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INFINITESIMAL INDEX: COHOMOLOGY

COMPUTATIONS

C. DE CONCINI, C. PROCESI, M. VERGNE

1. Introduction

Let G be a compact Lie group with Lie algebra g, M a manifold with
G-action and equipped with a G–equivariant 1–form σ.

From this setting, one has a moment map µσ : M → g
∗. A particularly

important case is that of M = T ∗N , the cotangent bundle of a manifold
with a G action, equipped with the canonical action form. In this case, the
zeroes of the moment map is a subspace T ∗

GN whose equivariant K–theory
is strongly related to the index of transversally elliptic operators as shown
in [1].

In order to understand explicit formulas for such an index, in [8] we
have introduced the infinitesimal index infdex, a map from the equivariant
cohomology with compact support of the zeroes of the moment map to
distributions on g

∗.
We have proved several properties for this map which, at least in the case

of the space T ∗
GN , in principle allow us to reduce the computations to the

case in which G is a torus and the manifold is a complex linear representation
of G. A finite dimensional complex representation of a torus is the direct
sum of one dimensional representations given by characters. If X is a list of
characters, we denote by MX the corresponding linear representation which
is naturally filtered by open sets MX,≥i where the dimension of the orbit is
≥ i.

In this paper, we first compute the equivariant cohomology of the open
sets MX,≥i, and also of some slightly more general open sets in MX . This
part of our paper, namely Sections 2 and 3, does not use the notion of infin-
itesimal index. The results are obtained from the structure of the algebra
S[g∗][(

∏

a∈X a)
−1] as a module over the Weyl algebra studied in [5].

In Section 4 we apply the results we have obtained to the equivariant

cohomology of the open set Mfin
X of points with finite stabilizer. Using

Poincaré duality, we remark that the equivariant cohomology with compact

support H∗
G,c(T

∗
GM

fin
X ) of T ∗

GM
fin
X is isomorphic as a S[g∗]-module to a

remarkable finite dimensional space D(X) of polynomial functions on g
∗,

where S(g∗) acts by differentiation. The space D(X) is defined as the space
of solutions of a set of linear partial differential equations combinatorially
associated to X and has been of importance in approximation theory (see
for example [2], [3]).
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At this point the notion of infinitesimal index comes into play. We show
in Theorem 4.18 that the infinitesimal index gives an isomorphism between

H∗
G,c(T

∗
GM

fin
X ) and D(X). After this, we show that, for each i, the infinites-

imal index establishes an isomorphism between H∗
G,c(T

∗
GMX,≥i) and a space

of splines G̃i(X), introduced in [6], (cf. (15)) and generalizing D(X).
It should be mentioned that, in the previous paper [7], similar results have

been proved, using the index of transversally elliptic differential operators,
in order to compute the equivariant K-theory of the spaces T ∗

GMX,≥i).
This paper represents a sort of “infinitesimal” version of [7] and will be

used, in a forthcoming paper [9], to give explicit formulas for the index of
transversally elliptic operators.

Finally it is a pleasure to thank Michel Brion for a number of useful
conversations and remarks.

2. A special module

2.1. A module filtration. Let G be a compact torus with Lie algebra g

and character group Λ. We are going to consider Λ as a lattice in g
∗.

We need to recall some general results proved in [5]. Let us fix a list
X = (a1, . . . , am) of non zero characters in Λ ⊂ g

∗. For a list Y of vectors,
let us set dY :=

∏

a∈Y a ∈ S[g∗].

Definition 2.2. A subspace s of g
∗ is called rational (relative to X) if

s = 〈X ∩ s〉.

We shall denote by SX the set of rational subspaces and, for a given
0 ≤ k ≤ s, by SX(k) the set of the rational subspaces of dimension k.

We need to recall that a cocircuit in X is a sublist of X of the form
Y := X \H where H is a rational hyperplane.

Let S[g∗] be the symmetric algebra on g
∗ or in other words the algebra

of polynomial functions on g. The polynomials dY :=
∏

a∈Y a ∈ S[g∗], as Y
runs over the cocircuits, give a system of polynomial equations dY = 0.

Definition 2.3. We denote by IX the ideal in S[g∗] generated by the ele-
ments dY ’s, as Y runs over the cocircuits.

One knows that IX defines a scheme VX supported at 0 and of length
d(X) = dim(S[g∗]/IX) (see [5], Theorem 11.13). d(X) equals the number of
bases extracted from X.

Consider the localized algebra RX := S[g∗][d−1
X ], which is the coordinate

ring of the complement of the hyperplane arrangement defined by the equa-
tions a = 0, a ∈ X, in g.

