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INFINITESIMAL INDEX: COHOMOLOGY
COMPUTATIONS

C. DE CONCINI, C. PROCESI, M. VERGNE

1. INTRODUCTION

Let G be a compact Lie group with Lie algebra g, M a manifold with
G-action and equipped with a G—equivariant 1-form o.

From this setting, one has a moment map u° : M — g*. A particularly
important case is that of M = T*N, the cotangent bundle of a manifold
with a G action, equipped with the canonical action form. In this case, the
zeroes of the moment map is a subspace 15N whose equivariant K-theory
is strongly related to the index of transversally elliptic operators as shown
in [1].

In order to understand explicit formulas for such an index, in [§] we
have introduced the infinitesimal index infdex, a map from the equivariant
cohomology with compact support of the zeroes of the moment map to
distributions on g*.

We have proved several properties for this map which, at least in the case
of the space TNV, in principle allow us to reduce the computations to the
case in which G is a torus and the manifold is a complex linear representation
of G. A finite dimensional complex representation of a torus is the direct
sum of one dimensional representations given by characters. If X is a list of
characters, we denote by Mx the corresponding linear representation which
is naturally filtered by open sets Mx >; where the dimension of the orbit is
> 1.

In this paper, we first compute the equivariant cohomology of the open
sets My >;, and also of some slightly more general open sets in Mx. This
part of our paper, namely Sections 2 and 3, does not use the notion of infin-
itesimal index. The results are obtained from the structure of the algebra
Slg*)[(ITaex @) '] as a module over the Weyl algebra studied in [5].

In Section 4 we apply the results we have obtained to the equivariant
cohomology of the open set M )f(m of points with finite stabilizer. Using
Poincaré duality, we remark that the equivariant cohomology with compact
support H&C(TC*;M)]?") of TC*;M)’?” is isomorphic as a S[g*]-module to a
remarkable finite dimensional space D(X) of polynomial functions on g*,
where S(g*) acts by differentiation. The space D(X) is defined as the space
of solutions of a set of linear partial differential equations combinatorially
associated to X and has been of importance in approximation theory (see
for example [2], [3]).
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At this point the notion of infinitesimal index comes into play. We show
in Theorem [£.18] that the infinitesimal index gives an isomorphism between
HE, (TEM 1) and D(X). After this, we show that, for each i, the infinites-
imal index establishes an isomorphism between H¢, (TEMx >;) and a space
of splines G;(X), introduced in [6], (cf. (5)) and generalizing D(X).

It should be mentioned that, in the previous paper [7], similar results have
been proved, using the index of transversally elliptic differential operators,
in order to compute the equivariant K-theory of the spaces T Mx >;).

This paper represents a sort of “infinitesimal” version of [7] and will be
used, in a forthcoming paper [9], to give explicit formulas for the index of
transversally elliptic operators.

Finally it is a pleasure to thank Michel Brion for a number of useful
conversations and remarks.

2. A SPECIAL MODULE

2.1. A module filtration. Let G be a compact torus with Lie algebra g
and character group A. We are going to consider A as a lattice in g*.

We need to recall some general results proved in [5]. Let us fix a list
X = (ay,...,an) of non zero characters in A C g*. For a list Y of vectors,
let us set dy := [],cy @ € S[g*].

Definition 2.2. A subspace s of g* is called rational (relative to X) if
s=(XnNs).

We shall denote by Sx the set of rational subspaces and, for a given
0 <k <s, by Sx(k) the set of the rational subspaces of dimension k.

We need to recall that a cocircuit in X is a sublist of X of the form
Y := X \ H where H is a rational hyperplane.

Let S[g*] be the symmetric algebra on g* or in other words the algebra
of polynomial functions on g. The polynomials dy := [[,cy @ € S[g*], as ¥
runs over the cocircuits, give a system of polynomial equations dy = 0.

Definition 2.3. We denote by Ix the ideal in S[g*| generated by the ele-
ments dy’s, as Y runs over the cocircuits.

One knows that Ix defines a scheme Vx supported at 0 and of length
d(X) = dim(S[g*]/Ix) (see [5], Theorem 11.13). d(X) equals the number of
bases extracted from X.

