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Università di Roma “Tor Vergata”
Via della Ricerca Scientifica
00133 Roma, Italy
baldoni@mat.uniroma2.it

2Department of Mathematics
University of California
Davis, CA 95616, USA
deloera@math.ucdavis.edi

3Centre de Mathématiques
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Abstract. This paper discusses analytic algorithms and software for the enumer-
ation of all integer flows inside a network. Concrete applications abound in graph
theory, representation theory, and statistics. Our methods are based on the study of ra-
tional functions with poles on arrangements of hyperplanes; they surpass traditional
exhaustive enumeration and can even yield formulas when the input data contains
some parameters. We also discuss the calculation of chambers in detail because it is
a necessary subroutine.

1. Introduction

A network is a graph with directed edges, with multiple copies of the edges allowed,
and where each node v has an integer value specified, the so-called excess of v, and

Date received: March 17, 2003. Final version received: October 27, 2003. Date accepted: November
4, 2003. Communicated by Peter Olver. Online publication: March 3, 2004.
AMS classification: 68W05, 68W30, 52B, 90B06, 90B10, 90C08, 90C27.
Key words and phrases: Integral flows, Flow polytopes, Lattice points, Rational function manipulation,
Hyperplane arrangements, Residues, Transportation problems, Kostant partition function, Chambers.



278 W. Baldoni-Silva, J. A. De Loera, and M. Vergne

each arc has an assigned nonnegative integer value, or infinity, called its capacity.
We can think of the excess and capacities as functions. A feasible flow is an
assignment of real values to the arcs of the network so that for any node v the
difference between the sum of values in outgoing arcs minus the sum of values in
incoming arcs equals the prescribed excess of the node v and the capacities of the
arcs are not surpassed. In this paper we study the problem of effectively counting
the number of different integral feasible flows in a network. It is well-known that
this problem is #P-hard in the computational category of counting problems (see
Section 7.3 in [15] and Chapter 18 of [21]) because the problem of counting
perfect matchings in bipartite graphs reduces to it. Despite this bad complexity,
concrete applications abound in graph theory [16], representation theory [18], and
statistics [14] and thus finding good methods for attacking concrete examples is of
importance. Our goal is to show that using the algebraic–analytic structure of the
problem allows us to count flows in complicated instances very fast, surpassing
traditional exhaustive enumeration.

Continuing the work started in [2] we present practical counting algorithms
from which one can, in fact, derive counting formulas when the excess values at
the vertices have parameters. This is not the only case where residues formulas are
used for counting lattice points (see [4], [19] and references therein), but here we
stress a special type of “partial fraction” decomposition that simplifies calculations.
We only discuss the problem of exact counting and we do not discuss approxima-
tion or estimation. This is another very active area of research, mostly based on
probabilistic methods (e.g., random walks). For more information, see [14], [29].

The set of all feasible flows with given excess vector b and capacity vector c is a
convex polytope, the well-known flow polytope, which is defined by the constraints
�G x = b, 0 ≤ x ≤ c, where �G denotes the node-arc incidence matrix of G (a
network matrix). The incidence matrix �G has one column per arc and one row
per node. Each column of�G has as many entries as nodes. For an arc going from
i to j , its corresponding column has zeros everywhere except at the i th and j th
entries. The j th entry, the head of the arrow, receives a −1 and the i th entry, the
tail of the arrow, a 1. A famous instance is the max-flow min-cut problem [24]. This
is the case when b has first entry v, last entry −v, and 0 elsewhere. In Figure 1(b)
we list all possible flows with v = 11, the maximal possible from the network
information specified in Figure 1(a).

An important feature of the network incidence matrix�G is that it is unimodular.
We say that the matrix �G is unimodular, if the columns of �G span a lattice,
denoted by Z�G , and whenever a is in this lattice Z�G , the polytope P(�G, a) =
{x | �G x = a, x ≥ 0} has vertices with integral coordinates. Even more strongly,
network matrices are, in fact, totally unimodular matrices (see Chapter 19 in [24]),
which means that the lattice generated by their columns is the standard integral
lattice Zn . Note that the integral feasible flows are precisely the integer lattice
points inside the flow polytope.

The algorithms and formulas used in this paper for counting lattice points are
based on the notion of total residue (to be reviewed in Section 2), the main concept
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Fig. 1. (b) Counting all maximum flows of (a) a specific network.

involved being the study of rational functions with poles on an arrangement of
hyperplanes. The enumeration theory we present was extended to arbitrary rational
polyhedra in [28]. The particular description we do here is valid for all unimodular
matrices. The following lemma implies that it is enough to describe our counting
formulas and algorithms for networks without restricted capacities on the arcs
and that have no directed cycles. These networks are called acyclic uncapacitated
networks. The easy details of the proof are left to the reader.

Lemma 1. Given a network G with n nodes and m arcs, with capacity c and
excess function b, there is an acyclic uncapacitated network Ĝ with n+m nodes, 2m
arcs, and excess function b̂ (a linear combination of b, c) such that the integral flows
in both networks are in bijection. The network Ĝ is obtained from G by replacing
each arc by two new arcs and modifying the capacity and excess functions as
illustrated in the figure below:
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Fig. 2. (a) shows a network with specified capacity (ci ’s) and excess functions (bi ’s). By Lemma 1,
we obtain from G a new network Ĝ without restriction on capacities, shown in (b).

Here is a small example to illustrate some of the notions mentioned above: The
node-arc incidence matrix for the graph G in Figure 2(a) is defined by:

�G1 =
 1 −1 0 0

0 1 −1 1
−1 0 1 −1

 .
The equation �G1 x = b reads as the series of equations x1 − x2 = b1, x2 −

x3 + x4 = b2, −x1 + x3 − x4 = b3. Remark that to have solutions to these three
equations, we must have b1+b2+b3 = 0.The three equations express the fact that,
at each node v ∈ {1, 2, 3}, the difference between the sum of values in outgoing
arcs minus the sum of values in incoming arcs equals the prescribed excess bi of the
node v. Feasible flows are restricted furthermore by the conditions 0 ≤ xi ≤ ci .
In this particular example, the flow polytope is a two-dimensional polytope (a
polygon).

Because of Lemma 1, and due to interesting applications in representation
theory, it makes sense to focus our efforts on the special case of uncapacitated
acyclic graphs, and we do so in Section 3. An important case is what representation
theorists would call the Kostant partition function associated to the complete graph
Kn with n nodes. There are many ways to induce an acyclic orientation to the
complete graph, here we take the following convention of orientation: Whenever
there is an edge of the graph G between i and j , with i < j , then we direct
the arrow from i to j . Another example of flow polytope is the Pitman–Stanley
polytope [22] that is a multiple edge graph with vertices (1, . . . , n) and edges
{i, i + 1} and {i, n} and the last edge {n − 1, n} of multiplicity two. Another
interesting class of flow polytopes are the transportation polytopes [24]. These
polytopes are usually described in terms of m by n real matrices (denoted here by
Mm,n(R)): Fix c = (c1, . . . , cn) ∈ Rn

≥0 and d = (d1, . . . , dm) ∈ Rm
≥0 such that∑m

i=1 di =
∑n

i=1 ci and define Tm,n(d, c) as the set
xi, j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

X = {xi, j } ∈ Mm,n(R);
∑

k xi,k = di , 1 ≤ i ≤ m,∑
k xk, j = cj , 1 ≤ j ≤ n.

 .
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Fig. 3. The transportation polytopes are network polytopes of complete bipartite graphs.

Then Tm,n(d, c) is a polytope called the transportation polytope associated
for the vectors d, c. We can easily see that this is another flow polytope over a
complete bipartite network Km,n: See Figure 3 where the first m nodes receive
excess values (d1, . . . , dm) and the n nodes in the second block receive the excess
values (−c1,−c2, . . . ,−cn). The arcs are oriented from the first block to the
second. In the family of transportation polytopes there is a distinguished member,
the Birkhoff polytope that has been extensively studied (see, for instance, the
references in the recent paper [4]).

It is well-known that the counting formulas of integer flows in a network come
in piecewise polynomial functions (see [8], [27], [28]). It is therefore of interest
to understand the regions of validity of each polynomial formula, the so-called
chambers. In Section 4 we discuss the structure of the chambers and how to
determine the number of chambers. This part of the theory applies to nonuni-
modular matrices too. The question of how many chambers are possible was first
raised in [18]. The combinatorial investigation of the chambers partition functions
was initiated by [1]. See also [10].

2. Formulas for the Volume and the Number of Integral Points in
General Polytopes

In this section, we outline the principles used in the algorithms we implemented
for counting integer flows. The ideas of this section are valid for general convex
polytopes [2], [28], thus we describe things in a general setting when possible.
Later, in Section 3, we will use particular properties of flow polytopes associated
with graphs to explicitly compute counting formulas.

Let� be an integral r by N matrix with column vectors ϕ1, . . . , ϕN . Let b be an
r -dimensional column vector and P = {x ∈ RN

≥0 | �x = b}, the rational convex
polytope associated to � and b. We assume that b is in the cone C(�) spanned
by the nonnegative linear combinations of columns ϕ1, ϕ2, . . . , ϕN of �. Without
loss of generality, we may assume that rank(�) = r . If this is not the case, take the
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subspace of Rr generated by the columns of our matrix and rewrite the polytope
in terms of an appropriate rank k matrix of dimension k by N . For example, for
the network polytopes with r nodes, the matrices are not full rank, as the sum of
the rows is always equal to 0. Thus the last row is a linear combination of the first
r − 1 rows. In the examples we treat, deleting this last row will turn this network
matrix into a matrix of full rank.

