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MULTIPLICITIES FORMULA FOR
GEOMETRIC QUANTIZATION, PART II

MICHELE VERGNE

1. Introduction. Let P be a compact manifold. Let H be a compact Lie group
acting on the right on P. We assume that the stabilizer of each element y e P is a
finite subgroup of H. The space M P/H is an orbifold and every orbifold can
be presented this way. If H acts freely, then M is a manifold. If &a is an H-
equivariant line bundle on P, the space ’/H will be called an orbifold line bundle
on M. Let G be a compact Lie group with Lie algebra 9 acting on the compact
orbifold M P/H. We consider the case where M is a prequantized symplectic
orbifold. Let be a G-equivariant Kostant-Souriau orbifold line bundle on M.
Then the quantized representation Q(M, t’) associated to (M, &v) is a virtual
representation of G constructed as the 7z/2;E-graded space of H-invariant solu-
tions of the H-horizontal Dirac operator on P twisted by the line bundle

Let #: M-o 9" be the moment map for the G-action. Assume 0 is a regular
value of #. Let Mred be the reduced orbifold of M; that is, mred #-(O)/G. Con-
sider the reduced orbifold line bundle rd lu-lto)/G on M,oa. In the ease
where both G and H are torus, we prove here the formula

Q(M,) Q(Mred, red).

This formula was conjectured by Guillemin-Sternberg [4] and proved when M
is a complex manifold and a sufficiently positive G-equivariant holomorphic
line bundle. Here, we do not assume the existence of complex structure on M.
Initially, we obtained a proof [7-1 of the formula Q(M,) Q(Ma, ra) for
the case where M is a symplectic manifold with Hamiltonian action of a torus G
such that G acts freely on #-1(0). Let us recall that independently E. Meinrenken
[6] had obtained a proof of the formula Q(M, )a Q(M,a, a,d) including the
case where Mred is an orbifold. It is possible to generalise the method sketched in
[7] to cover the case of orbifolds. Indeed, after writing a character formula [9] for
Q(P/H, ), similar arguments can be given. We give here an alternative approach
that requires almost no calculations. This approach is the K-theoretical version
of the deformation argument in equivariant cohomology employed in Part I of
this article [8]. However, we have tried to write the present article in such a way
that the reading of Part I (although reassuring) is not necessary to understand
our arguments. In Part I, we wrote in detail the case of an Sl-action using a
deformation formula for the character of Q(M, ). The original inspiration of
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this deformation argument goes back to Witten [10]. We here replace this argu-
ment by a simpler argument based on the deformation of the symbol of the Dirae
operator inside G-transversally elliptic symbols. Although this approach is more
direct, it uses Atiyah’s theory [1] of the index of transversally elliptic symbols:
existence of the index as a trace-class virtual representation of G, homotopy in-
variance of the index, excision, multiplicativity, and the explicit calculation of the
index for the Atiyah symbol m (see Formula 5).

Let us explain briefly our argument in the ease of an Sl-Hamiltonian action
on a compact sympleetic manifold M. Let G S. Let E e g be a basis of the Lie
algebra g and let f st(E). Let (., .) be a G-invariant metric. We introduce on M
the G-invariant 1-form

(.) st(E)(Eu, "),

where Eu is the vector field on M generated by the Sl-action. We denote by (x, )
a point of the cotangent bundle T*M. With the help of 2, we deform the symbol
c(x, )(R) Ie of the twisted Dirac operator in a G-transversally elliptic symbol
c,(x, )= c(x, - t2x)(R) I.x. As the index is invariant under homotopy, we
obtain Q(M, a) index(c 1). A model for the virtual representation index(c) can
be realised in the space of solutions of an operator D1 with symbol homotopic to
c. The form 2 vanishes on Mo f-(0) and on M. We can choose such an
operator D1 so that its solutions are supported near the set of zeroes of 2. Using
this, we need to analyse c on a neighbourhood of Mo and M. Assume zero is a
regular value of f. Then Mo/G is an orbifold. It is easy to see that the restriction
c on a neighbourhood of Mo isomorphic to Mo x IR is just the tensor product of
the symbol of the G-horizontal Dirac operator Deo on Mo (twisted by alMo)
and the Bott symbol on IR. We thus have

index(c)= Q(G\Mo, G\*aIMo).

