∪ B, where φ is positive on A and negative on B. This
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decomposition depends only upon F. We define

ΘF
Y = (−1)|B|

∏
a∈A

∞∑
k=0

eka
∏
b∈B

∞∑
k=1

e−kb.

Thus ΘF
Y = (−1)|B| e−

∑
b∈B bΘA∪−B.

The idea behind the denition of ΘF
Y is clear. Write∏

y∈Y

1
1− ey =

∏
a∈A

1
1− ea

∏
b∈B

1
1− eb =

∏
a∈A

1
1− ea

∏
b∈B

−e−b

1− e−b

and then expand in geometric series. We needed to reverse the sign of the vectors in B in
order to insure that the product ΘF

Y of the corresponding geometric series makes sense.
We write

ΘF
Y =

∑
λ∈Λ

P F
Y (λ)e

λ,

where P F
Y ∈ C[Λ] is the polarized (by F) partition function. The polarized partition

function is a Z-valued function on Λ.
We define similarly

TF
Y = (−1)|B| TA,−B

a distribution on V, and call it the polarized multispline function.
As for Proposition 3.2, it is easy to verify the following proposition.

Proposition 3.4. For any regular face F for Y, one has BY∗d P F
Y = TF

Y .

Proposition 3.4 implies that BX = ∇XTF
X . Thus BX is a linear combination of translates

of multisplines TF
X .

3.5. The spaces F(X) and G(X)

In this subsection, we recall the definitions of the subspaces F(X), a subspace of
functions on Λ, and G(X), a subspace of distributions on V introduced in [15]. They
will be central objects in Part 2 as these spaces are related to the equivariant K-theory
and cohomology of some G-spaces.

We use the convolution sign ∗ for convolutions between functions on Λ, or
distributions on V, or semi-discrete convolution between a function on Λ and
distributions on V. The meaning will be clear in the context.

Definition 3.6. A subspace s of V is called rational (relative to X) if s is the vector
space generated by X ∩ s.

We shall denote by SX the set of rational subspaces.

Denote by CZ[Λ] the Z-module of Z-valued functions on Λ. Define the following
subspace of CZ[Λ].
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Definition 3.7.

F(X) := {f :Λ→ Z | ∇X\rf is supported on Λ ∩ r for all r ∈ SX}.
We set F̃(X) to be the Z[Λ] module generated by F(X).

The space F(X) clearly contains the space of Dahmen–Micchelli quasi-polynomials
DM(X) and all polarized partition functions P F

X .

Remark 3.8. Assume that X is unimodular. Let τ be a tope. We have proven in [15]
that a function f in F(X) coincides on (τ −Z(X))∩Λ with the restriction of a polynomial
function hτ . Thus we see that this collection of functions hτ |τ extends to a continuous
function on the cone Cone(X) generated by X.

We have a precise description of F(X) and F̃(X) in Theorem 4.5 of [15].

Theorem 3.9. • Choose, for every rational space r, a regular face Fr for X \ r. Then

F(X)=
⊕
r∈SX

P Fr
X\r ∗ DM(X ∩ r). (22)

• F̃(X) is spanned over Z[Λ] by the elements P F
X as F runs over all regular faces for X.

Thus any Dahmen–Micchelli quasi-polynomial p in DM(X) can be written as a linear
combination of polarized partition functions P F

X , for various F. It is not so easy to do
this explicitly.

The easiest instance of this result is when Λ = Z. In this case, one has only
two rational spaces: R and {0}. Thus, our results says that, if we take as F{0} the
positive half-line R>0, every element in F(X) can be written uniquely as the sum of a
quasi-polynomial in DM(X) and a multiple of the partition function P R>0

X .
In general, the decomposition (22) is not so easy to compute explicitly.
We defined in [15] an analogue space of piecewise polynomial distributions on V.
Denote by D′(V) the space of distributions on V. Let r be a vector subspace in V.

We have an embedding j : D′(r)→ D′(V) by 〈j(θ), f 〉 = 〈θ, f |r〉 for any θ ∈ D′(r), f a test
function on V. We denote the image j(D′(r)) by D′(V, r) (sometimes we even identify
D′(r) with D′(V, r) if there is no ambiguity). We next define the vector space.

Definition 3.10.

G(X) := {f ∈D′(V) | ∂X\rf ∈D′(V, r), for all r ∈ SX}.
We set G̃(X) to be the module generated by G(X) under the action of the algebra S[V] of
differential operators with constant coefficients.

It is clear that G(X) contains the space D(X) of Dahmen–Micchelli polynomials (we
identify freely a locally L1-function p and the distribution p(v)dv using our choice of
Lebesgue measure) as well as the polarized multisplines TF

X .
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Theorem 3.11. • Choose, for every rational space r, a regular face Fr for X \ r. Then

G(X)=
⊕
r∈SX

T
Fr
X\r ∗ D(X ∩ r). (23)

• The space G̃(X) is generated as an S[V] module by the distributions TF
X as F runs

over all regular faces for X.

It follows from this theorem that any θ in G(X) is a piecewise polynomial distribution
on V.

3.12. An isomorphism
We want to show now the strict relationship between the two spaces F(X) and G(X).
We may use real valued functions DM(X)R and F(X)R := F(X)⊗ZR defined by the same
difference equations.

The spaces F(X) and G(X) are related by semi-discrete convolution with the box
spline BX . Indeed, the following lemma generalizes the fact that a Dahmen–Micchelli
quasi-polynomial becomes a polynomial in D(X) by semi-discrete convolution.

Lemma 3.13. If f ∈ F(X), then f ∗ BX ∈ G(X).

Proof. If f ∈ F(X), then ∇X\rf is supported on r for every rational subspace r. We need
to show that ∂X\rf ∗ BX ∈D(r) for every rational subspace r.

We have, from formula (7),

∂X\rf ∗ BX = f ∗ ∂X\rBX = f ∗ ∇X\rBX∩r = (∇X\rf ) ∗ BX∩r.

Since ∇X\rf is supported on Λ ∩ r, we have that (∇X\rf ) ∗ BX∩r ∈D(r), as desired. �

Theorem 3.14. The map f 7→ f ∗ BX induces a surjective map

i : F(X)⊗ZR→ G(X),

compatible with the two decompositions (22) and (23).
If X is unimodular, i is a linear isomorphism.

Proof. We have

G(X)=
⊕
r∈SX

T
Fr
X\r ∗ D(X ∩ r),

while

F(X)=
⊕
r∈SX

P Fr
X\r ∗ DM(X ∩ r).

Under the mapping f → f ∗ BX , we have that DM(X)⊗ZR maps surjectively to D(X).
Furthermore, in the unimodular case, it induces a linear isomorphism onto D(X).