Consider the localized algebra Ry := S[g*][d'], which is the coordinate
ring of the complement of the hyperplane arrangement defined by the equa-
tionsa =0, a € X, in g.

This algebra is a cyclic module over the Weyl algebra Wg] of differential
operators with polynomial coefficients, generated by d;(l.

In [5], we have seen that this W/[g]-module has a canonical filtration,
the filtration by polar order, where we put in degree of filtration < k all
fractions in which the denominator is a product of elements in X spanning
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a rational subspace of dimension < k (we say that k is the polar order on the
boundary divisors). We denote this subspace by Rx ;. One of the important
facts (Theorem 8.10 in [5]) is that

Theorem 2.4. The module Rx 1/Rx -1 is semisimple, its isotypic compo-
nents are in 1-1 correspondence with the rational subspaces of dimension k
and such a isotypic component is generated by the class of 1/dxns.

Consider the rank 1 free S[g*] submodule L := dy;'S[g*] in Rx generated
by d;. Set Ly, := LNRx , that is the intersection of L with the k—filtration.
We obtain for each k an ideal Ij of S[g*] defined by

I, = Lidx.

For a given rational subspace s of dimension k, denote by I := S[g*|d X\s
the principal ideal generated by dx\,. Notice that

I,L = dy,Slg*] C L.
Thus I; C I, and indeed from Theorem 11.29 of [5] one gets
I = Z I,.
s€Sx (k)
If Q C Sx is a set of rational subspaces, we set
Io = Z Is
sS€Q

for the ideal generated by the elements dx\, for s € Q.

Associated to s, we also consider the list X Ns consisting of those elements
of X lying in s and we may consider the ideal Ixns; C S[s], as defined in 23]
and its extension Jxns := IxnsS[g*]. The obvious map

S[g*] ®S[§] IXO§ — JX["|§

is an isomorphism so that
(1) S[a*1/Ixns = S[87] @15 (S[s]/Ixns)-

Lemma 2.5. If s is of dimension k, we have that d}%ES[g*] C Ly and
(2) dxteS1°] N Li—1 D dyt Jxns-

Proof. We have already remarked the first statement. As for the second,
by definition Jxns is the ideal generated by the elements dz where Z is a
cocircuit in X N s. This means in particular that Z is contained in X N s
and that Y := (X Ns) \ Z spans a subspace of dimension k — 1. Hence
dx,dzSle*] = dy' Slg*] C L1 O

Multiplying Formula (2] by dx, we deduce that

(3) Iﬁﬂ Ik_l D) JXﬂ§dX\§ = Z Iﬁ‘
tCs, teSx (k—1)
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In this way, multiplication by d;SO . gives an homomorphism of S[g*]-
modules j, : S[g*]/Jxns = Li/Lg—1 and hence, taking direct sums, a ho-
momorphism j := @,esy (k)Js
(4) J: ®sesxk)S1871/Ixns — Li/Li-1.

We have (Theorem 11.3.15 of [5]):

Theorem 2.6. The homomorphism j is an isomorphism.

Using (3), Theorem tells us that the morphism
(5) J: Bsesxtyls/Ix.dx\s — Te/In-1
is an isomorphism.

Definition 2.7. A set ) C Sx of rational subspaces is called admissible if,
for every s € @, @ also contains all rational subspaces t C s.

From Theorem [2.6] we deduce
Proposition 2.8. 1) For any subset G C Sx (k)

(6) O LNl = > L.

s€g tCs€eg, teSx(k—1)

2) Given an admissible subset Q) C Sx and a rational subspace s € Q of
maximal dimension k, then

(7) I§ﬂIQ\{§} :Iﬁﬂlk_l = Z 1.

tCs, t€Sx (k—1)

Proof. 1) By (B)), the restriction of j to ®segls/JIx,dx\s is injective. It

follows that
O L)Nhr =D Jx,dxy, = > I

s€g seg tCs€eq, teSx (k—1)
as desired.

2) We first assume that @ D Sx(k—1) so that @\ s = Sx(k—1)UG with
G C Sx(k). If G is empty, then I, = Ik—1 and our claim is a special case
of 1).