We analyse the symbol c on a neighbourhood of a fixed-point component
Ma of M. If Ma is a point Pa, the symbol c coincides with the Atiyah symbol
m shifted by a line bundle. Thus, we .obtain that the index of c is eitaa+PaEk TrsklVa,
where Na is the tangent space at Pa equipped with a particular complex structure.
By calculations very similar to those in Part I [8-1, we see that the trivial represen-
tation of G does not occur in index(c).

In our proof of the equality

Q(M, .) Q(M,,

the number Q(Mred, red) is by definition the index of an elliptic operator on the
orbifold Mra. When Mra is a complex algebraic variety, the number Q(Mrd, d)
is given by Riemann-Roch-Kawasaki’s formula [5]. When (as is the case in our
setting) Mrod is a quotient of a manifold by a torus action, integral formula for the
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number Q(Mred, red) is given by Atiyah [1] Corollary 9.12. It follows that our
result coincides with Meinrenken’s expression. In [9], we give similar integral
expressions for the trace of the index of G-elliptic operators on orbifolds.

2. Quantization on orbifolds. Let G be a compact Lie group with Lie algebra. Let M be a smooth G-manifold. Let T*M be the cotangent bundle to M
with projection p: T*M -o M. We follow notations of [2] for transversally elliptic
symbols. If -+ are G-equivariant Hermitian vector bundles over M, a morphism
0- F(T*M, Hom(p*+, p*-)) of G-equivariant vector bundles will be called a
symbol. We denote by 0-*: p*- -o p*+ the adjoint of the morphism a. A point
of T*M will be denoted by (x, ), with x M and Tx*M. Then 0-(x, ): + x-.
The subset of point (x, ) T*M where a(x, ) is not invertible will be called the
characteristic set of a. We do not assume any homogeneity assumption on a.
However, we assume that a is defined and is C on all of T*M. If a is invertible
outside a compact subset of T’M, we will say that 0- is elliptic. Then an elliptic
symbol a defines an element of K(T*M), and if M is compact, the index of 0-

is a virtual finite-dimensional representation of G, that is, a difference of two
finite-dimensional representations of G. We denote by TM the closed subset of
T*M which is the union of conormal to the orbits of G in M; that is,

T,M {(x, ); (, Xu(x)) 0 for all X }.

A symbol a will be called transversally elliptic if the restriction of a(x, ) to
Tc,*M is invertible outside a compact subset of TtM. Then a defines an element
of K(T,M). If M is compact, then the index of 0- is defined as in [1] and is a
trace-class virtual representation of G. If U is a G-invariant open subset of a
compact G-manifold M, and if a is a G-transversally elliptic symbol on U, then
the index of 0- is also defined. If 0- is a symbol on M invertible on all points of
T*M above M U, then index(a) index(air). This is the excision lemma.

Let us recall the definition of the external product of symbols. Let M1 and M2
be two manifolds with G-actions. Let -+ be G-equivariant Hermitian vector bun-
dles over M. Let pg+ - p’g- be two transversally elliptic symbols. We denote
by

the symbol defined by

(1) 0-1 0 0-2 \I (R) 0-2 0-’ (R)

Under some conditions on characteristic sets of 0-1 and 02, the symbol 0"1 C)0"2
is transversally elliptic. Furthermore, the tensor product index(0"1) (R) index(0"2
of the virtual trace-class representations index(try) is a virtual trace-class represen-
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tation of G (for example, if one of the tr is elliptic, these conditions are satisfied),
and

(2) index(a1 (3 a2) index(or1) (R) index(a2).

