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THE INFINITESIMAL INDEX

C. DE CONCINI, C. PROCESI, M. VERGNE

Abstract. In this note, we study an invariant associated to the zeros
of the moment map generated by an action form, the infinitesimal index.
This construction will be used to study the compactly supported equi-
variant cohomology of the zeros of the moment map and to give formulas
for the multiplicity index map of a transversally elliptic operator.

Introduction

Let G be a compact Lie group acting on a manifold N . Then G acts
on the cotangent bundle M = T ∗N in a Hamiltonian way. The set M0

of zeroes of the moment map µ : M → g∗ is the union of the conormals
to the G-orbits in N . An element S of the equivariant K theory KG(M

0)
of M0 is called a transversally elliptic symbol, and Atiyah-Singer (see [1])

associated to S a trace class representation index(S) of G. If Ĝ is the

dual of G, the representation index(S) gives rise to a function m(τ) on Ĝ:
index(S) =

∑

τ∈Ĝm(τ)τ called the multiplicity index map.

The analog of the equivariant K-theory of M0 is the equivariant coho-
mology with compact support H∗

G,c(M
0). Here we construct a map infdexµG,

called the infinitesimal index, associating to an element [α] ∈ H∗
G,c(M

0)
an invariant distribution on g∗. We prove a certain number of functorial
properties of this map, mimicking the properties of the multiplicity index
map.

More generally, we consider the case when M is a G-manifold provided
with a G-invariant one form σ (and we do not assume that dσ is non de-
generate). This allows us to obtain a map infdexµG : H∗

G,c(M
0) → D′(g∗)G,

where M0 is the set of zeroes of the associated moment map µ : M → g∗

and D′(g∗)G the space of G-invariant distributions on g∗. Our construc-
tion is strongly related to Paradan’s localization on M0 of the equivariant
cohomology of M (see [21]).

Let us summarize the content of this article.
In the first section, we give a “de Rham” definition of the equivariant

cohomology with compact support H∗
G,c(Z) of a topological space Z which

is a closed invariant subspace of a G-manifold M : a representative of a class
[α] is an equivariant differential form α(x) on M with compact support and
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such that the equivariant differential Dα of α vanishes in a neighborhood
of Z. In the appendix, we show under mild assumptions on M and Z that
our space H∗

G,c(Z) is naturally isomorphic with the (topological) equivariant
cohomology of Z with compact support.

In the second section, we define the infinitesimal index. Let M be a G-
manifold provided with a G-invariant one form σ (we will say that σ is an
action form). If vx is the vector field on M associated to x ∈ g, the moment
map µ :M → g∗ is defined by µ(x) = −〈σ, vx〉. Then

Ω(x) = µ(x) + dσ = Dσ(x)

is a closed (in fact exact) equivariant form on M . The symbol D denotes in
this paper the equivariant differential as defined in the Cartan model (see
Formula (2).)

Our main remark is that, if f is a smooth function on g∗ with compact
support, the double integral

∫

M

∫

g

eisΩ(x)α(x)f̂(x)dx

is independent of s for s sufficiently large. Here f̂(x) is the Fourier trans-
form of f . Some comment is in order: if α(x) is closed (and compactly
supported) on M , it is clear that the integral

∫

M eisΩ(x)α(x) is independent
of s as Ω(x) = Dσ(x) is an exact equivariant form. In our context, α(x) is
compactly supported, but α(x) is not closed on M : only its restriction to
a neighborhood of M0 is closed. This is however sufficient to prove that

(1) 〈infdexµG([α]), f〉 = i− dimM/2 lim
s→∞

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx

is a well defined map from H∗
G,c(M

0) to invariant distributions on g∗.
In the third and fourth sections, we prove a certain number of functorial

properties of the infinitesimal index. One important property is the free
action property. Consider the situation where the compact Lie group L acts
freely on M and 0 is a regular value of µ. Then the infinitesimal index of a
class [α] is a polynomial density on l∗. Its value at 0 is the integral of the
cohomology class corresponding to [α] by the Kirwan map over the reduced
space µ−1(0)/L. This is essentially Witten non abelian localization theorem
[22]. We give also the double equivariant version, where a compact Lie group
G acts on M commuting with the free action of L.

Let us comment on previous work around this theme.
As we said, the use of the form eisDσ to ”localize” integrals is the main

principle in Witten non abelian localization theorem [22], [11], and our def-
inition of the infinitesimal index is strongly inspired by this principle.

P.-E. Paradan has studied systematically the situation of a manifold M
provided with a G-invariant action form σ. Indeed, he constructed in [17]
a closed equivariant form Pσ on M , congruent to 1 in cohomology and
supported near M0. Paradan’s form Pσ is constructed using equivariant
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cohomology with C−∞-coefficients. Multiplying α(x) by Paradan’s form
Pσ(x) leads to a closed compactly supported equivariant form on M and

idimM/2I(x) :=
∫

M Pσ(x)α(x) is a generalized function on g. As we explain
in Remark 3.8, our infinitesimal index is the Fourier transform of I(x). Prop-
erties of the infinitesimal index could thus be deduced by Fourier transform
from the functorial properties of Pσ proven in [17], [19]. We choose here to
prove directly our properties by using our limit definition.

In a future article, we will use the infinitesimal index map to describe the
multiplicity index map of a transversally elliptic operator.

In the case where M = N ⊕N∗, where N is a representation space for a
linear action of a torus G , we have used the infinitesimal index to identify
H∗
G,c(M

0) to a space of spline distributions on g∗, in a companion article [8]

to the article [7], where we determined KG(M
0) as a space of functions on

Ĝ.
We wish to thank Paul-Émile Paradan for his comments.

1. Equivariant de Rham cohomology

Let M be a C∞ manifold with a C∞ action of a compact Lie group G,
we are going to define its equivariant cohomology with compact support
following Cartan definition (see [10]).

We define the space of compactly supported equivariant forms as

AG,c(M) = (S(g∗)⊗Ac(M))G

with the grading given setting g∗ in degree 2. Here Ac(M) is the algebra of
differential forms on M with compact support.

Each element x ∈ g of the Lie algebra of G induces a vector field vx on
M , the infinitesimal generator of the action: here the sign convention is
that vx = d

dǫ exp(−ǫx) · m in order that the map x → vx is a Lie algebra
homomorphism. A vector field V on M induces a derivation ιV on forms,
such that ιV (df) = V (f) and for simplicity we denote by ιx = ιvx .

One defines the differential as follows. Given α ∈ AG,c(M), we think of α
as an equivariant polynomial map on g with values in Ac(M), thus for any
x ∈ g we set

(2) Dα(x) := d(α(x)) − ιx(α(x))

where d is the usual de Rham differential.
It is easy to see that D increases the degree by one and that D2 = 0.

Thus we can take cohomology and we get the G-equivariant cohomology of
M with compact support.

Now take a G-stable closed set Z in a manifold M . Consider the open set
U = M \ Z. Then U is a manifold and we have an inclusion of complexes
AG,c(U) ⊂ AG,c(M) given by extension by zero. We set

AG,c(Z,M) := AG,c(M)/AG,c(U).
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Definition 1.1. The equivariant de Rham cohomology with compact sup-
port H∗

G,c(Z) is the cohomology of the complex AG,c(Z,M).

Notice that AG,c(U) is an ideal in AG,c(M) so AG,c(Z,M) is a differen-
tial graded algebra and H∗

G,c(Z) is a graded algebra (without 1 if Z is not

compact).
In this model, a representative of a class in H∗

G,c(Z) is an equivariant

form α(x) with compact support on M . The form α is not necessary
equivariantly closed on M , but there exists a neighborhood of Z such that
the restriction of α(x) to this neighborhood is equivariantly closed.

If Z is compact, the class 1 belongs to H∗
G,c(Z): a representative of 1 is

a G-invariant function χ on M with compact support and identically equal
to 1 on a neighborhood of Z in M .

Remark 1.2. Our model for H∗
G,c(Z) seems to depend of the ambient man-

ifold M . However, in the appendix we are going to see that under mild
assumptions on M and Z, H∗

G,c(Z) is naturally isomorphic with the equi-
variant singular cohomology of Z with compact support.

By the very definition of H∗
G,c(Z), we also deduce

Proposition 1.3. Let M be a G-space, Z ⊂ X a closed G-stable subset
(denote by j : Z →M the inclusion). Set U =M \Z (denote by i : U →M
the inclusion). We have a long exact sequence
(3)

· · · → Hh
G,c(U)

i∗−−−−→ Hh
G,c(M)

j∗
−−−−→ Hh

G,c(Z) −−−−→ Hh+1
G,c (U)→ · · · .

If i : Z → M is a closed G-submanifold of a manifold M , the restriction
of forms gives rise to a well defined map i∗ : AG,c(Z,M)→ AG,c(Z).

Proposition 1.4. If Z is a closed G-invariant submanifold of a manifold
M admitting an equivariant tubular neighborhood, the map i∗ induces an
isomorphism in cohomology.

Proof. We reduce to the case in which M is a vector bundle on Z by restric-
tion to a tubular neighborhood. Put a G-invariant metric on this bundle
and let p : M → Z be the projection. Choose a C∞ function f on R with
compact support and equal to 1 in a neighborhood of 0. We map an equi-
variant form ω ∈ AG,c(Z) to f(‖m‖2)p∗ω(m) and then to its class modulo
AG,c(U). It is easily seen that this map is an inverse in cohomology of the
map i∗. �

Assume that M is a L×G manifold and that L acts freely on M . Let Z
be a G × L closed subset of M . Denote by p : M → M/L the projection.
The pull back of forms on M/L induces a map from p∗ : H∗

G,c(Z/L) →
H∗
L×G,c(Z). The following proposition is proven as in Cartan (see [10] or

[9]).



THE INFINITESIMAL INDEX 5

Proposition 1.5. The pull back

p∗ : H∗
G,c(Z/L)→ H∗

L×G,c(Z)

is an isomorphism

Proof. The fact that the pull back of forms induces an isomorphism between
H∗
G,c(M/L) andH∗

L×G,c(M), and between H∗
G,c((M \Z)/L) andH

∗
L×G,c(M \

Z), is proven as in Cartan (see [10] or [9]). Our statement then follows from
Proposition 1.3. �

2. Basic definitions

2.1. Action form and the moment map. Let G be a Lie group and M
a G-manifold.

Definition 2.2. An action form is a G-invariant real one form σ on M .

The prime examples of this setting are when M is even dimensional and
dσ is non degenerate. In this case dσ defines a symplectic structure on M .

Example 2.3. For every manifold N , we may take its cotangent bundle
M := T ∗N with projection π : T ∗N → N . The canonical action form σ on
a tangent vector v at a point (n, φ), n ∈ N,φ ∈ T ∗

nN is given by

〈σ | v〉 := 〈φ | dπ(v)〉.

In this setting, dσ is a canonical symplectic structure on T ∗N and, if
r = dim(N), the form dσr

r! determines an orientation and a measure, the
Liouville measure on T ∗N . If a group G acts on N , then it acts also on
T ∗N preserving the canonical action form and hence the symplectic struc-
ture and the Liouville measure.

Remark 2.4. If M is a manifold with a G–invariant Riemannian structure,
we can consider an invariant vector field instead of a 1–form.

Definition 2.5. Given an action form σ we define the moment map µσ :
M → g∗ associated to σ by:

(4) µσ(m)(x) := −〈σ | vx〉(m) = −ιx(σ)(m).

for m ∈M , x ∈ g.

Remark 2.6. Due to our sign convention for vx, we have

µ(m)(x) := 〈σ |
d

dǫ
exp(ǫx) ·m〉.