Otherwise Io,, = I—1 + (X4eg It))- Let b € I; N Ig,,. Passing modulo
Ij—1, we get an element lying in Iy/(Is N Ix—1) and in (3 _,cg 1)/ (D o4eg 1) N
I;_1). But the restriction of j to @®recuisile/ 1N 111 is injective. It follows
that b € Ij,_; as desired. B

Passing to the general case, set Q@ = Q USx(k — 1). We have

LNIgyy CLNIg g =INhkai= > I

tCs, teSx (k—1)
On the other hand it is clear that

IsNIg\sy O > I
tCs, teSx (k—1)
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and our claim follows. O

3. EQUIVARIANT COHOMOLOGY

3.1. Equivariant cohomology of Mx >;. Let G be a compact torus.
Given a G space M, we denote for simplicity by Hf(M) the G equivari-
ant cohomology H¢ (M, R) of M with real coefficients.

For a character a € A, we denote by L, the one dimensional complex G
module on which G acts via a. Given a list X in A, we set

Myx = @eexLa-

Our purpose is to compute the equivariant cohomology of various G stable
open sets in Mx.

To begin with, since M is a vector space, H(Mx ) equals the equivariant
cohomology of a point and thus H(Mx) = S[g*], and g* = H(Mx).

Let X and Mx be as before and Y a sublist of X. We have My C Mx.

Lemma 3.2. Hf(Mx \ My) = S[g*]/(dx\y)-

Proof. Write Mx = Mx\y © My and denote by m : Mx — My the pro-
jection onto the second factor. This is a G equivariant vector bundle on
My with fiber Mx\y. Thus its equivariant Euler class in H,(My) = S[g*]
is given by dx\y. The space Mx \ My is obtained by removing the zero
section of 7. It is a standard fact that H:(Mx \ My) equals the equivariant
cohomology of My modulo the ideal generated by the Euler class, that is

Slg*]/(dx\y)- O
Take a subset Q C Sx of rational subspaces and set
.AQ = Mx \ U§€QMX|"‘|§.

Theorem 3.3. H(Aq) is isomorphic as a graded ring to S[g*|/1q.
In particular Ag has no G equivariant odd cohomology.

Proof. Let us add to Q all the rational subspaces t which are contained in
at least one of the elements of Q). In this way, we get a new subset Q O Q
which is now admissible and is such that Ag = Ag. Also it is clear that
Ig = I

Having made this remark, we may without loss of generality assume that
Q is admissible. If Q = (), then Ay = My, the ideal Iy = {0} and there is
nothing to prove. Thus we can proceed by induction on the cardinality of
Q@ and assume that () is nonempty.

Notice that @ \ {s} is also admissible. Furthermore the set

Scs={teSx |tCs}

is also admissible and strictly contained in Q.
We have

Ag = Ag\(sp N (Mx \ Mxns)
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and
Ag\(sp U (Mx \ Mxns) = As....
Thus, by induction, we have
(8) Ho(Ag\(sy) = Sla'l/1o\(sp:  Ho(Ag\(sp U (Mx \Mxns) = S[g*]/Is..-
Consider the homomorphism
¥ Ho(Ag\sy U (Mx \ Mxns)) = Hg(Ag\(sy) © Ho(Mx \ My)
induced by inclusion. Using the isomorphisms () and Lemma 3.2, we get a

commutative diagram

H(Ag s U (Mx \ Mxry)) —— HE(Agysy) © He(Mx \ My)

| |

Slg*]/Is., — Slg"/Ig\(sy © Slg*]/(dx\v)
where the vertical arrows are isomorphisms. Now by Proposition 2.8] 2)
INIgsy =IsN Iy = > L=Is,

tCs, teSx (k—1)
Thus 9 is injective. We immediately deduce from the Mayer-Vietoris se-
quence that the homomorphism
¢ He(Ag\qs)) © HG(Mx \ My) — Hi(AgQ)
is surjective and that H}(Ag) ~ S[g*]/1g as desired. O

Remark 3.4. There is a parallel theorem for the algebraic counterpart of
equivariant cohomology, that is the equivariant Chow ring (see Edidin and
Graham [10]).

3.5. Equivariant cohomology of My >;. Let us look at some special
cases of Theorem [3.31
IfQ=38x(k—-1),
Asxk-1) = Mx \ Usesx (k—1)Mxns = Mx >k

is the set of points whose orbits have dimension at least k.