Then, consider an element P Fr
X\r ∗ u, u ∈ DM(X ∩ r). We have

P Fr
X\r ∗ u ∗ BX = P Fr

X\r ∗ u ∗ BX\r ∗ BX∩r = T
Fr
X\r ∗ (BX∩r ∗ u),

and the claim follows. �
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Remark 3.15. If X is unimodular, the inverse of i is given by the following
deconvolution formula:

i−1h= lim
c

Todd(X)∗pwh,

where c is an alcove contained in Z(X).
Consider a function h ∈ G(X). Then the locally polynomial function Todd(X)∗pwh

coincides on topes τ ∩ Λ with the function gτ , with g = i−1(h) ∈ F(X). It follows from
the continuity properties of elements of F(X) that the locally polynomial function
Todd(X)∗pwh extends continuously on the cone generated by X. In particular, if Z(X)
contains 0 in its interior, Todd(X)∗pwh extends continuously on V.

The box spline BX is a combination of translates of elements TF
X which belongs to

G(X). It follows that Todd (X)pw BX extends continuously on V.

Part 2. Geometry

4. Equivariant K-theory and equivariant cohomology

4.1. Preliminaries

Although the theory we are going to review exists for a general compact Lie group G, we
restrict our treatment to the case in which G is a compact torus, and denote by Λ its
character group.

We want to apply the preceding purely algebraic results in order to compare the
infinitesimal index, and the index associated to the symbol of a transversally elliptic
operator on a linear representation of G.

Let N be a G manifold provided with a real G-invariant form σ . We assume that
N is oriented. If vx is the vector field on N associated to x ∈ g, the moment map
µ : N→ g∗ is defined by 〈µ(n), x〉 = −〈σ, vx〉, (n ∈ N, x ∈ g, and the sign convention is
that vx = d

dε exp(−εx)n|ε=0). Define Z as the zero fiber of the moment map.

Remark 4.2. We will mainly apply the construction described below to the case where
N = T∗M is the cotangent bundle to a G-manifold M, ω is the Liouville 1-form defined
for m ∈M, ξ ∈ T∗mM, and V is a tangent vector at the point (m, ξ) ∈ T∗M, by

ωm,ξ (V)= 〈ξ, p∗V〉. (24)

By definition, the symplectic form Ω = −dω is the symplectic form of T∗M, and we
will use the corresponding orientation of T∗M to compute integrals of differential forms
on T∗M.

If vx is the vector field on M associated to x ∈ g, the moment map µ : T∗M→ g∗ is then
〈µ(m, ξ), x〉 = −〈ξ, vx〉, and the zero fiber Z of the moment map is denoted by T∗GM. In a
point m ∈M, the fiber of the projection p : T∗GM→M is the space of covectors conormal
to the G orbit through m.

For reasons explained later, we will use the opposite form −ω, the opposite moment
map −µ, and, as stated before, the orientation given by −dω.
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4.3. Transversally elliptic symbols and their index

Let Z be a topological space provided with an action of G. Let E+ and E− be
two complex equivariant vector bundles over Z. Let Σ : E+→ E− be a G-equivariant
morphism, and, for z ∈ Z, denote by Σz : E+z → E−z the corresponding linear map. Recall
that the support of Σ is the subset of Z consisting of elements z, where Σz is not
invertible.

Let us now recall the definition of the multiplicity index map.
Let E+ and E− be two complex equivariant vector bundles over M. If Σ : p∗E+→

p∗E− is a G-equivariant morphism, we say that Σ is a G-equivariant symbol. Thus, for
m ∈M, ξ ∈ T∗mM, Σm,ξ is a linear map: E+m → E−m . If the support of Σ is a compact set, we
say that Σ is an elliptic symbol, and Σ determines an element [Σ] in K0

G(T
∗M). If the

support of Σ intersects T∗GM in a compact set, we say that Σ is a transversally elliptic
symbol (it is elliptic in the directions transverse to the G-orbits). Then Σ determines an
element [Σ] in K0

G(T
∗
GM), and all elements of this group are obtained in this way (see

[1]).
Recall that Atiyah and Singer [1] have associated to any transversally elliptic symbol

a virtual representation of G of trace class. The induced trace of operators associated
to smooth functions on G is its index, a generalized function on G. By taking Fourier
coefficients, one then gets a homomorphism of R(G)= Z[Λ] modules,

indm : K0
G(T
∗
GM)→ CZ[Λ],

called the index multiplicity function. When the symbol Σ is elliptic, one gets that
indm(Σ) has finite support, and the index is a virtual character of G.

In [16], we have studied in particular the case M = MX , the linear representation
associated to a list X of characters, and proved that indm : K0

G(T
∗
GMX)→ CZ[Λ] gives an

isomorphism of Z[Λ]-modules onto F̃(X) (see Definition 3.7). Moreover, if Mf
X denotes

the open set of points with finite stabilizer, we have that the map indm establishes an
isomorphism of K0

G(T
∗
GMf

X) with DM(X).
Since, as we have recalled in Theorem 3.9, F̃(X) is spanned over Z[Λ] by the elements

P F
X as F runs over all regular faces for X, in order to find generators of K0

G(T
∗
GMX), we are

going to construct certain symbols whose index multiplicity gives P F
X .

4.4. Some explicit computations for K-theory

Let Y be a sequence of vectors in Λ and MY =
⊕

a∈Y La the corresponding complex
G-representation space. We write z=⊕za, an element of MY , with za ∈ La.

We choose a G-invariant Hermitian structure 〈, 〉 on MY .
We first recall here the description of the generator Bott(MY) of K0

G(MY), a free
module of rank 1 over R(G). Let E := ∧MY with the Hermitian structure induced by
that of MY , graded as E+ ⊕ E− by even and odd degree. Then, for z ∈MY , consider the
exterior multiplication m(z) : E→ E, m(z)(ω) := z ∧ ω, and the Clifford action,

c(z)= m(z)− m (z)∗, (25)
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of MY on E. One has c (z)2 = −‖z ‖2, so that c(z) is an isomorphism, if z 6= 0,
exchanging the summands E+ and E−. Consider the complex G-equivariant vector
bundles E± = MY × E±. The G-equivariant morphism from E+ to E−, defined by
Σz(ω) = c(z)ω, is supported at 0, and thus defines an element Bott(MY) of K0

G(MY),
a generator of K0

G(MY) over R(G)= Z[Λ].
Notice that, if Y = Y1 ∪ Y2,

∧
MY = ∧MY1 ⊗

∧
MY2 , and Bott(MY) is the external

tensor product of the symbols Bott(MY1) and Bott(MY2).

Definition 4.5. Given a G-invariant Hermitian structure 〈, 〉 on MY , we define the
G-invariant real 1-form

σY =−1
2
=〈z, dz〉.

Here, = : C→ R is the imaginary part.
For example, if M = La ∼ R2 and z= v1 + iv2, then σ = 1

2 (v1dv2 − v2dv1).
We consider the moment map µY for σY . Thus

µY(z)= 1
2

∑
a∈Y

|za|2 a.

Definition 4.6. We define ZY to be the zero fiber of the moment map µY :

ZY :=
{

z ∈MY |
∑
a∈Y

|za|2 a= 0

}
.

This set ZY was also denoted M0
Y in [18]. However, as when Y = X ∪ −X, we will use

different moment maps on MY . We keep the notation ZY for the set of zeros of the
moment map µY defined above.

The following construction of some elements of K0
G(ZY) is due to Boutet de Monvel.

Of course the Bott element Bott(MY) restricts to ZY as an element of K0
G(ZY). Let us

construct some genuine elements not coming from the space K0
G(MY).