This algebra is a cyclic module over the Weyl algebra W [g] of differential
operators with polynomial coefficients, generated by d−1

X .
In [5], we have seen that this W [g]-module has a canonical filtration,

the filtration by polar order, where we put in degree of filtration ≤ k all
fractions in which the denominator is a product of elements in X spanning



INFINITESIMAL INDEX: COHOMOLOGY COMPUTATIONS 3

a rational subspace of dimension ≤ k (we say that k is the polar order on the
boundary divisors). We denote this subspace by RX,k. One of the important
facts (Theorem 8.10 in [5]) is that

Theorem 2.4. The module RX,k/RX,k−1 is semisimple, its isotypic compo-
nents are in 1–1 correspondence with the rational subspaces of dimension k
and such a isotypic component is generated by the class of 1/dX∩s.

Consider the rank 1 free S[g∗] submodule L := d−1
X S[g∗] in RX generated

by d−1
X . Set Lk := L∩RX,k, that is the intersection of L with the k−filtration.

We obtain for each k an ideal Ik of S[g∗] defined by

Ik := LkdX .

For a given rational subspace s of dimension k, denote by Is := S[g∗]dX\s

the principal ideal generated by dX\s. Notice that

IsL = d−1
X∩sS[g

∗] ⊂ Lk.

Thus Is ⊂ Ik and indeed from Theorem 11.29 of [5] one gets

Ik =
∑

s∈SX(k)

Is.

If Q ⊂ SX is a set of rational subspaces, we set

IQ =
∑

s∈Q

Is

for the ideal generated by the elements dX\s for s ∈ Q.
Associated to s, we also consider the list X∩s consisting of those elements

of X lying in s and we may consider the ideal IX∩s ⊂ S[s], as defined in 2.3,
and its extension JX∩s := IX∩sS[g

∗]. The obvious map

S[g∗]⊗S[s] IX∩s → JX∩s

is an isomorphism so that

(1) S[g∗]/JX∩s ≃ S[g∗]⊗S[s] (S[s]/IX∩s).

Lemma 2.5. If s is of dimension k, we have that d−1
X∩sS[g

∗] ⊂ Lk and

(2) d−1
X∩sS[g

∗] ∩ Lk−1 ⊃ d−1
X∩sJX∩s.

Proof. We have already remarked the first statement. As for the second,
by definition JX∩s is the ideal generated by the elements dZ where Z is a
cocircuit in X ∩ s. This means in particular that Z is contained in X ∩ s
and that Y := (X ∩ s) \ Z spans a subspace of dimension k − 1. Hence
d−1
X∩sdZS[g

∗] = d−1
Y S[g∗] ⊂ Lk−1. �

Multiplying Formula (2) by dX , we deduce that

(3) Is ∩ Ik−1 ⊃ JX∩sdX\s =
∑

t⊂s, t∈SX(k−1)

It.
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In this way, multiplication by d−1
X∩s gives an homomorphism of S[g∗]–

modules js : S[g∗]/JX∩s → Lk/Lk−1 and hence, taking direct sums, a ho-
momorphism j := ⊕s∈SX(k)js

(4) j : ⊕s∈SX(k)S[g
∗]/JX∩s → Lk/Lk−1.

We have (Theorem 11.3.15 of [5]):

Theorem 2.6. The homomorphism j is an isomorphism.

Using (3), Theorem 2.6 tells us that the morphism

(5) j̃ : ⊕s∈SX(k)Is/JXs
dX\s → Ik/Ik−1

is an isomorphism.

Definition 2.7. A set Q ⊂ SX of rational subspaces is called admissible if,
for every s ∈ Q, Q also contains all rational subspaces t ⊂ s.

From Theorem 2.6, we deduce

Proposition 2.8. 1) For any subset G ⊂ SX(k)

(6) (
∑

s∈G

Is) ∩ Ik−1 =
∑

t⊂s∈G, t∈SX(k−1)

It.

2) Given an admissible subset Q ⊂ SX and a rational subspace s ∈ Q of
maximal dimension k, then

(7) Is ∩ IQ\{s} = Is ∩ Ik−1 =
∑

t⊂s, t∈SX(k−1)

It.

Proof. 1) By (5), the restriction of j̃ to ⊕s∈GIs/JXs
dX\s is injective. It

follows that

(
∑

s∈G

Is) ∩ Ik−1 =
∑

s∈G

JXs
dX\s =

∑

t⊂s∈G, t∈SX(k−1)

It

as desired.
2) We first assume that Q ⊃ SX(k−1) so that Q\s = SX(k−1)∪G with

G ⊂ SX(k). If G is empty, then IQ\{s}
= Ik−1 and our claim is a special case

of 1).
Otherwise IQ\s

= Ik−1 + (
∑

t∈G It)). Let b ∈ Is ∩ IQ\s
. Passing modulo

Ik−1, we get an element lying in Is/(Is ∩ Ik−1) and in (
∑

t∈G It)/(
∑

t∈G It)∩

Ik−1). But the restriction of j̃ to ⊕t∈G∪{s}It/It ∩ Ik−1 is injective. It follows
that b ∈ Ik−1 as desired.

Passing to the general case, set Q̃ = Q ∪ SX(k − 1). We have

Is ∩ IQ\{s} ⊂ Is ∩ IQ̃\{s} = Is ∩ Ik−1 =
∑

t⊂s, t∈SX(k−1)

It.