Definition 3.6. For £k = s, Mx >, is the open set of points with finite
stabilizer that we also denote by M )fg".

Corollary 3.7. The equivariant cohomology of Mx > is isomorphic as a

graded algebra to S[g*] modulo the ideal Iy_1. In particular HE(M)f(m) =
Slg*]/Ix with Ix the ideal generated by the elements dy as'Y runs over the
cocircuits.

Remark 3.8. Assume that X spans an acute cone in g*. Write z € Mx as
z =), % with z, € L,. Let £ € g* not lying in any rational hyperplane.
Then the set Pr := {z € Mx|Y_,|2]?a = &} is smooth, contained in

M )f;", and P¢/G is a toric variety. Generators and relations for the ring
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H{(Py) = H*(P:/G) are well known (see for example [4]). Consider the
restriction map Hp (M g”{m) — H}(P¢). Then this map is surjective for any
¢ and its kernel is generated by elements dx\, € S (g%), where 0 C X runs
over the bases of g* such that £ is not in the cone generated by o.

Remark 3.9. It may be interesting to observe that to X, as to any matroid,
is associated a two variable polynomial, the Tutte polynomial, that describes
the statistics of external and internal activity. Then the statistic of external
activity gives rise to the Betti numbers of equivariant cohomology of M ;(Z"
while from internal activity one deduces the characteristic polynomial that
describes Betti numbers of the complement of the complex hyperplane ar-
rangement deduced from X. It may be interesting to give a direct topological
interpretation of the Tutte polynomial.

4. EQUIVARIANT COHOMOLOGY OF T M

4.1. The space D(X). In order to perform our cohomology computations,
we need first to introduce some new spaces. We keep the notation of the
previous sections.

Given a € g*, let us denote by 9, the derivative in the a direction. We
identify S(g*) to the space of differential operators with constant coefficients
on g*.

To a cocircuit Y, we associate the differential operator dy =[] acy Oa-

Definition 4.2. The space D(X) is given by
9) D(X):={f € Slg]| 0y f =0, for every cocircuit Y}.

The space D(X) is stable by the action of S(g*).

Notice that, by its definition, D(X) is the (graded) vector space dual to
the algebra D*(X) = S[g*]/Ix, that is the cohomology ring H&(M;(m) by
Corollary 3.7 To be consistent with grading in cohomology, we double the
degrees in S[g] and hence in D(X) and we set for each i > 0, D(X)?*! =
{0}.

Using the Lebesgue measure associated to the lattice A, we will in what
follows freely identify polynomial functions on g* with polynomial densities
on g*.

The polynomials in D(X), dual to the algebra D*(X) := S[g*]/Ix, can be
naturally interpreted as Laplace—Fourier transforms of the finite dimensional
space ﬁ(X ) of those generalized functions which vanish on the functions
vanishing at V.

Denote by S'(g*) the space of tempered distributions on g*. Assume now
that there is an element z € g such that (x,a) > 0 for every a in X. Recall
that the multivariate spline T'x is the tempered distribution defined by:

(10) (T | f) = /OOO.../OOO £ tua)dty . dt,
=1
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Its Laplace transform is d}l := 1/]],ex a. Notice that, if a € X, 9,Tx =
T'x\q- In particular OxTx = Ty = do.

Let r be a vector subspace in g*. We have an embedding j : §'(r) — S'(g*)
by j(¢)(f) = ¢(f|r) for any ¢ € S'(r), f a Schwartz function on g*. We
denote the image j(S'(r)) by S'(g*,r) (sometimes we even identify S'(r)
with &'(g*, r) if there is no ambiguity). We next define the vector space:

Definition 4.3.
(11) G(X):={feSg an\zf € S'(g*,r), for allr € Sx}.

Example 4.4. Let G = S! and identify A with Z and g* with R. Let

X =11 =(1,1,...,1).
N————
k+1

Then there are two rational subspaces: R and the origin. The only cocir-
dk+1

cuit is X itself and dx = 7. The space D(X) consists of the polynomials

of degree < k and Tx = x¥/k! if z > 0 and 0 otherwise. It is easy to see
that G(X) = D(X) ® RTx.