This is the multiplicativity property of the index. We will use this equality for
symbols verifying the hypothesis of [1, Theorem 3.5]. (The group G is a product
G1 x G2, and G2 acts trivially on M.)

Let P be a compact smooth manifold. Let G and H be two compact Lie groups
acting on P with commuting actions. We assume that the action of H is infinitesi-
mally free; that is, the stabilizer of any point y e P is a finite subgroup of H.
We write the action of H on the right and the action of G on the left. The
quotient space P/H is provided with an action of G, and the space P/H will be
called a G-orbifold. A tangent vector on P tangent at y e P to the orbit H.y
will be called a vertical tangent vector. We will say that the space TP is the
horizontal cotangent bundle. The bundle TP is a (G x H)-equivariant vector
bundle over P. Let us assume that TP is an even-dimensional (G x H)-equivariant
orientable vector bundle. For simplicity, we assume that TP admits a (G x H)-
invariant spin structure. Let KGH(P) be the Grothendieck group of (G x H)-
equivariant vector bundles on P. Choose a (G x H)-invariant orientation 0 on
TP. Then there is a well-defined quantization map

Qe, KG n(P) R(G)I1

We can construct this map as follows. Choose a (G x H)-invariant metric on P.
The bundle of vertical vectors is isomorphic to P x I). Let

TP= ThoPP x D

be the orthogonal decomposition of the tangent bundle. The bundles ThorP and
TP are isomorphic. Let 6eho be the spin bundle for ThorP. The orientation o
determines a Z/2Z-gradation 6eo S+or 6eh:r. If V (ThorP)r, then the Clifford
multiplication c(v) is an odd operator on (6ehor)y. Let oz be a (G x H)-equivariant
Hermitian vector bundle on P. Let Shor (R) be the twisted horizontal spin
bundle. With the help of a choice of a (G x H)-invariant unitary connection
V V+ 0) V- on 6ehor (R) h+or () o ( hr () O, we may define the formally self-
adjoint "horizontal" Dirac operator Dhor,8 by

Dhor, d,
,

where e runs over an orthonormal basis of TP ThorP. We have Dhor, d,

D+
o, @ Dfo, with

o+ r(P, h+or ( ) r(P,; (R) g)hot, g
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and

Dor,: F(P, hr () ’) "- F(P, h+or () ).

Clearly, the operators Dor, are H-transversally elliptic operators and commute
with the natural action of G. The index index(Dffor,) is defined as in [1-1 and is a
trace-class virtual representation of H. It follows in particular that the spaces
(Ker Dor,)n of H-invariant solutions of Dor, are finite-dimensional representa-
tion spaces of G. We define the virtual representation Q,,n() R(G) by

Qe,H(O (--1)(dimV-dimH)/2[-(Ker Offor,)H-] [(Ker

When H acts freely on P, then the manifold M P/H admits a G-invariant
spin structure, the space /H is a vector bundle on P/H, and we have indeed

Q,.() Q(P/H,

where the map Q(M, .) was defined in Part I for a spin even-dimensional com-
pact manifold M. Thus, we will write Q,,n() Q(P/H, ).

If G (e}, then Q(P/H, ) is an integer called the Riemann-Roch number of
If P is a complex manifold and a holomorphic H-equivariant bundle on H, the
number Q(P/H, ) is computed by Kawasaki’s formula [5]. In general, it is given
by a similar formula [ 1].
We note for further use the following trivial result. Let T be a torus acting

trivially on P. If is a (T x H)-equivariant vector bundle on P, we write
where T acts on by e. Each vector bundle is an H-equivariant vector
bundle on P, and Q(P/H, ) is a number. We have

(3) Q(P/H, ,) ) Q(P/H, )e;

in particular, the set of weights occurring in Q(P/H, ) is contained in the set
of weights such that is nonzero.
We can extend without difficulty all the results of [8] to the case of an S1-

Hamiltonian action on an orbifold P/H. We first define what is a Hamiltonian
action in this case. A differential form on P will be called horizontal if t(Y)’ 0
for all Y b. The differential form is called basic if it is horizontal and H-invariant.