On the other hand it is clear that

Is ∩ IQ\{s} ⊃
∑

t⊂s, t∈SX(k−1)

It
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and our claim follows. �

3. Equivariant cohomology

3.1. Equivariant cohomology of MX,≥k. Let G be a compact torus.
Given a G space M , we denote for simplicity by H∗

G(M) the G equivari-
ant cohomology H∗

G(M,R) of M with real coefficients.
For a character a ∈ Λ, we denote by La the one dimensional complex G

module on which G acts via a. Given a list X in Λ, we set

MX = ⊕a∈XLa.

Our purpose is to compute the equivariant cohomology of various G stable
open sets in MX .

To begin with, sinceMX is a vector space, H∗
G(MX) equals the equivariant

cohomology of a point and thus H∗
G(MX) = S[g∗], and g

∗ = H2
G(MX).

Let X and MX be as before and Y a sublist of X. We have MY ⊂MX .

Lemma 3.2. H∗
G(MX \MY ) = S[g∗]/(dX\Y ).

Proof. Write MX = MX\Y ⊕MY and denote by π : MX → MY the pro-
jection onto the second factor. This is a G equivariant vector bundle on
MY with fiber MX\Y . Thus its equivariant Euler class in H∗

G(MY ) = S[g∗]
is given by dX\Y . The space MX \MY is obtained by removing the zero
section of π. It is a standard fact that H∗

G(MX \MY ) equals the equivariant
cohomology of MY modulo the ideal generated by the Euler class, that is
S[g∗]/(dX\Y ). �

Take a subset Q ⊂ SX of rational subspaces and set

AQ =MX \ ∪s∈QMX∩s.

Theorem 3.3. H∗
G(AQ) is isomorphic as a graded ring to S[g∗]/IQ.

In particular AQ has no G equivariant odd cohomology.

Proof. Let us add to Q all the rational subspaces t which are contained in
at least one of the elements of Q. In this way, we get a new subset Q ⊃ Q
which is now admissible and is such that AQ = AQ. Also it is clear that
IQ = IQ.

Having made this remark, we may without loss of generality assume that
Q is admissible. If Q = ∅, then A∅ = MX , the ideal I∅ = {0} and there is
nothing to prove. Thus we can proceed by induction on the cardinality of
Q and assume that Q is nonempty.

Notice that Q \ {s} is also admissible. Furthermore the set

S<s = {t ∈ SX | t ( s}

is also admissible and strictly contained in Q.
We have

AQ = AQ\{s} ∩ (MX \MX∩s)
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and
AQ\{s} ∪ (MX \MX∩s) = AS<s

.

Thus, by induction, we have

(8) H∗
G(AQ\{s}) = S[g∗]/IQ\{s}, H∗

G(AQ\{s}∪(MX \MX∩s) = S[g∗]/IS<s
.

Consider the homomorphism

ψ : H∗
G(AQ\{s} ∪ (MX \MX∩s)) → H∗

G(AQ\{s})⊕H∗
G(MX \MY )

induced by inclusion. Using the isomorphisms (8) and Lemma 3.2, we get a
commutative diagram

H∗
G(AQ\{s} ∪ (MX \MX∩s))

ψ
−−−−→ H∗

G(AQ\{s})⊕H∗
G(MX \MY )

≃



y ≃



y

S[g∗]/IS<s
−−−−→ S[g∗]/IQ\{s} ⊕ S[g∗]/(dX\Y )

where the vertical arrows are isomorphisms. Now by Proposition 2.8 2)

Is ∩ IQ\{s} = Is ∩ Ik−1 =
∑

t⊂s, t∈SX(k−1)

It = IS<s
.

Thus ψ is injective. We immediately deduce from the Mayer-Vietoris se-
quence that the homomorphism

φ : H∗
G(AQ\{s})⊕H∗

G(MX \MY ) → H∗
G(AQ)

is surjective and that H∗
G(AQ) ≃ S[g∗]/IQ as desired. �

Remark 3.4. There is a parallel theorem for the algebraic counterpart of
equivariant cohomology, that is the equivariant Chow ring (see Edidin and
Graham [10]).

3.5. Equivariant cohomology of MX,≥k. Let us look at some special
cases of Theorem 3.3.

If Q = SX(k − 1),

ASX(k−1) =MX \ ∪s∈SX(k−1)MX∩s := MX,≥k

is the set of points whose orbits have dimension at least k.

Definition 3.6. For k = s, MX,≥s is the open set of points with finite

stabilizer that we also denote by Mfin
X .

Corollary 3.7. The equivariant cohomology of MX,≥k is isomorphic as a

graded algebra to S[g∗] modulo the ideal Ik−1. In particular H∗
G(M

fin
X ) =

S[g∗]/IX with IX the ideal generated by the elements dY as Y runs over the
cocircuits.

Remark 3.8. Assume that X spans an acute cone in g
∗. Write z ∈ MX as

z =
∑

a za with za ∈ La. Let ξ ∈ g
∗ not lying in any rational hyperplane.