In what follows we assume that kernel(�) ∩ RN
≥0 = {0}. Then 0 is not in the

convex hull of the vectors ϕk and the cone C(�) is a pointed polyhedral cone inRr

(pointed cones have no linear subspace contained inside). For a ∈ Rr we denote
by

P(�, a) =
{
(x1, x2, . . . , xN ) ∈ RN

≥0

∣∣∣∣ N∑
j=1

xjϕj = a

}
.

It is obvious that P(�, a) is a convex polytope determined by the matrix �.
Define

v(�, a) = volume(P(�, a)).

If � spans a lattice in Rr and a belongs to this lattice, then define

k(�, a) = |P(�, a) ∩ ZN |.

Thus k(�, a) is the number of solutions (x1, x2, . . . , xN ), in nonnegative inte-
gers xj , of the equation

∑N
j=1 xjϕj = a. The function k(�, a) is called the vector

partition function associated to �. The name partition comes from the fact that
if � = [1, 2, . . . , N ], then P(�, a) ∩ Z is the set of solutions of the equation
a = 1x1 + 2x2 + · · · + N xN , thus the solution (x1, x2, . . . , xN ) clearly gives a
partition of the number a whose parts are the numbers 1 to N .

The function a→ k(�, a) depends strongly of the multiplicities in the system
�, i.e., how many times a vector appears as a column of the matrix �. From now
on we will refer to � both as a matrix or as a multiset of vectors.

Lemma 2. Let� be an integral r by N matrix with column vectors ϕ1, . . . , ϕN .

Let z ∈ Rr denote a vector in the dual cone {z | 〈ϕi , z〉 > 0 for all i=1,. . . ,N}.
Then, ∑

a∈C(�)∩Zr

k(�, a)e−〈a,z〉 = 1∏
ϕ∈�

1− e−〈ϕ,z〉
,

∫
C(�)

v(�, a)e−〈a,z〉 da = 1∏
ϕ∈�
〈ϕ, z〉 .

Proof. The first formula arises by calculating in two different ways the sum
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x∈ZN

≥0
e−〈�x,z〉. On one hand, we have

∑
x∈ZN

≥0

e−〈�x,z〉 =
∑

x∈ZN
≥0

e−
〈∑

i
xiϕi ,z

〉
=

N∏
i=1

∑
xi∈Z≥0

exi (−〈ϕi ,z〉) =
N∏

i=1

1

1− e−〈ϕi ,z〉 .

The last equality is a trivial consequence of the geometric series identity. On
the other hand, we can reorder the infinite sum

∑
x∈ZN

≥0
e−〈�x,z〉 in terms of the

values that �x takes when x changes. We group together summands of x, x ′ if
�x = �x ′ = a. The proof of the other formula is identical to it.

As a consequence of the lemma our goal is simply to compute the inverses
of these two equations. The point is that one can write efficient formulas for the
inversion of Laplace transforms in terms of residues. In the sequel, we will write
indifferently 〈ϕ, z〉 or ϕ(z).

Let �+ denote the set {�}, this means the elements of � are present without
multiplicities. We define � = �+ ∪ −�+. The chamber complex is the unique
polyhedral subdivision of the cone C(�+) which is obtained as the common
refinement of the simplicial cones C(σ ) running over all possible basic subsets
of �+. A subset σ of � is called a basic subset of �, if the elements ϕ ∈ σ
form a vector space basis forRr . The pieces of the resulting subdivision are called
chambers. We will discuss the chambers in detail, specially how to compute the
chambers, in Section 4. The important fact to remember is that for each chamber
there is a quasipolynomial formula for k(�, a) and we explain now how to derive
the formula on a given chamber.

Each ϕ ∈ � determines a linear form on Cr and a complex hyperplane {z ∈
C

r | ϕ(z) = 0} in Cr . Consider the hyperplane arrangement

HC =
⋃
ϕ∈�+
{z ∈ Cr | ϕ(z) = 0}

and let R� denote the space of rational functions of z ∈ Cr with poles on HC. A
function in R� can be written P(z)/

∏
ϕ∈� ϕ(z)

nϕ where P is a polynomial function
on r complex variables and nϕ are nonnegative integers. For a basic set σ , set

fσ (z) := 1∏
ϕ∈σ

ϕ(z)
.

After a linear change of coordinates, the function fσ is simply 1/z1z2 · · · zr

and we denote by S� the subspace of R� spanned by such “simple” elements fσ .
Elements fσ are, in general, not linearly independent, as we see in the example
below.

Example 3. Let �+ be the set �+ = {e1, e2, e1 − e2}. Then we have the linear
relation

1

xy
= 1

y(x − y)
− 1

x(x − y)
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between elements fσ1 , fσ2 , fσ3 with σ1 = {e1, e2}, σ2 = {e1, e1 − e2} and σ3 =
{e2, e1 − e2} basic subsets of �+. Here we have identified e1, e2 to the coordinate
function x, y of an element xe1 + ye2 of the dual space.

Partial differentiation ∂i preserves the space R�. The key result we need is that
there is a well-defined decomposition of R� under the action of partial differentia-
tions, a free module part generated by the basic rational functions fσ , and a torsion
module part, which is unnecessary for calculations and can be neglected.

Theorem 4 (Brion–Vergne [9]). The vector space S� is contained in the homo-
geneous component of degree−r of R� and we have the direct sum decomposition

R� = S� ⊕
(

r∑
i=1

∂i R�

)
.

We call the projection map

Tres�: R�→ S�

according to this decomposition the total residue map.

The projection Tres�( f ) of a function f with poles on the union of hyperplanes
HC depends only on the smallest hyperplane arrangementH′

C
containing the poles

of f . Therefore we just denote by Tres( f ) the residue of a rational function f with
denominator a product of linear forms.

Example 5. Observe that if we work inR1 and� = {±e1}, then R� is the space
of Laurent series

L =
{

f (z) =
∑

k≥−q

ak zk

}
.

The total residue of a function f (z) ∈ L is the function a−1/z. The usual residue,
denoted Resz=0 f , is the constant a−1.

We denote by R̂� the obvious extension of R�, when we replace the space
of polynomial functions on r variables by the space of formal power series on
r variables. Let F : Cr → C

r be an analytic map, such that F(0) = 0 and F
preserves each hyperplane ϕ = 0. If f ∈ R̂�, the function (F∗ f )(z) = f (F(z))
is again in R̂�. Let Jac(F) be the Jacobian of the map F . The function Jac(F) is
calculated as follows: Write F(z) = (F1(z1, z2, . . . , zr ), . . . , Fr (z1, z2, . . . , zr )).
Then Jac(F)(z) = det(((∂/∂zi )Fj )i, j ).We assume that Jac(F)(z) does not vanish
at z = 0. For any f in R̂�, the following change of variable formula, which will
be useful in our calculations later on, holds in S�:

Tres( f ) = Tres(Jac(F)(F∗ f )).
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Note that the total residue of a rational function is again a rational function.
By definition, this function can be expressed as a linear combination of the simple
fractions fσ (z). If f ∈ S�, then Tres( f ) is just equal to f . We also know that
Tres vanishes on homogeneous rational functions of degree m, whenever m �= −r
and that Tres vanishes on derivatives. If f = P/

∏
k〈ϕk, z〉 (with P a polynomial

in r variables) has as a denominator a product of linear forms 〈ϕk, z〉, where the
associated normal vectors ϕi do not span Rr , then it is easy to see that f is a
derivative and the total residue of f is equal to 0. We are now ready to fix our
notation and recall the key formulas.

Definition 6. For a ∈ Rr , define

J�(a)(z) = Tres

 e〈a,z〉

N∏
k=1

〈ϕk, z〉

 = 1

(N − r)!
Tres

 〈a, z〉N−r

N∏
k=1

〈ϕk, z〉


and its “periodic” version

K�(a)(z) = Tres

 e〈a,z〉

N∏
k=1

1− e−〈ϕk ,z〉

 .

The equality

Tres

 e〈a,z〉

N∏
k=1

〈ϕk, z〉

 = 1

(N − r)!
Tres

 〈a, z〉N−r

N∏
k=1

〈ϕk, z〉


follows right away from the fact that the total residue vanishes on homogeneous
rational functions of degree m, whenever m �= −r .

By definition, J�(a)(z) and K�(a)(z) are rational functions of z homogeneous
in z of degree −r . They are polynomial functions of a of degree N − r and the
homogeneous part in a of degree (N − r) in K�(a)(z) is J�(a)(z).

Example 7. Let us compute J�(a)(z) and K�(a)(z) in the case of the Pitman–
Stanley polytope associated to the graph G with three nodes and edges {1, 2},
{1, 3} and the last edge {2, 3} with multiplicity two. Then

�G =
 1 1 0 0
−1 0 1 1

0 −1 −1 −1

 .
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Deleting the last row leads to

� =
(

1 1 0 0
−1 0 1 1

)
.

Then J�(a1, a2)(z1, z2) = Tres
(
e(a1z1+a2z2)/(z1 − z2)z1z2

2

)
is

= 1

2!
Tres

(
(a1z1 + a2z2)

2

(z1 − z2)z1z2
2

)
= a2

1

2
Tres

(
z2

1

(z1 − z2)z1z2
2

)
+ a1a2Tres

(
z1z2

(z1 − z2)z1z2
2

)
+ a2

2

2
Tres

(
z2

2

(z1 − z2)z1z2
2

)
= a2

1

2
Tres

(
z1

(z1 − z2)z2
2

)
+ a1a2 Tres

(
1

(z1 − z2)z2

)
+ a2

2

2
Tres

(
1

(z1 − z2)z1

)
.