We start with a simple case. Assume first that there is an element φ ∈ g which is
strictly positive on all the characters a ∈ Y. It follows that ZY = {0}, and the equivariant
K-theory of ZY is the Z[Λ]-module generated by the class of the trivial vector bundle C
over the point ZY (which is in fact Bott({0})).

We come now to the case of an arbitrary sequence Y of weights. Let F be a regular
face for Y. We take a linear form φ ∈ F, which is non-zero on each element of Y. We write
Y = A ∪ B, A being the subsequence of elements on which φ takes positive values, and B
being the subsequence of elements on which φ takes negative values (notice that A and
B depend only on F and not on the choice of φ). Accordingly, we write MY =MA ⊕MB.
Thus every z ∈ MY can be uniquely decomposed as z = zA ⊕ zB, with zA ∈ MA,
zB ∈MB.

Let EA =∧MA graded as E+A ⊕ E−A taking the odd and even degree parts.
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Definition 4.7. The morphism ΣF between the trivial bundles MY × E+A and MY × E−A
is defined by

ΣF
z = c(zA) ∀z ∈MY .

It is clear that the support of ΣF is the subspace MB. We deduce the following lemma.

Lemma 4.8. The intersection of the support of ΣF with ZY reduces to the zero vector.

Proof. Indeed, in ZY ,
∑

a∈A |za|2 a=−∑b∈B |zb|2 b. If we are in the support of ΣF, each
za = 0, so we deduce that −∑b∈B |zb|2 b = 0. Since φ takes a negative value on each
b ∈ B, this implies that zb = 0 for all b. �

We deduce that the restriction of ΣF to ZY defines an element of K0
G(ZY) still denoted by

ΣF.
Let us now consider the case Y = X ∪−X. In this case, MY =MX ⊕M∗X = T∗MX , so that

Bott(T∗MX) gives a class in K0(T∗MX), whose index is the trivial representation of G (see
[3]).

We may restrict Bott(T∗MX) to T∗GMX , getting a class whose index multiplicity is the
delta function δ0 on Λ.

In order to get further elements of K0
G(T
∗
GMX), we follow the construction of Boutet de

Monvel, as follows.
Consider the R-linear G-isomorphism h of M∗X , with MX given by

ξ(z) :=R(〈z, h(ξ)〉).
Here, R(〈z1, z2〉) is the real part of the Hermitian product on MX , a positive definite
inner product. The isomorphism h induces a R-linear G-isomorphism, still denoted by h,
of T∗MX , with MX ⊕MX .

Let F be a regular face of the arrangement X (and hence also of Y = X∪−X). Let φ ∈ F
so that X = A ∪ B, with φ positive in A and negative on B. We denote by J the standard
complex structure on MX , and by JF the complex structure on MX defined as JF is J on
MA and −J on MB. Then the list of weights of G for this new complex structure on MX is
A ∪ −B.

We consider the associated 1-form σF on M, which has moment map

νF(z)= 1
2

(∑
a∈A

|za|2 a−
∑
b∈B

|zb|2 b

)
.

Clearly, the zero fiber is reduced to {0}.
Lemma 4.9. Consider the isomorphism of T∗MX with MX ⊕MX, given by

(z, ξ)→ [h(ξ)+ JFz, h(ξ)− JFz].

In this isomorphism, the moment map µ on T∗MX associated to the Liouville form
becomes the moment map [12νF,−1

2νF] for [12σF,−1
2σF].

In particular, under the above isomorphism, the space T∗GMX is identified with the zeros
of the moment map [12νF,−1

2νF].
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We define the map

pF : T∗MX→MX (26)

by pF(z, ξ)= h(ξ)+ JFz.

Definition 4.10. We set

ΣF(z, ξ)= c(h(ξ)+ JFz).

In other words, ΣF = p∗FBott(MX) is the pull-back of the morphism Bott(MX) by pF.

By Lemmas 4.9 and 4.8, the intersection of the support of ΣF with T∗GM is reduced
to the zero vector. Thus ΣF determines an element of K0

G(T
∗
GMX) which depends only on

the connected component F of φ in the set of regular elements.
Denote by ρ the representation of G in MX , and also by ρ the infinitesimal action of g

in MX . If φ ∈ g, and z=∑a za is in MX , then ρ(φ)z=∑a i〈a, φ〉za.

Lemma 4.11. The symbol ΣF is equal in K-theory to the Atiyah symbol

AtF(z, ξ)= c(h(ξ)+ ρ(φ)z)
(see [16]).

Proof. Indeed, for t ∈ [0, 1], it is easy to see that

AtFt (z, ξ)= c(h(ξ)+ (tρ(φ)+ (1− t)JF)z)

is transversally elliptic. Thus AtF and ΣF being homotopic coincide in K-theory. �

Let us consider

ΘF
X (e

x)=
∑
λ

P F
X (λ)e

i〈λ,x〉

as a generalized function on G.
Recall Atiyah’s theorem (in Section 6 in [1]; see also Appendix 2 in [8]).

Theorem 4.12.

index(AtF)(g)= (−1)|X| gaXΘF
X (g)=ΘF−X(g).

We immediately translate this theorem as follows.

Theorem 4.13. Let F be a regular face. Let

ΣF = p∗FBott(MX).

Then indm(Σ
F)= P F−X

This identity is in accord with a simple remark.

Remark 4.14. In the K-theory of K0
G(T
∗
GM), we have the identity

(ΛM−X)Σ
F = Bott(MX ⊕M−X).
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Applying the index, we obtain the identity∏
a∈X

(1− e−i〈a,x〉)index(AtF)(ex)= 1.

4.15. The infinitesimal index
Consider N, an oriented G-manifold, equipped with a G-invariant 1-form σ . Recall that
Z is the set of zeros of the moment map µ : N→ g∗.

We denote by ιx the contraction of a differential form on N by the vector field vx

associated to x on N. We have defined in [17] a Cartan model for the equivariant
cohomology with compact supports H∗G,c(Z) of the subset Z of N. This is a Z-graded
space. A representative of this group is an equivariant form α(x) with compact support,
α : g→Ac(N), such that D(α) is equal to 0 in a neighborhood of Z. The dependence of α
on x is polynomial. Here, Ac(N) is the space of differential forms with compact supports
on N, while the equivariant differential D is defined by

Dα(x)= dα(x)− ιxα(x).
Clearly, an element α ∈ H∗G,c(N) of the equivariant cohomology with compact supports

of N defines a class in H∗G,c(Z). Indeed, Dα = 0 on all N.

Remark 4.16. If α is an equivariantly closed form on N such that the support of α
intersected with Z is a compact set, we associate to α an element [α]c in the equivariant
cohomology with compact supports of Z defined as follows. Take a G-invariant function
χ equal to 1 in a neighborhood of Z and supported sufficiently near Z. Then χα is
compactly supported on N, and Dα = 0 in the neighborhood of Z where χ = 1, and thus
defines a class [α]c in H∗G,c(Z) independent of the choice of χ .