Then the set Pξ := {z ∈ MX |
∑

a |za|
2a = ξ} is smooth, contained in

Mfin
X , and Pξ/G is a toric variety. Generators and relations for the ring
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H∗
G(Pξ) = H∗(Pξ/G) are well known (see for example [4]). Consider the

restriction map H∗
G(M

fin
X ) → H∗

G(Pξ). Then this map is surjective for any
ξ and its kernel is generated by elements dX\σ ∈ S(g∗), where σ ⊂ X runs
over the bases of g∗ such that ξ is not in the cone generated by σ.

Remark 3.9. It may be interesting to observe that to X, as to any matroid,
is associated a two variable polynomial, the Tutte polynomial, that describes
the statistics of external and internal activity. Then the statistic of external

activity gives rise to the Betti numbers of equivariant cohomology of Mfin
X

while from internal activity one deduces the characteristic polynomial that
describes Betti numbers of the complement of the complex hyperplane ar-
rangement deduced fromX. It may be interesting to give a direct topological
interpretation of the Tutte polynomial.

4. Equivariant cohomology of T ∗
GM

4.1. The space D(X). In order to perform our cohomology computations,
we need first to introduce some new spaces. We keep the notation of the
previous sections.

Given a ∈ g
∗, let us denote by ∂a the derivative in the a direction. We

identify S(g∗) to the space of differential operators with constant coefficients
on g

∗.
To a cocircuit Y , we associate the differential operator ∂Y :=

∏

a∈Y ∂a.

Definition 4.2. The space D(X) is given by

(9) D(X) := {f ∈ S[g] | ∂Y f = 0, for every cocircuit Y }.

The space D(X) is stable by the action of S(g∗).
Notice that, by its definition, D(X) is the (graded) vector space dual to

the algebra D∗(X) = S[g∗]/IX , that is the cohomology ring H∗
G(M

fin
X ) by

Corollary 3.7. To be consistent with grading in cohomology, we double the
degrees in S[g] and hence in D(X) and we set for each i ≥ 0, D(X)2i+1 =
{0}.

Using the Lebesgue measure associated to the lattice Λ, we will in what
follows freely identify polynomial functions on g

∗ with polynomial densities
on g

∗.
The polynomials in D(X), dual to the algebra D∗(X) := S[g∗]/IX , can be

naturally interpreted as Laplace–Fourier transforms of the finite dimensional
space D̂(X) of those generalized functions which vanish on the functions
vanishing at VX .

Denote by S ′(g∗) the space of tempered distributions on g
∗. Assume now

that there is an element x ∈ g such that 〈x, a〉 > 0 for every a in X. Recall
that the multivariate spline TX is the tempered distribution defined by:

(10) 〈TX | f〉 =

∫ ∞

0
. . .

∫ ∞

0
f(

m∑

i=1

tiai)dt1 . . . dtm.
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Its Laplace transform is d−1
X := 1/

∏

a∈X a. Notice that, if a ∈ X, ∂aTX =
TX\a. In particular ∂XTX = T∅ = δ0.

Let r be a vector subspace in g
∗. We have an embedding j : S ′(r) → S ′(g∗)

by j(φ)(f) = φ(f |r) for any φ ∈ S ′(r), f a Schwartz function on g
∗. We

denote the image j(S ′(r)) by S ′(g∗, r) (sometimes we even identify S ′(r)
with S ′(g∗, r) if there is no ambiguity). We next define the vector space:

Definition 4.3.

(11) G(X) := {f ∈ S ′(g∗) | ∂X\rf ∈ S ′(g∗, r), for all r ∈ SX}.

Example 4.4. Let G = S1 and identify Λ with Z and g
∗ with R. Let

X = 1k+1 = (1, 1, . . . , 1)
︸ ︷︷ ︸

k+1

.

Then there are two rational subspaces: R and the origin. The only cocir-

cuit is X itself and ∂X = dk+1

dxk+1 . The space D(X) consists of the polynomials

of degree ≤ k and TX = xk/k! if x ≥ 0 and 0 otherwise. It is easy to see
that G(X) = D(X) ⊕RTX .

We are now going to recall a few properties of G(X) (see also [7]). For
this, given a list of non zero vectors Z in g

∗, we consider the dual hyper-
plane arrangement, a⊥ ⊂ g, a ∈ Z. Any connected component F of the
complement of this arrangement is called a regular face for Z. An element
φ ∈ F decomposes Z = A ∪B where φ is positive on A and negative on B.
This decomposition depends only upon F . We define

TFZ = (−1)|B|TA,−B.

Notice that TFZ is supported on the cone C(A,−B) of non negative linear
combinations of the vectors in the list (A,−B).

Take the subset SX(i) of subspaces r ∈ SX of dimension i. Consider ∂X\r

as an operator on G(X) with values in S ′(g∗, r). Define the spaces

(12) G(X)i := ∩t∈SX(i−1) ker(∂X\t).

