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Abstract

This document is a companion for the Maple program Discrete
series and K-types for U(p,q) available on

\protect\vrule widthOpt\protect\href{http://wuw.math.jussieu.fr/\string~vergne/}{]

We explain an algorithm to compute the multiplicities of an irre-
ducible representation of U(p) x U(q) in a discrete series of U(p,q).
It is based on Blattner’s formula. We recall the general mathematical
background to compute Kostant partition functions via multidimen-
sional residues, and we outline our algorithm. We also point out some
properties of the piecewise polynomial functions describing multiplic-
ities based on Paradan’s results.
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Introduction

The present article is a user’s guide for the Maple program Discrete series and
K types for U(p, q), available at

\protect\vrule widthOpt\protect\href{http://www.math.jussieu.fr/\string vergne/}{http:,

In the first part, we explain what our program does with simple examples.
The second part sets the general mathematical background. We recall Blattner’s
formula, and we discuss the piecewise (quasi)-polynomial behavior of multiplicities
for a discrete series of a reductive real group. In the third part, we outline the
algorithm of computing partition functions for arbitrary set of vectors, based on



Jeffrey-Kirwan residue and maximally nested subsets. In the fourth part, we spe-
cialize the method to U(p, q). We in particular explain how to compute maximally
nested subsets of the set of non compact positive roots of U(p, q).

In the last two sections, we give more examples and some details on the im-
plementation of the algorithms for our present application.

Here G is the Lie group G = U(p,q) and K = U(p) x U(q) is a maximal
compact subgroup of GG. Of course all these issues can be addressed for the other
reductive real Lie groups following the same approach described here. To introduce
the function we want to study, we briefly establish some notations (see Sec. [2.2]).
We denote by 7 a discrete series representation with Harish Chandra parameter
\. The restriction of 7 to the maximal compact subgroup K decomposes in irre-
ducible finite dimensional K representations with finite multiplicities, in formula

A _ A
™ |k = E :muTu
T

where we sum over K: the classes 7, of irreducible finite dimensional K represen-
tations, p being the Harish Chandra parameter of 7.

mf; is a finite number called the multiplicity of the K-type 7, or simply of y, in
7 and this paper addresses the question of computing mﬁ.

The algorithm described in this paper checks whether a certain K-type 7, appears
in the K-spectrum of a discrete series 7* by computing the multiplicity of such a
K-type. The input i can also be a symbolic variable as we will explain shortly.
By Blattner’s formula, computing the K-multiplicity is equivalent to compute the
number of integral points, that is a partition function, for specific polytopes. We
thus use the formulae developed in [3] to write the algorithm.

One important aspect of these results is that the input datas (A, 1) can also be
treated as parameters. Thus, in principle, given (Ao, ig), we can output a convex
cone, containing (Ao, f40), and a polynomial function of the parameters (A, u) whose
value at (), zt) is the multiplicity of the K-type u in the representation 7* as long as
we stay within the region described by the cone and (\, i) satisfy some integrality
conditions to be defined later. We also plan to explicitly decompose our parameter
space (A, ) in such regions of polynomiality in a future study, thus describing fully
the piecewise polynomial function mf;, at least for some low rank cases.

In practise here, we only address a simpler question: we will fix A\, p and
a direction ¥ and compute a piecewise polynomial function of ¢ coinciding with
mz 44 On integers ¢. This way, we can also check if a direction ¢ is an asymptotic
direction of the K-spectrum, in the sense explained in Sec. B.7.3l

The Atlas of Lie Groups and Representations, [I], within the problem of clas-
sifying all of the irreducible unitary representations of a given reductive Lie group,



addresses in particular the problem of computing K-types of discrete series. The
multiplicities results needed for the general unitary problem is of different nature
as we are going to explain.

Given as input A and some height h, Atlas computes the list with multiplic-
ities of all the representations occurring in 7* of height smaller than h. But the
efficiency, in this setting, is limited by the height. In contrast, the efficiency of our
program is unsensitive to the height of A, u, but the output is one number: the
multiplicity of 1 in 7. Tt takes (almost) the same time to compute the multiplicity
of the lowest K-type of 7* (fortunately the answer is 1) than the multiplicity of a
representation of very large height. Our calculation are also very sensitive to the
rank: p+q— 1.

For other applications (weight multiplicities, tensor products multiplicities)
based on computations of Kostant partition functions in the context of finite di-
mensional representations, see [4], [6], [2].

1 The algorithm for Blattner’s formula: main
commands and simple examples

Let p,q be integers. We consider the group G = U(p,q). The maximal compact
subgroup is K := U(p) xU(q). More details in parametrization are given in Section
4

A discrete series representation 7 is parametrized according to Harish-Chandra
parameter A, that we input as discrete:

discrete == [[A1,..., N\pl, (71, -+, Y]

Here )\;,7; are integers if p + ¢ is odd, or half-integers if p + ¢ is even. They
are all distinct. Furthermore Ay > --- > A, and 71 > - > v,.

