MULTIPLICITIES FORMULA FOR GEOMETRIC QUANTIZATION, PART II

MICHELE VERGNE

1. Introduction. Let P be a compact manifold. Let H be a compact Lie group acting on the right on P. We assume that the stabilizer of each element $y \in P$ is a finite subgroup of H. The space $M=P / H$ is an orbifold and every orbifold can be presented this way. If H acts freely, then M is a manifold. If \mathscr{L} is an H equivariant line bundle on P, the space \mathscr{L} / H will be called an orbifold line bundle on M. Let G be a compact Lie group with Lie algebra \mathfrak{g} acting on the compact orbifold $M=P / H$. We consider the case where M is a prequantized symplectic orbifold. Let \mathscr{L} be a G-equivariant Kostant-Souriau orbifold line bundle on M. Then the quantized representation $Q(M, \mathscr{L})$ associated to (M, \mathscr{L}) is a virtual representation of G constructed as the $\mathbb{Z} / 2 \mathbb{Z}$-graded space of H-invariant solutions of the H-horizontal Dirac operator on P twisted by the line bundle \mathscr{L}.
Let $\mu: M \rightarrow \mathrm{~g}^{*}$ be the moment map for the G-action. Assume 0 is a regular value of μ. Let $M_{\text {red }}$ be the reduced orbifold of M; that is, $M_{\text {red }}=\mu^{-1}(0) / G$. Consider the reduced orbifold line bundle $\mathscr{L}_{\text {red }}=\left.\mathscr{L}\right|_{\mu^{-1}(0)} / G$ on $M_{\text {red }}$. In the case where both G and H are torus, we prove here the formula

$$
Q(M, \mathscr{L})^{G}=Q\left(M_{\text {red }}, \mathscr{L}_{\mathrm{red}}\right)
$$

This formula was conjectured by Guillemin-Sternberg [4] and proved when M is a complex manifold and \mathscr{L} a sufficiently positive G-equivariant holomorphic line bundle. Here, we do not assume the existence of complex structure on M. Initially, we obtained a proof [7] of the formula $Q(M, \mathscr{L})^{G}=Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ for the case where M is a symplectic manifold with Hamiltonian action of a torus G such that G acts freely on $\mu^{-1}(0)$. Let us recall that independently E. Meinrenken [6] had obtained a proof of the formula $Q(M, \mathscr{L})^{G}=Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ including the case where $M_{\text {red }}$ is an orbifold. It is possible to generalise the method sketched in [7] to cover the case of orbifolds. Indeed, after writing a character formula [9] for $Q(P / H, \mathscr{L})$, similar arguments can be given. We give here an alternative approach that requires almost no calculations. This approach is the K-theoretical version of the deformation argument in equivariant cohomology employed in Part I of this article [8]. However, we have tried to write the present article in such a way that the reading of Part I (although reassuring) is not necessary to understand our arguments. In Part I, we wrote in detail the case of an S^{1}-action using a deformation formula for the character of $Q(M, \mathscr{L})$. The original inspiration of

Received 17 October 1994. Revision received 24 May 1995.
this deformation argument goes back to Witten [10]. We here replace this argument by a simpler argument based on the deformation of the symbol of the Dirac operator inside G-transversally elliptic symbols. Although this approach is more direct, it uses Atiyah's theory [1] of the index of transversally elliptic symbols: existence of the index as a trace-class virtual representation of G, homotopy invariance of the index, excision, multiplicativity, and the explicit calculation of the index for the Atiyah symbol m (see Formula 5).

Let us explain briefly our argument in the case of an S^{1}-Hamiltonian action on a compact symplectic manifold M. Let $G=S^{1}$. Let $E \in \mathfrak{g}$ be a basis of the Lie algebra \mathfrak{g} and let $f=\mu(E)$. Let (., .) be a G-invariant metric. We introduce on M the G-invariant 1 -form

$$
\lambda(\cdot)=\mu(E)\left(E_{M}, \cdot\right),
$$

where E_{M} is the vector field on M generated by the S^{1}-action. We denote by (x, ξ) a point of the cotangent bundle $T^{*} M$. With the help of λ, we deform the symbol $c(x, \xi) \otimes I_{\mathscr{L}_{x}}$ of the twisted Dirac operator in a G-transversally elliptic symbol $c_{t}(x, \xi)=c\left(x, \xi-t \lambda_{x}\right) \otimes I_{\mathscr{Q}_{x}}$. As the index is invariant under homotopy, we obtain $Q(M, \mathscr{L})=\operatorname{index}\left(c_{1}\right)$. A model for the virtual representation index $\left(c_{1}\right)$ can be realised in the space of solutions of an operator D_{1} with symbol homotopic to c_{1}. The form λ vanishes on $M_{0}=f^{-1}(0)$ and on M^{G}. We can choose such an operator D_{1} so that its solutions are supported near the set of zeroes of λ. Using this, we need to analyse c_{1} on a neighbourhood of M_{0} and M^{G}. Assume zero is a regular value of f. Then M_{0} / G is an orbifold. It is easy to see that the restriction c_{1}^{0} on a neighbourhood of M_{0} isomorphic to $M_{0} \times \mathbb{R}$ is just the tensor product of the symbol of the G-horizontal Dirac operator $D_{\mathscr{L}_{0}}$ on M_{0} (twisted by $\left.\mathscr{L}\right|_{M_{0}}$) and the Bott symbol on \mathbb{R}. We thus have

$$
\operatorname{index}\left(c_{1}^{0}\right)^{G}=Q\left(G \backslash M_{0},\left.G \backslash \mathscr{L}\right|_{M_{0}}\right)
$$

We analyse the symbol c_{1}^{a} on a neighbourhood of a fixed-point component M_{a} of M^{G}. If M_{a} is a point p_{a}, the symbol c_{1}^{a} coincides with the Atiyah symbol m shifted by a line bundle. Thus, we obtain that the index of c_{1}^{a} is $e_{i \mu_{a}+\rho_{a}} \sum_{k} T_{r^{k} N_{a}}$, where N_{a} is the tangent space at p_{a} equipped with a particular complex structure. By calculations very similar to those in Part I [8], we see that the trivial representation of G does not occur in index $\left(c_{1}^{a}\right)$.