Notice that by definition G(X)0 = G(X), that G(X)dim g∗ is the space
D(X) and that G(X)i+1 ⊆ G(X)i.

Remark 4.5. Consider a polynomial density g ∈ D(X∩r), a face Fr defining

X \ r = A∪B and T
Fr

X\r. The convolution T
Fr

X\r ∗ g is well defined since, for

any z ∈ g
∗, the set of pairs x ∈ C(A,−B), y ∈ r with x+ y = z is compact.

Lemma 4.6. Let r ∈ SX(i).
i) The image of ∂X\r restricted to G(X)i is contained in D(X ∩ r).
ii) Take rational subspaces t and r. For any g ∈ D(X ∩ r),

(13) ∂X\t(T
Fr

X\r ∗ g) = (∂(X\t)\rT
Fr

X\r) ∗ (∂(X∩r)\(t∩r)g).

iii) If g is in D(X ∩ r), then T
Fr

X\r ∗ g ∈ G(X)i.
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Proof. i) First we know, by the definition of G(X), that ∂X\rG(X)i is con-
tained in the space S ′(g∗, r). Let t be a rational hyperplane of r, so that t
is of dimension i− 1. By definition, we have that for every f ∈ G(X)i

0 =
∏

a∈X\t

∂af =
∏

a∈(X∩r)\t

∂a∂X\rf.

This means that ∂X\rf satisfies the differential equations given by the co-
circuits of X ∩ r, that is, it lies in D(X ∩ r).

ii)We have that ∂X\t = ∂(X\t)∩r∂(X\t)\r but ∂(X\t)∩r = ∂(X∩r)\(t∩r). Thus

∂X\t(T
Fr

X\r ∗ g) = (∂(X\t)\rT
Fr

X\r) ∗ (∂(X∩r)\(t∩r)g)

as desired.
iii) If t does not contain r, we get that (∂(X∩r)\(t∩r)g) = 0 and hence, by

(13),

∂X\t(T
Fr

X\r ∗ g) = 0.

�

Consider the map µi : G(X)i → ⊕r∈SX(i)D(X ∩ r) given by

µif := ⊕r∈SX(i)∂X\rf

and the map Pi : ⊕r∈SX(i)D(X ∩ r) → G(X)i given by

Pi(⊕gr) :=
∑

T
Fr

X\r ∗ gr.

Theorem 4.7. The sequence

0 −→ G(X)i+1 −→ G(X)i
µi
−→ ⊕r∈SX(i)D(X ∩ r) −→ 0

is exact. Furthermore, the map Pi provides a splitting of this exact sequence,
i.e. µiPi = Id.

Proof. By definition, G(X)i+1 is the kernel of µi, thus we only need to show
that µiPi = Id. Given r ∈ SX(i) and g ∈ D(X ∩ r), by Formula (13) we

have ∂X\r(T
Fr

X\r ∗g) = g. If instead we take another subspace t 6= r of SX(i),

r ∩ t is a proper subspace of t. As we have seen above, g ∈ D(X ∩ r),

∂X\t(T
Fr

X\r ∗ g) = 0. Thus, given a family gr ∈ D(X ∩ r), the function

f =
∑

t∈SX(i) T
Ft

X\t ∗gt is such that ∂X\rf = gr for all r ∈ SX(i). This proves

our claim that µiPi = Id. �

Putting together these facts, we immediately get

Theorem 4.8. Choose, for every rational space r, a regular face Fr for
X \ r. Then:

(14) G(X) = ⊕r∈SX
T
Fr

X\r ∗D(X ∩ r).

Corollary 4.9. The dimension of G(X) equals the number of sublists of X
which are linearly independent.
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Proof. . This follows immediately from (14) and the fact (see for example
[5] Theorem 11.8) that D(X) has dimension equal to the number of bases
which can be extracted from X. �

We define

(15) G̃(X) = S[g∗]G(X), G̃i(X) = S[g∗]Gi(X)

where the elements in S[g∗] act on distributions as differential operators
with constant coefficients.

Remark 4.10. If we set

Dg(X ∩ r) = S[g∗]D(X ∩ r) ∼= S[g∗]⊗S[(g/gr)∗] D(X ∩ r),

Theorem 4.7, together with the fact that the maps µi and Pi extend to S[g∗]-
module maps (which we denote by the same letter), immediately implies that
we have an exact sequence of S[g∗]-modules

0 → G̃i+1(X) → G̃i(X)
µi
→ ⊕r∈SX(i)D

g(X ∩ r) → 0.

Furthermore one can give generators for G̃(X) as a S[g∗]-module as fol-
lows:

Theorem 4.11.

G̃(X) =
∑

F

S[g∗]TFX

as F runs over all regular faces for X.