We are now going to recall a few properties of G(X) (see also [7]). For
this, given a list of non zero vectors Z in g*, we consider the dual hyper-
plane arrangement, a= C g, a € Z. Any connected component F of the
complement of this arrangement is called a regular face for Z. An element
¢ € F decomposes Z = AU B where ¢ is positive on A and negative on B.
This decomposition depends only upon F. We define

T = (-1)Bl1y _p.

Notice that Tg is supported on the cone C'(A, —B) of non negative linear
combinations of the vectors in the list (A, —B).

Take the subset Sx (i) of subspaces r € Sx of dimension i. Consider Ix\r
as an operator on G(X) with values in §’'(g*,r). Define the spaces

(12) G(X)i == Niesy(i-1) ker(Ix\p)-
Notice that by definition G(X)o = G(X), that G(X)dimg+ is the space
D(X) and that Q(X)H_l Q Q(X)Z

Remark 4.5. Consider a polynomial density g € D(X Nr), a face F defining
X\r=AUBand T ;ﬂ\r The convolution T;E\T * g is well defined since, for
any z € g*, the set of pairs € C(A,—B),y € r with x + y = z is compact.

Lemma 4.6. Let r € Sx (7).
i) The image of Ox\, restricted to G(X); is contained in D(X Nr).
ii) Take rational subspaces t and r. For any g € D(X Nr),

Fy Fy
(13) Ix\i(Tx\, * 9) = (Ox\neTxy,) * Oxrnnn 9)-
iii) If g is in D(X N1), then Tf}v g € G(X);.
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Proof. i) First we know, by the definition of G(X), that 9x\,G(X); is con-
tained in the space S8’'(g*,r). Let ¢ be a rational hyperplane of r, so that ¢
is of dimension ¢ — 1. By definition, we have that for every f € G(X);

0= J] duaf= J] @udxvf
aeX\t ae(XNn)\t

This means that Oy, f satisfies the differential equations given by the co-
circuits of X Nr, that is, it lies in D(X Nr).
1) We have that 9x\; = dx\onrdx\one Put doxvgne = O(xrn\eny)- Thus

F, Fr
Ixi(Tyy, * 9) = (Oxone Txh,) * (Oxnonenn9)

as desired.
iii) If ¢ does not contain r, we get that (J(xn,)\nr)9) = 0 and hence, by

(@3, .

Consider the map f; : G(X); = @pes,)D(X N1) given by
pif = Sresx i) Ox\r f
and the map P; : ©,es5, (i) D(X N1) — G(X); given by
Fy
Pi(®gr) == Tk, * 9
Theorem 4.7. The sequence
0 — G(X)ix1 — G(X)i =5 @pes, (DX N1r) — 0

is exact. Furthermore, the map P; provides a splitting of this exact sequence,
r.e. ;P =1d.
Proof. By definition, G(X);+1 is the kernel of u;, thus we only need to show
that p;P; = Id. Given r € Sx(i) and g € D(X Nr), by Formula ([I3]) we
have aX\z(T)I}\Z xg) = g. If instead we take another subspace t # r of Sx (i),
r Nt is a proper subspace of t. As we have seen above, g € D(X Nr),
OX\E(T;;E\T % g) = 0. Thus, given a family g, € D(X Nr), the function
f= Z;esx(z‘) T)l?\t * gy is such that dx\,f = g, for all r € Sx(i). This proves
our claim that ;,;P; = Id. O

Putting together these facts, we immediately get

Theorem 4.8. Choose, for every rational space r, a regular face F,. for
X \r. Then:

(14) G(X) = Bresy Tyh, * D(X N1).

Corollary 4.9. The dimension of G(X) equals the number of sublists of X
which are linearly independent.
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Proof. . This follows immediately from (I4]) and the fact (see for example
[5] Theorem 11.8) that D(X) has dimension equal to the number of bases

which can be extracted from X. O
We define
(15) G(X) = S[g"16(X), Gi(X) = S[g*]G:(X)

where the elements in S[g*] act on distributions as differential operators
with constant coefficients.

Remark 4.10. If we set
DX Nr) = Slg"]D(X Nr) = S[g"] @s((g/g,)) P(X N1),

Theorem [4.7], together with the fact that the maps p; and P; extend to S[g*]-
module maps (which we denote by the same letter), immediately implies that
we have an exact sequence of S[g*]-modules

0— Git1(X) = Gi(X) 5 Dresx (@D (X Nr) — 0.