Now 1/(z1 − z2)z2 and 1/(z1 − z2)z1 are simple elements so that they are equal
to their respective total residue. To compute the total residue of z1/(z1 − z2)z2

2,
we write z1 as a linear combination of linear forms in the denominator, in order to
reduce the degree of the denominator:

z1

(z1 − z2)z2
2

= (z1 − z2)+ z2

(z1 − z2)z2
2

= 1

z2
2

+ 1

(z1 − z2)z2
.

The total residue of 1/z2
2 is 0, as 1/z2

2 = −∂/∂z2 1/z2 is a derivative, thus

Tres

(
z1

(z1 − z2)z2
2

)
= 1

(z1 − z2)z2
.

We finally obtain

J�(a1, a2)(z1, z2) = 1

2

a2
1 + 2a1a2

(z1 − z2)z2
+ 1

2

a2
2

(z1 − z2) z1
.

We now compute

K�(a1, a2)(z1, z2) = Tres

(
e(a1z1+a2z2)

(1− e−(z1−z2))(1− e−z1)(1− e−z2)2

)
.

This is

Tres

(
1

(z1 − z2)z1z2
2

e(a1z1+a2z2)
z1 − z2

(1− e−(z1−z2))

z1

(1− e−z1)

z2
2

(1− e−z2)2

)
.
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We replace the analytic function

e(a1z1+a2z2)
z1 − z2

(1− e−(z1−z2))

z1

(1− e−z1)

z2
2

(1− e−z2)2

by its Taylor series at z1 = 0, z2 = 0, and keep only its term N (a1, a2)(z1, z2) of
homogeneous degree 2 in z1, z2 which is

( 5
12 + a1 + 1

2 a1
2) z1

2 + ( 7
12 + a2 + 1

2 a1 + a1 a2) z1 z2 + ( 1
2 a2 + 1

2 a2
2) z2

2.

Thus K�(a1, a2)(z1, z2) is equal to

Tres

(
N (a1, a2)(z1, z2)

(z1 − z2)z1z2
2

)
.

Arguing as for J�, we finally obtain that K�(a1, a2)(z1, z2) is equal to

1

2

a2
1 + 2a1a2 + 3a1 + 2a2 + 2

(z1 − z2)z2
+ 1

2

a2
2 + a2

(z1 − z2) z1
.

We are now ready to write the formulas to compute the volume and number of
integral points. See [2, Section 2] for details. To each chamber c of the subdivision
of C(�+) is associated a linear form f → 〈〈c, f 〉〉 on S�, the Jeffrey–Kirwan
residue [17]. Here is the first time the theory is different for unimodular matrices:
If the system � is unimodular, as is the case for networks, it takes value 1 or 0 on
fσ depending upon whether or not c is contained in C(σ ).

Theorem 8 (Baldoni–Vergne [2]). Let � be an integral r by N matrix with col-
umn vectors ϕ1, . . . , ϕN . Let c be a chamber of the subdivision of C(�+).

(1) The functions 〈〈c, J�(a)〉〉 and 〈〈c, K�(a)〉〉 are polynomial functions of
degree N − r.

(2) For a ∈ c, the volume of P(�, a) is given by

v(�, a) = 〈〈c, J�(a)〉〉.
(3) If in addition the matrix� is unimodular, as is the case for networks, then:

for a ∈ c ∩ Z�, the number of integral points in P(�, a) is given by

k(�, a) = 〈〈c, K�(a)〉〉.

Thus, in the case of unimodular matrices the function a �→ k(�, a) is polynomial
on closure of chambers and is given by an explicit formula in function of the
Jeffrey–Kirwan residue.

A more general formula for arbitrary� spanning a lattice Z� in Rr is given in
[28]. Now, the question is how to apply these two formulas for the computations
with flow polytopes. The calculation of total residues will simplify considerably.
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3. Counting Integer Flows in Networks

In this section we will focus on flow polytopes for acyclically directed graphs. We
already justified in the Introduction that this makes sense, as other networks can
be reduced to acyclic uncapacitated networks. Consider an (r + 1)-dimensional
real vector space with basis ei . Let A+r be defined by

A+r = {ei − ej | 1 ≤ i < j ≤ (r + 1)}.
(A+r is a choice of positive roots for the root system of type Ar .)

Consider Er the vector space spanned by the elements (ei − ej ), then

Er = {a ∈ Rr+1 | a = a1e1 + · · · + ar er + ar+1er+1

with a1 + a2 + · · · + ar + ar+1 = 0}.
The vector space Er is of dimension r and the map

f : Rr → Er (1)

defined by

a = (a1, a2, . . . , ar ) �→ a = a1e1 + · · · + ar er − (a1 + · · · + ar )er+1

explicitly provides an isomorphism of Er with the Euclidean space Rr . Let, as
before,� = {ϕ1, ϕ2, . . . , ϕN } denote a multiset of nonzero linear forms belonging
to A+r . We assume that the vector space spanned by � is Er . This multiset is
completely specified by the multiplicity mi, j of the vector ei − ej in�. Explicitly,
for the transportation polytope Tm,n(d, c), if we denote by �m,n ⊂ A+m+n−1 the
roots associated to it, then we have

�m,n = {ei − ej | 1 ≤ i < m, m + 1 ≤ j ≤ m + n}
and thus mi, j = 1 if 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n, mi, j = 0 otherwise.

It is clear that the polytope P(�, a) is the polytope associated to the uncapaci-
tated network with (r + 1) nodes, where the arc i �→ j (i < j) appears mi, j times
(mi, j can be 0 for some arcs), and with excess function ai at each node 1, 2, . . . , r
and −(a1 + a2 + · · · + ar ) at the last node r + 1. Indeed we have seen in Remark
3 that the columns of the matrix corresponding to P(�, a) are vectors of the form
ei − ej for some i and j.

The hyperplane arrangement (setting zr+1 = 0) generated by A+r is given by
the following set of hyperplanes:

{zi | 1 ≤ i ≤ r} ∪ {zi − zj | 1 ≤ i < j ≤ r}.
A function in RAr is thus a rational function f (z1, z2, . . . , zr ) onCr , with poles

on the hyperplanes zi = zj or zi = 0. The following result is proved by induction
in [2, Proposition 14]:
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Lemma 9. Let�r be the set of permutations on {1, 2, . . . , r} and let fπ , fw,w ∈
�r be defined by

fπ (z1, z2, . . . , zr ) = 1

(z1 − z2)(z2 − z3) · · · (zr−1 − zr )zr

and

fw(z1, . . . , zr ) = w · fπ (z1, . . . , zr ) = 1
r−1∏
i=1
(zw(i) − zw(i+1))zw(r)

,

then

dim SAr = r ! (2)

and

{ fw(z1, . . . , zr ) = w · fπ (z1, . . . , zr ), w ∈ �r } (3)

is a basis for SAr .

The cone C(A+r ) generated by positive-roots is the cone

a1 ≥ 0, a1 + a2 ≥ 0, . . . , a1 + a2 + · · · + ar ≥ 0.

We denote by c+ the open set of C(A+r ) defined by

c
+ = {a ∈ C(Ar

+) | ai > 0, i = 1, . . . , r}.
It is a chamber of our subdivision, and will be called the nice chamber. The reason
for this name will be clear later on.

If c is a chamber for C(A+r ), then there exists a unique chamber of C(�) that
contains c. In other words, the polyhedral subdivision for C(A+r ) is much finer
than for an arbitrary acyclic subnetwork.

Definition 10 ([2]). Let mi, j (i < j) be the multiplicity of the vector ei − ej in
� (i.e., this is the number of times the arc {i, j} is present in the network). Let
N =∑

i, j mi, j be the total number of arcs. We explicitly write the functions J�(a)
and K�(a) for our choice of �, a. Recalling that zr+1 = 0, we have that:

• J�(a)(z1, . . . , zr ) = 1

(N − r)!
Tres

 (a1z1 + · · · + ar zr )
N−r

r∏
i=1

zmi,r+1

i

∏
1≤i< j≤r

(zi − zj )
mi, j

 ,

• K�(a)(z1, . . . , zr ) = Tres

 ea1z1 ea2z2 · · · ear zr

r∏
i=1
(1− e−zi )mi,r+1

∏
1≤i< j≤r

(1− e−(zi−zj ))mi, j

 .
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We now write these functions in two specific examples.

Example 11. We consider the polytope associated to a complete bipartite graph
with three nodes on each side. Recall that in this case the matrix that determines
the polytope is given by the vectors � = {e1 − e4, e1 − e5, e1 − e6, e2 − e4, e2 −
e5, e2 − e6, e3 − e4, e3 − e5, e3 − e6}. So

mi, j

0

{= 1 if 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6,
otherwise,

and:

• J�(a)(z1, . . . , z5) = 1

4!
Tres

 (a1z1 + a2z2 + a3z3 + a4z4 + a5z5)
4

z1z2z3
∏

1≤i≤3
4≤ j≤5

(zi − zj )

 ;

• K�(a)(z1, . . . , z5) = Tres

 ea1z1 ea2z2 ea3z3 ea4z4 ea5z5

3∏
i=1
(1− e−zi )

∏
1≤i≤3
4≤ j≤5

(1− e−(zi−zj ))

 .

Example 12. We consider the polytope determined by the complete graph K5,
in other words, � = A+4 . We obtain:

• J�(a)(z1, . . . , z4) = 1

6!
Tres

 (a1z1 + a2z2 + a3z3 + a4z4)
6

z1z2z3z4
∏

1≤i< j≤4
(zi − zj )

 ;

• K�(a)(z1, . . . , z4) = Tres

 ea1z1 ea2z2 ea3z3 ea4z4

4∏
i=1
(1− e−zi )

∏
1≤i< j≤4

(1− e−(zi−zj ))

 .