The moment map is a G–equivariant map, where on g∗ we have the coad-
joint action.

The form dσ is a closed 2-form on M . Then Dσ(x) = µ(x) + dσ is a
closed (in fact exact) equivariant form on M .

Let us present a few examples.
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Example 2.7. In example 2.3 take N = S1 = {e2πiθ}. The form dθ gives a
trivialization T ∗S1 = S1×R. The vector field ∂

∂θ gives a canonical generator

of the Lie algebra of S1 and dθ, a generator for the dual. The circle group
S1 acts freely by rotations on itself. If [e2πiθ, t] is a point of T ∗S1 with t ∈ R,
the action form σ is σ = tdθ. The function t is the moment map and dt∧ dθ
the symplectic form.

More generally, take N = G a Lie group. Denote by

Lg : h 7→ gh, Rg : h 7→ hg−1

the left and right actions of G on G and by extension also on T ∗G. Let us
now trivialize T ∗G = G× g∗ using left invariant forms.

Call π : T ∗G→ G the canonical projection. Fix a basis ψ1, . . . , ψr of left
invariant 1–forms on G so that a point of T ∗G = G × g∗ is a pair (g, ζ) =
(g,

∑

i ζiψi). Clearly the action form is σ =
∑

i ζiπ
∗(ψi), the symplectic form

is
∑

i dζi ∧ π
∗(ψi) +

∑

i ζiπ
∗(dψi). In the non commutative case, in general

dψi 6= 0, nevertheless when we compute the Liouville form we immediately
see that these terms disappear and

(5)
dσr

r!
= dζ1 ∧ π

∗(ψ1) ∧ · · · ∧ dζr ∧ π
∗(ψr).

We can rewrite this as

(6)
dσr

r!
= (−1)

r(r+1)
2 dζ ∧ Vψ

where we set Vψ := ψ1∧ψ2∧ · · · ∧ψr and dζ := dζ1∧ · · · ∧dζr. At this point
it is clear that Vψ gives a Haar measure on G while dζ gives a translation
invariant measure on g∗.

Let us call µℓ, µr the moment maps for the left or right action of G
respectively.

We denote by Adg the adjoint action and by Ad∗g the coadjoint action.
By definition

〈Ad∗g(φ) |x〉 = 〈φ |Adg−1x〉.

Then, we have

Proposition 2.8.

(7) µℓ(g, ψ) = Ad∗g(ψ), µr(g, ψ) = −ψ, left trivialization.

Proof. This follows from the formula σ =
∑

i ζiπ
∗(ψi). The vector fields

generating the right action are the left invariant vector fields so, for this
action, the formula follows from (4). On the other hand multiplication on
the left by g on right invariant vector fields is the adjoint action. Thus the
pairing between right invariant vector fields and left invariant forms is given
by the previous formula. �

If we had used right invariant forms in order to trivialize the bundle, we
would have

(8) µr(g, ψ) = −Ad
∗
g(ψ), µℓ(g, ψ) = ψ, right trivialization.
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Example 2.9. We get another example in the case of a symplectic vector
space V with antisymmetric form B. Then σ = 1

2B(v, dv) is a 1- form on V

invariant under the action of the symplectic groupG so that dσ = 1
2B(dv, dv)

is a symplectic two form on V . The moment map µ : V → g∗ is given by
µ(v)(x) = 1

2B(v, xv).

For example, let M := R
2 with coordinates v := [v1, v2], B =

∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

.

The action form σ is 1
2(v1dv2 − v2dv1) and dσ = dv1 ∧ dv2. The compact

part of the symplectic group is the circle group S1 acting by rotations. The

moment map is
v21+v

2
2

2 .

Remark 2.10. Given a vector space N , the space N ⊕ N∗ has a canonical
symplectic structure given by

(9) 〈(u, φ) | (v, ψ)〉 := 〈φ | v〉 − 〈ψ |u〉.

The symplectic structure dσ on the cotangent bundle to a vector space N
gives a symplectic structure B to the vector space T ∗N = N ⊕N∗.

The action form σ coming from the cotangent structure is not the same
than the action form on N ⊕ N∗ given by duality (9) (in case V = R, ydx
versus 1

2 (ydx−xdy)), but the moment map relative to the subgroup GL(N)

acting by (gn,t g−1φ) is the same, as well as dσ.

2.11. The cohomology groups H∞
G,c(M). We will need to extend the

notion of equivariant cohomology groups. Consider the space C∞(g) of
C∞ functions on g. We may consider the Z/2Z-graded spaces A∞

G (M) (or
A∞
G,c(M) consisting of the G-equivariant C∞ maps from g to A(M) (or to

Ac(M)). The equivariant differential D is well defined on A∞
G (M) ( or on

A∞
G,c(M)) and takes even forms to odd forms and vice versa. Thus we get

the cohomology groups H∞
G (M), H∞

G,c(M). The group H∞
G,c(M) is a module

over H∞
G (M), and in particular on C∞(g)G = H∞

G (pt).
Proceeding as in the previous case, we may define for any G-stable closed

subspace Z of M (this may depend on the embedding) the cohomology
groups H∞

G,c(Z). An element in H∞
G,c(Z) is thus represented by an element

in A∞
G,c(M) whose boundary has support in M \Z. We have a natural map

H∗
G,c(Z)→H

∞
G,c(Z).

In order to take Fourier transforms, we will need to use yet another space.
Consider the space P∞(g) of C∞ functions on g with at most polyno-

mial growth. We may consider the spaces A∞,m
G,c (M) consisting of the G-

equivariant C∞ maps with at most polynomial growth from g to Ac(M).
The index m indicates the moderate growth on g of the coefficients. We get
the cohomology groups H∞,m

G,c (M). This new cohomology has H∞,m
G (pt) =

P∞(g)G and is a module over P∞(g)G. We may define in the same way the
groups H∞,m

G,c (Z) of cohomology with compact support, and with coefficients
of at most polynomial growth, for any G-stable closed subspace Z of M .
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2.12. Connection forms. We shall use a fundamental notion in Cartan’s
theory of equivariant cohomology. Let us recall

Definition 2.13. Given a free action of a compact Lie group L on a manifold
P , a connection form is a L-invariant one form ω ∈ A1(P )⊗l with coefficients
in the Lie algebra of L such that −ιxω = x for all x ∈ l.

If on P with free L action we also have a commuting action of another
group G, it is easy to see that there exists a G×L invariant connection form
ω ∈ A1(P )⊗ l on P for the free action of L.

Let M = P/L. Define the curvature R and the G-equivariant curvature
Ry of the bundle P →M by

(10) R := dω +
1

2
[ω, ω], Ry := −iyω +R.

Example 2.14. Consider L = G and P = G with left and right action.
A connection form for the right action can be constructed as follows. Each
element x of the Lie algebra of G defines the vector field vx by right action.
These are left invariant vector fields. Given a basis e1, . . . , er of g, set vi :=
vei . This determines a dual basis and correspondingly left invariant forms
ωi with ivj (ωi) = 〈ωi | vj〉 = δij so that

∑

i ωiei is a connection form for the
right action.

This form is also left invariant and R = 0, so by (10) the equivariant
curvature is −iyω where now iy is associated to the left action. We then
have

(11) Ry(g) = −
∑

i

iy(ωi)(g)ei = −(Adg)
−1y.

The equivariant Chern-Weil homomorphism ([4],[6], see [5]) associates to
any L invariant smooth function a on l a closed G-equivariant form, with
C∞-coefficients as in §2.11, denoted by y → a(Ry), on M = P/L.

The formula for this form is obtained via the Taylor series of the function
a as follows. Choose a basis ej , j = 1, . . . , r of l and write R =

∑

j Rj ⊗ ej .

For a multi–index I := (i1, . . . , ir), denote by RI :=
∏r
j=1R

ij
j . Then, given

a point p ∈ P , we set

Definition 2.15.

(12) a(Ry)(p) := a(−iyω +R) = a(−ιyω(p)) +
∑

I

RI(∂Ia)(−ιyω(p))

which is a finite sum since R is a nilpotent element.

One easily verifies that this is independent of the chosen basis. Moreover
one can prove (as in the construction of ordinary characteristic classes) the
following proposition.
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Proposition 2.16. ([4],[6], see [5]) The differential form a(Ry) is the pull
back of a G-equivariant closed form (still denoted by a(Ry)) on M = P/L.
Its cohomology class in H∞

G (M) is independent of the choice of the connec-
tion.

3. Definition of the infinitesimal index

3.1. Infinitesimal index. As before, consider a compact Lie group G and
a G-manifold M equipped with an action form σ. We assume M oriented.
Let µ := µσ :M → g∗ be the corresponding moment map given by (4).

Set
M0
G := µ−1(0), U :=M \M0

G.

We simply denote M0
G by M0 when the group G is fixed.

Consider the equivariant form

Ω := dσ + µ = Dσ.

Let D′(g∗) be the space of distributions on g∗. It is a S[g∗]-module where
g∗ acts as derivatives. When G is non commutative, we need to work with
the space D′(g∗)G of G-invariant distributions.

By Lemma 1.1, a representative of a class [α] ∈ H∗
G,c(M

0) is a form

α ∈ [S(g∗)⊗Ac(M)]G such that Dα is compactly supported in U .

Let us define a map called the infinitesimal index

infdexσG : H∗
G,c(M

0)→ D′(g∗)G

as follows.
We fix a Euclidean structure on g∗ which induces a translation invariant

Lebesgue measure dξ. We choose a square root i of −1 and define the Fourier
transform:

f̂(x) :=

∫

g∗
e−i〈ξ | x〉f(ξ)dξ.

We normalize dx on g so that the inverse Fourier transform is

(13) f(ξ) =

∫

g

ei〈ξ | x〉f̂(x)dx.

The measure dxdξ is independent of the choice of dξ.

Let f(ξ) be a C∞ function on g∗ with compact support in a ball BR of

radius R in g∗ and f̂(x) its Fourier transform, a rapidly decreasing function
on g.

Consider the differential form on M depending on a parameter s:

Ψ(s, α, f) =

∫

g

eisΩ(x)α(x)f̂ (x)dx,

and define (choosing a square root of i)

(14) 〈infdex(s, α, σ), f〉 := i− dimM/2

∫

M

∫

g

eisΩ(x)α(x)f̂(x)dx
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= i− dimM/2

∫

M
Ψ(s, α, f).

This double integral on M×g is absolutely convergent, since α is compactly
supported on M and depends polynomially on x while f̂(x) is rapidly de-
creasing.

More precisely, write α(x) =
∑

a Pa(x)α
a with αa compactly supported

forms on M and Pa(x) polynomial functions of x. Then

Ψ(s, α, f)(m) =
∑

a

[

∫

g

f̂(x)Pa(x)e
is〈µ(m),x〉dx

]

eisdσαa.

By Fourier inversion (as in (13))

(15)

∫

g

f̂(x)Pa(x)e
is〈µ(m),x〉dx = (Pa(−i∂)f)(sµ(m)),

thus

(16) Ψ(s, α, f) =
∑

a

((Pa(−i∂)f) ◦ (sµ))e
isdσαa.

In particular, remark that Ψ(s, α, f) does not depend of the choice of dξ.
Another consequence of this analysis is

Proposition 3.2. Let K ⊂ M be the support of α and C ⊂ g∗ the support
of f . If sµ(K) ∩ C = ∅, then Ψ(s, α, f) = 0.

Given s > 0, set Vs = µ−1(BR/s). We can then choose some s0 >> 0

so large that the restriction of α to the small neighborhood Vs0 of M0 is
equivariantly closed. This is possible since Dα has a compact support K
in U = M \M0 so that ρ := minm∈K ‖µ(m)‖ > 0 and it suffices to take
s0 > R/ρ.