Furthermore one can give generators for G(X) as a S[g*]-module as fol-
lows:

Theorem 4.11.
G(X)=> SlgIT¥
F

as F' runs over all reqular faces for X.

Proof. Denote by M the S[g*] module generated by the elements T)l? ,as F
runs on all open faces. In general, from the description of g~(X ) given in
Formula (I4]), it is enough to prove that elements of the type T;E\T * g with
ge DX Nr)arein M. As D(X Nr) C G(X Nr), it is sufficient to prove
by induction that each element T;L\'t * T)I({ﬁt is in M, where K is any open
face for the system X Nr. We choose a linear function ug in the face F.
Thus ug vanishes on r and is non zero on every element a € X not in r. We
choose a linear function u; such that the restriction of u; to r lies in the
face K. In particular, u; is non zero on every element a € X Nr. We can
choose € sufficiently small such that ug + eu; is non zero on every element

a € X. Then ug + eu; defines an open face F. We see that T;L\'T * T;gﬁr is

equal to T)l? . O

This construction has a discrete counterpart, thoroughly studied in [7]
and related to the study of the index of transversally elliptic operators and
of computations in equivariant K-theory in which differential operators are
replaced by difference operators.
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4.12. Equivariant cohomology with compact support and the in-
finitesimal index. Let us now recall that in [§] we have introduced a de
Rham model for the equivariant cohomology H, é (Z) with compact support
of a G-stable closed subset Z C N of a G-manifold N.

Furthermore assume that we have a G-equivariant one form ¢ on N called
an action form. We define the corresponding moment map p : N — g* by
setting for any u € g, n € N, u(n)(u) := (o, v,)(n), v, being the vector field
on N corresponding to u.

If we take as Z the zeroes N° = 1 =1(0) of the moment map, we have then
defined a map of S[g*|-modules

infdex : HE; .(Z) — S'(g")

called infinitesimal index. We refer to [8] for the proof of most of the prop-
erties of Hf, .(Z) and of the infinitesimal index which we are going to use in
what follows.

We are going to study the case in which we start with a G-variety M. We
set N =T*M and we take the canonical one form ¢. In this case it follows
immediately from the definitions that (7 M)" equals the space T, M whose
fiber over a point x € M is formed by all the cotangent vectors £ € T M
which vanish on the tangent space to the orbit of x under G, in the point
x. Thus each fiber (I5M), is a linear subspace of T;M. In general the
dimension of (T M), is not constant and this space is not a vector bundle.

4.13. The equivariant cohomology of T\ M ;(m. Our task is now to use
the infinitesimal index to compute the equivariant cohomology with com-
pact support of T3 Mx and more generally of T5Mx >j. Notice that if we
consider ordinary equivariant cohomology, it is immediate by G-homotopy
equivalence to deduce

Proposition 4.14. The equivariant cohomology of the space T, Mx >} equals
that of Mx >y for all k.

We have already remarked that, in the case k& = s, we have Mx >; =
ML™ and that Hi(ME™) = D*(X). Now, since G acts on ML™ with
finite stabilizers, and we use cohomology with real coefficients, we get that
ér{ E)(M 1y = H*(M$™ /@) and by Poincaré duality

16

HE (M) = HE(ME" /G) = (HAXI7 (M G))* = DHXI ().

Now, in order to compute the equivariant cohomology with compact sup-
port of T M )f(m, we need some well known general considerations.

Let N be a G-manifold, M be a G-equivariant vector bundle on N of

rank r with projection p : M — N. Then (see [I1]), there is a Thom class
™ € He (M) such that

Proposition 4.15. The map
C+ g (N) = HE (M)
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defined by C(a) = p*(a) A Taq is an isomorphism

Corollary 4.16. Assume M = Mp for some list B of non zero vectors in
Ao Let M =N x Mp. Ifo € H, (N x Mp) andi: N — N x Mg is the
0-section, we have:

Ci*(0) = dpo.