Let us now recall the definition of the infinitesimal index of [α] ∈ H∗G,c(Z). Let Ω = dσ ,
and set Ω(x)= Dσ(x)= µ(x)+Ω. Ω(x) is a closed (in fact exact) equivariant form on N.
If f is a smooth function on g∗ with compact support, let

f̂ (x) :=
∫

g∗
e−i〈ξ | x〉f (ξ)dξ

be the Fourier transform of f . Choose the measure dx on g so that the inverse Fourier
transform is f (ξ)= ∫g ei〈ξ | x〉 f̂ (x)dx; thus f̂ (x)dx is independent of the choices.

The double integral ∫
N

∫
g

eisΩ(x)α(x)f̂ (x)dx

is independent of s for s sufficiently large.
We then define

〈infdexµG([α]), f 〉 := lim
s→∞

∫
N

∫
g

eisΩ(x)α(x)f̂ (x)dx. (27)

This is a well-defined map from H∗G,c(Z) to distributions on g∗. It is a map of S[g∗]
modules, where ξ ∈ g∗ acts on forms by multiplication by 〈ξ, x〉 and on distributions
by i∂ξ .
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As the notation indicates, infdexµG depends only on µ, and not on the choice of the
real invariant form σ with moment map µ. We can obviously also change µ to a positive
multiple of µ without changing the infinitesimal index. However, the change of µ to −µ
usually changes the map infdex radically.

Remark 4.17. Clearly, if α is a closed equivariant form with compact support on N,
then the infinitesimal index is just the Fourier transform of the equivariant integral∫

N α(x) of the equivariant form α, as eisΩ(x) = eisDσ(x) is equivalent to 1 for any s.

Using the same formula (27), we have extended the definition of infdexµG to a
Z/2Z-graded cohomology space H∞,mG,c (Z), which we now define.

A representative of a class [α] in H∞,mG,c (Z) is a smooth map α : g→ Ac(N), such that
the dependence of α(x) on x is of at most polynomial growth, and such that D(α) is equal
to 0 in a neighborhood of Z. The index m indicates moderate growth on g.

As we will recall in ğ 5.2, the equivariant Chern character ch(Σ) of an element
Σ ∈ K0

G(Z) belongs to the space H∞,mG,c (Z).
We note the following.

Proposition 4.18. Let b(x) = ∫g∗ ei〈ξ,x〉m(ξ)dξ be the Fourier transform of a compactly
supported distribution m(ξ) on g∗. Then b(x) is a function on g of moderate growth, and
the space H∞,mG,c (Z) is stable by multiplication by b(x).

Furthermore,

infdexµG(bα)= m ∗ infdexµG(α). (28)

The character group Λ acts on forms with moderate growth by multiplication by ei〈λ,x〉,
for λ ∈ Λ, inducing an action on cohomology. It also acts on distributions on g∗ by
translations:

tλD(f )= D(t−λf )= D(f (ξ + λ)).

Proposition 4.19. The map infdex is equivariant with the respect to the previous
actions of Λ.

Proof. The proposition follows from the definition of infdex, once we notice that

t̂−λf = ei〈λ,x〉 f̂

for any function f on g∗ lying in the Schwartz space. �

4.20. Some explicit computations in cohomology

Recall that, if N is a vector space provided with an action of G, H∗G,c(N) is a free S[g∗]
module with a generator Thom(N) with equivariant integral

∫
N Thom(N)(x) identically

equal to 1 (see, for example, [22]).
Notice that in particular, by Remark 4.17, if N is a vector space with a (any) real

1-form σ , then Thom(N) defines an element of H∗G,c(Z) with infinitesimal index equal to
the δ-function of g∗. The form Thom(N) depends on the choice of an orientation of N.
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Let Y be a sequence of vectors in Λ, and let M :=MY be the corresponding complex
G-representation space. We give to M the orientation given by its complex structure.

We want to describe Thom(MY). For this, it is sufficient to give the formula of the
Thom form for M = La, a complex line. The formula for Thom(MY) is then obtained by
taking the exterior product of the corresponding equivariant differential forms.

If α(x) is an equivariant form on a G-manifold M, fixing m ∈M, we may write α[m](x)
for the element α (x)m ∈

∧
T∗mM defined by the differential form α(x) at the point m.

Let La = C, with coordinate z. The infinitesimal action of x ∈ g is given by i〈a, x〉.
Choose a function χ on R with compact support and identically 1 near 0. Then

Thom(La)[z](x)=− 1
2π

(
χ(|z |2)〈a, x〉 + χ ′(|z |2)i(dz ∧ dz)

)
(29)

is the required closed equivariant differential form on La with equivariant integral
identically equal to 1.

As in ğ 4.4, we fix an G-invariant Hermitian structure on MY and take the G-invariant
real 1-form σY = −1/2=〈z, dz〉 with moment map µY(z) = 1

2

∑
a∈Y |za|2 a and zero fiber

ZY .
We define some elements of H∗G,c(ZY) by an analogous procedure to the K-theory case.

Of course, the restriction of Thom(MY) to ZY defines an element in H∗G,c(ZY).
Let us construct some further elements of H∗G,c(ZY), not coming by restriction to ZY of

a compactly supported class on MY .
As before, we start with the basic case, in which there is φ ∈ g strictly positive on

all the characters a ∈ Y. Then Z = {0}, and its equivariant cohomology with compact
supports is the algebra S[g∗] generated by 1.

Do not assume any more that the weights Y generate a pointed cone. Let F be
a regular face for Y. Let A be the subsequence of Y where φ takes positive values,
and let B be the subsequence where φ takes negative values. Write MY = MA ⊕ MB.
Then the pull-back of Thom(MA) by the projection MY → MA is supported near MB.
Thus the support of the pull-back of Thom(MA) intersected with ZY is compact, and
therefore, as explained in Remark 4.16, Thom(MA) defines a class in H∗G,c(ZY). We can
write an explicit representative of this class by choosing a G-invariant function χ on
MY identically equal to 1 in a neighborhood of ZY and supported near ZY . Then our
representative will be given by

tF[z](x) := χ(z)Thom(MA)[zA](x).
Consider the inclusion iB :MB→MY . In [18], we have defined a map (iB)! : H∗G,c(ZB)→

H∗G,c(ZY) preserving the infinitesimal index. In this setting, we see that the class
tF ∈ H∗G,c(ZY) is by definition a representative of (iB)!(1).

We now compute the infinitesimal index infdexνG([α]) of the elements tF.
The equivariant Thom form has equivariant integral equal to 1, so that, by Fourier

transformation,

infdexνG(Thom(MY))= δ0,
where δ0 is the δ-distribution on g∗.
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Consider now the element tF associated to F. The subsequence B spans a pointed cone.
We can then define the partial multispline distribution TB on g∗.

Theorem 4.21. infdexνG(t
F)= (2iπ)|B| TB, where TB is the multivariate spline.

Proof. Since the class tF ∈ H∗G,c(ZY) is a representative of (iB)!(1) and i! preserves infdex,
we are reduced to proving our theorem when MA = 0. The computation is reduced to the
one-dimensional case by the product axiom; see [18]. Let us make the computation in
this case, that is, when MY = Lb.