Definition 1. A symplectic form on P/H is a closed, basic 2-form tr on P such
that, for each y P, the form % is nondegenerate on (ToP)y.

If P/H is a symplectic orbifold, then the bundle TP has a canonical orienta-
tion. We will choose o as being the symplectic orientation, and we may omit
it in the notation.
We say that the action of G on P/H is Hamiltonian, if there exists an H-
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invariant map #: P g* such that

dz(X) (X)

for all X 9.
The following lemma is easily proved.

LEMMA 2. Assume that zero is a regular value of #. Then the action of G x H
on Po #-1(0) is infinitesimally free. Furthermore, the restriction tro of a to the

manifold Po is a symplectic structure on the orbifold Po/(G x H).

For X fl, we define trg(X)= #(X)+ a. Let be a (G x H)-invariant line
bundle on P with G x H-invariant connection &. We say that is a Kostant-
Souriau line bundle on the G-Hamiltonian orbifold P/H, if the equivariant curva-
ture of ’ is equal to i#(X)+ itr. In this case, we say that the orbifold P/H is
prequantized. The space Q(P/H, ) is a virtual representation of G.

Let G and K be two compact Lie groups. We assume that the group G x K
acts in a Hamiltonian way on (P/H, a). Let #: P * be the moment map for the
G-action on P/H. Assume that zero is a regular value of #. Let Po #-1(0) Then
(Po/(G x H), tro) is a K-Hamiltonian orbifold.

THEOREM 3. Let (P/H, tr) be a symplectic orbifold for the action of a torus H.
We consider a Hamiltonian action of G x K on P/H, where G and K are two
compact Lie groups. Assume that G is a torus. Let #: P * be the moment mapfor
the G-action on P/H. Assume that zero is a regular value of #. Let Po #-1(0)
Assume that the (G x K)-Hamiltonian orbifold P is prequantized. Let ’ be a
Kostant-Souriau line bundle for the Hamilton(an action of (G x K) on P. Then we
have the equality in R(K):

Q(P/H, _q) Q(Po/(G x H), c’aleo).

Proof. In the setting of orbifolds, we can proceed by induction on G. We
assume the theorem proven for an Sl-action. Let exp: G be the exponential
map and F its kernel. If X F, the 1-parameter subgroup 0 exp OX/2r is closed
and isomorphic to S {e}. We can choose X F such that zero is a regular
value of f #(X). Indeed, let us denote by P(Gvert the set of points y P such
that Gy Hy (if H {1}, this is the fixed point set of G). This is a closed sub-
manifold of P. Our hypothesis that zero is a regular value of # implies that
//(e(Gvert)) is a finite set of nonzero elements of *. The critical set of the map
f #(X) is the set P(Svert where the vector field Xe is vertical. If X is generic in
fl, the set P(Xvert coincides with P(Gvert). Thus, if X is generic in , then (X) : 0,
and the critical set P(Gvert off does not intersect f-l(0).

Let X F such that zero is a regular value of f. Consider the compact 1-
parameter group exp OX isomorphic to S1. There is a subgroup G’ of G such that
the map S x G’ G given by (e, g’)w- exp(OX)9’ is a finite cover. Applying
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the theorem to S1, with symmetry group G’, we obtain Q(P/H,)sIG’=
Q(Po/(S x H), oW)’ with Po f-(0), and we conclude by induction.