A unitary irreducible representation of K (that is a couple of unitary irreducible
representations of U(p) and of U(q)) is parametrized by its Harish-Chandra pa-
rameters u that we input as Krep:

Krep :=[ai,az,...,ap],[bi,...,b4l]

with a1 > --- > ap and by > --- > b,.

Here a; are integers if p is odd, half-integers if p is even. Similarly b; are
integers if ¢ is odd, half-integers if ¢ is even.

As we said, our objective is to study the function mf; for p € K where uw= Krep
and A = discrete.



The examples are runned on a MacBook Pro, Intel Core 2 Duo, with a Processor
Speed of 2.4 GHz. The time of the examples is computed in seconds. They are
recorded by

TT

Some of these examples are very simple and can be checked by hand (as we
did, to reassure ourselves). Other examples are given at the end of this article.

To compute the multiplicity of the K-type given by Krep in the discrete series
with parameter given by discrete, the command is

>discretemult (Krep,discrete,p,q)

Example 1

Krep:=[[207/2, -3/2], [3/2, -207/2]11;
discrete:=[[5/2, -3/2], [3/2, -5/211;

>discretemult (Krep,discrete,2,2);

101
Here is another example of mf; that our program can compute.

Example 2

We consider the discrete series indexed by
lambda33:=[[11/2, 7/2, 3/21, [9/2, 5/2, 1/2]11;
Its lowest K-type is
lowlambda33:= [[7,4,1], [5,2,-111;

Of course, the multiplicity of the lowest K-type is 1. Our programm fortunately returns the value 1 in
0.03 seconds.

Consider now the representation of K with parameter:

biglambda33:= [[10006, 4, -9998], [10004, 2, -100001];
Then the multiplicity of this K-type is computed computed in 0.05 seconds as
> discretemult(biglambda33,lambda33,3,3);

2500999925005000;



Here are two other examples that verify the known behavior of holomorphic dis-
crete series. The notation ab... that we use to label the discrete series parameters
is introduced in 1] and it very effective to picture the situation, but it is not
relevant to understand the following computation.

Example 3

Consider a holomorphic discrete series of type ”aaabbb” for G = U(3,3) (see Sec[L]) with lowest K-type

of dimension 1. We verify that the multiplicity is 1 for p in the cone spanned by strongly orthogonal non
compact positive roots.

hol33:=[[11/2,9/2,7/2],[5/2,3/2,1/21];

lowhol33:=[[7, 6, 5], [1, 0, -1]11;

bighol33:=[[7+1000, 6+100, 5+10], [1-10, -100, -1-1000]11;
>discretemult (lowhol33,h0133,3,3);

1
TT:= 0.052

>discretemult (bighol33,ho0133,3,3);

1
TT:= 1.003

Example 4

Consider a holomorphic discrete series of type ”aaabbb” for G = U(3, 3) (see Sec. [I]) with lowest K-type
of dimension d. We verify that the multiplicities are bounded by d.

Hol33:=[[27/2,9/2,7/2],[5/2,3/2,-5/21];

lowHo133:=[[15, 6, 51, [1, 0, -411;

bigHol133:=[[15+1000, 6+1000, 5+1000], [1-1000, -1000, -4-1000]1;
verybigHol133:=[[15+100000, 6+10000, 5+10000], [1-10000, -10000, -4-1000001];

>discretemult (lowHo133,H0133,3,3);

1
TT:= 0.069
>discretemult (bigHol33,Ho133,3,3);

4
TT:=0.971

>discretemult (verybigHol33,H0133,3,3);

4
TT:= 0.873

Fix now a K-type pu, a direction ¢ given by a dominant weight for K ( more
details in Sec. B.7.3]) and a discrete series parameter \. The half-line p + t¥ stays
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inside the dominant chamber for K. A very natural question is that of investigating
the behavior of the multiplicity function as a function of t € Z, when we move
from p along the positive ¢ direction, that is the function ¢t — mf; 4 £ 20
The answer to this question will be given by two sets of datas: a covering of N
determined by a finite number of closed intervals I; C R with integral end points,
that is N = Uj<ij<s(I; NN), together with polynomial functions P;(t), 1 <i <'s, of
degree bounded by pg— (p+ ¢ —1), that compute the multiplicity on such intervals
I;: in formula mﬁHa = P(t) for t € I N N.

We remark two aspects. First the {I; NN, 1 < ¢ < s} constitutes a covering
in the sense that we recover all of N but (I; N N) N (I;41 N N) can intersect in
the extreme points and hence in this case P; and P;i; have to coincide on the
intersection. Secondly the ”intervals” I; "N can be reduced just to a point, so that
the polynomial P; (if not constant) is not uniquely determined by its value on one
point |. More generally, if the length of the interval I; is smaller that the degree
of P;, the polynomial P; is not uniquely determined.