In our proof of the equality

$$
Q(M, \mathscr{L})^{G}=Q\left(M_{\mathrm{red}}, \mathscr{L}_{\mathrm{red}}\right)
$$

the number $Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ is by definition the index of an elliptic operator on the orbifold $M_{\text {red }}$. When $M_{\text {red }}$ is a complex algebraic variety, the number $Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ is given by Riemann-Roch-Kawasaki's formula [5]. When (as is the case in our setting) $M_{\text {red }}$ is a quotient of a manifold by a torus action, integral formula for the
number $Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ is given by Atiyah [1] Corollary 9.12. It follows that our result coincides with Meinrenken's expression. In [9], we give similar integral expressions for the trace of the index of G-elliptic operators on orbifolds.
2. Quantization on orbifolds. Let G be a compact Lie group with Lie algebra g. Let M be a smooth G-manifold. Let $T^{*} M$ be the cotangent bundle to M with projection $p: T^{*} M \rightarrow M$. We follow notations of [2] for transversally elliptic symbols. If $\mathscr{E}^{ \pm}$are G-equivariant Hermitian vector bundles over M, a morphism $\sigma \in \Gamma\left(T^{*} M, \operatorname{Hom}\left(p^{*} \mathscr{E}^{+}, p^{*} \mathscr{E}^{-}\right)\right)$of G-equivariant vector bundles will be called a symbol. We denote by $\sigma^{*}: p^{*} \mathscr{E}^{-} \rightarrow p^{*} \mathscr{E}^{+}$the adjoint of the morphism σ. A point of $T^{*} M$ will be denoted by (x, ξ), with $x \in M$ and $\xi \in T_{x}^{*} M$. Then $\sigma(x, \xi): \mathscr{E}_{x}^{+} \rightarrow \mathscr{E}_{x}^{-}$. The subset of point $(x, \xi) \in T^{*} M$ where $\sigma(x, \xi)$ is not invertible will be called the characteristic set of σ. We do not assume any homogeneity assumption on σ. However, we assume that σ is defined and is C^{∞} on all of $T^{*} M$. If σ is invertible outside a compact subset of $T^{*} M$, we will say that σ is elliptic. Then an elliptic symbol σ defines an element of $K_{G}\left(T^{*} M\right)$, and if M is compact, the index of σ is a virtual finite-dimensional representation of G, that is, a difference of two finite-dimensional representations of G. We denote by $T_{G}^{*} M$ the closed subset of $T^{*} M$ which is the union of conormal to the orbits of G in M; that is,

$$
T_{G}^{*} M=\left\{(x, \xi) ;\left\langle\xi, X_{M}(x)\right\rangle=0 \quad \text { for all } X \in \mathfrak{g}\right\} .
$$

A symbol σ will be called transversally elliptic if the restriction of $\sigma(x, \xi)$ to $T_{G}^{*} M$ is invertible outside a compact subset of $T_{G}^{*} M$. Then σ defines an element of $K_{G}\left(T_{G}^{*} M\right)$. If M is compact, then the index of σ is defined as in [1] and is a trace-class virtual representation of G. If U is a G-invariant open subset of a compact G-manifold M, and if σ is a G-transversally elliptic symbol on U, then the index of σ is also defined. If σ is a symbol on M invertible on all points of $T^{*} M$ above $M-U$, then index $(\sigma)=\operatorname{index}\left(\left.\sigma\right|_{U}\right)$. This is the excision lemma.

Let us recall the definition of the external product of symbols. Let M_{1} and M_{2} be two manifolds with G-actions. Let $\mathscr{E}_{i}^{ \pm}$be G-equivariant Hermitian vector bundles over M_{i}. Let $p_{i}^{*} \mathscr{E}_{i}^{+} \xrightarrow{\sigma_{i}} p_{i}^{*} \mathscr{E}_{i}^{-}$be two transversally elliptic symbols. We denote by

$$
\sigma_{1} \odot \sigma_{2}: p_{1}^{*} \mathscr{E}_{1}^{+} \otimes p_{2}^{*} \mathscr{E}_{2}^{+} \oplus p_{1}^{*} \mathscr{E}_{1}^{-} \otimes p_{2}^{*} \mathscr{E}_{2}^{-} \rightarrow p_{1}^{*} \mathscr{E}_{1}^{-} \otimes p_{2}^{*} \mathscr{E}_{2}^{+} \oplus p_{1}^{*} \mathscr{E}_{1}^{+} \otimes p_{2}^{*} \mathscr{E}_{2}^{-}
$$

the symbol defined by

$$
\sigma_{1} \odot \sigma_{2}=\left(\begin{array}{cc}
\sigma_{1} \otimes I & -I \otimes \sigma_{2}^{*} \tag{1}\\
I \otimes \sigma_{2} & \sigma_{1}^{*} \otimes I
\end{array}\right)
$$

Under some conditions on characteristic sets of σ_{1} and σ_{2}, the symbol $\sigma_{1} \odot \sigma_{2}$ is transversally elliptic. Furthermore, the tensor product index $\left(\sigma_{1}\right) \otimes \operatorname{index}\left(\sigma_{2}\right)$ of the virtual trace-class representations index $\left(\sigma_{i}\right)$ is a virtual trace-class represen-
tation of G (for example, if one of the σ_{i} is elliptic, these conditions are satisfied), and

$$
\begin{equation*}
\operatorname{index}\left(\sigma_{1} \odot \sigma_{2}\right)=\operatorname{index}\left(\sigma_{1}\right) \otimes \operatorname{index}\left(\sigma_{2}\right) \tag{2}
\end{equation*}
$$

This is the multiplicativity property of the index. We will use this equality for symbols verifying the hypothesis of [1, Theorem 3.5]. (The group G is a product $G_{1} \times G_{2}$, and G_{2} acts trivially on M_{1}.)

Let P be a compact smooth manifold. Let G and H be two compact Lie groups acting on P with commuting actions. We assume that the action of H is infinitesimally free; that is, the stabilizer of any point $y \in P$ is a finite subgroup of H. We write the action of H on the right and the action of G on the left. The quotient space P / H is provided with an action of G, and the space P / H will be called a G-orbifold. A tangent vector on P tangent at $y \in P$ to the orbit $H \cdot y$ will be called a vertical tangent vector. We will say that the space $T_{H}^{*} P$ is the horizontal cotangent bundle. The bundle $T_{H}^{*} P$ is a $(G \times H)$-equivariant vector bundle over P. Let us assume that $T_{H}^{*} P$ is an even-dimensional $(G \times H)$-equivariant orientable vector bundle. For simplicity, we assume that $T_{H}^{*} P$ admits a $(G \times H)$ invariant spin structure. Let $K_{G \times H}(P)$ be the Grothendieck group of $(G \times H)$ equivariant vector bundles on P. Choose a ($G \times H$)-invariant orientation o on $T_{H}^{*} P$. Then there is a well-defined quantization map

$$
Q_{P, H}^{o}: K_{G \times H}(P) \rightarrow R(G)
$$

We can construct this map as follows. Choose a $(G \times H)$-invariant metric on P. The bundle of vertical vectors is isomorphic to $P \times \mathfrak{h}$. Let

$$
T P=T_{\mathrm{hor}} P \oplus P \times \mathfrak{h}
$$

be the orthogonal decomposition of the tangent bundle. The bundles $T_{\text {hor }} P$ and $T_{H}^{*} P$ are isomorphic. Let $\mathscr{S}_{\text {hor }}$ be the spin bundle for $T_{\text {hor }} P$. The orientation o determines a $\mathbb{Z} / 2 \mathbb{Z}$-gradation $\mathscr{S}_{\text {hor }}=\mathscr{S}_{\text {hor }}^{+} \oplus \mathscr{S}_{\text {hor }}^{-}$. If $v \in\left(T_{\text {hor }} P\right)_{y}$, then the Clifford multiplication $c(v)$ is an odd operator on $\left(\mathscr{S}_{\text {hor }}\right)_{y}$. Let \mathscr{E} be a $(G \times H)$-equivariant Hermitian vector bundle on P. Let $\mathscr{S}_{\text {hor }} \otimes \mathscr{E}$ be the twisted horizontal spin bundle. With the help of a choice of a $(G \times H)$-invariant unitary connection $\nabla=\nabla^{+} \oplus \nabla^{-}$on $\mathscr{S}_{\text {hor }} \otimes \mathscr{E}=\mathscr{S}_{\text {hor }}^{+} \otimes \mathscr{E} \oplus \mathscr{S}_{\text {hor }}^{-} \otimes \mathscr{E}$, we may define the formally selfadjoint "horizontal" Dirac operator $D_{\text {hor }, 8}$ by