Thus, it is sufficient to prove this theorem for an action of G S.
Let G {ei; 0 IR}. We choose a basis E of such that exp(0E)= ei and

denote by f: P -o IR the map f #(E).
We consider the vector field W fEe on P. Denote by C the set of points y P

of P where the vector Wr is vertical. Morally, the space C/H is the set of zeroes
of the vector field W acting on P/H. It is clear that C Po w P(E,,ert) where
Po f-(0), and where P(Evert is the set of points y P where Ey is vertical.
Let be the set of connected components of P(Ev,rt). For a -, we write Pa
for the corresponding connected component. (If H { 1}, then P(Evert is simply
the set of fixed points of G {exp OE}). Using the vector field W, we first deform
the Dirac operator D/ in a (G x H)-transversally elliptic operator "trivial"hor, .W

outside a neighbourhood of C. We denote by (y, ) an element of T*P with
y P and TP. Consider the symbol a of D+ho, .. We have

a(y, ) c+(h()) (R) I: (+or () ,,a)y (h;r () ")y,

where h is the horizontal projection of T*P on TP. We identify TP with T*P.

LEMMA 4. For all IR, the symbol

a,(y, )= a(y, tWr)

is a (G x H)-transversally elliptic symbol.

Proof. We see that the vanishing of a,(y, ) implies that h() is proportional
to h(Wr). As W at each point is proportional to E, we see that the symbol a
is never 0 on T,ne {0}. m

Consider the (G x H)-transversally elliptic symbol a. Its index is a trace-class
virtual representation of (G x H). By homotopy invariance of the index, we have
then index(Dffor, e) index(a1).

Remark 2.1. In the identification of TP with T’P, the vector field W be-
comes equal to the 1-form 2 of [10]. The homotopy argument for the equality
index(Dffor, e) index(a) is similar to the fact that the form e"dg is congruent to
1 in equivariant cohomology.

The argument which follows corresponds to the localisation argument employed
in [8], when becomes large.

Outside a neighbourhood of C, the horizontal component of W is nonzero;
we then can deform the symbol

(4) a (y, ) c+(h() h(W)) (R) I
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to a symbol independent of and given by the bundle isomorphism c+(-h(Wr))(R) I.
Indeed, we may choose a (G x K x H)-invariant partition of unity, where bo is
identically 1 in a neighbourhood of C and with support in a small neighbour-
hood of C and deform al(y, ) in a’(y, )= c+(qo(y)h()- bl(y)h(Wy)) (R) I. We
denote by ax the restriction of a to a tubular neighbourhood of Po and by
ai’ the restriction of a to a tubular neighbourhood of Pa" By the excision lemma,
we then have

index(a1) index(ax) (a index(af)).

To prove Theorem 3, it remains to prove the following proposition.

PROPOSITION 5. Let G S actin9 on the symplectic orbifold P/H. Then
(1) Let a be a component of the set P(Gvert); then

()index a n 0,

(2) index(a,)on Q(Po/(G x H), t’o).

We will prove the equality (1) of Proposition 5 in Section 3 and the equality (2)
in Section 4.

3. The local index near a fixed-point component. We first describe a particular
transversally elliptic symbol which will be needed for the description of al’.

Let V be a complex Hermitian vector space. Let U(V) be the unitary group of
V. Let S: (ei}. Consider the exterior bundle AV A/ V A- V graded in even
and odd elements. For v V, we denote by e(v) the left exterior multiplication by
v and by t(v) the contraction by v. Let f(v)= e(v)+ t(v) so that f(v)2 Ilvll2I.
We write e(v) f+ (v) f-(v) with f+ (v): A+ V A- V.
We identify T*V with V V with the help of the scalar product on V. Define

(5) m(v, ) e+(v i).

It is a S-transversally elliptic symbol on V. Furthermore, rn is U(V)-invariant.
Thus, rn is a fortiori a U(V)-transversally elliptic symbol. The index of rn is a
trace-class virtual representation of U(V). We denote by detv the 1-dimensional
representation u --, detv(u) of U(V).

LEMMA 6. We have the equality ofvirtual representations of U(V)"

index(m) (-1)dimczV detv (R) ff=o sk(v)

Proof. It is sufficient to prove this formula on the torus of U(V) composed of
diagonal matrices. Then, by multiplicativity of the index, it is sufficient to prove
this formula for V . This results from [1, Lemma 6.4] (see also [2, Appendix
2]). m
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We also recall that if V Vo @ V1 is an orthogonal decomposition of an even-
dimensional Euclidean vector space V in two even-dimensional Euclidean spaces,
then the spinor space S for V is the tensor product of the spinor spaces S for V:

If o + 1 with i V/, then

S=So(R)S.

c() C(o) (R) c(,).