The action form σ in coordinates z = v1 + iv2 is 1
2 (v1dv2 − v2dv1), so Dσ(x) =

dv1 ∧ dv2 + 1
2 〈b, x〉 ‖v‖2.

Let χ(t) be a function on R with compact support and identically equal to 1 in a
neighborhood of t = 0. Then, by definition, we get

〈infdexνG(1), f 〉 = lim
s→∞

∫
R2

∫ ∞
−∞

χ

(
‖v‖2

2

)
eis〈b,x〉 ‖v‖22 eisdv1dv2 f̂ (x)dx

= lim
s→∞ is

∫
R2

∫ ∞
−∞

χ

(
‖v‖2

2

)
eis〈b,x〉 ‖v‖22 dv1dv2 f̂ (x)dx.

Use polar coordinates on R2, and take t = ‖v‖22 as a new variable. We obtain

lim
s→∞ 2iπs

∫ ∞
t=0

∫ ∞
x=−∞

χ(t)ei〈stb,x〉 f̂ (x)dxdt.

Changing t to t/s, and using the Fourier inversion formula, we obtain

〈infdexνG(1), f 〉 = 2iπ lim
s→∞

∫ ∞
0

χ(t/s)f (tb)dt.

Passing to the limit, as χ is identically 1 in a neighborhood of 0 and f is compactly
supported, we obtain our formula:

〈infdexνG(1), f 〉 = 2iπ
∫ ∞

0
f (tb)dt. �

Exactly as in the K-theory case, when Y = X ∪ −X, that is, (T∗MX)
0 = T∗GMX ,

we can use this construction to get classes in tF ∈ H∗G,c(T∗GMX) and compute their
infdex. Let F be a regular face for X. Consider the map pF : T∗MX → MX defined by
pF(z, ξ)= h(ξ)+ JFz (see ğ 4.4). We have the following theorem.

Theorem 4.22. Let χ be a G-invariant function on T∗MX identically equal to 1 in a
neighborhood of T∗GMX and supported near T∗GMX. Then

tF = χ p∗FThom(MX)

defines a class in H∗G,c(T∗GMX) such that infdex−µG (tF)= (−1)|X| (2iπ)|X| TF
X .

Proof. This is obtained from the preceding calculations. Indeed, the infinitesimal
index depends only on the moment map. So, using Lemma 4.9, we are reduced to
the calculation performed in Theorem 4.21. The sign comes from taking into account
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the orientations on T∗MX . Indeed, in the isomorphism of T∗MX with MX ⊕ MX , the
orientation of T∗MX is (−1)|X|, the orientation given by the complex structure on
MX ⊕MX . �

5. The equivariant Chern character and the index theorem

In this section, we compare the equivariant K-theory and equivariant cohomology via
the Chern character.

5.1. Motivations

Our goal is to compute the multiplicity index of a symbol Σ ∈ K0
G(T
∗
GM) in terms of

the infinitesimal index of the equivariant Chern character of Σ for a general G-manifold
M. We are going to provide a direct formula at least in the case where M = MX . This
construction is motivated by taking the Fourier transform of the formula of Berline and
Vergne for the equivariant index of a transversally elliptic operator ([8, 7, 24], where one
can also find the notation and various definitions). We first recall this formula in the
simple case of elliptic symbols.

In this case, the equivariant Chern character ch(Σ) of an element Σ ∈ K0
G(T
∗M) is an

element in H∞G,c(T∗M), and the index of Σ is a regular function on G. For x ∈ g small
enough,

index(Σ)(ex)= (2iπ)−dim M
∫

T∗M
chc(Σ)(x)Â(T

∗M)(x), (30)

where Â(T∗M)(x) is the equivariant Â genus of T∗M, chc(Σ)(x) is the Chern character
with compact support, and Â(T∗M)(x) is defined for x small enough. For any element
g ∈ G, similar ‘descent formulae’ are given for index(Σ)(gex), where the integral is over
T∗Mg, Mg being the fixed-point set of the action of g ∈ G on M.

Let ω be the canonical (Liouville) 1-form on T∗M: ωm,ξ (V) = 〈ξ, p∗V〉. Let Σ be a
transversally elliptic symbol. In [8, 7], it is shown that, although ch(Σ) is not compactly
supported, the formula

index(Σ)(ex)= (2iπ)−dim M
∫

T∗M
e−iDω(x)ch(Σ)(x)Â(T∗M)(x) (31)

still holds as a generalized function of x, for a sufficiently large class of transversally
elliptic symbols. The factor e−iDω(x) is congruent to 1 in cohomology, but is crucial in
defining a convergent oscillatory integral when ch(Σ)(x) is not compactly supported.

Let us write formula (31) more explicitly in the case where M is a manifold such that
T∗M is stably equivalent to M×R, a trivial vector bundle: here, R is a real representation
space of G. Consider the sequence XR of weights of G in R ⊗ C. Thus, if a ∈ XR, then
−a ∈ XR. Consider the function

jR(x)=
∏

a∈XR

1− e−i〈a,x〉

i〈a, x〉
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on g. Then the equivariant class Â(T∗M)(x) is just the function jR (x)−1, and it is defined
only for x small enough. In this ‘trivial tangent bundle case’, formula (31) implies that

jR(x)index(Σ)(ex)= (2iπ)−dim M
∫

T∗M
e−iDω(x)ch(Σ)(x).

Recalling formula (4) and the definition of indm(Σ), we obtain

B̂XR(x)
∑
λ

indm(Σ)(λ)e
i〈λ,x〉 = (2iπ)−dim M

∫
T∗M

e−iDω(x)ch(Σ)(x).

Let µ be the moment map on T∗M associated to the 1-form ω. Thus, by Fourier
transformation, this equality suggests that the following formula should hold:

BXR∗dindm(Σ)= (2iπ)−dim M infdex−µG (ch(Σ)). (32)

All the terms of this formula make sense, since we will show in ğ 5.2 that ch(Σ)
belongs to the cohomology H∞,mG,c (T

∗
GM) of classes with compact support on T∗GM where

the infinitesimal index is defined.
Consider now M =MX , our representation space for G. We always will consider MX as

a real G-manifold, except if specified differently. Let T∗MX =MX ×M∗X be a trivial vector
bundle. Here, M∗X is thus considered as the real vector space dual to MX . The sequence
of weights of G in M∗X ⊗ C is the sequence X ∪ (−X). Note that the real dimension of MX

is 2|X|. Our aim in the next subsections is to see that formula (32) indeed holds for any
Σ ∈ K0

G(T
∗
GMX).

Finally, using ‘descent formulae’ for g running over the finite set of toric vertices of
the system X, we will use Theorem 2.29 to give a formula for the multiplicity function
indm(Σ) on Λ.

Let us point out that we could use the formulae of [8, 7] or [24]. However, we found
it instructive to prove formula (32) directly in the case of MX being a vector space,
using the explicit description of the generators of K0

G(T
∗
GMX) given in[16]. Using the

functoriality principle, we hope that it will be possible to describe directly indm(Σ), a
function on Λ, in term of infdexµG(ch(Σ)), a function on g∗, for any transversally elliptic
operator on a general G-manifold M.