$$
D_{\mathrm{hor}, \delta}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}
$$

where e_{i} runs over an orthonormal basis of $T_{H}^{*} P=T_{\text {hor }} P$. We have $D_{\text {hor }, 8}=$ $D_{\text {hor }, \delta}^{+} \oplus D_{\text {hor }, \delta}^{-}$with

$$
D_{\mathrm{hor}, \mathscr{E}}^{+}: \Gamma\left(P, \mathscr{S}_{\mathrm{hor}}^{+} \otimes \mathscr{E}\right) \rightarrow \Gamma\left(P, \mathscr{S}_{\mathrm{hor}}^{-} \otimes \mathscr{E}\right)
$$

and

$$
D_{\mathrm{hor}, \mathscr{E}}^{-}: \Gamma\left(P, \mathscr{S}_{\mathrm{hor}}^{-} \otimes \mathscr{E}\right) \rightarrow \Gamma\left(P, \mathscr{S}_{\mathrm{hor}}^{+} \otimes \mathscr{E}\right) .
$$

Clearly, the operators $D_{\text {hor, } \&}^{ \pm}$are H-transversally elliptic operators and commute with the natural action of G. The index index $\left(D_{\text {hor }, \delta}^{+}\right)$is defined as in [1] and is a trace-class virtual representation of H. It follows in particular that the spaces (Ker $\left.D_{\text {hor }, \delta}^{ \pm}\right)^{H}$ of H-invariant solutions of $D_{\text {hor }, \delta}^{ \pm}$are finite-dimensional representation spaces of G. We define the virtual representation $Q_{P, H}^{o}(\mathscr{E}) \in R(G)$ by

$$
Q_{P, H}^{o}(\mathscr{E})=(-1)^{(\operatorname{dim} P-\operatorname{dim} H) / 2}\left[\left(\operatorname{Ker} D_{\mathrm{hor}, \delta}^{+}\right)^{H}\right]-\left[\left(\operatorname{Ker} D_{\mathrm{hor}, \delta}^{-}\right)^{H}\right] .
$$

When H acts freely on P, then the manifold $M=P / H$ admits a G-invariant spin structure, the space \mathscr{E} / H is a vector bundle on P / H, and we have indeed

$$
Q_{P, H}^{o}(\mathscr{E})=Q^{o}(P / H, \mathscr{E} / H)
$$

where the map $Q^{o}(M, \cdot)$ was defined in Part I for a spin even-dimensional compact manifold M. Thus, we will write $Q_{P, H}^{o}(\mathscr{E})=Q^{o}(P / H, \mathscr{E})$.

If $G=\{e\}$, then $Q^{\circ}(P / H, \mathscr{E})$ is an integer called the Riemann-Roch number of \mathscr{E}. If P is a complex manifold and \mathscr{E} a holomorphic H-equivariant bundle on H, the number $Q^{o}(P / H, \mathscr{E})$ is computed by Kawasaki's formula [5]. In general, it is given by a similar formula [1].

We note for further use the following trivial result. Let T be a torus acting trivially on P. If \mathscr{E} is a $(T \times H)$-equivariant vector bundle on P, we write $\mathscr{E}=\Sigma_{\xi} \mathscr{E}_{\xi}$, where T acts on \mathscr{E}_{ξ} by e_{ξ}. Each vector bundle \mathscr{E}_{ξ} is an H-equivariant vector bundle on P, and $Q^{o}\left(P / H, \mathscr{E}_{\xi}\right)$ is a number. We have

$$
\begin{equation*}
Q^{o}(P / H, \mathscr{E})=\oplus_{\xi \in \hat{T}} Q^{o}\left(P / H, \mathscr{E}_{\xi}\right) e_{\xi} \tag{3}
\end{equation*}
$$

in particular, the set of weights ξ occurring in $Q^{o}(P / H, \mathscr{E})$ is contained in the set of weights ξ such that \mathscr{E}_{ξ} is nonzero.

We can extend without difficulty all the results of [8] to the case of an S^{1} Hamiltonian action on an orbifold P / H. We first define what is a Hamiltonian action in this case. A differential form α on P will be called horizontal if $t(Y) \cdot \alpha=0$ for all $Y \in \mathfrak{h}$. The differential form α is called basic if it is horizontal and H-invariant.

Definition 1. A symplectic form on P / H is a closed, basic 2 -form σ on P such that, for each $y \in P$, the form σ_{y} is nondegenerate on $\left(T_{\text {hor }} P\right)_{y}$.

If P / H is a symplectic orbifold, then the bundle $T_{H}^{*} P$ has a canonical orientation. We will choose o as being the symplectic orientation, and we may omit it in the notation.

We say that the action of G on P / H is Hamiltonian, if there exists an $H-$
invariant map $\mu: P \rightarrow \mathrm{~g}^{*}$ such that

$$
d \mu(X)=\imath\left(X_{P}\right) \sigma
$$

for all $X \in \mathfrak{g}$.
The following lemma is easily proved.
Lemma 2. Assume that zero is a regular value of μ. Then the action of $G \times H$ on $P_{0}=\mu^{-1}(0)$ is infinitesimally free. Furthermore, the restriction σ_{0} of σ to the manifold P_{0} is a symplectic structure on the orbifold $P_{0} /(G \times H)$.

For $X \in \mathfrak{g}$, we define $\sigma_{\mathfrak{g}}(X)=\mu(X)+\sigma$. Let \mathscr{L} be a ($G \times H$)-invariant line bundle on P with $G \times H$-invariant connection \mathbb{A}. We say that \mathscr{L} is a KostantSouriau line bundle on the G-Hamiltonian orbifold P / H, if the equivariant curvature of \mathscr{L} is equal to $i \mu(X)+i \sigma$. In this case, we say that the orbifold P / H is prequantized. The space $Q(P / H, \mathscr{L})$ is a virtual representation of G.

Let G and K be two compact Lie groups. We assume that the group $G \times K$ acts in a Hamiltonian way on $(P / H, \sigma)$. Let $\mu: P \rightarrow \mathfrak{g}^{*}$ be the moment map for the G-action on P / H. Assume that zero is a regular value of μ. Let $P_{0}=\mu^{-1}(0)$. Then ($\left.P_{0} /(G \times H), \sigma_{0}\right)$ is a K-Hamiltonian orbifold.