Proof. Denote by M the S[g∗] module generated by the elements TFX , as F

runs on all open faces. In general, from the description of G̃(X) given in

Formula (14), it is enough to prove that elements of the type T
Fr

X\r ∗ g with

g ∈ D(X ∩ r) are in M . As D(X ∩ r) ⊂ G(X ∩ r), it is sufficient to prove

by induction that each element T
Fr

X\r ∗ T
K
X∩r is in M , where K is any open

face for the system X ∩ r. We choose a linear function u0 in the face Fr.
Thus u0 vanishes on r and is non zero on every element a ∈ X not in r. We
choose a linear function u1 such that the restriction of u1 to r lies in the
face K. In particular, u1 is non zero on every element a ∈ X ∩ r. We can
choose ǫ sufficiently small such that u0 + ǫu1 is non zero on every element

a ∈ X. Then u0 + ǫu1 defines an open face F . We see that T
Fr

X\r ∗ T
K
X∩r is

equal to TFX . �

This construction has a discrete counterpart, thoroughly studied in [7]
and related to the study of the index of transversally elliptic operators and
of computations in equivariant K-theory in which differential operators are
replaced by difference operators.
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4.12. Equivariant cohomology with compact support and the in-

finitesimal index. Let us now recall that in [8] we have introduced a de
Rham model for the equivariant cohomology H∗

G,c(Z) with compact support
of a G-stable closed subset Z ⊂ N of a G-manifold N .

Furthermore assume that we have a G-equivariant one form σ on N called
an action form. We define the corresponding moment map µ : N → g

∗ by
setting for any u ∈ g, n ∈ N , µ(n)(u) := 〈σ, vu〉(n), vu being the vector field
on N corresponding to u.

If we take as Z the zeroes N0 = µ−1(0) of the moment map, we have then
defined a map of S[g∗]-modules

infdex : H∗
G,c(Z) → S ′(g∗)

called infinitesimal index. We refer to [8] for the proof of most of the prop-
erties of H∗

G,c(Z) and of the infinitesimal index which we are going to use in
what follows.

We are going to study the case in which we start with a G-variety M . We
set N = T ∗M and we take the canonical one form σ. In this case it follows
immediately from the definitions that (T ∗M)0 equals the space T ∗

GM whose
fiber over a point x ∈ M is formed by all the cotangent vectors ξ ∈ T ∗

xM
which vanish on the tangent space to the orbit of x under G, in the point
x. Thus each fiber (T ∗

GM)x is a linear subspace of T ∗
xM . In general the

dimension of (T ∗
GM)x is not constant and this space is not a vector bundle.

4.13. The equivariant cohomology of T ∗
GM

fin
X . Our task is now to use

the infinitesimal index to compute the equivariant cohomology with com-
pact support of T ∗

GMX and more generally of T ∗
GMX,≥k. Notice that if we

consider ordinary equivariant cohomology, it is immediate by G-homotopy
equivalence to deduce

Proposition 4.14. The equivariant cohomology of the space T ∗
GMX,≥k equals

that of MX,≥k for all k.

We have already remarked that, in the case k = s, we have MX,≥k =

Mfin
X and that H∗

G(M
fin
X ) = D∗(X). Now, since G acts on Mfin

X with
finite stabilizers, and we use cohomology with real coefficients, we get that

H∗
G(M

fin
X ) = H∗(Mfin

X /G) and by Poincaré duality
(16)

Hh
G,c(M

fin
X ) = Hh

c (M
fin
X /G) = (H2|X|−s−h(Mfin

X /G))∗ = D2|X|−s−h(X).

Now, in order to compute the equivariant cohomology with compact sup-

port of T ∗
GM

fin
X , we need some well known general considerations.

Let N be a G-manifold, M be a G-equivariant vector bundle on N of
rank r with projection p : M → N . Then (see [11]), there is a Thom class
τM ∈ H∗

G,c(M) such that

Proposition 4.15. The map

C : H∗
G,c(N) → H∗+r

G,c (M)
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defined by C(α) = p∗(α) ∧ τM is an isomorphism

Corollary 4.16. Assume M = MB for some list B of non zero vectors in
Λ. Let M = N ×MB. If σ ∈ H∗

G,c(N ×MB) and i : N → N ×MB is the
0-section, we have:

Ci∗(σ) = dBσ.

Proof. Write σ = C(σ0) with σ0 ∈ H
∗
G,c(N). Since the Euler class of MB in

H∗
G(pt) = S[g∗] equals dB and M = N ×MB , we get that

i∗(σ) = i∗C(σ0) = dBσ0.

Since C is a map of S[g∗]-module, we deduce

Ci∗(σ) = dBC(σ0) = dBσ

as desired. �

Let us now go back to our computations. The projection p : T ∗
GM

fin
X →

Mfin
X is a real vector bundle of rank 2|X| − s so that, applying Proposition

4.15, we get H∗
G,c(T

∗
GM

fin
X ) = H

∗+2|X|−s
G,c (Mfin

X ). Thus putting together this

with (16), we get

Proposition 4.17. As a graded S[g∗]-module,

H∗
G,c(T

∗
GM

fin
X ) ≃ D4|X|−2s−∗(X).

In particular T ∗
GM

fin
X has no equivariant odd cohomology with compact sup-

port.