Let us analyze P(Evert). At a point y e P(Evert), there exists a unique vector

Hr I), such that (E + Hr)r 0. Let I be the set of elements Y t) such that
P(E + Y) is nonempty. This set is finite. Then it is clear that P(EvertxP(E + Y). For each a there exists a unique Ya I) such that P, is a con-
nected component of the manifold P(E + Y). We write Sa E + Ya. The mani-
fold Pa is an H-manifold with infinitesimally free action of H. In particular, the
subgroup of H acting trivially on Pa is a finite group. Let us remark that the
1-parameter group generated by Sa in G x H is compact. Indeed, the action of
exp 2re Ira on Pa is trivial as Y (E + Ya) E. Thus, a exp 2Y belongs to the
finite subgroup of H acting trivially on Pa" We thus see that there exists an integer
k such that exp 2rckSa 1 in G x H. The map IR G x H given by 0 exp OSa
gives a map from IR/2rkZ into G x H and the 1-parameter subgroup Ga c G x H
generated by S, E + Y is compact. The projection G x H --, G realizes Ga as a
finite cover of G. The manifold P, is a connected component of the manifold
pa. The function #(E) is constant on Pa" Let #a be its constant value. The action
of Ga on lp is thus given by exp(OSa)’V e’av. In particular, #a is a rational
number.

Consider the normal bundle to P, in P. We then have an orthogonal
decomposition

ThorPl’a ThorPa ( a"
The action of Sa on allows us to decompose ff (R) tE as a sum of complex

vector bundles ff() where G acts on 4r() by the weight e,.
If #, is positive, we write

A"t-- {0, i(0q S,) < 0}.

At the opposite, if #, is negative, we write

Aaut= {, i(g, Sa) > 0}.

We write

a+ (aeAaOUt a().
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The vector bundle Thore has a spin structure, with spinor bundle 5eor, .. Fur-
thermore, we can construct a line bundle Pa over Pa such that (pa)Z A""V’+
where na is the rank ofa+.
The index of the (G H)-transversally elliptic symbol ri’ is a trace-class virtual

representation of G x H. The action of G in index(af) is a trace-class virtual
representation of G. As the group K acts as a group of symmetries, this virtual
representation is indeed a virtual representation of G x K. Choose an orientation
Oa on TorP,. The sign e(o, Oa, Aaut) is defined in [8, Formula (23)].

THEOREM 7. We have the equality of trace-class virtual representations of G x K

index(al’)n e(o, o., Aaut) Q.(P./H, .Wle. (R) p. (R) sk(4/’+)).
k=O

Let us first note that we obtain from this theorem the corollary.

COROLLARY 8. Let # be the constant value of#(E) on P..
If# > O, the virtual representation index(a’) of G S is of the form . a.e"

with n > #.
If l. < O, the virtual representation index(a’) of G S is of theform . a.e"

with n < #.
In particular, for all a , we have (index(a’)) 0.

Proof. To compute the action of G on index(ai’), it is sufficient to compute
the action of the covering group G. G x H of G. As G. acts trivially on P.,
we can employ Formula (3) to obtain the result. Indeed, by our choice of n"t
then for # > 0, all weights of exp OS. on ]e. (R) P. (R) sk(v+) are of the form
ei(ua+ka)O with k > O.

Let us prove Theorem 7. The group K acts as a group of symmetries, and all of
our construction will be K-invariant. Thus, we leave implicit the action of K.
We consider the noncompact manifold equal to the total space of Va. It is a

(G x H)-manifold. The manifold a is fibered over Pa with projection p. Con-
sider the infinitesimally free action of H on vV. Using a connection on V, we
can write the tangent bundle to the total space Va as

TJ’a (dV’a D)( P* (ThorPlea).