Because of our focus on the polynomiality aspects we keep in the output of the
algorithm the polynomials P; even if the intervals I; are reduced to a point (or
with small numbers of integral points).

In our application, p will be the lowest K-type and we will give some examples of
the situations occurring, in particular we will examine the following cases:

e The first example outputs a covering of N given by a unique interval and
a polynomial function on N that computes the multiplicity. Thus in this
case, all the integer points on the half line p + t0,¢t > 0 give rise to K-types
that appear in the restriction of the discrete series, in particular ¢ is an
asymptotic direction, (see Sec. 2.4 and B.7.3)),

e In the other examples, the covering of N has at least two intervals and
illustrate different situations.

To compute, in the sense we just explained, the multiplicity of the K-type u + tv
in the discrete series with parameter discrete, u being the lowest K-type moving
in the positive direction ¥, labeled by direction , the command is

>function_discrete_mul_direction_lowest(discrete,direction,p,q);

Example 5



discrete:=[[5/2, -3/2], [3/2, -5/211;
direction:=[[1,0],[0,-1]1];

>function_discrete_mul_direction_lowest(discrete, [[1,0],[0,-111, 2,2);
[[t+1, [0, infll]
(inf stands for oo ).
Here the covering of N is N = [0,00] N N and the polynomial is P(t) =t + 1. The

output explicitly compute:
my s =t+1, teN, t>0

with u = [[7/2,—3/2],[3/2,—7/2]] the lowest K-type of the representation 7 (See
Ex [ for computation of the lowest K-type). Thus we compute the multiplicity,
starting from the lowest K-type when we are moving off it in the direction of v.

In particular for ¢ = 100 we get mf; 11005 = 101 as predicted in Ex[] since

discrete:=[[5/2, -3/2], [3/2, -5/2]]

and p + 1007 is equal to

Krep:=[[207/2, -3/2]1, [3/2, -207/2]1;

Example 6

discrete:=[[9, 71, [-1, -2, -13]1];
direction:= [[1, 0], [0, O, -11];

>function_discrete_mul_direction_lowest(discrete, direction,2,3);

[[1+(1/2)*t-(1/2)*t"2, [0, 011, [1, [1, infl]l]

Here the covering is N = ([0,0] NN) U ([1, 00] NN and the polynomials are P (t) =
1+ 2t—1t> on [0,0]NN and P»(t) = 1 on ([1,00] NN. Observe that [0,0] NN = [0]
is just a point and that P;(0) = 1 as it should be, since p is the lowest K-type.
Explicitly we simply compute

my =1 teN, t>0.

We conclude with one example in which the multiplicity grows: the last poly-
nomial is not zero and has degree two. We give more examples at the end of this
article.



Example 7

discrete:= [[57/2, 39/2, 3/2], [51/2, 5/2, -155/2]11;
direction:=[[1, 0, 0], [0, 0, -1]];

>function_discrete_mul_direction_lowest(discrete,direction,3,3);

[(1/24)*t~4+(5/12)*t~3+(35/24) *t~2+(25/12) *t+1, [0, 1611, [-3059+(2242/3)*t-(133/2)*t~2+(19/6)*t~3, [17, 21]1],
[-11914+(9597/4) xt- (4367 /24) *t~2+(27/4) *t~3-(1/24)*t~4, [22, 40]], [100016-8664*t+228+t~2, [41, inf]]

That is for A =discrete and p = [[30, 20, 1], [26,2, —79]] the lowest K-type

(1/24) xt* + (5/12) x 3 + (35/24) * t2 + (25/12) * t + 1 0<t<16

A ) —3059 + (2242/3) x t — (133/2) « % + (19/6) x 3 m<t<21

Mutts = ) 11914 + (9597/4) # t — (4367/24) = t2 + (27/4) = 3 — (1/24) x t* 22 < ¢ < 40
100016 — 8664 * t + 228 * t2 t > 41

The time to compute the example is 7T := 0.835 and the formula says for instance
that m2+200000017 = 911982672100016

To compare with other parametrizations of the discrete series representations,
it may be useful also to give here the command for the lowest K-type of the discrete
series with parameter \ = discrete of the group U(p,q). The command is:

>Inf_lowestKtype(p,q, discrete)

Example 8

> Inf_lowestKtype([[5/2,-3/2],[3/2,-5/2]1,2,2);
[(7/2,-3/21, [3/2, -7/2]1]

Similarly, we may want to parametrize a representation of K by its highest
weight. Then the command is:

> voganlowestKtype(discrete,p,q)

Example 9

> voganlowestKtype([[5/2,-3/2],[3/2,-5/211,2,2);

[es,-11, (1, -311



Let us finally recall the simple case of the multiplicity function for G = U(2,1)
(see Sec. 1] for the notations).