It is now interesting to apply to it the theory of the infinitesimal index.
To do this, we need to recall a few facts.

As we have already remarked, the action of G on T ∗
GM

fin
X is essentially

free, so, denoting by Q the quotient T ∗
GM

fin
X /G, we can take an equivariant

g-valued curvature form R for the map T ∗
GM

fin
X → Q. We have the Chern-

Weil map c : S[g∗] → H∗
G(T

∗
GM

fin
X ) defined by p 7→ [p(R)] (see [8] p.8).

Now we have by Proposition 4.20 of [8] that, for any [γ] ∈ H∗
c (Q) ≃

H∗
G,c(T

∗
GM

fin
X ), the infinitesimal index is given by the polynomial density

on g
∗

(17) (

∫

Q
γei〈R,ξ〉)dξ.

We have

Theorem 4.18. The map infdex is a graded isomorphism of H∗
G,c(T

∗
GM

fin
X )

onto D(X).
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Proof. Given p ∈ S[g∗], if we consider p as a differential operator with
constant coefficients on g, we shall write it as p(∂). Now notice that the
Poincaré duality pairing ([γ], c(p)) is given by

∫

Q
γp(R) =

(∫

Q
γp(R)ei〈R,ξ〉

)

|ξ=0
= (p(∂)infdex(γ))|ξ=0.

Since in our case the Chern-Weil map is surjective with kernel IX , everything
follows. �

4.19. The equivariant cohomology of T ∗
GMX,≥i. For a rational subspace

s, the action of G on F (s) factors through G/Gs and, with respect to this

action, F (s) =Mfin
X∩s. Thus

H∗
G,c(F (s)) = S(g∗)⊗S((g/gs)∗) H

∗
G/Gs,c

(F (s))

where g
∗ is in degree 2. In particular, by Proposition 4.17, we deduce that

H2i+1
G,c (T ∗

GF (s)) = 0.

Now set T̃ ∗
GF (s) := T ∗

GMX |F (s), the restriction of T ∗
GMX to F (s). We

see that T̃ ∗
GF (s) = T ∗

GF (s)×M∗
X\s, so we have a Thom isomorphism

Cs : H
2i
G,c(T

∗
GF (s)) → H

2(i+|X\s|)
G,c (T̃ ∗

GF (s)), H2i+1
G,c (T̃ ∗

GF (s)) = 0.

Choose 0 ≤ i ≤ s. We pass now to study the G-invariant open subspace
MX,≥i of M . The set MX,≥i+1 is open in MX,≥i with complement the space

Fi, disjoint union of the spaces F (s) with s ∈ SX(i). Denote by T̃ ∗
GFi

the restriction of T ∗
GM to Fi, disjoint union of the spaces T̃ ∗

GF (s). Denote

j : MX,≥i+1 → MX,≥i the open inclusion and e : T̃ ∗
GFi → T ∗

GMX,≥i the
closed embedding. Let Ci be the Thom isomorphism from H2i

G,c(T
∗
GFi) to

H
2(i+|X\s|)
G,c (T̃ ∗

GFi), the direct sum of the Thom isomorphisms Cs.

Theorem 4.20. For each 0 ≤ i ≤ s− 1,

i) H2i+1
G,c (T ∗

GMX,≥i) = 0.

ii) The following sequence is exact
(18)

0 → H2j
G,c(T

∗
GMX,≥i+1)

j∗
→ H2j

G,c(T
∗
GMX,≥i)

C−1

i
e∗

→ ⊕s∈SX(i)H
2j−2|X\s|
G,c (T ∗

GFs) → 0.

Proof. Since MX,≥s = Mfin
X , we can assume by induction on s − i, that

i) holds for each j > i. Also since Fi is the disjoint union of the spaces
F (s) which have no odd equivariant cohomology with compact support, we
get that H2i+1

G,c (T ∗
GFi) = 0 for each 0 ≤ i ≤ s − 1. Using this fact, both

statements follow immediately from the long exact sequence of equivariant
cohomology with compact support. �

Let us now make a simple but important remark.

Lemma 4.21. Let s ∈ SX(j) with j < k. The element dX\s ∈ S[g∗] lies in
the annihilator of H∗

G,c(T
∗
GMX,≥k).
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Proof. H∗
G,c(T

∗
GMX,≥k) is a module over H∗

G(T
∗
GMX,≥k) and hence also over

H∗
G(MX,≥k). Thus this lemma follows from Lemma 3.2. �

Let us now splitX = A∪B andMX =MA⊕MB. Let p : T
∗
GMX →MX be

the projection and consider T̃ ∗
GMA := p−1MA. We have T̃ ∗

GMA = T ∗
GMA ×

M∗
B. In particular, we get a Thom isomorphism

CM∗
B
: H∗

G,c(T
∗
GMA) → H

∗+2|B|
G,c (T̃ ∗

GMA) ∼= H
∗+2|B|
G,c (T ∗

GMA ×M∗
B).