Theorem 3. Let $(P / H, \sigma)$ be a symplectic orbifold for the action of a torus H. We consider a Hamiltonian action of $G \times K$ on P / H, where G and K are two compact Lie groups. Assume that G is a torus. Let $\mu: P \rightarrow \mathrm{~g}^{*}$ be the moment map for the G-action on P / H. Assume that zero is a regular value of μ. Let $P_{0}=\mu^{-1}(0)$. Assume that the $(G \times K)$-Hamiltonian orbifold P is prequantized. Let \mathscr{L} be a Kostant-Souriau line bundle for the Hamiltonian action of $(G \times K)$ on P. Then we have the equality in $R(K)$:

$$
Q(P / H, \mathscr{L})^{G}=Q\left(P_{0} /(G \times H),\left.\mathscr{L}\right|_{P_{0}}\right)
$$

Proof. In the setting of orbifolds, we can proceed by induction on G. We assume the theorem proven for an S^{1}-action. Let exp: $\mathfrak{g} \rightarrow G$ be the exponential map and Γ its kernel. If $X \in \Gamma$, the 1-parameter subgroup $\theta \mapsto \exp \theta X / 2 \pi$ is closed and isomorphic to $S^{1}=\left\{e^{i \theta}\right\}$. We can choose $X \in \Gamma$ such that zero is a regular value of $f=\mu(X)$. Indeed, let us denote by $P\left(G_{\text {vert }}\right)$ the set of points $y \in P$ such that $G y \in H y$ (if $H=\{1\}$, this is the fixed point set of G). This is a closed submanifold of P. Our hypothesis that zero is a regular value of μ implies that $\mu\left(P\left(G_{\text {vert }}\right)\right)$ is a finite set of nonzero elements ξ_{i} of g^{*}. The critical set of the map $f=\mu(X)$ is the set $P\left(X_{\text {vert }}\right)$ where the vector field X_{P} is vertical. If X is generic in \mathfrak{g}, the set $P\left(X_{\text {vert }}\right)$ coincides with $P\left(G_{\text {vert }}\right)$. Thus, if X is generic in \mathfrak{g}, then $\xi_{i}(X) \neq 0$, and the critical set $P\left(G_{\text {vert }}\right)$ of f does not intersect $f^{-1}(0)$.

Let $X \in \Gamma$ such that zero is a regular value of f. Consider the compact 1 parameter group $\exp \theta X$ isomorphic to S^{1}. There is a subgroup G^{\prime} of G such that the map $S^{1} \times G^{\prime} \rightarrow G$ given by $\left(e^{i \theta}, g^{\prime}\right) \mapsto \exp (\theta X) g^{\prime}$ is a finite cover. Applying
the theorem to S^{1}, with symmetry group G^{\prime}, we obtain $Q(P / H, \mathscr{L})^{S_{1} \times G^{\prime}}=$ $Q\left(P_{0} /\left(S^{1} \times H\right), \mathscr{L}\right)^{G^{\prime}}$ with $P_{0}=f^{-1}(0)$, and we conclude by induction.

Thus, it is sufficient to prove this theorem for an action of $G=S^{1}$.
Let $G=\left\{e^{i \theta} ; \theta \in \mathbb{R}\right\}$. We choose a basis E of \mathfrak{g} such that $\exp (\theta E)=e^{i \theta}$ and denote by $f: P \rightarrow \mathbb{R}$ the map $f=\mu(E)$.

We consider the vector field $W=f E_{P}$ on P. Denote by C the set of points $y \in P$ of P where the vector W_{y} is vertical. Morally, the space C / H is the set of zeroes of the vector field W acting on P / H. It is clear that $C=P_{0} \cup P\left(E_{\text {vert }}\right)$ where $P_{0}=f^{-1}(0)$, and where $P\left(E_{\text {vert }}\right)$ is the set of points $y \in P$ where E_{y} is vertical. Let \mathscr{F} be the set of connected components of $P\left(E_{\text {vert }}\right)$. For $a \in \mathscr{F}$, we write P_{a} for the corresponding connected component. (If $H=\{1\}$, then $P\left(E_{\text {vert }}\right)$ is simply the set of fixed points of $G=\{\exp \theta E\}$). Using the vector field W, we first deform the Dirac operator $D_{\text {hor }, \mathscr{L}}^{+}$in a $(G \times H)$-transversally elliptic operator "trivial" outside a neighbourhood of C. We denote by (y, ξ) an element of $T^{*} P$ with $y \in P$ and $\xi \in T_{y} P$. Consider the symbol σ of $D_{\mathrm{hor}, \mathscr{L}}^{+}$. We have

$$
\sigma(y, \xi)=c^{+}(h(\xi)) \otimes I:\left(\mathscr{S}_{\text {hor }}^{+} \otimes \mathscr{L}\right)_{y} \rightarrow\left(\mathscr{S}_{\text {hor }}^{-} \otimes \mathscr{L}\right)_{y}
$$

where h is the horizontal projection of $T^{*} P$ on $T_{H}^{*} P$. We identify $T P$ with $T^{*} P$.
Lemma 4. For all $t \in \mathbb{R}$, the symbol

$$
\sigma_{t}(y, \xi)=\sigma\left(y, \xi-t W_{y}\right)
$$

is $a(G \times H)$-transversally elliptic symbol.
Proof. We see that the vanishing of $\sigma_{t}(y, \xi)$ implies that $h(\xi)$ is proportional to $h\left(W_{y}\right)$. As W_{y} at each point is proportional to E_{y}, we see that the symbol σ_{t} is never 0 on $T_{G \times H}^{*} P-\{0\}$.

Consider the $(G \times H)$-transversally elliptic symbol σ_{1}. Its index is a trace-class virtual representation of $(G \times H)$. By homotopy invariance of the index, we have then index $\left(D_{\text {hor }, \mathscr{L}}^{+}\right)=\operatorname{index}\left(\sigma_{1}\right)$.

Remark 2.1. In the identification of $T P$ with $T^{*} P$, the vector field W becomes equal to the 1 -form λ of [10]. The homotopy argument for the equality index $\left(D_{\text {hor }, \mathscr{L}}^{+}\right)=\operatorname{index}\left(\sigma_{1}\right)$ is similar to the fact that the form $e^{i t d_{\mathrm{g}} \lambda}$ is congruent to 1 in equivariant cohomology.

The argument which follows corresponds to the localisation argument employed in [8], when t becomes large.