In handling the formulas that we have for computing the volume and the number
of integral points, the first problem is that of computing the total residue. This is
in general a very difficult task. On the other hand, as we have seen, there is a very
nice basis in SAr and this will allow us to rewrite the formulas in terms of iterated
residues, which are certainly more tractable. The point is that one needs to find
some, but not all, simplicial cones that contain the chamber determined by a. This
is a step that allows the complexity of the algorithm to be reduced. We are now
going to introduce the iterated residue for Ar .

Recall that, via the identification (1) of Er withRr , a function in RAr is a rational
function f (z1, z2, . . . , zr ) on Cr , with poles on the hyperplanes zi = zj or zi = 0.
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For a permutation σ ∈ �r define the linear form on RAr ,

Iresσz=0 f = Reszσ(1)=0 Reszσ(2)=0 · · ·Reszσ(r)=0 f (z1, z2, . . . , zr )

= Resz1=0 Resz2=0 · · ·Reszr=0 f (zσ−1(1), zσ−1(2), . . . , zσ−1(r)).

In particular, for σ = id the linear form f �→ Iresz=0 f defined by

Iresz=0 f = Resz1=0 Resz2=0 · · ·Reszr=0 f (z1, z2, . . . , zr )

is called the iterated residue.

Remark.

• The linear form f �→ Iresσz=0 f on RAr induces a linear form on SAr , since it
vanishes on the vector space of derivatives

∑r
i=1 ∂i RAr .

• Iresσz=0 fw = δσw, where δσw is the Kronecker δ-function.
• The r ! linear forms Iresσz=0 f, σ ∈ �r , on SAr are dual to the basis fw.

Iterated residues are easier to understand, and we will see shortly how to use
them in connection to our formulas. Let w ∈ �r and let n(w) be the number of
elements i such that w(i) > w(i + 1) (this is called the number of descents of the
permutationw in [25]). We denote by C+w ⊂ C(Ar

+) the simplicial cone generated
by the basic subset σ+w of A+r defined by

σ+w = {ε(i)(ew(i) − ew(i+1))}i=1,...,r−1 ∪ {ew(r) − er+1},

where ε(i) is 1 or −1 depending whether w(i) < w(i + 1) or not. When w = 1,
then C1 = C(A+r ). The following lemma is easy to see.

Lemma 13. Let a = ∑r+1
j=1 aj ej in Er . The cone C+w ⊂ Er is given by the

following system of inequalities
∑i

j=1 aw( j) ≥ 0, for all i such thatw(i) < w(i+1),

but
∑i

j=1 aw( j) ≤ 0 if w(i) > w(i + 1).

Let f ∈ SAr . According to the definition, to compute 〈〈c, f 〉〉, we must rewrite
f as a linear combination of simple elements fσ where σ ranges over basic subsets
of the set A+r and then check if c is contained in C(σ ) or not. As, for w ∈ �r , the
linear forms Ireswz=0 f on SAr are dual to the basis fw, we have

f =
∑
w∈�r

(Iresz=0w
−1 f ) fw.

Consider the function

fw(z1, . . . , zr ) = 1
r−1∏
i=1
(zw(i) − zw(i+1))zw(r)

.
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Then fw = (−1)n(w) fσ+w . By definition 〈〈c, fσ+w 〉〉 is equal to 1 if c ⊂ C+w , and 0
otherwise.

Combining these remarks, we obtain

Theorem 14 ([2]). Let c be a chamber of C(�). Consider the set of elements
w ∈ �r such that c ⊂ C+w . Then, for f ∈ SAr ,

〈〈c, f 〉〉 =
∑

w∈�r ,c⊂C+w

(−1)n(w) Iresz=0w
−1 f.

In particular, for f = J�(a), we obtain:

Formula 1: For a ∈ c, we have

v(�, a) = 〈〈c, J�(a)〉〉 =
∑

w∈�r ,c⊂C+w

(−1)n(w) Ireswz=0 J�(a).

We have seen that to compute the number of integral points of our polytope we
need to compute K�(a). Let tj = mj, j+1 + · · · +mj,r+1 − 1, where we recall that
mi, j is the multiplicity of the root ei − ej in �. After a change of variable for the
total residue [2, Section 10], we obtain

Theorem 15. Let a =∑r+1
i=1 ai ei in Er ∩ Zr+1. Let

f�(a)(z) =

r∏
i=1
(1+ zi )

ai+ti

r∏
i=1

zmi,r+1

i

∏
1≤i< j≤r

(zi − zj )
mi, j

.

Then
Formula 2: For a ∈ c,

k(�, a) =
∑

w∈�r ,c⊂C+w

(−1)n(w) Ireswz=0 f�(a).

We now want to give an even more explicit formulation of the above result
suited to be directly implemented. For this purpose we need to introduce some
more notations. For a ∈ Er , let def(a) be defined by

def(a) = a + ε
∑
α∈�

α + ε2

(
r∑

i=1

ei − rer+1

)

with ε = 1/2mr2 and m the maximum of the multiplicities mi, j .
A wall of A+r is a hyperplane generated by r − 1 linearly independent elements

of A+r . The cells in C(A+r )\H∗ (H∗ being the set of walls for A+r ) are open cells,
interior of polyhedral cones. We will call these open cells topes. We will say that
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a ∈ C(A+r ) is regular if a is not on any wall for A+r . The walls of A+r are easily
characterized since they are the kernel of a linear form as

∑
i∈J ai where J is a

subset of {1, 2, . . . , r}. It is then easy to decide whether a vector a is regular or not.
If a is a regular element, we let cdenote the unique chamber of C(A+r ) containing

it. Then the set Sp(a) = {w ∈ �r | c ⊂ C+w } can be computed without explicit
knowledge of the chamber. In fact, one can easily see that the set Sp(a) consists
of those permutations w ∈ �r that satisfy the following conditions:

w(i) < w(i + 1) if and only if aw(1) + · · · + aw(i) ≥ 0,

for i = 1, 2, . . . , r − 1.
An element of Sp(a) will be called a special permutation.

Remark. If ai ≥ 0 for all i ≤ r , then a =∑r
i=1 ai ei − (

∑r
i=1 ai )er+1 belongs to

the closure of the nice chamber c+ and Sp(a) = {id}. This is the nice property of
this chamber leading to its name.

Now we can state Theorem 15 as follows:

Theorem 16. Let � ⊂ A+r be a system generating Er . Let a = ∑r+1
i=1 ai ei ∈

Er , ar+1 = −(a1 + · · · + ar ), ai ∈ Z, and assume that a ∈ C(A+r ).
Write

f�(a1, a2, . . . , ar )(z) =

r∏
i=1
(1+ zi )

ai+ti

r∏
i=1

zmi,r+1

i

∏
1≤i< j≤r

(zi − zj )
mi, j

.

Then:

• Formula 2A: If a is regular, then

k(�, a) =
∑

w∈Sp(a)

(−1)n(w) Ireswz=0 f�(a).

• Formula 2B: If a is not regular, then

k(�, a) =
∑

w∈Sp(def(a))

(−1)n(w) Ireswz=0 f�(a).

Remark. If a is in the nice chamber, the sum above is reduced to a single iterated
residue.

Remark. Formula 2B in the theorem follows by observing that the chamber con-
taining the regular element def(a) contains a in its closure. The deformation has
to be done with care to deal with some border cases. The following lemma, that
we state for completeness, shows that the deformation with ai integers is small
enough to take care of such cases.
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Lemma 17. Given a ∈ C(A+r ) ∩ Zr+1, define def(a) := a + ε∑α∈� α +
ε2(

∑r
i=1 ei − rer+1), ε = 1/(2mr2), where m is the maximum of the multiplicities

mi, j . Then the following holds:

• def(a) is regular, i.e., it belongs to a chamber.
• If τ is a tope and a ∈ τ , then def(a) ∈ τ.
• a ∈ C(A+r ) if and only if def(a) ∈ C(A+r ).
• In general, if � is a subset of A+r , a /∈ C(�) if and only if def(a) /∈ C(�).

For example, we obtain the following formula for the complete network Kr+1

on r + 1 nodes, with excess vector a1, a2, . . . , ar , ar+1 = −
∑r

i=1 ai . In this case,
the function k(A+r , a) is the so-called Kostant partition function and has special
importance for the representation theory of the group GL(r + 1,C).

Corollary 18. For a ∈ C(A+r )∩Zr+1, the Kostant partition function is given by

k(A+r , a) =
∑

w∈Sp(a′)

(−1)n(w) Ireswz=0

r∏
i=1
(1+ zi )

ai+r−i

r∏
i=1

zi
∏

1≤i< j≤r
(zi − zj )

,

where

a′ =
{

a if a is regular,
def(a) otherwise.

In particular, if ai ≥ 0 for 1 ≤ i ≤ r , we have

k(A+r , a) = Resz1=0 Resz2=0 · · ·Reszr=0


r∏

i=1
(1+ zi )

ai+r−i

r∏
i=1

zi
∏

1≤i< j≤r
(zi − zj )

 .
Similarly we may write a formula for the transportation polytope Tm,n(d, c).