We have (Pa(−i∂)f)(sµ(m)) = 0 if ‖sµ(m)‖ > R ⇐⇒ ‖µ(m)‖ > R/s.
Thus we see that, for s ≥ s0, if K is the support of α, Ψ(s, α, f) has compact
support contained in Vs ∩K.

We have then the formula:

(17) idimM/2〈infdex(s, α, σ), f〉 =

∫

M
Ψ(s, α, f) =

∫

Vs

Ψ(s, α, f).

Note that from Formula (17) follows the

Lemma 3.3. If α has support in U then, for s large, Ψ(s, α, f) = 0.

We will often make use of the following lemma.

Lemma 3.4. We have

−i
d

ds

∫

M

∫

g

eisΩ(x)α(x)f̂(x)dx =

∫

M

∫

g

σeisΩ(x)D(α)(x)f̂ (x)dx.
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Proof. Indeed, since Ω(x) = Dσ(x),

−i
d

ds

∫

M

∫

g

eisΩ(x)α(x)f̂(x)dx =

∫

M

∫

g

Dσ(x)eisΩ(x)α(x)f̂(x)dx

= ν + r

with

ν =

∫

g

∫

M
D

(

σeisΩ(x)α(x)
)

f̂(x)dx

and

r =

∫

M

∫

g

σeisΩ(x)D(α)(x)f̂ (x)dx

since D is a derivation, D(Ω) = 0 and hence D(eisΩ(x)) = 0.
As α(x) is compactly supported, ν = 0, and we obtain the lemma. �

Let us see that

〈infdex(s, α, σ), f〉 = i− dimM/2

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx

does not depend of the choice of s ≥ s0.
We use Lemma 3.4 above to compute d

ds〈infdex(s, α, σ), f〉. By the hy-
potheses made the form σDα has compact support in U , thus by Lemma 3.3

the differential form Ψ(s, σDα, f) =
∫

g
σeisΩ(x)D(α)(x)f̂ (x)dx is identically

equal to 0 for s ≥ s0. This implies that for s ≥ s0

d

ds
〈infdex(s, α, σ), f〉 = 0

hence the independence of the choice of s ≥ s0.

We now see the independence on the choice of the representative α. In
fact, take a different representative α + β with β compactly supported on
U , then

lim
s→∞

idimM/2〈infdex(s, β, σ), f〉 = 0

by Lemma 3.3.
Next let us show that lims→∞ idimM/2〈infdex(s, α, σ), f〉 depends only on

the cohomology class of α. Take α = Dβ, with β compactly supported on
M ,

idimM/2〈infdex(s, α, σ), f〉 =

∫

M

∫

g

eisΩ(x)Dβ(x)f̂(x)dx

=

∫

g

∫

M
D

(

eisΩ(x)β(x)
)

f̂(x)dx = 0.

Finally, let us consider two action forms σ1, σ0, with σ0 = σ. Then the
moment map for σt = tσ1 + (1 − t)σ0 is µt = tµ1 + (1 − t)µ0, with µ0 = µ.
We assume that the closed set µ−1

t (0) remains equal to M0, for t ∈ [0, 1].
Let us see that infdex(s, α, σ1) = infdex(s, α, σ0), for s large.
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Indeed, consider Ω(t) = Dσt. Let

I(t, s) =

∫

M

∫

g

eisΩ(t,x)α(x)f̂(x)dx.

We obtain

−i
d

dt
I(t, s) = s

∫

M

∫

g

D(σ1 − σ0)(x)e
isΩ(t,x)α(x)f̂(x)dx

= ν + r

with

ν = s

∫

g

∫

M
D

(

(σ1 − σ0)e
isΩ(t,x)α(x)

)

f̂(x)dx

and

r = s

∫

M

∫

g

(σ1 − σ0)e
isΩ(t,x)D(α)(x)f̂ (x)dx.

As α(x) is compactly supported, ν = 0.
As for r, we remark that Ω(t, x) = 〈µt, x〉 + q(t) where q(t) is a two

form. The integral r involves the value of f , and its derivatives, at the
points sµt(m). As the compact support K of Dα is disjoint from M0, our
assumption implies that µt(m) is never equal to 0 for m ∈ K and t ∈ [0, 1].
Thus ρ := minm∈K,t∈[0,1] ‖µt(m)‖ > 0 and, arguing as for Formulas (15) and
(16) we deduce that r = 0 if we take s0 > R/ρ.

One has still to verify that this linear map satisfies the continuity prop-
erties that make it a distribution. We leave this to the reader.

In conclusion we have shown

Theorem 3.5. Let σ be an action form with moment map µ. Let M0 =
µ−1(0). Then we can define a map

infdexσG : H∗
G,c(M

0)→ D′(g∗)G

setting for any [α] ∈ H∗
G,c(M

0) and for any smooth function with compact
support f on g∗

〈infdexσG([α]), f〉 := i− dimM/2 lim
s→∞

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx.

The map infdexσG is a well defined homomorphism of S[g∗]G modules.
If the one form σ moves along a smooth curve σt with moment map µt

such that µ−1
t (0) remains equal to M0 , then

infdexσtG = infdexσG.

In particular, if two action forms σ1, σ2 have same moment map µ, the
two infinitesimal indices infdexσ1G and infdexσ2G coincide. Indeed, the moment
map µt associated to (1 − t)σ1 + tσ2 is constant. In view of this property,
we denote by infdexµG the infinitesimal index map associated to σ.
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Remark 3.6. In general, the maps infdexµG and infdex−µG are different (cf.
Exaple 3.14), although the zeroes of the moment maps associated to σ and
−σ are the same. Thus the stability condition that the set µ−1

t (0) remains
constant, when moving along σt, is essential in order to insure the indepen-
dence of the infinitesimal index.

Let us give another formula for infdexµG. On this formula, it will be clear

that infdexµG belongs to the space S ′(g∗)G of invariant tempered distributions
on g∗.

Let f be a Schwartz function on g∗. If α is a representative of [α] ∈

H∗
G,c(M

0), we see that
∫

g
eisΩ(x)(Dα)(x)f̂ (x)dx is a rapidly decreasing func-

tion of s: Dα being identically equal to 0 on a neighborhood of M0, this
is expressed in terms of the value of the function f , and its derivatives, at
points sµ(m), where µ(m) is non zero. Thus we can define the compactly
supported differential form Φ(α, f) on M by

(18) Φ(α, f) :=

∫

g

α(x)f̂ (x)dx+ iσ

∫ ∞

s=0

(
∫

g

eisΩ(x)Dα(x)f̂(x)dx

)

ds.

Proposition 3.7. We have

〈infdexµG(α), f〉 = i− dimM/2

∫

M
Φ(α, f).

Proof. Let f be a function with compact support on g∗. Then

lim
s→∞

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx

is equal to
∫

M

∫

g

α(x)f̂(x)dx+

∫ ∞

0

d

ds

(
∫

M

∫

g

eisΩ(x)α(x)f̂(x)dx

)

ds.

By Lemma 3.4, we obtain the proposition. �

Remark 3.8. It is possible to define equivariant forms on M with C−∞

coefficients [13]. Such a form is an equivariant map from test densities
on g to differential forms on M . The equivariant differential D extends
and we obtain the group H−∞

G (M), and similarly the group H−∞
G,c (M). If

α ∈ H∗
G,c(M

0), and g is a test function on g, we may define the differential
form

(p(α), gdx) =

∫

g

α(x)g(x)dx + iσ

∫ ∞

s=0
(

∫

g

eisΩ(x)Dα(x)g(x)dx)ds.

It is easy to see that p(α) is a compactly supported equivariant form
on M with C−∞ coefficients such that D(p(α)) = 0. Indeed, we have
p(α) = α − σDαDσ , where Dα

Dσ is well defined in the distribution sense by

−i
∫∞
s=0 e

isDσDαds.
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We see that α 7→ p(α) defines a map from H∗
G,c(M

0) to H−∞
G,c (M). In

this framework, our distribution idimM/2infdexµG(α) on g∗ is the Fourier
transform of the generalized function

∫

M p(α) on g.
Associated to an action form σ, Paradan defined a particular element

Pσ ∈ H
−∞
G (M) representing 1 and supported in a neighborhood of M0

[16]. This element is the form p(1) defined above (when M0 is compact).
Most of our subsequent theorems could be obtained by Fourier transforms
of Theorems proven in [17], [19] where basic functorial properties of Pσ are
proved. However, we will work on g∗ instead that on g and we will give
direct proofs.

3.9. Extension of the definition of the infinitesimal index. Let us
see that the definition of the infinitesimal index extends to H∞,m

G,c (M0).

If α ∈ A∞,m
G,c (M) is such that Dα = 0 in a neighborhood of M0, we see

that Lemma 3.4 still holds, f being a Schwartz function on g∗:

−i
d

ds

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx =

∫

M

∫

g

eisΩ(x)σDα(x)f̂(x)dx.

Since α is of at most polynomial growth, the function of x given byDα(x)f̂(x)
is still a Schwartz function of x. Thus by Fourier inversion, we again see
that −i dds

∫

M

∫

g
eisΩ(x)α(x)f̂ (x)dx is a rapidly decreasing function of s and

we may define

〈infdexµG(α), f〉 = i−dimM/2 lim
s→∞

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx.

We have again the formula:

〈infdexµG(α), f〉 = i−dimM/2

∫

M
Φ(α, f)

where Φ(α, f) is given by Equation (18).
This formula shows that infdexµG(α) is aG-invariant tempered distribution

on g∗. With similar arguments, we obtain the following theorem.

Theorem 3.10. We can define a map

infdexµG : H∞,m
G,c (M0)→ S ′(g∗)G

setting for any [α] ∈ H∞,m
G,c (M0) and for any Schwartz function f on g∗

〈infdexµG([α]), f〉 := i− dimM/2 lim
s→∞

∫

M

∫

g

eisΩ(x)α(x)f̂ (x)dx.

If σ moves smoothly along a curve σt such that µ−1
t (0) remains equal to

M0, the map infdexµtG remains constant.
Furthermore, using the Fourier transform F of tempered distributions

(19) F(idimM/2infdexµG([α])) = lim
s→∞

∫

M
eisΩ(x)α(x).



THE INFINITESIMAL INDEX 15

Remark 3.11. If f is with compact support and the Fourier transform of α(x)

is a distribution with compact support on g∗, the value
∫

M

∫

g
eisΩ(x)α(x)f̂(x)dx

is independent of s when s is sufficiently large.

Let us state some immediate properties of the infinitesimal index.

Theorem 3.12. Witten non abelian localization theorem principle [22].
Let [α] ∈ H∗

G,c(M) (eventually with coefficients in P∞(g)). Let I(x) =
∫

M α(x). Let σ be an action form, and let M0 be the zeroes of the moment

map. Then [α] defines an element [α0] in H
∗
G,c(M

0) and

(20) F(idimM/2infdexµG([α0]))(x) = I(x).

Proof. This is clear from Formula (19) as
∫

M eisΩ(x)α(x) does not depend
on s, as Ω(x) is exact and α is closed with compact support. �

The interest of this theorem is that the left hand side of (20) depends
only of the restriction of α on a small neighborhood of M0.