5.2. The equivariant Chern character

We recall the construction of ch(Σ) for Σ a morphism of vector bundles on a general
G-manifold N. We refer to [23] for the comparison between the different constructions of
the Chern character.

Let E be a G-equivariant complex vector bundle on N. We choose a G-invariant
Hermitian structure and a G-invariant Hermitian connection ∇ on E . For any x ∈ g,
let Lx be the action of x on the space Γ (N,

∧
T∗N ⊗ E) of E -valued forms on N. The

operator j(x) := Lx −∇x is a bundle map called the moment of the connection ∇. At each
point n ∈ N, j(x) is an anti-Hermitian endomorphism of En. Let F be the curvature of the
connection ∇; thus F is a 2-form on N with values in the bundle of anti-Hermitian linear
operators on E .
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The equivariant curvature of E at the point n is by definition j(x) + F. Then the
equivariant Chern character ch(E,∇) is the equivariant differential form

ch(E,∇)(x)= Tr(ej(x)+F).

This is a closed equivariant differential form on N with C∞ coefficients (see [5],
Chapter 7).

Lemma 5.3. Over any compact subset of N, the Fourier transform of the equivariant
Chern character x→ ch(E,∇)(x) is a compactly supported distribution on g∗.

Proof. Let us fix n ∈ N. Set E = En to be the fiber of the vector bundle E at n, and
A = ∧2∗T∗n N to be the even part of the exterior of the cotangent space at n. Then
(j(x) + F)(n) ∈ A⊗ u, where u is the Lie algebra of anti-Hermitian linear operators on E.
The map x→ j(x) defines a map g→ u, with dual map j∗ : u∗→ g∗.

If P(E) denotes the projective space of E, we define µP : P(E)→ u∗ by

µP(p)(iX)= 〈Xv, v〉
〈v, v〉 .

Here, p is the point of P(E) associated to v ∈ E − {0} and iX ∈ u.
By Corollary A.2 to the Nelson theorem (for completeness, in Theorem A.1 we give

a proof of this fact based on localization formula in equivariant cohomology in the
Appendix),

Tr(e(j(x)+F))=
∫

P(E)
ei〈j∗µP(p),x〉D(p, n),

where D(p, n)= eµ
P(p)(F)Tr(β(p, u)) is a differential form on P(E) with values in

∧
T∗n N (if

F =∑k Fkuk with Fk ∈∧2T∗n N and uk ∈ u, eµ
P(p)(F) = e

∑
k Fkµ

P(p)(uk) is a smooth function
on P(E) with values in

∧
T∗n N).

Integrating over the fiber of the map j∗µP : P(E)→ g∗, we obtain

Tr(ej(x)+F)=
∫

g∗
ei〈x,ξ〉γ (ξ),

where γ (ξ) is a distribution supported on the compact set j∗µP(P(E)). Thus we see that,
at each point n of N, the function x→ Tr(ej(x)+F) is the Fourier transform of a compactly
supported distribution on g∗ (with values in

∧
T∗n N). It is clear that our estimates are

uniform on any compact neighborhood of the point n ∈ N. Thus we obtain our lemma. �

In particular, the closed equivariant differential form ch(Σ)(x) has moderate growth
with respect to x ∈ g over any compact subset of N.

Let E = E+ ⊕ E− be a Hermitian G-equivariant super-vector bundle over N. Let
Σ : E+ → E− be a G-equivariant morphism. Outside the support of Σ , the complex
vector bundles E+ and E− are ‘the same’, so that it is natural to construct
representatives of ch(E) := ch(E+) − ch(E−) which are zero ‘outside’ the support of
Σ by the following identifications of bundle with connections.
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Let U be a neighborhood of the support of Σ . We first may choose the Hermitian
structures on E+, E− so that Σ is an isomorphism of Hermitian vector bundles
outside U.

A pair of connections ∇+,∇− is said to be ‘adapted’ to the morphism Σ on U when
the following holds:

∇− ◦Σ =Σ ◦ ∇+ (33)

outside the neighborhood U of the support of Σ . A pair of adapted connections is easy
to construct.

Proposition 5.4. Let ∇+,∇− be a pair of G-invariant Hermitian connections adapted
to Σ : E+ → E−. Then the differential form ch(E+,∇+) − ch(E−,∇−) is a closed
equivariant differential form on M supported near the support of Σ. We denote it as
chs(Σ).

The index s means with support condition.
In particular, if the support of Σ is compact, we can also choose the neighborhood

U so that its closure is compact. We deduce that the cohomology class of chs(Σ) lies
in H∞,mG,c (N), that is, chs(Σ) is a compactly supported class on N with moderate growth
in x. This class will be denoted simply by ch(Σ).

Let g ∈ G, and let Ng be the fixed-point submanifold of g. Then g acts by a fiberwise
transformation on E → N still denoted g. We still denote by F the curvature of the
bundle E restricted to Ng. The equivariant twisted Chern character chg(E,∇) is the
equivariant differential form

chg(E,∇)(x)= Tr(ge(j(x)+F)).

This is a closed equivariant differential form on Ng. Similarly, we have the following
proposition.

Proposition 5.5. Let (∇+,∇−) be a pair of G-invariant Hermitian connections adapted
to Σ : E+→ E−. Then the differential form

chg(Σ)(x)= chg(E+,∇+)(x)− chg(E−,∇−)(x)
is a closed G-equivariant form on Ng supported near the support of Σ |Ng .

Over any compact subset of Ng, it has moderate growth with respect to x ∈ g.

If we change the choice of connections, we can see using the usual transgression
formulae for Chern characters (see for example [23]) that the class chg(Σ) stays the
same in the cohomology with moderate growth: that is, the boundary ν(x) expressing
the change of chg(Σ) with respect to the connection remains with moderate growth with
respect to x, over any compact subset of Ng.

We return to the situation where N = T∗M is the conormal bundle to a G-manifold
M and Σ is a transversally elliptic symbol. Let χ be a function identically equal to 1
near the set T∗GM and supported in a neighborhood of T∗GM whose closure has compact
intersection with the support of Σ . We have the following proposition.



Box spline 35

Proposition 5.6. The equivariant form αg(x) = χchg(Σ)(x) on T∗Mg is compactly
supported, and Dαg(x) is equal to 0 in a neighborhood of T∗GMg. Over any compact
subset of T∗GMg, it has moderate growth with respect to x ∈ g.

It follows that the Chern character gives a morphism

ch : K0
G(T
∗
GM)→H∞,mG,c (T

∗
GM).

Similarly, for g ∈ G, the twisted Chern character is a morphism

chg : K0
G(T
∗
GM)→H∞,mG,c (T

∗
GMg).

As we have seen in ğ 4.15, the character group Λ acts on forms with moderate growth
by multiplication by ei〈λ,x〉, for λ ∈ Λ, inducing an action on cohomology. Of course Λ
also acts on G-equivariant vector bundles by tensoring with La and inducing an action in
K-theory. We have the following proposition.

Proposition 5.7. For any g ∈ G, the map chg is equivariant with respect to the previous
actions of Λ.

Proof. Let E be a G-equivariant complex vector bundle on N. We choose a G-invariant
Hermitian structure and a G-invariant Hermitian connection ∇ with moment j(x) and
curvature F.