Corollary 19. Let a = ∑m
i=1 di ei −

∑n
j=1 cj em+ j , with di and cj nonnegative

integers. Then the number of integral points in Tm,n(d, c) is equal to

∑
w∈Sp(a′)

(−1)n(w) Ireswz=0

m∏
i=1
(1+ zi )

di+n−1
n−1∏
j=1
(1+ zm+ j )

−cj−1

m∏
i=1

zi
∏

1≤i≤m
1≤ j≤n−1

(zi − zm+ j )

where

a′ =
{

a if a is regular,
def(a) otherwise.
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3.1. Total Residue Software for Counting Integral Flows

The scope of this section is a brief description of the various algorithmic procedures
that were implemented with the symbolic language Maple and that achieve the
formula for the number of integral points described in Theorem 15. This software
is available at www.math.ucdavis.edu/∼totalresidue. The initial data
are an r by N matrix A whose columns are the elements of � and an element
a = {a1, . . . , ar } ∈ Zr that determines the polytope. The ingredients that we need
to compute are:

(1) The element a′ = def(a) obtained by deforming the initial parameter a.
(2) The set of permutations that appear in the formula, that is, the set of special

permutations Sp(a′).
(3) The residues that appear in Formula 2.

We will discuss the ingredients for each one of these steps listing the various
algorithms that are related to the part we are describing.

First of all we want to check if our vector is in C(A+r ), that is, in the cone
generated by {e1 − e2, e2 − e3, . . . , er−1 − er , er } because otherwise the polytope
is empty and there is nothing to do. To be in the cone, a must satisfy a1 ≥ 0,
a1 + a2 ≥ 0, . . . , a1 + a2 + · · · + ar ≥ 0. The procedure check-vector verifies
whether this is true or not. In fact, because of Lemma 17, we may use def(a)
instead of a and we do this to simplify the procedures. We compute the element
def(a) via the Maple procedure def-vector. The vector def(a) is used in all the
formulas defining Sp(a) instead of a, whether or not a is regular. This takes care
of the first part.

To find the subset Sp(a) of �r , we use the procedure special-permu-
tations. We stress that using the Maple function combinat[permute] is imprac-
tical and does not go very far because of memory limitations. Our approach con-
structs recursively the permutations subject to our conditions; thus we save much
memory in listing only those permutations. The set Sp(a) depends strongly on the
element a. We do not have upper bound estimates on the subset Sp(a) ⊂ �r , but
it seems that this set is small compared to�r . One of the worst experimental cases
for the complete graph K10 on 10 nodes (the case of A+9 ) is the case of the vector
a = [30201, 59791, 70017, 41731, 58270,−81016,−68993,−47000,−43001,
−20000] where the number Sp(a) ⊂ �9 is 9572, certainly much smaller that 9!
Experiments show that the time spent to compute this set is rather small.

Every permutation w ∈ Sp(a) gives rise to the simplicial cone C+w containing
a. This simplicial cone corresponds to selecting a unique vertex of the polytope
P(A+r , a). Note that the cardinality of Sp(a) is much smaller than the number of
vertices of the polytope P(A+r , a). For example, for

a =
[

a1, a2, . . . , ar ,−
(

r∑
i=1

ai

)]
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with ai > 0, we have already remarked that the cardinality of Sp(a) is 1, as Sp(a)
is reduced to the identity permutation. Finally, for the last step we need to compute
the residue. Recall that we need to compute

Ireswz=0

r∏
i=1
(1+ zi )

ai+ti

r∏
i=1

zmi,r+1

i

∏
1≤i< j≤r

(zi − zj )
mi, j

withw one of the special permutations. Let us denote by F the function appearing
in the formula above. The function F is a product of a certain number of functions.
This allows us to take the residues by introducing, little by little, the part of the
function F containing the needed variable. To make things simpler we assume that
w is the identity permutation. We start by taking the residue at zr = 0 of the function
g := (1+ zr )

(ar+tr )/zmr,r+1
r

∏r−1
j=1(zj − zr )

mj,r . Suppose gr (z1, z2, . . . , zr−1) is the
result. We continue by taking the residue in zr−1 of the function gr multiplied
by all the factors of the original function F that involve the variables zr−1 and
so on. The way we compute the residue in one variable z of a function g(z) =
F(z)/zu , where F is analytic, is by computing the Taylor expansion of F up to
the estimate we have for the order u of the pole of the function g and then taking
the coefficient of 1/z. The argument just described is implemented via different
procedures: coeex, invi, trunc-next-function and RRK. Finally the procedure
number-kostant adds up, with a sign (the appropriate sign is computed using
segnop), all residues coming from the different special permutations, thus getting
Formula 2. The procedure polynomial-kostant computes the polynomial a �→
k(�, a) on the chamber determined by a.

As we pointed out we need a uniform estimate for the order of poles appearing.
The result for the order of poles is the content of the subsection that follows and
it is implemented in procedure E.

3.2. Estimates for the Order of Poles

Let Gr be a Laurent polynomial in the r variables z = (z1, z2, . . . , zr ) and let
Dr =

∏
1≤i< j≤r (zi − zj ).We have seen that we need to compute iterated residues

of the form

Resz1=0 Resz2=0 · · ·Reszr=0 Gr/Dm
r .

The following key lemma will handle the situations that will appear in comput-
ing the estimate we are looking for:

Lemma 20. Assume that Gr= [F(z1, . . . , zr )/(z1z2 · · · zr )
g]Hr (1/z1, . . . , 1/zr )

where F is analytic and Hr is a homogeneous polynomial of degree h , then

Reszr=0 Gr/Dm
r
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is a linear combination of functions of the form Gr−1/Dm
r−1 with

Gr−1 = F(z1, . . . , zr−1)

(z1z2 · · · zr−1)(g+m)
Hr−1

(
1

z1
, . . . ,

1

zr−1

)
,

where Hr−1 is a homogeneous polynomial of degree at most g + h − 1 and
F(z1, . . . , zr−1) is analytic.

Proof. Let us prove the lemma for a monomial Hr = zi1
1 · · · zir−1

r−1zir
r where

i1, i2, . . . , ir are nonnegative integers such that i1 + i2 + · · · + ir = h. We write∏
1≤i≤r−1(zi − zr )

m = (z1z2 · · · zr−1)
m
∏

1≤i≤r−1(1− zr/zi )
m .

The Taylor expansion of 1/
∏

1≤i≤r−1(1− zr/zi )
m at zr = 0 is∑

U1,...,Ur−1

z−|U1|
1 z−|U2|

2 · · · z−|Ur−1|
r−1 z|U1|+|U2|+···+|Ur−1|

r ,

where Us = { j s
1 , j s

2 , . . . , j s
m} varies over the m tuples of nonnegative integers.

Write also F(z1, . . . , zr ) =
∑

k Fk(z1, . . . , zr−1)zk
r . Thus we obtain

Reszr=0
Gr

Dm
r

= z−i1
1 · · · z−ir−1

r−1

(z1z2 · · · zr−1)g+m

1

Dm
r−1

Reszr=0
F(z1, . . . , zr )

zg+ir
r

r−1∏
i=1

(
1− zr

zi

)m

=
(

z−i1
1 · · · z−ir−1

r−1

(z1z2 · · · zr−1)g+m

1

Dm
r−1

)

×
g−1+ir∑

k=0


Fk(z1, . . . , zr−1)

∑
(U1 ,...,Ur−1)

r−1∑
i=1

|Ui |=g−1+ir−k

z−|U1|
1 · · · z−|Ur−1|

r−1


.

For 0 ≤ k ≤ ir + g − 1, the monomial

z−i1
1 · · · z−ir−1

r−1 z−|U1|
1 z−|U2|

2 · · · z−|Ur−1|
r−1

is such that

i1+· · ·+ ir−1+|U1|+ · · ·+ |Ur−1| = i1+· · ·+ ir−1+ ir + g−1−k ≤ h+ g−1

and we obtain the lemma.

Observe that if F = 1, then the same proof shows that Hr is homogeneous of
degree precisely h + g − 1. Now starting from Gr = F(z1, . . . , zr )/(z1 · · · zr )

m

we want to compute

Reszk+1=0 Reszk+2=0 · · ·Reszr−1=0 Reszr=0 Gr/Dm
r .
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Applying the lemma with h = 0, we obtain that

Reszr=0 Gr/Dm
r

is a linear combination of functions of the form Gr−1/Dm
r−1 where

Gr−1 = F(z1, . . . , zr−1)

(z1 · · · zr−1)2m
H

(
1

z1
, . . . ,

1

zr−1

)
and H is homogeneous of degree at most m − 1. Thus at the next residue we get
again a linear combination of functions of the form Gr−2/Dm

r−2 where

Gr−2 = F(z1, . . . , zr−2)

(z1 · · · zr−2)3m
H

(
1

z1
, . . . ,

1

zr−2

)
with H homogeneous of degree at most 2m + m − 1− 1 = 3m − 2. Finally, the
last residue in zk+1 = 0 leaves a linear combination of functions of the form

Gk

Dm
k

with

Gk = F(z1, . . . , zk)

(z1 · · · zk)(r−k+1)m
H

(
1

z1
, . . . ,

1

zk

)
.

Here H is homogeneous of degree at most (r − k)(r − k + 1)m/2− (r−k). In
particular, considering H(1/z1, . . . , 1/zk) we have the estimate on poles we were
looking for.

Corollary 21.