Remark 3.13. Let M be a G-manifold equipped with a G invariant Rie-
mannian metric. Take a G-invariant vector field V on M so that Vm at
each point m ∈ M is tangent to the orbit Gm and let σ be the one form
associated to V using the metric. Then M0 is the set of zeroes of the vector
field V .
• If G is abelian, we may choose V = vx with x generic in g, and then

M0 = MG, the set of fixed points of G on M . Theorem 3.12 leads to the
”abelian localization theorem” of Atiyah-Bott-Berline-Vergne [2],[3].
• When G is non necessarily abelian and M is provided with an Hamil-

tonian structure with symplectic moment map ν :M → g∗, then the Kirwan
vector field Vm = exp(ǫν(m))m is such that M0 coincides with the critical
points of the function ‖ν‖2 (we used an identification g∗ = g). Then one of
the connected components ofM0 is the zeros of the symplectic moment map
ν, and µ and ν coincide near this component. This is the situation consid-
ered by Witten (and extensively studied by Paradan, [16]) with applications
to intersection numbers of reduced spaces ν−1(0)/G (as in [12]).

Example 3.14. • If G := {1} is trivial, H∗
G,c(M

0) is equal to H∗
c (M) and

the infdex maps to constants, by just integration of compactly supported
cohomology classes.
• If M = {p} is a point, the moment map and Ω(x) are both 0 while

M0 =M = {p}. Its equivariant cohomology is S[g∗]G.
By Proposition 3.5 it is then enough to compute the infinitesimal index

of the class 1. This is given by

f 7→

∫

g

f̂(x)dx = f(0)

by Fourier inversion formula. So, in this case the infinitesimal index of 1 is
the δ–function δ0.
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More generally, we have extended the definition of infdexµG to P∞(g)G.
If α(x) is any G-invariant function on g with polynomial growth and α̂ its
Fourier transform (a distribution on g∗), we obtain

(21) infdexµ
0

G (α) = α̂.

• Consider M = T ∗S1 with the canonical action form as in Example
2.7. Then M0 = S1. We compute the infinitesimal index of the class
1 ∈ H∗

G,c(M
0) = R. Let χ(t) be a function identically equal to 1 in a

neighborhood of t = 0. Then Dσ(x) = xt+ dt ∧ dθ, and by definition

〈infdexµG([α]), f〉 = −i lims→∞

∫

T ∗S1

(

∫ ∞

−∞
χ(t)eisxt+isdtdθ f̂(x)dx

)

= −i lim
s→∞

∫

T ∗S1

χ(t)f(st)eisdtdθ = lim
s→∞

s

∫

R

χ(t)f(st)dt

= lim
s→∞

∫

R

χ(t/s)f(t)dt.

Thus we see that the limit distribution is just the integration against the
Lebesgue measure dt.
• Consider now M = R

2 as in Example 2.9. As we have seen, the action
form σ is 1

2(v1dv2− v2dv1), so Dσ(x) = dv1 ∧ dv2 +x‖v‖2/2. Then M0 = 0.

We compute the infinitesimal index of the class 1 ∈ H∗
G,c(M

0). Let χ(t)
be a function on R with compact support and identically equal to 1 in a
neighborhood of t = 0. Then by definition and the normalization of the
Lebesque measure on the Lie algebra of S1, we get

〈infdexµG([α]), f〉 = −i lims→∞

∫

R2

( 1

2π

∫ ∞

−∞
χ(‖v‖2)eisx

‖v‖2

2
+isdv1dv2 f̂(x)dx

)

.

Passing in polar coordinates, we see the limit distribution is the Heaviside
distribution supported on R

+.

4. Properties of the infinitesimal index

There are several functorial properties of the infinitesimal index that we
need to investigate: locality, product, restriction, the map i!, free action.

4.1. Locality. The easiest property is locality.
Let M be a G–action manifold with moment map µ and i : U → M an

invariant open set, then we have a mapping i∗ : AG,c(U)→ AG,c(M) which
induces also a mapping

i∗ : H
∗
G,c(U

0)→ H∗
G,c(M

0).

Proposition 4.2. The mapping i∗ is compatible with the infinitesimal index.

Proof. This is immediate from the definitions. �



THE INFINITESIMAL INDEX 17

4.3. Product of manifolds. If we have a productM1×M2 of two manifolds
relative to two different groups G1 ×G2, we have

(M1 ×M2)
0 =M0

1 ×M
0
2

and the cohomology is the product.

Proposition 4.4. The infinitesimal index of the external product of two
cohomology classes is the external product of the two distributions.

Proof. This is immediate from the definitions. �

4.5. Restriction to subgroups. Let L ⊂ G be a compact subgroup of G
so that l, the Lie algebra of L, is a subalgebra of g. The moment map µL
for L is just the composition of µG with the restriction p : g∗ → l∗. Thus
µ−1
L (0) ⊃ µ−1

G (0).
If f is a test function on l∗, then p∗f is a smooth function on g∗ constant

along the fibers of the projection.

Definition 4.6. We will say that a distribution Θ on g∗ is a distribution
with compact support along the fibers, if for any test function f on l∗, the
distribution (p∗f)Θ is with compact support on g∗.

If Θ is a distribution on g∗ with compact support along the fibers, we
may define p∗Θ as a distribution on l∗ by

〈p∗Θ, f〉 :=

∫

g∗
(p∗f)Θ.

The right hand side is computed as the limit when T tends to ∞ of
〈Θ, (p∗f)χT 〉 when χT is a smooth function with compact support and equal
to 1 on the ball BT of g∗.

Let ZG be a closed G-invariant subset of M containing µ−1
L (0) (if G is

abelian, we can take ZG = µ−1
L (0)). Then we have two maps

j : H∗
G,c(ZG)→ H∗

G,c(µ
−1
G (0))

and

r : H∗
G,c(ZG)→ H∗

L,c(µ
−1
L (0)).

Theorem 4.7. If [α] ∈ H∗
G,c(ZG) then infdexµGG (j[α]) is compactly supported

along the fibers of the map p : g∗ → l∗, and

(22) p∗(infdex
µG
G (j[α])) = infdexµLL (r[α]).

Proof. Write Fg∗(h) for the Fourier transform ĥ of a function h on g∗.
Let f be a test function on l∗ with support on a ball BR. We have, for χ

a test function on g∗,

idimM/2〈(p∗f)infdexµGG (j[α]), χ〉 = lim
s→∞

∫

M

∫

g

eisΩ(x)α(x)Fg∗((p∗f)χ)(x)dx.
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By our assumption on α, there exists ǫ > 0 such that Dα is equal to 0 on
the subset ‖µL(m)‖ < ǫ of M . The argument used in Lemma (3.4) proves
that the distribution

χ→

∫

M

∫

g

eisΩ(x)α(x)Fg∗ (χp∗f)(x)dx

stabilizes as soon as s > R/ǫ.
Write for s0 > R/ǫ

idimM/2〈(p∗f)infdexµGG (j[α]), χ〉 =

∫

M

∫

g

eis0Ω(x)α(x)Fg∗(χp∗f)(x)dx

=

∫

M
Ψ(s0, α, χp

∗f)

where

Ψ(s0, α, χp
∗f)(m) =

∑

a

[

∫

g

Pa(x)e
is0〈µ(m),x〉Fg∗(χp∗f)(x)dx

]

eis0dσαa

(23) =
∑

a

((Pa(−i∂)(χp
∗f) ◦ (s0µ))e

is0dσαa.

Applying Proposition 3.2 we have that, if K is the compact support of
α, and as s0 is greater than R/ǫ, the form Ψ(s0, α, χp

∗f) is supported on
the compact subset s0µG(K) in g∗. This shows the first statement that
infdexµGG (j[α]) is compactly supported along the fibers of p.

We pass next to Formula (22). We then have

idimM/2〈(p∗f)infdexµGG (j[α]), χT 〉 =

∫

M
Ψ(s0, α, χT p

∗f)

for any T large.
Using Formula (23), when T is sufficiently large, as χT is equal to 1 on a

large ball, Ψ(s0, α, χT p
∗f) is simply

∑

a

((Pa(−i∂)p
∗f) ◦ (s0µ))e

is0dσαa.

As p∗f is constant along the fibers, if we denote by α0 the restriction
of α(x) to l, we see that Ψ(s0, α, χT p

∗f) is equal to the differential form
Ψ(s0, α0, f) as all derivatives in the ker p direction annihilate p∗f . We thus
obtain our theorem.

�

4.8. Thom class and the map i!. Let Z be an oriented G manifold of
dimension d and i : M →֒ Z a G-stable oriented submanifold of dimension
n = d− k. Assume that M is an action manifold with moment map µ and
that Z is equipped with an action form σZ such that the associated moment
map µZ extends µ. Thus Z0 ∩M = M0. Under these assumption, we will
define a map

i! : H
∗
G,c(M

0)→ H∗
G,c(Z

0)
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preserving the infdex.
Let us recall the existence of an equivariant Thom class ([15], see [10] pag.

158, [18]) . We assume first that M has a G-stable tubular neighborhood
N in Z, with projection p : N → M . Then there exists a unique class τM
of equivariantly closed forms on N with compact support along the fibers
so that the integral p∗τM is identically equal to 1 along each fiber. Thus for
any equivariant form α(x) on M with compact support (but not necessarily
closed), we have that

∫

M
α =

∫

N
p∗α ∧ τM .

In general, let us take a class [α] ∈ H∗
G,c(M

0) where α ∈ AG,c(M) and

Dα has support K in M \M0.
Consider a G-stable open set U ⊂M with the following properties.

i) The support of α is contained in U .
ii) The closure of U is compact and has an open neighborhood A in Z

such that M ∩A has a G-stable tubular neighborhood in A.

By locality, we can then substitute U toM and thus assume that the pair
(Z,M) has all the properties which insure the existence of a Thom class τM .

Consider a G-invariant Riemannian metric on the normal bundle N to
M in Z. Define Sǫ as the (open) disk bundle of radius ǫ in N . Then we can
take our tubular neighborhood in such a way that it is diffeomorphic to Sǫ

for some ǫ.
We claim that we can take Sǫ so close to M that p−1K ∩ Sǫ ∩ Z0 = ∅.

Indeed, p−1K ∩ Sǫ is a compact set and, since K is disjoint from M0 and
hence from Z0, for a sufficiently small ǫ, p−1K ∩ Sǫ is disjoint from Z0.

Let us now fix the Thom form τM in AG,c(N ) with support in Sǫ.
Consider then the form p∗α∧τM . We have that D(p∗α∧τM ) = p∗Dα∧τM

has support in p−1K ∩ Sǫ ⊂ Z \ Z0. It follows that p∗α ∧ τM defines an
element in H∗

G,c(Z
0).

We claim that this element depends only on the class [α]. So first take
another Thom form τ ′M with the same properties. Then there is a form
rM ∈ AG,c(S

ǫ) so that τM − τ
′
M = DrM and

p∗α ∧ τM − p
∗α ∧ τ ′M = p∗α ∧DrM = D(p∗α ∧ rM )− p∗Dα ∧ rM

where p∗α∧ rM has compact support and p∗Dα∧ rM has support in Z \Z0.
Next assume that α is supported outsideM0, then again we may take τM

so that p∗α ∧ τM is supported outside Z0.
Finally, if α = Dβ, we have p∗α ∧ τM = D(p∗β ∧ τM ).
Hence we can set

(24) i![α] := idimZ/2−dimM/2[p∗α ∧ τM ].

Theorem 4.9. Assume that M is an action manifold with action form σ
and moment map µ and that Z is equipped with an action form σZ such that
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the associated moment map µZ extends µ. Then the morphism

i! : H
∗
G,c(M

0)→ H∗
G,c(Z

0)

preserves the infinitesimal index.

Remark 4.10. We do not need to assume that the restriction of σZ to M is
the action form σ on M , only that the moment map µZ restricts to µ.

Proof. First let us see that infdexµZG (i![α]) does not depend of the choice of
the form σZ on Z, if the moment map µZ restricts to µ. We can assume
Z = N . Let β = p∗α ∧ τM . The form β is compactly supported.