Then, for the vector bundle Lλ⊗E , with endomorphism bundle canonically isomorphic
to that of E , we can take the same connection ∇. By the definition of the moment, we see
that the equivariant curvature of Lλ ⊗ E equals i〈λ, x〉 + j(x)+ F, giving our claim. �

5.8. Explicit computations of the Chern character

We consider our G-manifold M = MX . Choose a Hermitian structure on MX . Let
Σz = c(z) be the Clifford multiplication acting on the complex vector bundle

∧
MX .

The support of Σ is {0}, and Σ determines the class Bott(MX) ∈ K0
G(MX).

The following result is well known.

ch(Bott(MX))(x)= (2iπ)|X|
∏
a∈X

ei〈a,x〉 − 1
i〈a, x〉 Thom(MX)(x)

in the cohomology group of smooth equivariant differential forms, without moderate
growth conditions.

In fact, this equality also holds in H∞,mG,c (MX).

Proposition 5.9. We have the equality

ch(Bott(MX))(x)= (2iπ)|X|
∏
a∈X

ei〈a,x〉 − 1
i〈a, x〉 Thom(MX)(x)

in H∞,mG,c (MX).

Proof. Since MX =
⊕

a∈X La, and both Bott(MX) and Thom(MX) are the external
product of the various Bott(La) and Thom(La) for a ∈ X, it suffices to prove our claim
when MX = La.
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In this case, E+ is the trivial bundle La×C, E− = La×La, and the morphism is Σz = z.
We choose ∇+ = d.

Let χ(t) be a function on R with compact support contained in |t| < 1 and identically
equal to 1 near 0. Let β = (χ(|z |2)− 1) dz

z , a well-defined G-invariant 1-form. We consider

∇− = d + β.
Outside |z |2 < 1, the connections ∇+ = d,∇− = d− dz

z verify ∇−z= z∇+, so that the pair
(∇+,∇−) is adapted for the morphism z.

We compute the corresponding difference of Chern characters.
The moment j(x) of the connection ∇+ is 0 and the equivariant curvature F+(x) = 0.

So ch(E+,∇+)= 1.
The moment of the connection ∇− is i〈a, x〉 + i〈a, x〉(χ(|z |2)− 1)= i〈a, x〉χ(|z |2). Thus

the equivariant curvature of ∇− is

F−(x)= i〈a, x〉χ(|z |2)− χ ′(|z |2)dz ∧ dz.

Note that F−(x) = 0, if |z |2 > 1, so that ch(E+,∇+) − ch(E−,∇−) is supported on
|z |2 < 1. Thus ch(Bott(La)) := ch(E+,∇+)−ch(E−,∇−) is a closed equivariant form with
compact support.

We have explicitly

ch(Bott(La))[z](x)= (1− ei〈a,x〉χ(|z |2))+ ei〈a,x〉χ(|z |2)χ ′(|z |2)dz ∧ dz.

Let us see that ch(Bott(La))[z](x) is equal to

(2iπ)
ei〈a,x〉 − 1

i〈a, x〉 Thom(La)[z](x)= ei〈a,x〉 − 1
i〈a, x〉 (i〈a, x〉χ(|z |2)− χ ′(|z |2)dz ∧ dz)

modulo a boundary with moderate growth.
We consider the 1-form

ν(x)=
((

eiχ(|z |2)〈a,x〉 − 1
i〈a, x〉

)
−
(

ei〈a,x〉 − 1
i〈a, x〉

)
χ(|z |2)

)
dz

z
.

We see that ν(x) is well defined and compactly supported on La. Indeed,(
eiχ(|z |2)〈a,x〉 − 1

i〈a, x〉

)
−
(

ei〈a,x〉 − 1
i〈a, x〉

)
χ(|z |2)

is equal to 0 if z is near 0, where χ(|z |2) is equal to 1, and is also equal to 0 when [z|> 1,
where χ(|z |2) is equal to 0.

Furthermore, the Fourier transform of (eiχ(|z |2)〈a,x〉 − 1)/i〈a, x〉 is supported, at the
point z ∈ La, on the interval [0,−χ(|z |2)a]. Thus we see that ν has moderate growth.

Since it is easily verified that

Dν(x)= 2iπ
ei〈a,x〉 − 1

i〈a, x〉 Thom(La)(x)− ch(Bott(La))(x),

Proposition 5.9 follows. �
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Let g ∈ G. The submanifold Mg for the action of g on M is MXg , where Xg := [a ∈
X | ga = 1] is a subsequence of X. Then the restriction of the symbol Bott(La) to Mg is
equal to

Bott(Mg)⊗
∧
(MX\Xg).

Thus we obtain the following proposition.

Proposition 5.10. We have

chg(Bott(MX))(x)= (2iπ)|X
g| ∏

a∈Xg

ei〈a,x〉 − 1
i〈a, x〉

∏
b6∈Xg

(1− gbei〈b,x〉)Thom(MXg)(x).

We now compute the Chern character of the symbol ΣF. Recall the map pF(x, ξ) =
h(ξ)+ JFx from T∗M to M. The morphism ΣF is the pull-back of Bott(MX) via this map.
It defines a class with compact support. Comparing with the element tF ∈ H∗G,c(T∗GM)
which is obtained as a pull-back of a Thom class, from Proposition 5.9, we deduce the
following proposition.

Proposition 5.11. We have the following equality in H∞,mG,c (T
∗
GM):

ch(ΣF)(x)= (2iπ)|X|
∏
a∈X

ei〈a,x〉 − 1
i〈a, x〉 tF(x).

The computation of the infinitesimal index follows from this formula. Since∏
a∈X

ei〈a,x〉 − 1
i〈a, x〉 =

∫
g∗

ei〈ξ,x〉BX(ξ),

using formula (28), we obtain the following theorem.

Theorem 5.12.

infdex−µG (ch(ΣF))= (2π)2|X| BX∗cTF
X .

Similarly, for any g ∈ G, we have

infdex−µG (chg(ΣF))= (2π)2|Xg| ∏
b6∈Xg

(1− gbtb)(BXg∗cTF
Xg).

In particular, when g is a vertex on X (Definition 2.28), the system Xg spans g∗, and
the infinitesimal index of chg(ΣF) is a piecewise polynomial function on g∗ with respect
to (X,Λ). In fact, we even see that this function is continuous on g∗.

5.13. The index theorem

We are now ready to compare the morphism index and the morphism index on T∗GMX

and to prove formula (32).
We denote by XR the sequence X∪−X of characters. Note that the zonotope associated

to XR contains 0 in its closure.
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Proposition 5.14. Let X ⊂Λ be a system of characters of G. Let

XR = X ∪ −X.

Let Σ be a G-invariant transversally elliptic symbol on M. Let indm(Σ) ∈ CZ[Λ] be its
multiplicity index. Let infdex−µG (ch(Σ)) be the infinitesimal index of its Chern character.
Then

BXR∗dindm(Σ)= (2iπ)−2|X| infdex−µG ch(Σ).

Proof. Using Propositions 4.19 and 5.7, we are reduced to proving our equality on
generators of K0

G(T
∗
GMX). We thus consider the symbol ΣF which, by Theorem 4.13, has

infinitesimal index equal to the polarized partition function P F−X . Recall that

B−X∗d P F−X = TF−X = (1)|X| TF
X .