1. Let Gr = F(z1, . . . , zr )/(z1 · · · zr )
m, with F analytic. Then the function

Reszk+1=0 Reszk+2=0 · · ·Reszr−1=0 Reszr=0 Gr/Dm
r

has a pole in zk of order at most m(r − k)(r − k + 1)/2− (r − k).
2. In particular, with the notation as in Theorem 15, if m = maxij(mi, j ), then

the pole in σ(zk) of the function

Reszσ(k+1)=0 · · ·Reszσ(r)=0 f�(a1, a2, . . . , ar )(z)

= Reszσ(k+1)=0 · · ·Reszσ(r)=0

r∏
i=1
(1+ zi )

ai+ti

r∏
i=1

zmi,r+1

i

∏
1≤i< j≤r

(zi − zj )
mi, j

has at most order m(r − k)(r − k + 1)/2 − (r − k) independently from
σ ∈ �r .
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4. The Chamber Complex

In this section we discuss the chambers and how to compute them. It is impor-
tant to emphasize that everything that we present in this section is valid for gen-
eral matrices, not necessarily unimodular. There is an implementation of these
ideas in the Maple program chambers available at www.math.ucdavis.edu/
∼totalresidue. Let �+ denote the set of distinct vectors {�}. Recall that the
chamber complex is a polyhedral subdivision of the cone C(�+) of nonnegative
linear combinations of �+. Recall it is defined as the common refinement of the
simplicial cones C(σ ) running over all possible basic subsets σ of�+. To be more
precise we now introduce notation and the key definitions. In what follows, when
we consider a subset I = {s1, s2, . . . , sk}, where the elements si of I are subsets
of a set X , we assume there is a partial order on I by containment. Thus the set
of minimal elements of I is denoted by minimalize(I ). We adopt the convention
that the intersection of an empty family of subsets of X is X itself.

Let �+ be the set {ϕ1, ϕ2, . . . , ϕN } of vectors in Rr . Recall that a wall is a
hyperplane inRr spanned by (r −1) vectors of�+. Each wall W partitions the set
of indices {1, 2, . . . , N } into three sets: zeros(W ) = {i | ϕi ∈ W }, and two disjoint
subsets, pos(W ), neg(W ), whose union, pos(W )∪neg(W ), is precisely the subset
of {1, 2, . . . , N }\zeros(W ). Remark that the two half-spaces determined by W are
arbitrarily thought of as positive or negative. We denote by B the set of subsets σ
of {1, 2, . . . , N } such that σ is of cardinality r and the set of vectors {ϕi | i ∈ σ } is
linearly independent. For convenience, we continue to call such σ a basic subset
of�+, thinking of σ as a subset of integers or as a subset of elements of� labeled
by indices.

For σ ∈ B, we consider the closed cone C(σ ) generated by σ . If I is a subset of
B, let F(I ) = ⋂

σ∈I C(σ ) be the intersection of the cones C(σ ), when σ runs in
I . We will say that I is a feasible subset of B if the interior of F(I ) is nonempty. A
combinatorial chamber I is a maximal feasible subset of B. The polyhedral cone
F(I ) will be called a geometric chamber. The actual chamber Chamber(I ) is the
interior of F(I ). Reciprocally, the collection I is entirely determined by F(I ). We
have I = {σ ∈ B | F(I ) ⊂ C(σ )}. The collection of all geometric chambers and
their faces form a polyhedral complex that partition the cone C(�+), the so-called
chamber complex [1], [5], [10].

Figure 4 shows an example, the chamber complex for the cone associated to
the acyclic complete graph K4 we discussed in the previous section. The picture
represents a two-dimensional slice of the cone decomposition (the cone is three-
dimensional and pointed at the origin). The six dots labeled (ei−ej ) on the drawing
are the intersections of the raysR≥0(ei − ej )with the hyperplane (3x1+ x2− x3−
3x4) = 2. Seven chambers, numbered from 1 to 7, are present. In the configuration
of vectors of Figure 4 there are seven walls, one for each of the distinct lines
obtained from the vectors in the configuration.

Let H∗ denote the hyperplane arrangement spanned by all possible subsets of
d independent vectors on the input matrix (see, e.g., the left side of Figure 5). The
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Fig. 4. A slice of the chamber complex for K4.
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Fig. 5. (a) Eight topes (left) versus (b) seven chambers (right).

cells in C(�+)\H∗ are open cells, interior of polyhedral cones. We will call these
open cells topes (following the oriented matroid terminology [7]). It is important
for the reader to observe that the set of topes is (typically) a much finer subdivision
of C(�+) than its chambers. See Figure 5 for a comparison between the chamber
complex and the tope complex of the hyperplane arrangementH∗ associated with
the example in Figure 4.

For each wall W and each tope τ, we denote by pos(W, τ ) the set of elements
i ∈ {1, 2, . . . , N } such that ϕi ∈ �+ lies on the same open half-spaces determined
by W as the tope τ . Note that this makes sense since a tope τ is an open set disjoint
from the walls. We say that pos(W, τ ) is a nonface (this terminology is justified
because these are the nonfaces of a certain simplicial complex in the sense of
Chapter 2 of [26]). We denote by Chamber(τ ) the chamber containing the tope τ .

To each tope τ , we associate the family of positive nonfaces determined by the
tope τ (we have a nonface for each wall). Let us call this full family Polarized(τ ).
Consider the family MNF(τ ) of minimal elements of Polarized(τ ). This is the
family MNF(τ ) = minimalize(Polarized(τ )). The first main observation is that
we can reconstruct the chamber Chamber(τ ) containing the tope τ from the set
MNF(τ ). This is very useful to construct one initial chamber. Later all others will
be found from it.

The set MNF(τ ) is a set of nonfaces. Let f be the cardinality of the set MNF(τ ).
Let us list MNF(τ ) := {p1, p2, . . . , pf }. Each pi is a nonface. We construct the
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family P(τ ) of sets ν of the form ν := {i1, i2, . . . , i f } with i1 ∈ p1, i2 ∈ p2,. . . ,
i f ∈ pf . These we call transversals of a family of sets. This family is denoted by
transversal(MNF(τ )) in the computer program we present. Again P(τ ) is a set
whose elements are sets of indexes, its elements being subsets of {1, 2, . . . , N }.
The cardinality of a set ν ∈ P(τ ) may be smaller than f , as the family MNF(τ )
does not consist of disjoint sets. It is important to observe that if ν is in P(τ ), then
for any wall W , the intersection ν ∩ pos(W, τ ) is not empty. Now we prove the
following theorem:

Theorem 22. The minimal elements of the family

P(τ ) := transversal(MNF(τ ))

are exactly the basic subsets σ of �+ such that τ ⊂ C(σ ).

In other words, given the set MNF(τ ) associated to a tope τ , the family of basic
subsets σ of �+ such that τ is contained in the simplicial cone C(σ ) is precisely
the set minimalize(transversal(MNF(τ ))). We start by a lemma:

Lemma 23. Every ν ∈ P(τ ) is such that the set of vectors {ϕi | i ∈ ν} spansRr .

Proof. Let us see that a set ν ∈ P(τ ) spans Rr . Indeed, if not, the set of vectors
{ϕi | i ∈ ν} would be contained in a wall W . Consider the set pos(W, τ ) and a
minimal element p of the family

MNF(τ ) := minimalize(Polarized(τ ))

contained in pos(W, τ ). Then p (meaning the set of elements ϕi indexed by p) is
contained in one of the open half-spaces determined by W . Thus, contrary to our
hypothesis, we would have ν ∩ p = ∅.

We go on proving Theorem 22.

Proof. Let σ be a basic subset of �+ (σ (elements indexed by σ ) generates a
simplicial cone). We now prove that if τ ⊂ C(σ ), then σ ∈ P(τ ) and is a minimal
element in the family of tranversal sets P(τ ).

For each wall W , the set σ ∩ pos(W, τ ) is nonempty. Otherwise, σ would be
contained in the closed half-space determined by W , but would be on the opposite
to τ with respect to W , and the cone C(σ ) will not contain τ . Let us pick, for each
p ∈ MNF(τ ), an element ϕp ∈ σ ∩ p. It follows that σ necessarily contains the
set ν := {ϕp | ϕp ∈ σ ∩ p; p ∈MNF(τ )}, belonging to the family P(τ ). But then
σ = ν, as σ is a basic subset of �+ and ν indexes a set of generators of Rr by
Lemma 23. Furthermore, σ is minimal, as all sets belonging to the family P(τ )
have cardinality at least equal to r .
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We now prove the converse. Let ν be a minimal set of P(τ ). We claim that τ is
contained in the cone C(ν). Otherwise, there would be a wall W separating τ and
C(ν). But by construction of ν there is an element p ∈ ν contained in pos(W, τ );
a contradiction with W separating C(ν) and τ . Now all we have to prove is that ν
has cardinality r .

Let x be a point in τ . By Carathéodory’s theorem, there is a basic subset σ
contained in ν such that x ∈ C(σ ). Then the tope τ is entirely contained in C(σ )
because a tope is, by definition, not separated in two by any wall. The set σ belongs
to P(τ ) by the preceding discussion. But σ ⊂ ν and ν is minimal, thus ν = σ .

So we conclude that the set Chamber(τ ) of basic subsets σ of �+ such
that τ ⊂ C(σ ) is the set minimalize(P(τ )) of minimal elements of P(τ ) =
transversal(MNF(τ )).

The lexicographic tope is the tope containing the vector ξ = ϕ1+εϕ2+ε2ϕ3+· · ·
where ε is a small number. The lexicographic chamber is the chamber that contains
the lexicographic tope.

Corollary 24. The following algorithm determines the r-simplicial cones C(σ )
that contain the lexicographic chamber associated with a particular labeling of
the elements of �+, by finding the basic sets σ that define them.

(1) Create the list L of lexicographic nonfaces pos(W, τ ) where τ is the lexi-
cographic tope, and W runs over all possible walls of �+.

(2) Let F = {A1, A2, . . . , Am} be the minimal nonfaces from L .
(3) Find the transversal sets to the family F, then minimalize the set of transver-

sals. The result is σ1, . . . , σk , the desired basic sets.