Let σ1, σ0 be two one forms on Z and consider σt = tσ1 + (1 − t)σ0 and
µt the corresponding moment map. Set Ω(t) = Dσt. We assume that the
map µt coincides with µ on M for all t. Thus, provided we choose τM
with support sufficiently close to M , there exists an h > 0 such that on the
support of Dβ, we have ‖µt‖ > h > 0.

Define

I(t, s) :=

∫

N

∫

g

β(x)eisΩ(t,x)β(x)f̂(x)dx.

We can prove that d
dtI(t, s) = 0 in the same way that the invariance of

the infinitesimal index infdexµtG along a smooth curve µt (proof of Theorem
3.5), thus we skip the proof.

Having established the independence from σ, we choose for the final com-
putation σZ := p∗σ. In this case, since β = p∗α ∧ τM ,
(25)

idimZ/2〈infdexµZG ([β]), f〉 = lim
s→∞

∫

g

∫

N
p∗

(

eisΩ(x)α(x)
)

∧ τM (x)f̂(x)dx.

As τM has integral 1 over each fiber of the projection p : N →M , we obtain
that (25) is equal to

lim
s→∞

∫

g

∫

M
eisΩ(x)α(x)f̂ (x)dx

which is our statement. �

4.11. Free action. Let G and L be two compact groups. Consider now an
oriented manifold N under G×L action, with action 1-form σN and moment
map µG×L = (µG, µL) : N → g∗ ⊕ l∗. We set N0 = µ−1

G×L(0).
Assume that
• the group L acts freely on N .
• 0 is a regular value of µL.

Define P = µ−1
L (0). By assumption P is a manifold with a free L-action

so
M := µ−1

L (0)/L

is a G-manifold.
We denote by π the projection P → M . The invariance of σN under L

action then implies
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Proposition 4.12. The restriction σ of σN to P verifies ιxσ = 0 for any
x ∈ l and descends to a G-invariant action form σM on M , thus M is an
action manifold.

We denote by µ the moment map on M associated to σM . The map µ
is obtained factoring the restriction of µG to P which is L invariant, that is
µG = µ ◦ π on P . Since N0 is the subset of P where µG equals 0, we see
that M0, the fiber at zero of µ, is N0/L.

Recall (Proposition 1.5) that since the action of L is free, we have an
isomorphism π∗ : H∗

G,c(M
0)→ H∗

G×L,c(N
0).

Our goal in this section is, given a class [γ] ∈ H∗
G,c(M

0), to compare

infdexµG([γ]) and infdex
µG×L

G×L (π∗([γ])).

As 0 is a regular value of µL, any L-stable compact subset K in P has
an L-stable neighborhood in N isomorphic to K × l∗ with moment map µL
being the projection on the second factor. Since the computations of the
infinitesimal index of a given class with compact support are local aroundN0

(by Proposition 4.2), we may assume that N = P × l∗ and that the moment
map µL is the projection on the second factor. We write an element of N
as (p, ζ) with p ∈ P , ζ ∈ l∗.

The composition of the projection η : N = P × l∗ → P and of π : P →M
is a fibration with fiber L× l∗ = T ∗L. Since the symplectic structure gives a
natural orientation on T ∗L, the orientation of N induces an orientation on
M .

Let us choose now a connection form ω ∈ A1(P ) ⊗ l for the free action
of L on P . We want to apply Definition 2.15 to the following functions. For
ζ a point in l∗, define θζ ∈ C

∞(l)L by

θζ(x) :=

∫

L
ei〈x,Ad∗(l)ζ〉dl

where dl is a Haar measure on L.
Thus for any ζ ∈ l∗, we may consider the G-equivariant closed form θζ(Ry)

on M given by

(26) θζ(Ry) =

∫

L
ei〈Ry ,Ad∗(l)ζ〉dl =

∫

L
ei〈−ιyω,Ad∗(l)ζ〉ei〈R,Ad∗(l)ζ〉dl.

We need some growth properties of the function y → θζ(Ry).

We write θζ(x) =
∫

l∗
ei〈f,x〉dβζ(f) where dβζ(f) is a L-invariant measure

on the orbit Lζ ⊂ l∗.
If we fix p ∈ P and ζ ∈ l∗, let us see that the function y → θζ(Ry)(p) is

the Fourier transform of a compactly supported measure dµp,ζ on g∗ (with
values in ΛT ∗

pP ). Indeed, let f ∈ l∗. The function 〈−ιyω(p), f〉 is linear in
y ∈ g, so we write 〈−ιyω(p), f〉 = 〈y, h(p, f)〉 with h(p, f) ∈ g∗ depending
smoothly on p, f . We see that

θζ(Ry)(p) =

∫

l∗
ei〈y,h(p,f)〉ei〈f,R〉dβζ(f).
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Let us integrate over the fiber of the map hp : l
∗ → g∗ given by f → h(p, f) =

ξ. We obtain that

(27) θζ(Ry)(p) =

∫

g∗
ei〈y,ξ〉(hp)∗(e

i〈f,R〉dβζ(f)).

In this formula, (hp)∗(e
i〈f,R〉dβζ(f)) is a measure supported on the com-

pact set hp(Lζ) as dβζ(f) is supported in the compact set Lζ. In particular,
we see that, over a compact subset of P , y → θζ(Ry)(p) is a bounded func-
tion of y as well as all its derivatives in y and estimates are uniforms in ζ if
ζ varies in a compact set of l∗.

If [γ] ∈ H∗
G,c(M

0), we choose a representative γ(y) which is a form with
compact support on M and depending of y in a polynomial way. Set

(28) γ̃ζ(y) := γ(y)θζ(Ry).

Proposition 4.13. The equivariant form γ̃ζ(y) is of at most polynomial
growth in y. It represents a class in H∞,m

G,c (M0) which does not depend of
the choice of the connection ω but only on the choice of the Haar measure
dl.

Proof. The fact that γ̃ζ(y) is of at most polynomial growth follows from the
preceding discussion. The second statement is proved as in ([4],[6], see [5]).

�

Remark that θ0(Ry) = vol(L, dl) where vol(L, dl) is the volume of the
compact Lie group L for the Haar measure dl.

Given [γ] ∈ H∗
G,c(M

0), we may apply the infdex construction (Theorem

3.10) to the cohomology class [γ̃ζ ] ∈ H
∞,m
G,c (M0) of the equivariant form

γ̃ζ(y) = γ(y)θζ(Ry).
With this notation, we can state:

Theorem 4.14. Let f1 be a test function on l∗ and f2 be a test function on
g∗. Then 〈infdexµG([γ̃ζ ]), f2〉 is a smooth function of ζ and

(29) 〈infdex
µG×L

G×L (π∗([γ])), f1f2〉 =

∫

l∗
〈infdexµG([γ̃ζ ]), f2〉f1(ζ)dζ.

In this formula, γ̃ζ is constructed using the Haar measure dl such that
dldζ is the canonical measure on T ∗L = L×l∗ (by right or left trivialization).

Let us first write a corollary of this theorem.

Corollary 4.15. Let f2 be a test function on g∗. Then the distribution
f1 → 〈infdex

µG×L

L×G (π∗([γ])), f1f2〉 on l∗ is a smooth density D(ζ)dζ. The

value of D at 0 is equal to vol(L, dl)〈infdexµG([γ]), f2〉.

We now prove Theorem 4.14.
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Proof. Let γ(y) be a compactly supported equivariant form on M repre-
sentative of [γ]. Any G × L–equivariant form ψ with compact support on
N = P × l∗ which restricted to P coincides with π∗γ can be taken as a
representative for the cohomology class π∗[γ] ∈ H∗

G×L,c(N
0). Thus take an

L-invariant function ρ : l∗ → R supported near zero and such that ρ equals
1 on a neighborhood of 0 and take the form ψ which is still L-invariant and
G-equivariant:

(30) ψ(y)(p, ζ) = ρ(ζ)ξ∗γ(y).

Recall that σ is the restriction of σN on P and consider the one form
η∗(σ) on N = P × l∗, the pull back of σ under the projection η : P × l∗ → P .
Let ω ∈ A1(P )⊗ l be our connection form. Then 〈ω, ζ〉 is an action form on
N , with moment map for L the second projection. Its moment map for G
vanishes on P .

Consider σ0 = σN and σ1 = η∗(σ) + 〈ω, ζ〉 with moment maps µ0, µ1.

Lemma 4.16. The moment map µt = tµ1 + (1 − t)µ0 associated to tσ1 +
(1− t)σ0 is such that µ−1

t (0) = N0 for all t ∈ [0, 1].

Proof. This follows from the fact that the component under L of these maps
is the second projection, so that µ−1

t (0) ⊂ P for all t and moreover µ1, µ0
coincide on P . Thus µ−1

t (0) = P 0 = N0. �

According to Theorem 3.5, we may thus assume that σN = η∗(σ)+ 〈ω, ζ〉
and compute with this “normal form” the values of infdex

µG×L

G×L .
Recall that µ : M → g∗ is the moment map relative to G associated to

σM . By abuse of notations, we still denote by µ its pull back by πη to N .
This is the moment map associated to η∗(σ).

Lemma 4.17. Let Ω := DσN , for (x, y) ∈ l⊕ g. At a point (p, ζ) ∈ P × l∗,
we have:

Ω(x, y) = 〈x, ζ〉 − 〈ιyω, ζ〉+ 〈y, µ〉+ dη∗(σ) + d〈ω, ζ〉.

Proof. By the definition of a connection form (for the action of L), we have
〈x, ζ〉 = −〈ιxω, ζ〉 so 〈x, ζ〉 − 〈ιyω, ζ〉 is the value of the moment map at

(x, y) of 〈ω, ζ〉. As for η∗(σ), by definition of P = µ−1
L (0), the part relative

to L of its moment map equals to 0. �

We write Ω(x, y) = 〈x, ζ〉+Ω′(y) with

Ω′(y) = −〈ιyω, ζ〉+ 〈y, µ〉+ η∗d(σ) + d〈ω, ζ〉

independent of x. We have

(31) Ω′(y) = η∗(Dσ)− 〈ιyω, ζ〉+ d〈ω, ζ〉.

For s sufficiently large,

idimN/2〈infdex
µG×L

G×L (π∗([γ])), f1f2〉 = I(s)
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with

I(s) =

∫

N

∫

g×l

eisΩ(x,y)ψ(y)f̂1(x)f̂2(y)dxdy.

Applying Fourier inversion
∫

l

eis〈x,ζ〉f̂1(x)dx = f1(sζ),

we obtain that

I(s) =

∫

N

∫

g

eisΩ
′(y)ψ(y)f1(sζ)f̂2(y)dy

where ψ(y)(p, ζ) = ρ(ζ)ξ∗γ(y) is defined by Formula (30).
Write ω =

∑r
i=1 ωiei on a basis {e1, . . . , er} of l, and set ζi = 〈ei, ζ〉 for

i = 1, . . . , r.
We have 〈ω, ζ〉 =

∑r
i=1 ζiωi and thus

(32) d〈ω, ζ〉 =
r

∑

i=1

ζidωi +

r
∑

i=1

dζi ∧ ωi.

Let us now integrate along the fiber l∗ of the projection η : N = P × l∗ →
P . We thus need to identify the highest term of eisΩ

′(y) in the dζi. By
(32),(31) this highest term equals

(is)rdζ1 ∧ ω1 ∧ · · · ∧ dζr ∧ ωr = (−1)
r(r+1)

2 (is)rdζ ∧ Vω

where we set Vω := ω1 ∧ ω2 ∧ · · · ∧ ωr and dζ := dζ1 ∧ · · · ∧ dζr. We obtain

I(s) =

∫

N

∫

g

eisΩ
′(y)ψ(y)f1(sζ)f̂2(y)dy

= (−1)
r(r+1)

2 ir
∫

P×g

eisDσγ(y)f̂2(y)

(
∫

l∗
sre−is〈ιyω,ζ〉eis〈dω,ζ〉ρ(ζ)f1(sζ)dζ ∧ Vω

)

dy.