Outside a neighbourhood of C, the horizontal component of W is nonzero; we then can deform the symbol

$$
\begin{equation*}
\sigma_{1}(y, \xi)=c^{+}\left(h(\xi)-h\left(W_{y}\right)\right) \otimes I \tag{4}
\end{equation*}
$$

to a symbol independent of ξ and given by the bundle isomorphism $c^{+}\left(-h\left(W_{y}\right)\right) \otimes I$. Indeed, we may choose a ($G \times K \times H$) -invariant partition of unity, where ϕ_{0} is identically 1 in a neighbourhood of C and with support in a small neighbourhood of C and deform $\sigma_{1}(y, \xi)$ in $\sigma_{1}^{\prime}(y, \xi)=c^{+}\left(\phi_{0}(y) h(\xi)-\phi_{1}(y) h\left(W_{y}\right)\right) \otimes I$. We denote by σ_{1}^{0} the restriction of σ_{1}^{\prime} to a tubular neighbourhood of P_{0} and by σ_{1}^{a} the restriction of σ_{1}^{\prime} to a tubular neighbourhood of P_{a}. By the excision lemma, we then have

$$
\operatorname{index}\left(\sigma_{1}\right)=\operatorname{index}\left(\sigma_{1}^{0}\right) \oplus\left(\oplus_{a \in \mathscr{F}} \operatorname{index}\left(\sigma_{1}^{a}\right)\right)
$$

To prove Theorem 3, it remains to prove the following proposition.
Proposition 5. Let $G=S^{1}$ acting on the symplectic orbifold P / H. Then
(1) Let a be a component of the set $P\left(G_{\mathrm{vert}}\right)$; then

$$
\operatorname{index}\left(\sigma_{1}^{a}\right)^{\boldsymbol{G} \times \boldsymbol{H}}=0
$$

(2) index $\left(\sigma_{1}^{0}\right)^{G \times H}=Q\left(P_{0} /(G \times H), \mathscr{L}_{0}\right)$.

We will prove the equality (1) of Proposition 5 in Section 3 and the equality (2) in Section 4.
3. The local index near a fixed-point component. We first describe a particular transversally elliptic symbol which will be needed for the description of σ_{1}^{a}.

Let V be a complex Hermitian vector space. Let $U(V)$ be the unitary group of V. Let $S^{1}=\left\{e^{i \theta}\right\}$. Consider the exterior bundle $\Lambda V=\Lambda^{+} V \oplus \Lambda^{-} V$ graded in even and odd elements. For $v \in V$, we denote by $\varepsilon(v)$ the left exterior multiplication by v and by $l(v)$ the contraction by v. Let $\ell(v)=\varepsilon(v)+l(v)$ so that $\ell(v)^{2}=\|v\|^{2} I$. We write $\ell(v)=\ell^{+}(v) \oplus \ell^{-}(v)$ with $\ell^{+}(v): \Lambda^{+} V \rightarrow \Lambda^{-} V$.

We identify $T^{*} V$ with $V \oplus V$ with the help of the scalar product on V. Define

$$
\begin{equation*}
m(v, \xi)=\ell^{+}(v-i \xi) \tag{5}
\end{equation*}
$$

It is a S^{1}-transversally elliptic symbol on V. Furthermore, m is $U(V)$-invariant. Thus, m is a fortiori a $U(V)$-transversally elliptic symbol. The index of m is a trace-class virtual representation of $U(V)$. We denote by det_{V} the 1-dimensional representation $u \rightarrow \operatorname{det}_{V}(u)$ of $U(V)$.

Lemma 6. We have the equality of virtual representations of $U(V)$

$$
\text { index }(m)=(-1)^{\operatorname{dim}_{\mathbb{C}^{V}}} \operatorname{det}_{V} \otimes \oplus_{k=0}^{\infty} S^{k}(V)
$$

Proof. It is sufficient to prove this formula on the torus of $U(V)$ composed of diagonal matrices. Then, by multiplicativity of the index, it is sufficient to prove this formula for $V=\mathbb{C}$. This results from [1, Lemma 6.4] (see also [2, Appendix 2]).

We also recall that if $V=V_{0} \oplus V_{1}$ is an orthogonal decomposition of an evendimensional Euclidean vector space V in two even-dimensional Euclidean spaces, then the spinor space S for V is the tensor product of the spinor spaces S_{i} for V_{i} :

$$
S=S_{0} \otimes S_{1}
$$

If $\xi=\xi_{0}+\xi_{1}$ with $\xi_{i} \in V_{i}$, then

$$
c(\xi)=c\left(\xi_{0}\right) \otimes c\left(\xi_{1}\right)
$$

Let us analyze $P\left(E_{\text {vert }}\right)$. At a point $y \in P\left(E_{\text {vert }}\right)$, there exists a unique vector $H_{y} \in \mathfrak{h}$, such that $\left(E+H_{y}\right)_{y}=0$. Let I be the set of elements $Y \in \mathfrak{h}$ such that $P(E+Y)$ is nonempty. This set is finite. Then it is clear that $P\left(E_{\text {vert }}\right)=$ $\bigcup_{i \in I} P\left(E+Y_{i}\right)$. For each $a \in \mathscr{F}$ there exists a unique $Y_{a} \in \mathfrak{h}$ such that P_{a} is a connected component of the manifold $P\left(E+Y_{a}\right)$. We write $S_{a}=E+Y_{a}$. The manifold P_{a} is an H-manifold with infinitesimally free action of H. In particular, the subgroup of H acting trivially on P_{a} is a finite group. Let us remark that the 1-parameter group generated by S_{a} in $G \times H$ is compact. Indeed, the action of $\exp 2 \pi Y_{a}$ on P_{a} is trivial as $Y_{a}=\left(E+Y_{a}\right)-E$. Thus, $\gamma_{a}=\exp 2 \pi Y_{a}$ belongs to the finite subgroup of H acting trivially on P_{a}. We thus see that there exists an integer k such that $\exp 2 \pi k S_{a}=1$ in $G \times H$. The map $\mathbb{R} \rightarrow G \times H$ given by $\theta \mapsto \exp \theta S_{a}$ gives a map from $\mathbb{R} / 2 \pi k \mathbb{Z}$ into $G \times H$ and the 1-parameter subgroup $G_{a} \subset G \times H$ generated by $S_{a}=E+Y_{a}$ is compact. The projection $G \times H \rightarrow G$ realizes G_{a} as a finite cover of G. The manifold P_{a} is a connected component of the manifold $P^{G_{a}}$. The function $\mu(E)$ is constant on P_{a}. Let μ_{a} be its constant value. The action of G_{a} on $\left.\mathscr{L}\right|_{P_{a}}$ is thus given by $\exp \left(\theta S_{a}\right) \cdot v=e^{i \mu_{a} \theta} v$. In particular, μ_{a} is a rational number.

Consider the normal bundle \mathscr{N}_{a} to P_{a} in P. We then have an orthogonal decomposition

$$
\left.T_{\mathrm{hor}} P\right|_{P_{a}}=T_{\mathrm{hor}} P_{a} \oplus \mathscr{N}_{a} .
$$

The action of S_{a} on \mathscr{N}_{a} allows us to decompose $\mathscr{N}_{a} \otimes_{\mathbb{R}} \mathbb{C}$ as a sum of complex vector bundles $\mathscr{N}_{a}(\alpha)$ where G^{a} acts on $\mathscr{N}_{a}(\alpha)$ by the weight e_{α}.

If μ_{a} is positive, we write

$$
\Delta_{a}^{\text {out }}=\left\{\alpha, i\left(\alpha, S_{a}\right)<0\right\}
$$

At the opposite, if μ_{a} is negative, we write

$$
\Delta_{a}^{\text {out }}=\left\{\alpha, i\left(\alpha, S_{a}\right)>0\right\}
$$

We write

$$
\mathscr{N}_{a}^{+}=\oplus_{\alpha \in \Delta_{a}^{\mathrm{out}}} \mathcal{N}_{a}(\alpha)
$$

The vector bundle $T_{\text {hor }} P_{a}$ has a spin structure, with spinor bundle $\mathscr{S}_{\text {hor }, a}$. Furthermore, we can construct a line bundle ρ_{a} over P_{a} such that $\left(\rho_{a}\right)^{2}=\Lambda^{n a} \mathscr{N}_{a}^{+}$ where n_{a} is the rank of \mathcal{N}_{a}^{+}.