Proof. Write o = C(0¢) with og € H, .(N). Since the Euler class of Mp in
H¢.(pt) = S[g*] equals dp and M = N x Mp, we get that

i*(0) =1*C(0g) = dpoy.
Since C' is a map of S[g*]-module, we deduce
Ci*(0) =dpC(og) = dpo
as desired. O

Let us now go back to our computations. The projection p : T5M )f(m —
M ;(m is a real vector bundle of rank 2| X| — s so that, applying Proposition
115, we get ch(TéM)f(m) = Hgflx‘_s(M)f(m). Thus putting together this
with (I6]), we get

Proposition 4.17. As a graded S[g*]-module,
HE (TeM{™) = D127 (),

In particular T M ;;zn has no equivariant odd cohomology with compact sup-
port.

It is now interesting to apply to it the theory of the infinitesimal index.
To do this, we need to recall a few facts.

As we have already remarked, the action of G' on T M )fg" is essentially
free, so, denoting by @ the quotient T5M {(m /G, we can take an equivariant
g-valued curvature form R for the map T/ M )f(m — . We have the Chern-
Weil map c: S[g*] — HE(TéM)f(m) defined by p — [p(R)] (see [8] p.8).

Now we have by Proposition 4.20 of [8] that, for any [y] € HX(Q) ~
Hac(T(*;M ;(m), the infinitesimal index is given by the polynomial density
on g*

(17) ( /Q YR e,

We have

Theorem 4.18. The map infdex is a graded isomorphism of H@JTESM;{”)
onto D(X).
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Proof. Given p € S[g*], if we consider p as a differential operator with
constant coefficients on g, we shall write it as p(9). Now notice that the
Poincaré duality pairing ([y], ¢(p)) is given by

/Q vp(R) = ( /Q ’YP(R)ei(Rf))‘S:O = (p(d)infdex(7y))|¢=o-

Since in our case the Chern-Weil map is surjective with kernel Iy, everything
follows. O

4.19. The equivariant cohomology of T/, Mx >;. For a rational subspace
s, the action of G on F(s) factors through G/G, and, with respect to this

action, F(s) = M)f(’gs Thus

He (F(s) = 5(87) @s((a/80)) Hezjay,o(F(8))
where g* is in degree 2. In particular, by Proposition LT7, we deduce that
HETHTEF (s)) = 0.
Now set T F(s) := T¢Mx|F(s), the restriction of T, Mx to F(s). We
see that TEF(s) = TAF(s) x M\, so we have a Thom isomorphism

Cy: HE (TGF () » He W V(TEF(s), HE(TEF(s) = 0.
Choose 0 < i < s. We pass now to study the G-invariant open subspace
Mx >; of M. The set Mx >;11 is open in Mx >; with complement the space
F;, disjoint union of the spaces F(s) with s € Sx(i). Denote by T} F;
the restriction of T5,M to Fj, disjoint union of the spaces TéF (s). Denote
Jj: Mx>iy1 — Mx >; the open inclusion and e : TéFZ — TAMx >; the
closed embedding. Let C; be the Thom isomorphism from ch(T oFi) to

H é(’ij'X\ﬂ)(TéFi), the direct sum of the Thom isomorphisms Cs.

Theorem 4.20. For each 0 <i<s—1,
i) Hg T (TEMx >i) = 0.
it) The following sequence is exact
(18)
-1 _x

j * j% j * ¢ —2| X *
0— Hg:],c(TGMX,ziH) 5 Hé],c(TGMXZi) — @§esx(i)Héj,c TRy — 0.

Proof. Since Mx >s = M §zn’ we can assume by induction on s — ¢, that
i) holds for each j > i. Also since F; is the disjoint union of the spaces
F(s) which have no odd equivariant cohomology with compact support, we
get that Hé’jl(TéFZ) = 0 for each 0 < ¢ < s — 1. Using this fact, both
statements follow immediately from the long exact sequence of equivariant
cohomology with compact support. O

Let us now make a simple but important remark.

Lemma 4.21. Let s € Sx(j) with j < k. The element dx\, € S[g*] lies in
the annihilator of HE,C(TEMX,Zk)-
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Proof. H¢, (T¢;Mx >k) is a module over HZ,(T¢;Mx >x) and hence also over
H{(Mx >1). Thus this lemma follows from Lemma, O

Let us now split X = AUB and Mx = Ma®Mp. Letp : T5Mx — My be
the projection and consider T5M 4 := p M. We have TeMa =TEMy X
Mp. In particular, we get a Thom isomorphism

Oy, « Hi (TEMA) — H*+2|B|(T5MA) o~ H*+2|B|(TGMA x M3).