Now we are concerned with producing all other chambers from one initial
chamber, such as the lexicographic chamber. For this we need to understand the
polyhedron F(I ). This is a pointed polyhedral cone. We recall, say from Chapter
8 in the book [24], that for a polyhedron P (e.g., F(I )) given by a finite set of
inequalities Ax ≤ b, a supporting hyperplane is an affine hyperplane {x | cx = d}
such that d = max{cx | Ax ≤ b}. A subset of P is a face if F = P or F is the
intersection of P with a supporting hyperplane of P . A facet of P is a maximal face
distinct from P . We say a wall W is an essential wall of the geometric chamber
F(I ), if F(I )∩W is a facet of the pointed polyhedral cone F(I ). This is equivalent
to W being a supporting hyperplane of F(I ) and dim(F(I ) ∩ W ) = r − 1. We
say that two geometric chambers F(I ) and F(I ′) are W -adjacent if they share a
common essential wall W and dim(F(I ) ∩ F(I ′) ∩ W ) = r − 1. In particular,
the wall W is an interior wall. In what follows we may sometimes say that two
chambers are “adjacent chambers” without specifying the wall they share. We
present now an operation that allows us to move, under certain conditions, from
a geometric chamber to another adjacent geometric chamber. Since the geometric
chambers form a connected polyhedral complex, we can then apply some standard
search procedure, such as depth-first search, to enumerate and list all chambers.
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W

plus minus

Fig. 6. A flip exchanges the simplicial cones supported on opposite sides of a wall.

We denote byW the set of subsets ν of {1, 2, . . . , N } such that ν is of cardinality
r − 1 and the set of vectors {ϕi | i ∈ ν} is linearly independent. In other words, if
ν is inW , the vector space L(ν) spanned by the vectors {ϕi | i ∈ ν} is a wall W .
If W is a wall we denote byW(W ) the subset ofW with elements whose ν are
such that L(ν) = W .

If ν is inW , we consider the subsets zeros(ν), pos(ν), and neg(ν). If i is not
in zeros(ν), then ν ∪ {i} is an element of B. We denote by δ+(ν) the subset of B
consisting of elements σ = ν ∪ {i} where i runs in pos(ν); denote by δ−(ν) the
subset of B consisting of elements σ = ν ∪ {i} where i runs in neg(ν).

If W is a wall and σ a subset of {1, 2, . . . , N } we denote by σ ∩ W = σ ∩
zeros(W ). We denote byB(W | facet) the subset ofB consisting of those elements
σ such that σ ∩ W is of cardinality (r − 1). In other words, W is spanned by
a facet of the cone C(σ ). We denote by B(W | cut) the subset of B consisting
of elements σ such that both sets σ ∩ pos(W ) and σ ∩ neg(W ) are nonempty.
For any subset I of B, we denote by I (W | facet) = I ∩ B(W | facet) and by
I (W | cut) = I ∩ B(W | cut).

Let I be a combinatorial chamber which is a maximal feasible subset of B . Let
W be a wall, we define B(W, I ) = {σ ∩ W | σ ∈ I (W | facet)}. This is a subset
ofW(W ) = {ν ∈W | L(ν) = W }. If W is an essential wall of F(I ), then (as we
will see later) for each subset ν ∈ B(W, I ) either δ+(ν) is contained in I or δ−(ν)
is contained in I , but not both.

If W is an interior wall and I a subset of B, then define the flip operation
flip(I,W ). This is also a subset ofB constructed in this way: We keep in flip(I,W )

all elements σ ∈ I (W | cut), while we replace each subset δ+(ν) ⊂ I (W | facet)
by its opposite δ−(ν).

Applying a flip to a combinatorial chamber over any wall may not yield an
adjacent chamber, as we now see in the example of Figure 7.

Indeed, consider the shaded geometric chamber presented in Figure 7. Then the
corresponding combinatorial chamber is

I := {{1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {1, 4, 6}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}}.
If W is the wall {1, 4}, then I (W | facet) := {{1, 4, 5}, {1, 4, 6}}. To perform the

flip, we replace this subset of I by {{1, 4, 2}, {1, 4, 3}}. We obtain that flip(I,W )
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Fig. 7. A flip using the wall 1, 4 does not give a chamber, only a point is the intersection of all cones.
On the other hand, a flip using wall 1, 5 yields a triangular chamber.

is equal to

{{1, 2, 5}, {1, 3, 5}, {1, 4, 2}, {1, 4, 3}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}}.

But this subset of B is not feasible. For example, the intersection of the simpli-
cial cones generated by {1, 2, 5} and {3, 4, 6} lies on the bottom side of the line
picturing W , while the intersection of the simplicial cones generated by {1, 4, 2}
and {1, 4, 3}} lies on the top side.

In contrast the flip of the combinatorial chamber I across the wall W ′ spanned
by the vectors {1, 5} is a chamber. Indeed, in this case, we replace in I the subset
{{1, 5, 2}, {1, 5, 3}, {1, 5, 4}} just by {{1, 5, 6}}. Thus flip(I,W ′) is equal to (again
see Figure 7),

{{1, 5, 6}, {1, 4, 6}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}}

which is again a maximal feasible subset. The important fact, illustrated by the
previous example, is that if one performs the flips over essential walls the result is
the desired one.

Lemma 25. Let W be an essential interior wall of F(I ), and let flip(I,W ) be the
geometric chamber obtained by the flip of I along the essential wall W. Then the
set flip(I,W ) is the combinatorial chamber associated to the W -adjacent chamber
sharing W with F(I ).

Clearly all elements σ ∈ I (W | cut) and elements in δ−(ν), when ν runs
over B(W, I ), give rise to simplicial cones containing the W -adjacent chamber.
Conversely, any σ inB, such that the cone C(σ ) contains the W -adjacent chamber,
is either in I (W | cut) or in a set of the form δ−(ν), with ν ∈ B(W, I ).

The above lemma stresses the importance of determining the essential walls
and that is what we describe next. Each essential wall W is described by a linear
inequality that reaches equality at F(I ) ∩ W . The chamber is contained in the
corresponding half-space. The presentation we have of the chamber is as the in-
tersection of simplicial cones, their facets provide us with a system of inequalities
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whose solution is precisely the chamber. The trouble is that this system contains
redundant inequalities. An inequality is redundant if it is implied by the other
constraints in the system, so redundant inequalities can be removed.

Our algorithm for finding the essential walls is based on the following statement,
which is essentially Theorem 8.1 on page 101 of [24]. Here we state it for full-
dimensional polyhedra (thus no equality constraints are present):

Theorem 26. If no inequality in the system Ax ≤ b defining the full-dimensional
polyhedron P is redundant, then there exists a one-to-one correspondence between
the facets of a polyhedron and the inequalities in Ax ≤ b given by F = {x ∈ P |
ai x = βi }, for any facet F of P and any inequality ai x ≤ βi from the system
Ax ≤ b.

So if we manage to remove redundant inequalities from the original system
of inequalities associated to F(I ) we would have found the essential facets of
the pointed polyhedral cone F(I ). To do this, let us describe a direct method.
Let Ax ≤ b, sT x ≤ t be a given system of (m + 1)-inequalities in d-variables
x = (x1, x2, . . . , xd)

T . We want to test whether the subsystem of first m inequalities
Ax ≤ b implies the last inequality sT x ≤ t . If so, the inequality sT x ≤ t is
redundant and can be removed from the system. A linear programming formulation
of this is rather simple:

f ∗ = maximizesT x, subject to Ax ≤ b, sT x ≤ t + 1.

Then the inequality sT x ≤ t is redundant if and only if the optimal value f ∗ is
less than or equal to t . By successively solving this linear programming problem
for each untested inequality against the remaining inequalities, one would finally
obtain an equivalent nonredundant system. Thus the algorithm to recover all the
essential walls is as follows:

(1) Find the inequalities of each of the simplicial cones in F(I ).
(2) Remove redundant inequalities using linear programming until there is no

redundant inequality left. By the previous theorem the wall is uniquely
determined by setting the inequalities to equality.

Thus to find all the chambers, we have:

Corollary 27. The following algorithm finds all the chambers of the vector
set �+:

(1) Find the lexicographic chamber Iinitial. Put that as the first element of a list
of chambers L .

(2) Pick an element I of L for which we have not yet found its adjacent cham-
bers. Determine its essential walls W using the method above.
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(3) Perform the flips flip(I,W ) = I (W ) for each essential interior wall W .
(4) Add the I (W ) to the list L of existing chambers if not already there, and

continue until we have found adjacent chambers for all elements in L .

Although we now have a concrete algorithm to generate all chambers, for
practical reasons it is highly desirable to improve the speed on recognizing the
essential walls. For this, the following intuitive proposition states some necessary
conditions of the essential walls of a chamber. The proof is left to the reader.

Proposition 28. Let I be a combinatorial chamber (a maximal feasible subset
of B). Let W be a wall of�+. If W is an essential wall of F(I ), then the following
conditions hold true:

(1) I = I (W | facet) ∪ I (W | cut).
(2) I (W | facet) �= ∅.
(3) For each ν ∈W , either: δ+(ν)∩ I �= ∅. Then δ+(ν) ⊂ I and δ−(ν)∩ I = ∅;

or δ−(ν) ∩ I �= ∅. Then δ−(ν) ⊂ I and δ+(ν) ∩ I = ∅.
(4) Assume I (W | cut) is not empty. Then

⋂
σ∈I (W |cut)

◦
C(σ ) intersects W in an

(r − 1)-dimensional set.

Remark. The wall W = {1, 4} in Figure 7 satisfies conditions (1), (2), and (3)
of Proposition 28, but not condition (4). Applying a flip over a wall satisfying
conditions (1), (2), and (3) may not yield an adjacent chamber, as we see in the
example of Figure 7. In fact, we have:

Corollary 29. If W is a wall of F(I ) satisfying conditions (1), (2), (3), and not
(4); then flip(I,W ) is not a feasible subset of B.