Thus, we have Thor p*(ThorPlea) and P*(ole) is a spin bundle for Thora.
We still denote by .W the line bundle pa*(.Wiea) on VVa. The horizontal .W-twisted
Dirac symbol on T*vV is defined for z 6 above y 6 Po and 6 (T*vV)z by

d"(z, ) c+(h())z (R) I: G+ (R) r 5a (R) -Wr,

where we still denote by h the projection of (T*vVa)z on (Th*ore)y.
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We consider the complex structure J on Va such that the i-eigenspace of J on

Va (R) IE is Vffa+. Thus, the complex vector bundle (Ca, J) is isomorphic with the
vector bundle Va+. The vector bundle Va is a (G x H)-equivariant Hermitian
bundle over P. We consider the action of S on Ca given by e on each fiber.
This action of S commutes with the action of G x H. Consider the vector field

Wa generated by this action of e. Thus, (Wa) is the vector (y, -J.v), if z (y,
with y P and v (Vffa)y. We may use the vector field W to define the following
(G x H)-transversally elliptic symbol on

d(z, ) d"(z, (W,)z).

Near P., the horizontal component of W fE is equal to the horizontal compo-
nent of fS.. By our choice of Aut, for all e [0, 1] the map tJ. + (1 t)#.S, has
no zero eigenvalues. Thus, the action of #.Sa is homotopic to the transformation

J.. By homotopy arguments, we obtain

index(a) index(d).

Furthermore, if we consider the action of S {ei} on ,,Ca, the symbol d is
(S x H)-transversally elliptic. We have

index(d) k index(d)k,

where index(d)k is the isotypic component of type eik for the action of S1. This
series of representations of Ga x H defines a trace-class virtual representation
of Ga x H. We will prove the following lemma.

LEMMA 9. The isotypic component index(d)k is 0 if k < na. For k > O, we have
the equality of virtual representations of G:

(index(d)k+na)H e,(o, Oa, aaUt)Qa(Pa/H, Plt, ) Pa ( sk(Ua+))

Proof. We analyse the symbol d. Consider the decomposition of the H-
horizontal tangent bundle

(TffP)le T*Pa a
We denote by 6eo the corresponding spin bundle for TP,. Let 6e P, be the
spin bundle for the Clifford algebra of the vector bundle P,. Then

We can take as spinor space 6e the bundle p-i (R) Afa. Thus,

ola eO (R) P;- (R) Aa.
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Consider the Hermitian vector bundle a. Let Na be a Hermitian vector space
of dimension na. We denote by Ua the unitary group of Na. Let Ra be the principal
bundle of Hermitian frames of (Ua, Ja) framed on N,. Then R, is provided with an
infinitesimally free action of H x U,. The manifold is isomorphic to R Ua Na.

In this isomorphism, the group Ua acts on the left on Na and on the right
on Ra.

Using a connection on R ea, the (H Ua)-horizontal tangent bundle on R
is the lift of the bundle TPa. Choose an orientation Oa on TPa. This defines a
Z/2Z-grading of 6ao. Denote Aal, by Ga We define the a (R) P-1"twisted (Ua H)-
horizontal Dirac symbol dg on R by

dg(r, rl) c (ho(r/)) (R) I: (6) (R) (Ea (R) p-i )r (6’) (R) (’a (R) P- )r,

where r is a flame at y Pa and r/e T*R. projects on the H-horizontal cotangent
vector ho(r/) (TPa)r.
The symbol dg is a (Ua H)-transversally elliptic symbol on R.. Thus, its index

is a trace-class virtual representation of Ua H. Let : be a finite-dimensional
representation of U. in a vector space V. Let be the associated vector bundle
R,, X va V on P.. This is an H-equivariant vector bundle on Pa" By Frobenius
reciprocity [1], the isotypic component of type z* of index(dg) is a virtual repre-
sentation of G H equal to

index(Dr+or, G’a(R)p;l(R) "U,) ( *"
We identify T*Na to Na N,, and we write (Z1, 1) an element of T*Na. Let