In the integral on l∗, we change ζ to sζ and obtain

(−1)
r(r+1)

2 ir
∫

P×g

eisDσγ(y)f̂2(y)

(
∫

l∗
e−i〈ιyω,ζ〉ei〈dω,ζ〉ρ(ζ/s)f1(ζ)dζ ∧ Vω

)

dy.

On the compact support of f1(ζ), if s is sufficiently large, ρ(ζ/s) = 1.
Also we may replace dω by R as R − dω = 1

2 [ω, ω] is annihilated by wedge
product with ω1 ∧ ω2 ∧ · · · ∧ ωr and obtain (for s sufficiently large):

i
dimM

2 〈infdex
µG×L

G×L ψ, f1f2〉

= (−1)
r(r+1)

2

∫

N

∫

g

eisη
∗Dσγ(y)f̂2(y)e

i〈Ry ,ζ〉f1(ζ)dζ ∧ Vωdy.

Now consider the fibration N → M × l∗ with fiber L. On each fiber,
the form Vω = ω1 ∧ ω2 ∧ · · · ∧ ωr induces an orientation and restricts to a
Haar measure dl on L. Let us now integrate over the fiber. Recall that
σM denotes the action form on M . Let ΩM := DσM , we have π∗σM =
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σ̄, η∗Dσ = η∗π∗ΩM . So, keeping track of orientations, and using Formula
(26), we finally obtain that I(s) is equal to

∫

l∗

(
∫

M

∫

g

eisΩM (y)γ(y)θζ(Ry)f̂2(y)dy

)

f1(ζ)dζ.

Remark that when ζ varies in the compact support of f1, and over a
compact subset K of M , the Fourier transform (in y) of θζ(Ry) stays sup-
ported on a fixed compact subset of g∗. Indeed, using Formula (27), we see
that the Fourier transform of θζ(Ry) is supported on the compact subset
h(π−1K,Ad∗Lζ). By Remark 3.11, for s >> s0

∫

M×g

eisΩM (y)γ(y)θζ(Ry)f̂2(y)dy = idimM/2infdexµG([γ̃ζ ], f2〉

for any ζ in the support of f1.
Thus we obtain our claim. �

Example 4.18. Consider N = T ∗G, with left and right action of G and
moment map µ = µℓ + µr.

Consider the G×G equivariant form 1 ∈ H∗
G,c(G) on (T ∗G)0 = G.

Theorem 4.19.

〈infdexµG×G(1), f1f2〉 =

∫

g∗

∫

G
f1(gζ)f2(−ζ)dgdζ.

Here the measure dgdζ is the canonical measure on T ∗G.

Proof. We apply the previous construction to T ∗G with free right action
of G. Then P = G and M is a point. Thus 1 is the lift of 1 and we
apply Theorem 4.14. By Example 2.14, the equivariant curvature Ry at the

point p ∈ G is simply Ry = −Ad−1
p y. Thus θζ(Ry) =

∫

G e
−i〈p−1y,gζ〉dg =

∫

G e
−i〈y,gζ〉dg. Using Formula (29), we obtain

〈infdexµG×G1, f1f2〉 =

∫

g∗

∫

G
f2(−gζ)f1(ζ)dgdζ.

�

Another important particular case of the free action property is when G
is trivial. We then have y = 0 in all the steps of the proof of Theorem 4.14.
We summarize the result that we obtain in this particular case of Theorem
4.14.

Let N be an oriented L-manifold with action form, and assume that the
group L acts freely on N and that 0 is a regular value of µL. LetM = N0/L
and let [γ] ∈ H∗

G,c(N
0) = H∗

c (M).

Let R be the curvature of the fibration N0 → M . For any ζ ∈ l∗, we
consider the closed differential form on M given by

(33) θζ(R) =

∫

L
ei〈R,Ad∗(l)ζ〉dl.
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Here, as R is a l valued two form, θζ(R) is a polynomial function of ζ.
Then we obtain

Proposition 4.20. The distribution infdexµLL ([γ] is a polynomial density on
l∗. More precisely

〈infdexµLL ([γ]), f1〉 =

∫

l∗

(
∫

M
γθζ(R)

)

f1(ζ)dζ.

In particular the value of infdexµLL ([γ]) at 0 is well defined and computes

the integral on the reduced space µ−1
L (0)/L of the compactly supported

cohomology class associated to [γ]. This is the essentially Witten localization
formula [22],[11].

4.21. Extension of the properties of the infinitesimal index. We have
extended the definition of the infinitesimal index to H∞,m

G,c (M0). Analyzing
the proofs of the properties locality, product, the map i!, we see that these
properties hold for the infinitesimal index map on H∞,m

G,c (M0). The proofs
for the restriction property and the free action extend, provided we are in
the situation of Remark 3.11: we consider the infinitesimal index on classes
[α] ∈ H∞,m

G,c (M0) such that the Fourier transform of α(x) is a distribution

with compact support on g∗, so that the infinitesimal index stabilizes for s
large. This will be always the situation in the applications to index formulae.

5. Some consequences of the functorial properties of the

infinitesimal index

We list here some corollaries of the functorial properties: excision, prod-
uct, restriction, push-forward, free action proved in the preceding section.

5.1. Diagonal action and convolution. Consider two G action mani-
folds M1,M2 with moment maps µ1, µ2 with zeroes M0

1 ,M
0
2 . Let ∆ be the

diagonal subgroup. The moment map for ∆ is µ1 + µ2.
Let us assume that (M1 × M2)

0
∆ = M0

1 × M0
2 . If α ∈ H∗

G,c(M
0
1 ) and

β ∈ H∗
G,c(M

0
2 ), we may apply the product property (Proposition 4.4) and

the restriction property (Theorem 4.7). As the restriction map is such that
r∗f(ξ1, ξ2) = f(ξ1 + ξ2) (ξ1, ξ2 ∈ g∗), we obtain the following proposition.

Proposition 5.2. Under the hypothesis (M1×M2)
0
∆ =M0

1 ×M
0
2 , the infin-

itesimal index infdexµ1+µ2∆ (α1∧α2) is the convolution product infdexµ1G (α1)∗
infdexµ2G (α2) of the distributions infdexµ1G (α1) and infdexµ2G (α2).

Let us give an important example of this situation.
Let MX be a complex representation space for the action of a torus G,

where X = [a1, a2, . . . , am] is a list of non zero weights ai ∈ g∗. We assume
that X spans a pointed cone in g∗. Recall the definition of the multivariate
spline TX , it is a tempered distribution defined by:

(34) 〈TX | f〉 =

∫ ∞

0
. . .

∫ ∞

0
f(

m
∑

i=1

tiai)dt1 · · · dtm.
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Let us consider on MX = C
m the action form such that µ(z1, . . . , zm) =

∑

i
|zi|

2

2 ai. Then M0
X = {0} and the class 1 is a class in H∗

G,c(M
0
X). Using

our computation in Example 3.14 of infdexµG(1) in the case of R2 = C, we
obtain the following formula.

Proposition 5.3.

infdexµG(1) = TX .

We will use this calculation in [8] to identify H∗
G,c((T

∗MX)
0) to a space

of spline distributions on g∗.

Another example that we will use in Subsection 5.15 is the case were one
of the action forms, say σ1, is equal to 0, so that µ1 = 0 and µ is the pullback
of µ2. Then

(M1 ×M2)
0
∆ =M1 ×M

0
2 .

In this case, the space H∗
G,c(M

0
1 ) is simply H∗

G,c(M1) and
∫

M1
α1(x) is a

polynomial function of x ∈ g. Thus infdex0G(α1), the Fourier transform, is a
distribution of support 0 on g∗.

Corollary 5.4.

infdexµ∆[α1 × α2] = infdex0G(α1) ∗ infdex
µ2
G (α2).

5.5. Induction of distributions. Choose Lebesgue measures on g, and l

by fixing translation invariant top differential forms. This determines dual
measures and forms on g∗, l∗ and a Haar measure dg on G. If p is the
restriction map g∗ → l∗, we let p∗ be the integration over the fiber (with
respect to the chosen forms and orientations). It sends a test function on g∗

to a test function on l∗. Let

(35) A(f)(ξ) =

∫

G
f(gξ)dg.

The operator A transform a test function on g∗ to an invariant test function
on g∗.

Definition 5.6. For a distribution V on l∗, we define the G-invariant dis-

tribution Indg
∗

l∗ V on g∗ by

〈Indg
∗

l∗ V, f〉 = vol(L, dl)−1〈V, p∗(A(f))〉,

f being a test function on g∗.

It is easy that Indg
∗

l∗ V is independent of the choices of measures.

5.7. Induction of action manifolds. Assume that L ⊂ G is a subgroup.
Take M a L manifold with action form σ and moment map µL.

Consider T ∗G as a G×L action manifold where G acts on the left and L
on the right, and the action form ω is the canonical one-form on T ∗G.
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Set N := T ∗G ×M and p1, p2 be the first and second projection of this
product manifold. We consider the action form ψ = p∗1ω + p∗2σ on N , and
denote by µ̃G×L = µ̃G ⊕ µ̃L the corresponding moment map.

Let us trivialize T ∗G = G × g∗ using left trivialization (7), so that we
identify N = G × g∗ ×M . According to Formula (7), if (g, ξ,m) ∈ N we
have:

(36) µ̃G(g, ξ,m) = Ad∗g(ξ) := gξ, µ̃L(g, ξ,m) = −ξ|l + µL(m).

We denote by N0 the zero fiber of the moment map µ̃G×L for G× L, by
M0 the zero fiber of the moment map µL on M for L.

Lemma 5.8. We have N0 = G×M0.

Proof. From Formula (36) the set of points of N where µ̃G = 0 is G ×M ,
and on these points we have µ̃L(g,m) = µL(m). �

Lemma 5.9. i) If we take the zero fiber of µ̃L, we obtain the manifold

(37) P := {(g, ξ,m); g ∈ G, ξ ∈ g∗,m ∈M ; ξ|l = µL(m)}.

ii) 0 is a regular value for the moment map µ̃L.

Proof. The first statement is immediate from Formula (36). As for the
second, by the same formula, we see easily that the differential of µ̃L is
surjective everywhere. �

We are thus in the situation of Subsection 4.11. The manifold N is a
G× L manifold, L acts freely on N and 0 is a regular value of the moment
map µ̃L for L. Consider the manifold M = P/L. Applying Proposition
4.12, we see

Lemma 5.10. The quotient M = P/L is a G-manifold. The action form
on N restricted to P descends toM.

The induced moment map µG : P/L → g∗ is obtained by quotient from
the moment map µ̃G : (g, ξ,m)→ gξ on P .

Definition 5.11. We will say thatM is the induced action manifold.

By Lemma 5.8, the closed set N0, the zero fiber of the moment map µ̃G×L,
equals G×M0 and it is contained in P . Since, by definition, on P = µ̃−1

L (0)
the moment map µ̃L equals 0, we have that on P the moment map µ̃G×L

equals µ̃G. Therefore we obtain the

Lemma 5.12. Under the inclusions N0 ⊂ P, N0/L ⊂ P/L, the zero fiber
M0

G ⊂M of the moment map µG is identified with N0/L = G×LM
0.