Denote by i : MA → MX the closed inclusion, and, by abuse of nota-
tion, also the inclusion T̃ ∗

GMA → T ∗
GMX . Then i induces the morphisms

i∗ : H∗
G,c(T

∗
GMX) → H∗

G,c(T̃
∗
GMA) and i! : H

∗
G,c(T

∗
GMA) → H∗

G,c(T
∗
GMX).

Combining these 3 maps, we claim that

Proposition 4.22. Take σ ∈ H∗
G,c(T

∗
GMX), then i!C

−1
M ′

B

i∗(σ) = (−1)|B|dBσ.

Proof. We use Corollary 4.16, and remark that, since M∗
B is dual to MB, we

have M∗
B = ⊕a∈BL−a �

Corollary 4.23. Take σ ∈ H∗
G,c(T

∗
GMX). Let σ0 = C−1

M∗
B

i∗(σ) ∈ H∗
G,c(T

∗
GMA).

Then, we have the equality of distributions:

(−1)|B|∂B(infdex(σ)) = infdex(σ0).

Proof. We use the fact that the infinitesimal index commutes with i! and is
a map of S[g∗] modules. �

We have defined in Definition 4.3 the space of distributions G(X) as those

distributions f on g
∗ such that ∂X\rf ∈ S ′(g∗, r) for all t ∈ SX and G̃(X) as

the S[g∗] module generated by G(X). Then G̃i(X) is the subspace in G̃(X)
such that ∂X\tf = 0 for all t ∈ SX(i− 1).

Lemma 4.24. For each i ≥ 0, infdex maps H∗
G,c(T

∗
GMX,≥i) to the space

G̃i(X).

Proof. Denote by ℓ : G̃i(X) → G̃(X) the inclusion. By Lemma 4.21, if σ ∈
H∗
G,c(T

∗
GMX,≥i) and t is a rational subspace of dimension strictly less than i,

we have dX\tσ = 0. Thus ∂X\tinfdex(σ) = 0. It follows that the only thing

we have to show is that, if σ ∈ H∗
G,c(T

∗
GMX), then infdex(σ) lies in G̃(X).

Take a rational subspace s. By Corollary 4.23, the infinitesimal index of
dX\sσ equals the infinitesimal index of an element σ0 ∈ H∗

G,c(T
∗
GMX∩s). But

the action ofG onMX∩s factors though the quotient G/Gs whose Lie algebra
is g/gs. Thus H

∗
G,c(T

∗
GMX∩s) ∼= S[g∗]⊗S[(g/gs)∗]H

∗
G/Gs,c

(T ∗
G/Gs

MX∩s), hence

∂X\sinfdex(σ) ∈ S[g∗]infdex(H∗
G/Gs,c

(T ∗
G/Gs

MX∩s)).

But infdex(H∗
G/Gs,c

(T ∗
G/Gs

MX∩s)) ⊂ S ′(g∗, r) hence the claim. �

The following theorem characterizes the values of the infinitesimal index
on the entire MX . We need to fix signs and set for each s, ǫs = (−1)|X\s|

and
µ̃i = ⊕s∈SX(i)ǫsµs.
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This time, we use the notations and the exact sequences contained in The-
orem 4.20 and Corollary 4.23

Theorem 4.25. For each 0 ≤ i ≤ s,

• the diagram

0 → H∗
G,c(T

∗
GMX,≥i+1)

j∗
−−−−→ H∗

G,c(T
∗
GMX,≥i)

C−1

i
e∗

−−−−→ H∗
G,c(T

∗
GFi) → 0

infdex



y infdex



y infdex



y

0 → G̃i+1(X)
ℓ

−−−−→ G̃i(X)
µ̃i

−−−−→ ⊕s∈SX(i)D
g(X ∩ s) → 0

commutes.
• Its vertical arrows are isomorphisms.
• In particular, the infinitesimal index gives an isomorphism between
H∗
G,c(T

∗
GMX) and G̃(X).

Proof. Lemma 4.24 tells us that the diagram is well defined. We need to
prove commutativity.

Again, we prove that the square on the right hand side is commutative
using Corollary 4.23. The square on the left hand side is commutative since
j∗ is compatible with the infinitesimal index and ℓ is the inclusion.

Recall that H∗
G,c(T

∗
GMX∩s) ∼= S[g∗] ⊗S[(g/gs)∗] H

∗
G/Gs,c

(T ∗
G/Gs

MX∩s) and

that
Dg(X ∩ s) = S[g∗]D(X ∩ s) ∼= S[g∗]⊗S[(g/gs)∗] D(X ∩ s).

Using Theorem 4.18, this implies that the right vertical arrow is always an
isomorphism.

We want to apply descending induction on i. When i + 1 = s, since

MX,≥s = Mfin
X and G̃s−1(X) = D(X), Theorem 4.18 gives that the left

vertical arrow is an isomorphism. So assume that the left vertical arrow
is an isomorphism. We then deduce from the five Lemma that the central
vertical arrow is an isomorphism and conclude. �
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