Denote by ¢ : My — Mx the closed inclusion, and, by abuse of nota-
tion, also the inclusion T M4 — T5Mx. Then i induces the morphisms
o H&C(TE;MX) — Hg (T5Ma) and 4 HE, (T5Ma) — He (TEMx).
Combining these 3 maps, we claim that

Proposition 4.22. Take o € H, (T5;Mx), then z.C’M, i*(o) = (—1)Bldgo.

Proof. We use Corollary 416} and remark that, since M}; is dual to Mp, we
have My = ©qepL_q O
Corollary 4.23. Take o € Hf, (T Mx). Let og = CM*Z (0) € Hf, (TEMa).
Then, we have the equality of distributions:

(—=1)1B19p (infdex(o)) = infdex(oy).

Proof. We use the fact that the infinitesimal index commutes with ¢, and is
a map of S[g*] modules. O

We have defined in Definition .3 the space of distributions G(X) as those
distributions f on g* such that dx\,f € S'(g*,r) for all £ € Sx and G(X) as

the S[g*] module generated by G(X). Then G;(X) is the subspace in G(X)
such that dx\,f = 0 for all t € Sx (i —1).

Lemma 4.24. For each ¢ > 0, infdex maps Hac(TéMx,zi) to the space
Gi(X).
Proof. Denote by £ : G;(X) — G(X) the inclusion. By Lemma 21} if o €
H 5 c(T(*;M x,>i) and ¢ is a rational subspace of dimension strictly less than ¢,
we have dx\;0 = 0. Thus dx\;infdex(c) = 0. It follows that the only thing
we have to show is that, if o € H( (T5Mx), then infdex(o) lies in G(X).
Take a rational subspace s. By Corollary [£23] the infinitesimal index of
dx\s0 equals the infinitesimal index of an element oo € H¢; [TEMxns). But
the action of G on Mxn, factors though the quotient G/G, whose Lie algebra
is g/gs. Thus H&C(T(’;MX%) o S[g*]®s[(g/g§)*]HE/G£7C(T5/G£MX0§)7 hence
ax\sinfdex( o) € S[ *]infdeX(Hé/G C(TE/GSMXQ§)).

But infdex(H, G/G ST eR Mxns)) € S'(g*,7) hence the claim. O

The following theorem characterizes the values of the infinitesimal index
on the entire Mx. We need to fix signs and set for each s, €5 = (—1)IX\sl
and

i = Dsesx (i)€shs-
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This time, we use the notations and the exact sequences contained in The-
orem [£.20] and Corollary [£.23]
Theorem 4.25. For each 0 <1 < s,

e the diagram

-1 _x

j+ * * Ci e * *
0= HE (TEMx >i41) —— HE (TEMx>i) ——  H (T5F) =0
infdexl infdexl infdexl
N ; . i
0= Git1(X) — Gi(X) s Beesy DX N8) =0
commautes.

e [ts vertical arrows are isomorphisms.
e In particular, the infinitesimal index gives an isomorphism between
Hac(TéMX) and G(X).

Proof. Lemma tells us that the diagram is well defined. We need to
prove commutativity.

Again, we prove that the square on the right hand side is commutative
using Corollary [£.23l The square on the left hand side is commutative since
jx 18 compatible with the infinitesimal index and ¢ is the inclusion.

Recall that H¢, (TgMxns) = S18°] ®sia/007 Héy0, (160, Mxns) and
that B B

DS(X Ns) = S[g"]D(X Ns) = S[g"] @s((g/ge)] DX N 3).
Using Theorem A.I8], this implies that the right vertical arrow is always an
isomorphism.

We want to apply descending induction on i. When i + 1 = s, since
Mx>s = Mg;m and G,_1(X) = D(X), Theorem I8 gives that the left
vertical arrow is an isomorphism. So assume that the left vertical arrow
is an isomorphism. We then deduce from the five Lemma that the central
vertical arrow is an isomorphism and conclude. O
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