Proof. Assume W verifies (1), (2), and (3). Let I ′ = flip(I,W ). If W does not
satisfy (4), the set F(cut) =⋂

σ∈I (W |cut) C(σ ) does not cut W in an open set. Thus
F(cut) is contained in one side of the hyperplane W . The set I (W | cut) is left stable
under the procedure flip. Clearly, the other cone F ′(facet) = ⋂

σ∈I ′(W |facet) C(σ )
is on the other side of the hyperplane W . Thus the set I ′ is not feasible.

The following result justifies why it is so difficult finding the combinatorial
chamber that contains a given input vector:

Proposition 30. Let A be an integral matrix. Let b be a vector in the cone C(A)
generated by the columns of A and a list F of simplicial cones with rays in the
columns of A such that all elements of F contain b. Deciding whether F includes
all simplices that contain b, i.e., whether F determines the combinatorial chamber
that contains b, is N P-hard.
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Proof. The following decision question is a well-known NP-complete problem:
Given a complete graph with positive integral weights on the edges decide whether
there is a Hamiltonian tour of cost less than β. We will explain why this problem
can be transformed to the problem of “decide whether a list of a simplicial of cones
is already enough to determine a chamber.”

We will use a theorem by K. Murty (see Theorem 2.1 in [20]): Consider the
complete bipartite graph Kn,n . Orient the edges all in the same directions and assign
excess 1 to the tail nodes and −1 to the head nodes of each arc. It is well-known
that the associated flow polytope is the Birkhoff–Von Neumann polytope of doubly
stochastic matrices. This polytope is embedded in Rn2

and the coordinates are in
correspondence with the arcs of the bipartite network. The associated network
matrix has rank 2n − 1, 2n rows, and n2 columns, one per arc in the network, and
we label them (1, 1), (1, 2), . . . , (n − 1, n), (n, n).

Extend the above network matrix by adding a row of costs, where ci, j , i �= j , is
the cost to go from i to j , except for the entry associated to the arc i, i where one
can put a huge integer value M , much larger than the sum of the n largest ci, j ’s.
On the right-hand side of the matrix equation we add an entry of value β. Written
in terms of equations we have

n∑
i=1

xi, j = 1, j = 1, . . . , n,

n∑
j=1

−xi, j = −1, i = 1, . . . , n,

n∑
i=1

n∑
j=1

ci, j xi, j = β,

xi j ≥ 0 for all i, j.

This system now has rank 2n.
The important point is: If the set of columns {(1, 1), (2, 2), . . . , (n, n), (i1, j1),

(i2, j2), . . . , (in, jn)} defines a simplicial cone containing the vector b = (1, 1, 1,
. . . ,−1,−1,−1, β), then (i1, j1), . . . , (in, jn) must be a traveling salesman tour
with cost less than or equal to β. Thus if we take as F the set of all simplicial cones
of bases that do not use all the columns {(1, 1), (2, 2), . . . , (n, n)} and contain
b = (1, 1, . . . ,−1,−1, β), the remaining job of deciding whether any other cone
contains the vector b is at least as hard as the solution of the traveling salesman
problem.

To conclude this section it is worth mentioning that one can abstractly apply flips
to the nonessential walls satisfying (1), (2), and (3). The interior of the resulting
“chamber” may actually have an empty interior in that case and thus is not useful
for us here. Nevertheless, this phenomenon plays an important role in the theory
under the name of virtual chambers. In fact, there is another characterization of
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the chambers using the triangulations of the Gale diagram of the original vectors.
(See [31] for an introduction to Gale diagrams and triangulations.)

Lemma 31 (See [5], [10]). The face lattice of the chamber complex of a vector
configuration A is anti-isomorphic to the face lattice of the secondary polyhedron
of the Gale transform Â of A. The vertices of the polyhedron are the regular
triangulations of Â.

Thus generating the chambers of a network cone is the same as generating the
distinct regular triangulations of the Gale diagram of an extended network matrix.
Such calculations can also be done using the software topcom [23].

5. Computational Experiments

Now we present some computational experiments. All experiments were done
in a 1 GHz pentium computer running Linux using Maple 7. All our software
is available at www.math.ucdavis.edu/∼totalresidue. We present our
experiments in three tables. We begin with Tables 1 and 2 that deal with Kostant’s
partition function, this is the case of acyclic complete graphs. As we saw in Lemma
1, all other networks can be embedded into this case. We did examples in the cases
of K4 (A

+
3 ), K5 (A

+
4 ) in the first table and in the second table we have bigger

examples for the cases A+6 , A+7 , A+8 , A+9 , and A+10. We show computation times
in both tables and Table 2 also shows the cardinality of the special permutation
sets. The computations show that the total residue method is faster than brute force
enumeration and the current implementation of software LattE [11], [12] by one
or two orders of magnitude. LattE, on the other hand, is the only software that
can deal with arbitrary rational convex polyhedra.

As is clear in the two first tables, the computation time does not increase signif-
icantly when the weights on nodes are very large. On the other hand, computation
time quickly becomes very large when the number of nodes of the graph is grow-
ing. This is in agreement with Barvinok’s result (see [3]): computing k(�, a) can
be done in polynomial time, if the size of � is fixed. Let us stress here that our
method for network polytopes is different from Barvinok’s algorithm, recently
implemented by LattE.

In the second table it is evident that, for a fixed number of nodes, the time of
computation depends strongly on the cardinality of the set Sp(a), i.e., the signs of
weights on the nodes (when all weights are positive, except the last, the cardinality
of Sp(a) is 1).

Let us stress that one of the features of our method is that it can directly compute
the polynomial k(�, a) giving the number of lattice points in the polytope P(�, a)
in the chamber determined by a. In particular, the Ehrhart polynomial of the
polytope P(�, a), i.e., the function t �→ k(�, ta), is also computed easily from
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our algorithm. For example, corresponding to the first line of Table 2:

k(A+r , (t, 2t, 3t, 4t, 5t,−15t))

= 1

120960
(6t + 1)(t + 4)(t + 3)(t + 2)(t + 1)

× (64921t5 + 233897t4 + 307649t3 + 184639t2 + 50574t + 5040)

which was computed in 0.55 seconds.
The polynomial function k(�, (a1, a2, a3, a4, a5)) (with a5 = −(a1+a2+a3+

a4)) in the chamber {a1 > 0, a2 > 0, a3 > 0, a4 > 0} is computed in 0.48 seconds.
The Ehrhart polynomials for the second, third, and fourth examples in Table 2,

i.e.,

k(A+r , (21128t, 45716t, 79394t,−76028t,−31176t, 66462t)),

k(A+r , (82275t, 33212t, 91868t,−57457t, 47254t,−64616t, 94854t)),

and

k(A+r , (31994t,−12275t, 55541t, 72295t, 26697t,−3212t,−38225t, 6916t)),

were computed in 1.36 seconds, 18.54 seconds, and 93.36 seconds, respectively.
It is also interesting to check the program on the value of the Kostant partition

for A+r on the vector a = [1, 2, 3, 4, . . . , r,−r(r+1)/2]. As proven by Zeilberger
[30], this value is

∏r
i=1 (2i)!/i!(i + 1)!.

The last table is dedicated to 4× 4 transportation matrices. In the case of trans-
portation polytopes, i.e., complete bipartite graphs, we were able to compare our
speed to the special purpose C++ program written by Beck and Pixton [4]. Both
LattE and Beck–Pixton’s software are faster than our Maple implementation,
with Beck–Pixton’s significantly so, but it must still be emphasized that our cal-
culations for transportation polytopes make use of the fact that they are embedded
inside the complete graph for a large enough number of nodes. For example, the
case of 4 × 4 transportation polytopes is treated via the complete graph K8. The
same kind of embedding can be done for other networks.

If we consider the case of 4 × 5 matrices with weights on nodes [3046, 5173,
6116, 10928], [182, 778, 3635, 9558, 11110], the number of lattice points is
23196436596128897574829611531938753 calculated in 11.15 seconds. The
number of special permutations for this vector is 540 while the number of ver-
tices of the corresponding polytope is 912. This same example takes 7.8 seconds
in LattE and 0.1 seconds in the Beck–Pixton program.

The Ehrhart polynomial

k(�4,5,(3046t,5173t,6116t,10928t,−182t,−778t,−3635t,−9558t,−11110t))

is computed in 30.72 seconds.
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If we consider the case of 5×5 matrices with weights on nodes [30201, 59791,
70017, 41731, 58270], [81016, 68993, 47000, 43001, 20000], then the number of
lattice points is

24640538268151981086397018033422264050757251133401758112509495633028,

which we computed in 23 minutes. The number of special permutations needed
is 9572 while the number of vertices of the corresponding polytope is 13150. This
example took 20 minutes with LattE and just 4 seconds with the Beck–Pixton
program.

Transportation polytopes were treated by Beck and Pixton [4] in a special
purpose C++ program dedicated to this particular family of flow polytopes. Their
computation is also via residues and is the fastest at the moment. It is important to
remark that their use of residues is quite different from ours; our main theorem can
be thought of as a multidimensional analogue of the fact that sums of the residues of
a rational function on P1(C) are zero. It is to be expected that in a forthcoming C++

implementation the timings discussed here will be considerably faster than those
from this preliminaryMaple implementation. Besides the obvious implementation
speed-ups, the ideas presented in this paper could still be improved when the total
residue method is applied directly to the bipartite graph, not as a subnetwork of Kn .
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