The index of the $(G \times H)$-transversally elliptic symbol σ_{1}^{a} is a trace-class virtual representation of $G \times H$. The action of G in index $\left(\sigma_{1}^{a}\right)^{H}$ is a trace-class virtual representation of G. As the group K acts as a group of symmetries, this virtual representation is indeed a virtual representation of $G \times K$. Choose an orientation o_{a} on $T_{\text {hor }} P_{a}$. The sign $\varepsilon\left(o, o_{a}, \Delta_{a}^{\text {out }}\right)$ is defined in [8, Formula (23)].

Theorem 7. We have the equality of trace-class virtual representations of $G \times K$

$$
\operatorname{index}\left(\sigma_{1}^{a}\right)^{H}=\varepsilon\left(o, o_{a}, \Delta_{a}^{\mathrm{out}}\right) \sum_{k=0}^{\infty} Q^{o_{a}}\left(P_{a} / H,\left.\mathscr{L}\right|_{P_{a}} \otimes \rho_{a} \otimes S^{k}\left(\mathscr{N}_{a}^{+}\right)\right)
$$

Let us first note that we obtain from this theorem the corollary.
Corollary 8. Let μ_{a} be the constant value of $\mu(E)$ on P_{a}.
If $\mu_{a}>0$, the virtual representation index $\left(\sigma_{1}^{a}\right)^{H}$ of $G=S^{1}$ is of the form $\oplus_{n} a_{n} e^{i n \theta}$ with $n \geqslant \mu_{a}$.
If $\mu_{a}<0$, the virtual representation index $\left(\sigma_{1}^{a}\right)^{H}$ of $G=S^{1}$ is of the form $\oplus_{n} a_{n} e^{i n \theta}$ with $n \leqslant \mu_{a}$.

In particular, for all $a \in \mathscr{F}$, we have $\left(\text { index }\left(\sigma_{1}^{a}\right)\right)^{G \times H}=0$.
Proof. To compute the action of G on index $\left(\sigma_{1}^{a}\right)^{H}$, it is sufficient to compute the action of the covering group $G_{a} \subset G \times H$ of G. As G_{a} acts trivially on P_{a}, we can employ Formula (3) to obtain the result. Indeed, by our choice of $\Delta_{a}^{\text {out }}$, then for $\mu_{a}>0$, all weights of $\exp \theta S_{a}$ on $\left.\mathscr{L}\right|_{p_{a}} \otimes \rho_{a} \otimes S^{k}\left(\mathscr{N}_{a}^{+}\right)$are of the form $e^{i\left(\mu_{a}+k_{a}\right) \theta}$ with $k_{a}>0$.

Let us prove Theorem 7. The group K acts as a group of symmetries, and all of our construction will be K-invariant. Thus, we leave implicit the action of K.

We consider the noncompact manifold equal to the total space of \mathcal{N}_{a}. It is a $(G \times H)$-manifold. The manifold \mathscr{N}_{a} is fibered over P_{a} with projection p_{a}. Consider the infinitesimally free action of H on \mathscr{N}_{a}. Using a connection on \mathscr{N}_{a}, we can write the tangent bundle to the total space \mathscr{N}_{a} as

$$
T \mathcal{N}_{a}=\left(\mathcal{N}_{a} \times \mathfrak{h}\right) \oplus p_{a}^{*}\left(\left.T_{\mathrm{hor}} P\right|_{P_{a}}\right) .
$$

Thus, we have $T_{\text {hor }} \mathscr{N}_{a}=p_{a}^{*}\left(\left.T_{\text {hor }} P\right|_{P_{a}}\right)$ and $p_{a}^{*}\left(\left.\mathscr{S}_{\text {hor }}\right|_{P_{a}}\right)$ is a spin bundle for $T_{\text {hor }} \mathscr{N}_{a}$. We still denote by \mathscr{L} the line bundle $p_{a}^{*}\left(\left.\mathscr{L}\right|_{P_{a}}\right)$ on \mathscr{N}_{a}. The horizontal \mathscr{L}-twisted Dirac symbol on $T^{*} \mathscr{N}_{a}$ is defined for $z \in \mathscr{N}_{a}$ above $y \in P_{a}$ and $\xi \in\left(T^{*} \mathscr{N}_{a}\right)_{z}$ by

$$
d^{a}(z, \xi)=c^{+}(h(\xi))_{z} \otimes I: \mathscr{S}_{y}^{+} \otimes \mathscr{L}_{y} \rightarrow \mathscr{S}_{y}^{-} \otimes \mathscr{L}_{y}
$$

where we still denote by h the projection of $\left(T^{*} \mathscr{N}_{a}\right)_{z}$ on $\left(T_{\text {hor }}^{*} P\right)_{y}$.

We consider the complex structure J_{a} on \mathscr{N}_{a} such that the i-eigenspace of J_{a} on $\mathscr{N}_{a} \otimes_{\mathbb{R}} \mathbb{C}$ is \mathscr{N}_{a}^{+}. Thus, the complex vector bundle $\left(\mathscr{N}_{a}, J_{a}\right)$ is isomorphic with the vector bundle \mathscr{N}_{a}^{+}. The vector bundle \mathscr{N}_{a} is a $(G \times H)$-equivariant Hermitian bundle over P_{a}. We consider the action of S^{1} on \mathscr{N}_{a} given by $e^{i \theta}$ on each fiber. This action of S^{1} commutes with the action of $G \times H$. Consider the vector field W_{a} generated by this action of $e^{i \theta}$. Thus, $\left(W_{a}\right)_{z}$ is the vector $\left(y,-J_{a} \cdot v\right)$, if $z=(y, v)$ with $y \in P_{a}$ and $v \in\left(\mathcal{N}_{a}\right)_{y}$. We may use the vector field W_{a} to define the following $(G \times H)$-transversally elliptic symbol on \mathscr{N}_{a} :

$$
d_{1}^{a}(z, \xi)=d^{a}\left(z, \xi-\left(W_{a}\right)_{z}\right)
$$

Near P_{a}, the horizontal component of $W=f E$ is equal to the horizontal component of $f S_{a}$. By our choice of $\Delta_{a}^{\text {out }}$, for all $t \in[0,1]$ the map $t J_{a}+(1-t) \mu_{a} S_{a}$ has no zero eigenvalues. Thus, the action of $\mu_{a} S_{a}$ is homotopic to the transformation J_{a}. By homotopy arguments, we obtain

$$
\operatorname{index}\left(\sigma_{1}^{a}\right)=\operatorname{index}\left(d_{1}^{a}\right)
$$

Furthermore, if we consider the action of $S^{1}=\left\{e^{i \theta}\right\}$ on \mathscr{N}_{a}, the symbol d_{1}^{a} is ($S^{1} \times H$)-transversally elliptic. We have

$$
\operatorname{index}\left(d_{1}^{a}\right)=\oplus_{k} \operatorname{index}\left(d_{1}^{a}\right)^{k}
$$

where index $\left(d_{1}^{a}\right)^{k}$ is the isotypic component of type $e^{i k \theta}$ for the action of S^{1}. This series of representations of $G_{a} \times H$ defines a trace-class virtual representation of $G_{a} \times H$. We will prove the following lemma.