Since BXR = BX ∗ B−X , the theorem follows from Theorem 5.12. �

Using the deconvolution theorem in the unimodular case, Proposition 5.14 leads to the
following theorem, which is strongly reminiscent of the Riemann–Roch theorem. Note
that, as XR contains 0 in its interior, we may use any alcove containing 0 in its closure in
the limiting procedure.

We denote by Todd(XR) the Todd operator associated to XR. It acts on the space of
piecewise polynomial functions for the system (X,Λ).

Theorem 5.15. Let X ⊂Λ be a unimodular system of characters of G. Let

Todd(XR)=
∏

a∈X∪−X

∂a

1− e−∂a

be the Todd operator.
Let Σ be a G-invariant transversally elliptic symbol on M, indm(Σ) ∈ CZ[Λ] be its

multiplicity index, and infdex−µG (ch(Σ)) be the infinitesimal index of its Chern character.
Then the following hold.

• infdex−µG (chΣ) is a piecewise polynomial measure on g∗.
• Let c be an alcove having 0 in its closure. We have

indm(Σ)= (2iπ)−2|X| lim
c

Todd (XR)pw infdex−µG (ch(Σ)).

Remark 5.16. It is possible to show in this unimodular case that the piecewise
polynomial function (2iπ)−2|X| Todd (XR)pw infdex−µG (ch(Σ)) extends to a continuous
function on g∗. Thus its restriction to Λ gives the index multiplicity.

We now formulate the general index theorem. We denote by V(X) ⊂ G the set of toric
vertices of the sequence of characters X of G (see Definition 2.28).

Theorem 5.17. Let X be a sequence of elements in Λ, and let M :=MX. Let

XR = X ∪ −X.
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Let Σ be a G-invariant transversally elliptic symbol on M, and let indm(Σ) ∈ CZ[Λ] be its
multiplicity index.

For any g ∈ V(X), let infdex−µG (chg(Σ)) be the distribution on g∗ associated to the
cohomology class chg(Σ) ∈H∞,mG,c (T

∗
GMg) by the infinitesimal index. Then

• infdex−µG (chg(Σ)) is a piecewise polynomial measure on g∗.
• Let c be an alcove having 0 in its closure. We have

indm(Σ) =
∑

g∈V(X)
(2iπ)−2|Xg| ĝ lim

c
D (XR \ Xg

R, g)
−1

×Todd(Xg
R)∗pwinfdex−µG (chg−1(Σ)). (34)

Proof. Again, using Propositions 4.19 and 5.7, we are reduced to proving our equality
on generators of K0

G(T
∗
GMX).

Let K = indm(Σ
F) = (−1)|X| taX P F

X . From the general inversion formula obtained in
Part 1 of this paper (Theorem 2.29), we have only to show that, for every g ∈ V(X),

BXg
R
∗d(ĝ

−1∇XR\Xg
R
K)= (−1)|X\X

g| (2π)−2|Xg| infdex−µG (chg−1(Σ)).

Now, observe that

(−1)|X/Xg| ∇−X\(−Xg)taX P F
X = taXg P F

Xg

and

B−Xg ∗ taXg P F
Xg = TF

Xg .

So, substituting, we get

BXg
R
∗d(ĝ

−1∇XR\Xg
R
K)= (−1)|X

g| ∏
b6∈Xg

(1− g−btb)(BXg ∗ TF
Xg).

But, by Theorem 5.12,

infdex−µG (chg−1(ΣF))= (2π)2|Xg| ∏
b6∈Xg

(1− g−btb)(BXg∗cTF
Xg).

So our claim follows. �

5.17.1. The box spline again. It is quite amusing to verify this theorem on elliptic
symbols. The infinitesimal index of Bott(T∗MX), after multiplying by 1/ (2iπ)2|X|, is the
double box spline BX∪−X . In the unimodular case, the ‘mother formula’

lim
c

Todd(X ∪ −X)∗pwBX∪−X = δ0
simply expresses the fact that the index of the elliptic operator with symbol Bott(T∗MX)

is the trivial representation of G.
The infinitesimal index of the elliptic symbols is thus obtained by a finite number of

translations of the double box spline.

Acknowledgements. We thank Michel Duflo and Paul-Emile Paradan for various
comments on this text.
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Appendix. Nelson formula

We here sketch a short and explicit proof of the Nelson formula, as suggested to us by
Michel Duflo.

Let E be a Hermitian vector space. The projective space P(E) is a Hamiltonian space
for the action of the unitary group U(E). Let u be the space of anti-Hermitian matrices:
u is the Lie algebra of U(E).

Let ω be the Kahler form on P(E). We denote by ω(u) = µP(u) + ω the equivariant
symplectic form. Here, u ∈ u, µP(p)(u) = 〈uv,v〉

〈v,v〉 , and p ∈ P(E) is the image of v. The form
ω(u) is a closed equivariant form on P(E). We have

1

(2iπ)dim P(E)

∫
P(E)

eiω(u) = 1.

Consider the End(E)-valued polynomial function of (u, z):

Q(u, z)= det(u− z)

u− z
.

Here, u ∈ u and z is a variable. We can substitute ω(u) by z, so that β(p, u) := Q(u, ω(u))
is an End(E)-valued differential form on P(E) depending polynomially on u.

Theorem A.1. For any u ∈ u, we have∫
P(E)

eiω(u)β(p, u)= eiu. (35)

Proof. Since the formula (35) is clearly equivariant under conjugation and analytic in u,
it is sufficient to prove it when u is a generic diagonal matrix. In this case, the formula
follows right away from the localization formula of Berline and Vergne applied to the
action of the torus exp(tu). Let us for example do the calculation for u being the 3 × 3
matrix (the general case is identical)

u=

iθ1 0 0

0 iθ2 0

0 0 iθ3

 .
Then

Q(u, z)=

(iθ2 − z)(iθ3 − z) 0 0

0 (iθ1 − z)(iθ3 − z) 0

0 0 (iθ1 − z)(iθ2 − z)

 .
To compute the integral of eiω(u)β(p, u) over P(E), we can apply the localization

theorem. At the point pk = Cek, ω(u) restricts to iθk; thus the first diagonal entry of
Q(u, ω(u))(pk) is zero except for p1 = Ce1, which is (iθ2 − iθ1)(iθ3 − iθ1). Thus, by the
localization formula, the first diagonal entry of the matrix

∫
P(E) eiω(u)β(p, u) is just e−θ1 .

The calculation is similar for all diagonal entries. �



Box spline 41

Using the fact that formula (35) is analytic in u, we immediately deduce the following
corollary.

Corollary A.2. Let A be a finite-dimensional commutative algebra over R, and let
u ∈ A⊗Ru. Then ∫

P(E)
eiω(u)Q(u, ω(u))= eiu. (36)

Proof. We write u =∑j xjfj, where fj is a chosen basis for u. The two sides of the
formula are power series in the variables xi which coincide for real values of the xi, and
hence coincide formally, and so we can substitute to the xi any commuting values. �
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