ANa be the exterior space of the Hermitian space Na. Consider the symbol m
on Na given by Formula (5). Let us lift horizontally the S H-transversally
elliptic symbol d to R Na. We then see that hor(d) is the external product of
the symbols dg and m up to signs. A check of orientations leads to

hor(d) (- 1)naB(o, Oa, AaUt)dg Q) m

Consider the action of Ua X H x S on R Na. The group H acts only on Ra,
the group S acts only on N,, while the group Ua acts both on R and Ua. By
multiplicativity property of the index, we have the equality of virtual representa-
tions of Ua H S

index(dg Q) ma) index(dg) (R) index(ma).

We thus have (using Lemma 6) the following equality of virtual representations
ofH U,,xS:

index(hor(dl)) (o, Oa, AaUt)(=0 index(dg) (R) (detNa (R) S’(Na)) (R) ei(na+k’)O).
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By Frobenius reciprocity, index(d)= (index(hor(d))Va. To compute the space
of Ua-invariants in index(hor(d)), we must consider the isotypic component of
index(dg) of type detva (R) Sk(N,,). The associated vector bundle on Pa is the vector
bundle p2 (R) sk(l/’+). We thus obtain Lemma 9 and thus Theorem 7. m

Corollary 3 of Theorem 7 implies the equality (1) of Proposition 5.

4. The local index and reduction. We now analyse the symbol cr near Po.
The action of G x H is infinitesimally free on Po. We can assume our metric
on P chosen such that IIE,II 1 on Po. We have

ThorPlPo ThorPo ( Po x

Furthermore, using a connection for the infinitesimally free action of G x H on
Po, we may write

ThorPo To( P0 x g,

where To is the (G x H)-horizontal space of Po. Thus,

ThorPl’o To Pox (g g*).

The spinor space for the direct orthogonal sum I 0) * is a two-dimensional graded
vector space $1 S S- where S . Let E e and E*e fl* be the dual
element. If 2, r/ IR, the Clifford multiplication c1(2E + r/E*) is given by the
(2 x 2)-matrix

0
c(2E + r/E*)=

2- ir/

Let U be the noncompact manifold Po *. The horizontal tangent bundle
for the H-action on U is

ThorU TO t(U x (i *)).

Let 6 be the trivial bundle on U with 2-dimensional fiber S. Let 6eo be the
spinor bundle for To. The spinor space 6e for Thor U is thus

We denote by c the Clifford action of an element of Thor U on 6.
Let (y, f)6 Po x g*. If (ThorU)(y,f), we write o )2Ever with 2,

r/6 IR and o e (To)r. Consider the symbol c on U given by

c((y, f), )= C(o + (2E + r/E*))= Co(o)(R) c,(,,q,E + r/E*).
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Both bundles 6eo and 6e have canonical g/2g-gradations inherited from the
symplectic structures. Consider the vector field W fE on Pox g*. Let z
(y, f) e Pox g*. Denote by d(z, ) the symbol on Pox g* defined by

d(z, ) c+(z, fe,).

Then we see that d is a G-transversally elliptic symbol on Pox g*. A neighbour-
hood of Po in P is diffeomorphic to Pox g* and by homotopy, we have index(a)
index(d).

It is clear that inside H x G-transversally elliptic operator (trivial outside f 0),
we can deform

d((y, f), )= c+(o + (-f + 2)E + r/E*)(R)
to

v((y, f), ) c+(o fE + r/E*) (R) I.zy.
Let do be the (G x H)-horizontal Dirac symbol twisted by the line bundle
Consider the Bott elliptic symbol b(fi r/)= f + Jr on IR. Checking orientations,
we thus see that

v do b.

As the index of b is identically equal to 1, we obtain that index(v) index(d).
Taking the H-invariants, we obtain the equality (2) of Proposition 5. Hence,
Theorem 3 is proved.
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