Lemma 9. The isotypic component index $\left(d_{1}^{a}\right)^{k}$ is 0 if $k<n_{a}$. For $k \geqslant 0$, we have the equality of virtual representations of G :

$$
\left(\operatorname{index}\left(d_{1}^{a}\right)^{k+n_{a}}\right)^{H}=\varepsilon\left(o, o_{a}, \Delta_{a}^{\text {out }}\right) Q^{o_{a}}\left(P_{a} / H,\left.\mathscr{L}\right|_{P_{a}} \otimes \rho_{a} \otimes S^{k}\left(\mathcal{N}_{a}^{+}\right)\right)
$$

Proof. We analyse the symbol d_{1}^{a}. Consider the decomposition of the H horizontal tangent bundle

$$
\left.\left(T_{H}^{*} P\right)\right|_{P_{a}}=T_{H}^{*} P_{a} \oplus \mathscr{N}_{a} .
$$

We denote by \mathscr{S}_{0} the corresponding spin bundle for $T_{H}^{*} P_{a}$. Let $\mathscr{S}_{1} \rightarrow P_{a}$ be the spin bundle for the Clifford algebra of the vector bundle $\mathscr{N}_{a} \rightarrow P_{a}$. Then

$$
\left.\mathscr{S}_{\text {hor }}\right|_{P_{a}}=\mathscr{S}_{0} \otimes \mathscr{S}_{1} .
$$

We can take as spinor space \mathscr{L}_{1} the bundle $\rho_{a}^{-1} \otimes \Lambda \mathscr{N}_{a}$. Thus,

$$
\left.\mathscr{S}_{\text {hor }}\right|_{P_{a}}=\mathscr{S}_{0} \otimes \rho_{a}^{-1} \otimes \Lambda \mathscr{N}_{a} .
$$

Consider the Hermitian vector bundle \mathscr{N}_{a}. Let N_{a} be a Hermitian vector space of dimension n_{a}. We denote by U_{a} the unitary group of N_{a}. Let R_{a} be the principal bundle of Hermitian frames of $\left(\mathcal{N}_{a}, J_{a}\right)$ framed on N_{a}. Then R_{a} is provided with an infinitesimally free action of $H \times U_{a}$. The manifold \mathscr{N}_{a} is isomorphic to $R_{a} \times_{U_{a}} N_{a}$. In this isomorphism, the group U_{a} acts on the left on N_{a} and on the right on R_{a}.

Using a connection on $R_{a} \rightarrow P_{a}$, the $\left(H \times U_{a}\right)$-horizontal tangent bundle on R_{a} is the lift of the bundle $T_{H}^{*} P_{a}$. Choose an orientation o_{a} on $T_{H}^{*} P_{a}$. This defines a $\mathbb{Z} / 2 \mathbb{Z}$-grading of \mathscr{S}_{0}. Denote $\left.\mathscr{L}\right|_{P_{a}}$ by \mathscr{L}_{a}. We define the $\mathscr{L}_{a} \otimes \rho_{a}^{-1}$-twisted $\left(U_{a} \times H\right)$ horizontal Dirac symbol d_{0}^{a} on R_{a}^{a} by

$$
d_{0}^{a}(r, \eta)=c_{0}^{+}\left(h_{0}(\eta)\right) \otimes I:\left(\mathscr{S}^{0}\right)_{y}^{+} \otimes\left(\mathscr{L}_{a} \otimes \rho_{a}^{-1}\right)_{y} \rightarrow\left(\mathscr{S}^{0}\right)_{y}^{-} \otimes\left(\mathscr{L}_{a} \otimes \rho_{a}^{-1}\right)_{y}
$$

where r is a frame at $y \in P_{a}$ and $\eta \in T_{r}^{*} R_{a}$ projects on the H-horizontal cotangent vector $h_{0}(\eta) \in\left(T_{H}^{*} P_{a}\right)_{y}$.

The symbol d_{0}^{a} is a ($U_{a} \times H$)-transversally elliptic symbol on R_{a}. Thus, its index is a trace-class virtual representation of $U_{a} \times H$. Let τ be a finite-dimensional representation of U_{a} in a vector space V_{τ}. Let \mathscr{V}_{τ} be the associated vector bundle $R_{a} \times_{U_{a}} V_{\tau}$ on P_{a}. This is an H-equivariant vector bundle on P_{a}. By Frobenius reciprocity [1], the isotypic component of type τ^{*} of index $\left(d_{0}^{a}\right)$ is a virtual representation of $G \times H$ equal to

$$
\operatorname{index}\left(D_{\mathrm{hor}, \mathscr{L}_{a} \otimes \rho_{a}^{-1} \otimes r_{\tau}}^{+}\right) \otimes V_{\tau^{*}}
$$

We identify $T^{*} N_{a}$ to $N_{a} \oplus N_{a}$ and we write $\left(z_{1}, \xi_{1}\right)$ an element of $T^{*} N_{a}$. Let ΛN_{a} be the exterior space of the Hermitian space N_{a}. Consider the symbol m_{a} on N_{a} given by Formula (5). Let us lift horizontally the $S^{1} \times H$-transversally elliptic symbol d_{1}^{a} to $R_{a} \times N_{a}$. We then see that hor $\left(d_{1}^{a}\right)$ is the external product of the symbols d_{0}^{a} and m_{a} up to signs. A check of orientations leads to

$$
\operatorname{hor}\left(d_{1}^{a}\right)=(-1)^{n_{a}}\left(o, o_{a}, \Delta_{a}^{\text {out }}\right) d_{0}^{a} \odot m_{a}
$$

Consider the action of $U_{a} \times H \times S^{1}$ on $R_{a} \times N_{a}$. The group H acts only on R_{a}, the group S^{1} acts only on N_{a}, while the group U_{a} acts both on R_{a} and U_{a}. By multiplicativity property of the index, we have the equality of virtual representations of $U_{a} \times H \times S^{1}$

$$
\operatorname{index}\left(d_{0}^{a} \odot m_{a}\right)=\operatorname{index}\left(d_{0}^{a}\right) \otimes \operatorname{index}\left(m_{a}\right)
$$

We thus have (using Lemma 6) the following equality of virtual representations of $H \times U_{a} \times S^{1}$:

$$
\operatorname{index}\left(\operatorname{hor}\left(d_{1}^{a}\right)\right)=\varepsilon\left(o, o_{a}, \Delta_{a}^{\text {out }}\right)\left(\oplus_{k=0}^{\infty} \operatorname{index}\left(d_{0}^{a}\right) \otimes\left(\operatorname{det}_{N_{a}} \otimes S^{k}\left(N_{a}\right)\right) \otimes e^{i\left(n_{a}+k\right) \theta}\right)
$$

By Frobenius reciprocity, index $\left(d_{1}^{a}\right)=\left(\operatorname{index}\left(\operatorname{hor}\left(d_{1}^{a}\right)\right)^{U_{a}}\right.$. To compute the space of U_{a}-invariants in index $\left(\operatorname{hor}\left(d_{1}^{a}\right)\right.$), we must consider the isotypic component of index $\left(d_{0}^{a}\right)$ of type $\operatorname{det}_{V_{a}} \otimes S^{k}\left(N_{a}\right)$. The associated vector bundle on P_{a} is the vector bundle $\rho_{a}^{2} \otimes S^{k}\left(\mathcal{N}_{a}^{+}\right)$. We thus obtain Lemma 9 and thus Theorem 7.