We denote by π : G×M0 = N0 → N0/L = G×LM
0 the quotient map.

Thus we get isomorphisms

H∗
L,c(M

0)
p∗2−−−−→ H∗

G×L,c(N
0)

π∗

←−−−− H∗
G,c(G×LM

0).
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We set j = π∗−1p∗2:

(38) j : H∗
L,c(M

0)
p∗2−−−−→ H∗

G×L,c(N
0)

(π∗)−1

−−−−→ H∗
G,c(M

0
G).

Remark 5.13. As in the usual case (see [9], page 33), the isomorphism j−1

can be described as follows. Let γ(y), with y ∈ g, be an equivariant form
on P/L =M representing [γ] ∈ H∗

G,c(M
0
G) = H∗

G,c(G ×LM
0). We restrict

γ to the L invariant submanifold M embedded inM by m 7→ (e, µL(m),m)
and obtain an L-equivariant form onM . We can represent j−1[γ] by γ(x)|M
with x ∈ l.

Given a class [α] ∈ H∗
L,c(M

0), our goal is to compare infdexµLL ([α]) and

infdexµGG (j([α])), the first being a distribution on l∗ and the second one on g∗.
We shall show that infdexµGG (j([α])) is induced by infdexµLL ([α]), according
to Definition 5.6.

Theorem 5.14. Let [α] ∈ H∗
L,c(M

0), then

(39) infdexµGG (j[α]) = Indg
∗

l∗ (infdex
µL
L ([α])).

Proof. Consider the form γ := 1 ∧ α on G×M , where α is a representative
of [α]. Take the map π : N0 = G×M0 → G×LM

0. By the definition of j
we see that [γ] = π∗j[α].

Consider the G×LmanifoldN = T ∗G×M . To this manifold we can apply
Corollary 4.15. Let f1 be a variable test function on l∗ and f2 be a given test

function on g∗. The distribution f1 → 〈infdex
µ̃G×L

G×L ([γ]), f2f1〉 is given by a

smooth densityD(ζ)dζ on l∗, and the valueD(0) is vol(L, dl)〈infdexµGG (j[α]), f2〉.

Let us compute 〈infdex
µ̃G×L

G×L ([γ]), f2f1〉 using the fact that γ is the exterior
product 1 ∧ α. We consider the product manifold T ∗G ×M provided with
the action of G×G×L where G×G acts by left and right action on T ∗G and
G2 = L acts on M . Consider next the embedding of G×L as the subgroup
{((g, l), l), g ∈ G, l ∈ L} of G × G × L. Remark that our given action form
on N is is G × G × L invariant and that N0 = G ×M0 is also the set of
zeroes of the moment map µ for the group G×G× L. We may thus apply
first the exterior product property (Proposition 4.4) and then the restriction

property (Proposition 4.7) to compute infdex
µ̃G×L

G×L ([γ]).
Denote by p : g∗ → l∗ the restriction map. Then for ζ ∈ l∗ and (ξ1, ξ2) ∈

g∗ ⊕ g∗ the restriction map R : g∗ ⊕ g∗ ⊕ l∗ → g∗ ⊕ l∗ is given by

R : g∗ ⊕ g∗ ⊕ l∗ → g∗ ⊕ l∗, (ξ1, ξ2, ζ) 7→ (ξ1, ζ − p(ξ2))

and we have

infdex
µ̃G×L

G×L (1 ∧ α) = R∗(infdex
µ
G×G(1)⊗ infdexµLL ([α])).

Let f1 be a test function on l∗ and let f2 be a test function on g∗. The
function R∗(f1f2)(ξ1, ξ2, ζ) is the function f1(ζ + p(ξ2))f2(ξ1).

Using the formula for infdexµG×G(1) for T
∗G of Proposition 4.19, we obtain

〈infdex
µ̃G×L

G×L (1 ∧ α), f1f2〉 = 〈infdex
µ
G×G(1)⊗ infdexµLL ([α]), R∗(f1f2)〉



30 C. DE CONCINI, C. PROCESI, M. VERGNE

= 〈infdexµG×G(1)⊗infdex
µL
L ([α]), f1(ζ+p(ξ2))f2(ξ1)〉 = 〈infdex

µL
L ([α]), q(f1, f2)〉

with (A is defined in (35)):

q(f1, f2)(ζ) =

∫

g∗

∫

G
f1(ζ + p(ξ))f2(−gξ)dgdξ =

∫

g∗
f1(ζ + p(ξ))Af2(−ξ)dξ.

Integrating first on the fiber p : g∗ → l∗, then on l∗, we see that

q(f1, f2)(ζ) = f1 ∗ (p∗(Af2))(ζ)

where u ∗ v is the convolution product of test functions on l∗.
Then we obtain

〈infdex
µ̃G×L

G×L ([γ]), f1f2〉 = 〈infdex
µL
L ([α]), f1 ∗ (p∗(Af2))(ζ)〉.

This is a smooth density with respect to ζ ∈ l∗, and if f1 tends to δ0(ζ),
then 〈infdexG×L([γ]), f1f2〉 tends to

〈infdexµLL ([α]), p∗(Af2)(ζ)〉 = vol(L, dl)〈Indg
∗

l∗ infdexL([α]), f2(ζ)〉.

We thus obtain the wanted formula. �

5.15. Maximal tori. As usual, let M be a G-manifold with a G-invariant
action form σ. Let T ⊂ G be a maximal torus. We show next how to reduce
the calculation of the infdex map for G to the calculation of the infdex map
for T .

Associated to σ, we have the moment maps νG :M → g∗ and νT = p◦νG :
M → t∗, with p : g∗ → t∗ the restriction map.

ConsiderM as a T -manifold, and consider N = T ∗G×M , provided, as in
Subsection 5.7 (here the group L is T ), with action form ψ = p∗1ω+ p∗2σ and
the action of G × T : the group G acts on T ∗G by left action, and trivially
on M , the group T acts on G by right action and acts on M . We denote by
µ̃G×T = µ̃G ⊕ µ̃T the corresponding moment map.

Recall, by Formula (37), that

P = µ̃−1
T (0) = {(g, ξ,m); g ∈ G, ξ ∈ g∗,m ∈M ; ξ|t = νT (m)}

is a G×T manifold on which G acts by g0 ·(g, ξ,m) = (g0g, ξ,m), for g0 ∈ G,
(g, ξ,m) ∈ P and T acts by t · (g, ξ,m) = (gt−1, tξ, tm).

We then considerM := P/T , with moment map µG([g, ξ,m]) = gξ (36).
Recall thatM0

G is isomorphic to G×T M
0
T embedded in P/T by [g, 0,m].

For [α] ∈ H∗
G,c(M

0
G), we want to produce an element r([α]) ∈ H∗

G,c(M
0
G) =

H∗
G,c(G ×T M

0
T ) which has the same infinitesimal index as [α].

Proposition 5.16. We can embed G×M in P by the map

γ(g,m) = (g, νG(g
−1m), g−1m).

The map γ is G×T equivariant, where G acts on G×M by diagonal action
(left on G) while T acts by the right action on G and not on M .
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Proof. First (g, νG(g
−1m), g−1m) ∈ P since νG(g

−1m)|t∗ = νT (g
−1m). Next

γ(hg, hm) = (hg, νG(g
−1m), g−1m) and

γ(gt−1,m) = (gt−1, νG(tg
−1m), tg−1m) = (gt−1, tνG(g

−1m), tg−1m).

�

Corollary 5.17. The map γ induces, modulo the action of T , an embedding
still denoted by γ : G/T ×M →֒ M = P/T. Thus the manifold G/T ×M ,
with diagonal G-action is identified to a G-invariant submanifold of M.

In fact more is true. Let q : M → G/T ×M be the projection given
by q(g, ξ,m) = (gT, gm). Let g∗ = t∗ ⊕ t⊥ be the canonical T -invariant
decomposition of g∗. Then we claim that

Proposition 5.18. qγ is the identity and q : M → G/T ×M is a vector
bundle with fiber t⊥.

Proof. The first claim comes from the definitions. As for the second, we
may identify P with G×M × t⊥ by the map

P → G×M × t⊥, (g, ξ,m) 7→ (g,m, ξ − νT (m)).

�

Lemma 5.19. The restriction of the moment map µG on M to G/T ×M
is just (gT,m) 7→ νG(m) with zeroes G/T ×M0

G.

Proof. We have µG(g, ξ,m) = gξ by the previous discussion. An element
(g,m) corresponds to the triple (g, νG(g

−1m), g−1m), so the claim follows
since νG is G–equivariant. �

We now apply the construction γ! of Subsection 4.8 to the manifold G/T×
M embedded by γ inM.

Take an equivariant form β on G/T with class

(40) [β] =
i(dimG/T )/2

|W |
e(G/T )

where W is the Weyl group and e(G/T ) is the equivariant Euler class. No-
tice that since |W | equals the Euler characteristic of G/T , the polynomial
function

∫

G/T [β] is the constant
∫

G/T
[β] = i(dimG/T )/2.

Thus, by Theorem 3.12, the infinitesimal index of [β] is just the δ–function
on g∗. Let [α] ∈ H∗

G,c(M
0
G). We then construct the element [β ∧ α] in the

compactly supported equivariant cohomology

[β ∧ α] ∈ H∗
G,c((G/T ×M)0G) = H∗

G,c(G/T ×M
0
G).

Lemma 5.20. The infinitesimal index of [β∧α] is equal to the infinitesimal
index of [α].
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Proof. Apply Corollary 5.4. �

Under the embedding γ : G/T ×M →֒ M of action manifolds (cf. 5.17),
by Theorem 4.9, we have now a homomorphism

γ! : H
∗
G,c(G/T ×M

0
G)→ H∗

G,c(M
0
G)

preserving infdex.
We define

(41) r([α]) := γ!([β ∧ α]) ∈ H
∗
G,c(M

0
G).

We then have, combining Lemma 5.15 with Theorem 4.9

(42) infdexνGG ([α]) = infdexµGG (r[α]).

On the other hand, we have the isomorphism

j : H∗
T,c(M

0
T )→ H∗

G,c(G×T M
0
T )

and we have shown in Theorem 39 that

infdexµGG (j[θ]) = Indg
∗

t∗ infdex
νT
T ([θ])

for any [θ] ∈ H∗
T,c(M

0
T ).

We deduce

Theorem 5.21. Take the commutative diagram

(43)

H∗
G,c(M

0
G)

r
−−−−→ H∗

G,c(G×T M
0
T )

j−1

−−−−→ H∗
T,c(M

0
T )

infdex





y
infdex





y
infdex





y

D′(g∗)G
id

−−−−→ D′(g∗)G
Indg

∗

t∗←−−−− D′(t∗).

The element [λ] := j−1r([α]) ∈ H∗
T,c(M

0
T ) is such that

(44) infdexνGG ([α]) = Indg
∗

t∗ infdex
νT
T (j−1r([α]))

Let us finally give an explicit formula for the element [λ] = j−1r([α]) ∈
H∗
T,c(M

0
T ) corresponding to [α] ∈ H∗

G,c(M
0
G).

Let Pf(x) = det
1/2

t⊥
(x) be the Pfaffian associated to the action of x ∈ t in

the oriented orthogonal space t⊥.
We need the

Proposition 5.22. The restriction of the form β(x) at the point e ∈ G/T
is the polynomial |W |−1(2iπ)−(dimG/T )/2Pf(x).