Corollary 3 of Theorem 7 implies the equality (1) of Proposition 5.
4. The local index and reduction. We now analyse the symbol σ_{1}^{0} near P_{0}. The action of $G \times H$ is infinitesimally free on P_{0}. We can assume our metric on P chosen such that $\left\|E_{P}\right\|=1$ on P_{0}. We have

$$
\left.T_{\mathrm{hor}} P\right|_{P_{0}}=T_{\mathrm{hor}} P_{0} \oplus P_{0} \times \mathfrak{g}^{*}
$$

Furthermore, using a connection for the infinitesimally free action of $G \times H$ on P_{0}, we may write

$$
T_{\mathrm{hor}} P_{0}=T_{0} \oplus P_{0} \times \mathfrak{g}
$$

where T_{0} is the $(G \times H)$-horizontal space of P_{0}. Thus,

$$
\left.T_{\mathrm{hor}} P\right|_{P_{0}}=T_{0} \oplus P_{0} \times\left(\mathfrak{g} \oplus \mathfrak{g}^{*}\right)
$$

The spinor space for the direct orthogonal sum $\mathfrak{g} \oplus \mathfrak{g}^{*}$ is a two-dimensional graded vector space $S_{1}=S_{1}^{+} \oplus S_{1}^{-}$where $S_{1}^{ \pm}=\mathbb{C}$. Let $E \in \mathfrak{g}$ and $E^{*} \in \mathfrak{g}^{*}$ be the dual element. If $\lambda, \eta \in \mathbb{R}$, the Clifford multiplication $c_{1}\left(\lambda E+\eta E^{*}\right)$ is given by the (2×2)-matrix

$$
c_{1}\left(\lambda E+\eta E^{*}\right)=\left(\begin{array}{cc}
0 & \lambda+i \eta \\
\lambda-i \eta & 0
\end{array}\right)
$$

Let U be the noncompact manifold $P_{0} \times \mathfrak{g}^{*}$. The horizontal tangent bundle for the H-action on U is

$$
T_{\mathrm{hor}} U=T_{0} \oplus\left(U \times\left(\mathrm{g} \oplus \mathrm{~g}^{*}\right)\right)
$$

Let \mathscr{S}_{1} be the trivial bundle on U with 2-dimensional fiber S^{1}. Let \mathscr{S}_{0} be the spinor bundle for T_{0}. The spinor space \mathscr{S} for $T_{\text {hor }} U$ is thus

$$
\mathscr{S}=\mathscr{S}_{0} \otimes \mathscr{S}_{1}
$$

We denote by c the Clifford action of an element of $T_{\text {hor }} U$ on \mathscr{S}.
Let $(y, f) \in P_{0} \times \mathfrak{g}^{*}$. If $\xi \in\left(T_{\mathrm{hor}} U\right)_{(y, f)}$, we write $\xi=\xi_{0} \oplus \lambda E_{U} \oplus \eta E^{*}$ with λ, $\eta \in \mathbb{R}$ and $\xi_{0} \in\left(T_{0}\right)_{y}$. Consider the symbol c on U given by

$$
c((y, f), \xi)=c\left(\xi_{0}+\left(\lambda E+\eta E^{*}\right)\right)=c_{0}\left(\xi_{0}\right) \otimes c_{1}\left(\lambda E+\eta E^{*}\right)
$$

Both bundles \mathscr{S}_{0} and \mathscr{S}_{1} have canonical $\mathbb{Z} / 2 \mathbb{Z}$-gradations inherited from the symplectic structures. Consider the vector field $W=f E$ on $P_{0} \times \mathfrak{g}^{*}$. Let $z=$ $(y, f) \in P_{0} \times \mathfrak{g}^{*}$. Denote by $d_{1}^{0}(z, \xi)$ the symbol on $P_{0} \times \mathfrak{g}^{*}$ defined by

$$
d_{1}^{0}(z, \xi)=c^{+}\left(z, \xi-f E_{y}\right)
$$

Then we see that d_{1}^{0} is a G-transversally elliptic symbol on $P_{0} \times \mathfrak{g}^{*}$. A neighbourhood of P_{0} in P is diffeomorphic to $P_{0} \times \mathrm{g}^{*}$ and by homotopy, we have index $\left(\sigma_{1}^{0}\right)=$ index $\left(d_{1}^{0}\right)$.

It is clear that inside $H \times G$-transversally elliptic operator (trivial outside $f=0$), we can deform

$$
d_{1}^{0}((y, f), \xi)=c^{+}\left(\xi_{0}+(-f+\lambda) E+\eta E^{*}\right) \otimes I_{\mathscr{L}_{y}}
$$

to

$$
v_{1}^{0}((y, f), \xi)=c^{+}\left(\xi_{0}-f E+\eta E^{*}\right) \otimes I_{\mathscr{S}_{y}}
$$

Let d_{0} be the $(G \times H)$-horizontal Dirac symbol twisted by the line bundle \mathscr{L}_{0}. Consider the Bott elliptic symbol $b(f, \eta)=f+i \eta$ on \mathbb{R}. Checking orientations, we thus see that

$$
v_{1}^{0}=d_{0} \odot b
$$

As the index of b is identically equal to 1 , we obtain that $\operatorname{index}\left(v_{1}^{0}\right)=\operatorname{index}\left(d_{1}^{0}\right)$. Taking the H-invariants, we obtain the equality (2) of Proposition 5. Hence, Theorem 3 is proved.

References

[1] M. F. Atiyah, Elliptic operators and compact groups, Lecture Notes in Math. 401, SpringerVerlag, New York, 1974.
[2] N. Berline and M. Vergne, L'indice équivariant des opérateurs transversalement elliptiques, to appear in Invent. Math.
[3] V. Guillemin, "Reduced phase spaces and Riemann-Roch" in Lie Theory and Geometry: In Honor of Bertram Kostant, Progr. Math. 123, Birkhäuser, Boston, 1994.
[4] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538.
[5] T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math. 16 (1979), 151-159.
[6] E. Meinrenken, On Riemann-Roch formulas for multiplicities, preprint.
[7] M. Vergne, Quantification géométrique et multiplicités, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 327-332.
[8] , Multiplicities formula for geometric quantization, Part I, Duke Math. J. 82 (1995), 143-179.
[9] , Equivariant index formulas for orbifolds, to appear in Duke Math. J. 82 (1995).
[10] E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303-368.
E.N.S. et UA 762 du CNRS, DMI, Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France; vergne@dmi.ens.fr