Proof. By construction, the equivariant Euler class is the restriction to G/T
of the Thom class of the tangent bundle. The fiber of the tangent bundle at
the T fixed point e is isomorphic to t⊥. Thus this class restricts at the fixed
point e as (−2π)−(dimG/T )/2Pf(x) ([15], see [5], Theorem 7.41, [18]). �
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Recall the decomposition g∗ = t∗ ⊕ t⊥. Let us consider the map ν⊥ :
M → t⊥ which is uniquely defined by the identity νG = νT ⊕ ν⊥. Then
ν−1
T (0) ∩ ν−1

⊥ (0) = ν−1
G (0).

Denote by τ0 the T -equivariant Thom class of the embedding 0 → t⊥, a
compactly supported equivariant class on t⊥. Then τ⊥ := ν∗⊥τ0 is a closed

equivariant class on M supported on a small neighborhood A of ν−1
⊥ (0). It

follows that

Lemma 5.23. If [α] ∈ H∗
G,c(M

0
G), we can choose τ0 so that the class τ⊥∧α

defines a class in H∗
T,c(M

0
T ).

Proof. Let K ⊂M \M0
G be the support of Dα, then D(τ⊥∧α) = τ⊥∧Dα is

supported in A∩K. Since ∅ = K ∩M0
G = K ∩M0

T ∩ ν
−1
⊥ (0), we can choose

τ0 so that A ∩K ∩M0
T = ∅. �

By Remark 5.13, an equivariant form representing j−1r([α]) is the restric-
tion to M = {(e, 0,m),m ∈ M} of r(α)(x), when x ∈ t. We still denote it
by j−1(r(α))(x).

Theorem 5.24. We can choose the Thom classes so that

j−1(r(α))(x) = |W |−1(2iπ)−(dimG/T )/2Pf(x)α(x) ∧ τ⊥(x).

Proof. Let τG/T×M be a Thom class of the bundle q : M → G/T × M
(Proposition 5.18). Then, by the γ! construction, the associated equivariant
form onM which we denoted by r(α), is q∗(β ∧ α) ∧ τG/T×M .

Now the bundle q :M→ G/T ×M is trivial over e×M and isomorphic
to t⊥ ×M by (ξ,m) 7→ (e, ξ + νG(m),m).

The restriction of the Thom class τG/T×M gives a Thom class for this
trivial bundle. We can then assume that the restriction of τG/T×M is τ0(ξ).

As (e,M) is embedded by ξ = ν⊥(m), we obtain our Theorem from
Proposition 5.22.

�

Appendix A. Equivariant cohomology with compact support

A.1. Compact supports. We are going to assume in this appendix that
all our spaces are locally compact and paracompact and we are going to
work with Alexander-Spanier cohomology groups both ordinary and with
compact support, and with real coefficients. We shall denote them by H∗

or, if we take compact support, by H∗
c . H

∗ is a cohomology theory on spaces
or pairs of spaces deduced from a functorial cochain complex C(X,Z) and
H∗
c , the theory with compact supports, is associated to a natural subcomplex
Cc(X,Z), (see [20] ch.6).

Let us now recall a few properties. The first is (see [20] ch.6, p.321,
Lemma 11.)

Proposition A.2. Let (X,Z) be a pair with X compact Z 6= ∅ closed. Set
U := X \ Z. Then there are natural isomorphism Hq

c (U) ≃ Hq(X,Z).
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In fact this is induced by the map of cochains complexes Cc(U)→ C(X,Z)
composition of the inclusions Cc(U) → Cc(X) → C(X) and of the quotient
C(X)→ C(X,Z).

In particular, if we take an open set U in a compact space X (for example
we could take the one point compactification U+ of a locally compact space
U), we get that H∗

c (U) = H∗(X,X \ U).
As an application of this, assume Z ⊂ U is closed and U is open in

a compact space X. Set Y = X \ U and take the triple (X, Z̃, Y ) with

Z̃ = Z ∪ Y . Consider the commutative diagram

0 −−−−→ C∗c (U \ Z) −−−−→ C∗c (U) −−−−→ C∗c (Z)




y





y





y

0 −−−−→ C∗(X, Z̃) −−−−→ C∗(X,Y ) −−−−→ C∗(Z̃, Y ) −−−−→ 0

Using the exactness of the bottom line we deduce the long exact sequence

· · · → Hh
c (U \ Z)

i∗−−−−→ Hh
c (U)

j∗
−−−−→ Hh

c (Z) −−−−→ Hh+1
c (X \ Z)→ · · · .

On the other hand, the top line induces a homomorphism of chain complexes

µ : C∗c (U)/C∗c (U \ Z)→ C
∗
c (Z)

and since the vertical arrows induce isomorphism in cohomology, using the
five lemma we easily deduce

Proposition A.3. The homomorphism µ induces an isomorphism in coho-
mology.

In order to compare the Alexander–Spanier and singular cohomology, one
needs to pass to the associated sheaves (see [20] ch.6, p.324). Thus, under
suitable topological conditions, we obtain a natural isomorphism between
Alexander–Spanier and singular cohomology.

In particular consider a C∞-manifoldM and a closed subset Z ⊂M . Fur-
ther assume that Z is locally contractible. We then have (see [20] ch.6, p.341
Corollary 7) that, under these assumptions, we can use singular cochains
and in fact, in the case of a manifold, singular C∞ cochains to compute
cohomology since Alexander Spanier and singular cohomology are naturally
isomorphic in this case.

Integrating on singular C∞-simplexes we get a commutative diagram

0 −−−−→ A∗
c(M \ Z) −−−−→ A∗

c(M)




y





y

0 −−−−→ ∞C
∗
c (M \ Z) −−−−→ ∞C

∗
c (M)

A∗
c being the complex of differential forms with compact support. We deduce

a homomorphism of cochain complexes

ν : A∗
c(M)/A∗

c(M \ Z)→∞C
∗
c (M)/∞C

∗
c (M \ Z)
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Since the vertical arrows induce isomorphism in cohomology, we get a de
Rham model for H∗

c (Z).

Proposition A.4. The homomorphism ν induces isomorphism in cohomol-
ogy. In particular H∗

c (Z) is naturally isomorphic to the cohomology of the
complex A∗

c(M)/A∗
c(M \ Z).

A.5. Classifying spaces. We now take a compact Lie group G and denote
by BG its classifying space (which is not locally compact). Recall that BG is
a polyhedron with finitely many cells in each dimension and it has a filtration
(BG)0 ⊂ · · · ⊂ (BG)n ⊂ (BG)n+1 ⊂ · · · ⊂ BG by compact manifolds with the
property that the inclusion (BG)n ⊂ BG induces isomorphism in cohomology
up to degree n. For example, if G is a s-dimensional torus, BG = CP (∞)s

and we may take (BG)n = CP (n)s (indeed in this case the inclusion induces
an isomorphism up to degree 2n− 1).

We denote by π : EG → BG the universal fibration and set (EG)n =
π−1((BG)n). Thus (EG)n is also a compact C∞ manifold and a principal
bundle over (BG)n.

Recall now that for any G-space Y , H∗
G(Y ) = H∗(Y ×G EG).

We can define the equivariant cohomology with compact support of a
G-space as follows. Take U locally compact. Embed U in his one point
compactification U+. The action of G extends to U+ and we set

Definition A.6. H∗
G,c(U) = H∗

G(U
+,∞).

Some remarks are in order.

• If U is compact, then U+ is the disjoint union U∪{∞} so H∗
G,c(U) =

H∗
G(U).

• If U is non compact, then H∗
G,c(U) = H∗(U+ ×G EG, BG) where

BG = {∞} ×G EG.
• All the equivariant cohomologies are modules over H∗

G(pt) and all
the homomorphisms are module homomorphisms.

Recall that by the properties of (BG)m for any h ≥ 0, and for all m large
enough, Hr(BG, R) = Hr((BG)m, R) for 0 ≤ r ≤ 2h. So given a G-space X,
the spectral sequences of the fibrations X×GEG → BG and X×G (EG)m →
(BG)m have the same Ep,qr for all r and p + q ≤ h. In particular we get
for any pair (X,Z) of G-spaces that for large m, Hh

G(X,Z) = Hh(X ×G
(EG)m, Z ×G (EG)m). From Proposition A.2, we then deduce

Proposition A.7. Let X be a G-space with X compact Hausdorff and Z 6=
∅ a closed G-stable subspace. Set U := X \ Z. Then there is a natural
isomorphism Hq

G,c(U) ≃ Hq
G(X,Z).

Furthermore for m large with respect to h, Hh
G,c(U) ≃ Hh

c (U ×G (EG)m).

Take now a C∞ manifold M with a C∞ action of G and a closed G-stable
subset Z in M which we assume to be locally contractible. For instance if
Z is locally triangular as for instance when Z is semi–analytic [14]. The
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same is true for Z×G (EG)m for any m so we can apply Proposition A.4 and
deduce that for m large with respect to h, Hh

G,c(Z) is the h-th cohomology

group of the complex A∗
c(M ×G (EG)m)/A

∗
c((M \ Z)×G (EG)m).

But one knows (see [10]) that for any m we have a natural morphism
of complexes AG,c(M) → A∗

c(M ×G (EG)m) which induces isomorphism in
cohomology in small degree. The same holds also for the open set M \Z so
that we get a commutative diagram

0 −−−−→ AG,c(M \ Z) −−−−→ AG,c(M)




y





y

0 −−−−→ A∗
c((M \ Z)×G (EG)m)) −−−−→ A

∗
c(M ×G (EG)m))

which induces a morphism of complexes

ρ : AG,c(M)/AG,c(M \ Z)→ A
∗
c(M ×G (EG)m)/A

∗
c((M \ Z)×G (EG)m)

From this we immediately deduce

Proposition A.8. H∗
G,c(Z) equals the cohomology of the complex AG,c(Z,M).

Proof. From the above considerations we have, if m is large with respect to
h, ρ induces an isomorphism in cohomology in degree h. Since we have seen
that in degree h the cohomology of the complex A∗

c(M ×G (EG)m)/A
∗
c((M \

Z)×G (EG)m) is H
h
G,c(Z), everything follows. �
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Mathematica, 117, (1999), 243-293.

[17] Paradan, P-E.: The moment map and equivariant cohomology with generalized co-
efficients. Topology, 39 ( 2000), 401-444.

[18] Paradan, P-E. and Vergne M.: Equivariant relative Thom forms and Chern charac-
ters. arXiv:math/0711.3898

[19] Paradan, P-E. and Vergne M.: The index of transversally elliptic operators. to appear
in Bull. Soc. Math. France. arXiv:0804.1225

[20] Spanier, E. H.: Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-
London (1966) xiv+528 pp.

[21] Vergne, M.: Applications of Equivariant Cohomology. In: Proceedings of the Inter-
national Congress of Mathematicians, Madrid, Spain, 2006. European Mathematical
Society (2007). Volume 1, 635-664.

[22] Witten, E.: Two dimensional gauge theories revisited. J. Geom. Phys. ,9, (1992),
303-368.


	Introduction
	1. Equivariant de Rham cohomology
	2. Basic definitions
	2.1.  Action form and the moment map
	2.11. The cohomology groups HG,c(M)
	2.12. Connection forms

	3.  Definition of the infinitesimal index
	3.1. Infinitesimal index
	3.9. Extension of the definition of the infinitesimal index

	4. Properties of the infinitesimal index
	4.1. Locality
	4.3. Product of manifolds
	4.5.  Restriction to subgroups
	4.8. Thom class and the map i! 
	4.11. Free action
	4.21. Extension of the properties of the infinitesimal index

	5. Some consequences of the functorial properties of the infinitesimal index
	5.1. Diagonal action and convolution
	5.5. Induction of distributions
	5.7. Induction of action manifolds
	5.15. Maximal tori

	Appendix A.  Equivariant cohomology with compact support
	A.1. Compact supports
	A.5. Classifying spaces

	References