Choose as positive compact root the root e; — es and denote by w the corre-
sponding simple reflection. Fix A = [[A1, A2], [A3]] the Harish Chandra parameter
for a discrete series representation. We assume A regular and Ay > Ay. There
are three chambers ¢q, c9, ¢3 and hence three systems of positive roots containing
e1 — eg. Precisely ¢; corresponds to the positive system {e; — ea,e1 — e3,ea — e3},
co corresponds to the positive system {e; — ea,e7 — e3,e3 — ea} and ¢3 to {e; —
€o,€3 — €1,€3 — 62}.

We examine the situation in which the discrete series parameter belongs to one
of these chambers. Figllland Figl2], picture the two chambers ¢, ¢ and evidentiate
the values for mf; when A is in the chamber. The black lines mark the chambers
containing the compact root e; — ea and the red ones the system of positive roots
for the given chamber.

e — e3 €1 — €3

€ — €

Figure 1: m;, for the chamber ¢; of U(2,1).
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e — €

Figure 2: m;, for the chamber ¢, of U(2,1)

We give some examples concerning the two situations. The parameter A\ in
Figllis
hol21 := [[2,1], [-3]]

In Figure 2l the parameter A is

aba = [[2,-3], [1]].
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2  Mathematical background

2.1 Notations

L4+ (h)
N g+ (h)
¢

JK,
Ires

semi-simple real Lie group, Lie algebra of G.

maximal compact subgroup of G, Lie algebra of K.

maximal torus of K, Lie algebra of T'.

lattice of weights of 7.

system of positive roots for G.

system of positive compact roots.

system of positive non compact roots.

system of positive roots of parabolic type determined by (A, B).
positive chamber for G and K respectively

half the sum of positive, positive compact, positive non compact roots.
set of G admissible, K admissible parameters.

set of G admissible and regular , K admissible and regular parameters.
r-dimensional real vector space; z € U.

dual vector space of U, h € V.

the pairing between U and V.

lattice of V.

dual lattice in U.

a sequence of vectors in Vz; o € AT,

a tope.

torus U/Uz; t € T.

finite subset of T'.

polytope defined by A™.

number of integral points for II 4+ (h).

chamber.

Jeffrey-Kirwan residue.

iterated residue.

2.2 Blattner formula and multiplicities

Let G be a reductive connected linear Lie group with Lie algebra g and denote by
K a maximal compact subgroup of G with Lie algebra €.

We assume that the ranks of G and K are equal. Under this hypothesis the
group G has discrete series representations. Recall Harish-Chandra’s parametriza-
tion of discrete series representations. We choose a compact Cartan subgroup
T C K with Lie algebra t. Let P C t* be the lattice of weights of T. They
correspond to characters of T'. Here if A € P, the corresponding character of T

12



is ¢*. Let AT C P be a positive system of roots and p = %EaeA+ «. Then the
subset p + P C t* does not depend of the choice of the positive system AT. We
denote it by P;. We denote by Py C Fy the subset of g-regular elements. We
can similarly define P/. We denote by W, the Weyl group of K. For any A € Py,
Harish-Chandra defined a discrete series representation 7. Elements of Py are

called Harish-Chandra parameters for G. Two representations, = and 7r>‘/, co-
incide precisely when their parameters A\, \ are related by an an element of W..
Thus the set of discrete series representations is parametrized by Py /Wk.

In the same way we can parametrize the set K of classes of irreducible finite
dimensional representations of K by their Harish-Chandra parameter u € Py /W.,.
Once a positive system of compact roots is chosen, an element y € P can be
conjugated to a unique regular element in the corresponding positive chamber
a. C t* for the compact roots. We denote by 7, € K, or simply by p € K, the
corresponding representation.

A discrete series representation 7 is K -finite:

A A
K= g my,Ty.

Tu ek

To determine mﬁ, that is the multiplicity of the K-type 7, in I

in representation theory.

Blattner’s formula, [14], gives an answer to this problem. We need to introduce
a little more notations before stating it.

We let A be the root system for g with respect to t, A, the system of compact
roots , that is the roots of £ with respect to t, and A,, the system of noncompact
roots. We let AT be the unique positive system for A with respect to which \
is dominant. We write p = 23 A+, pe = %Z%Ai a and p, = %ZaeAi a
where AT = AT N A, and A} = AT N A,,. Therefore P, = p+ P, Py = p.+ P
and if £ € By, then £ + p, € .

Write a,a. C t* for the (closed) positive chambers corresponding to AT and
AT. We will also write AT(X), AT (X) and A () for AT, AT AT if necessary to
stress that these systems depend on .

Then for u € P N a., Blattner’s formula says:

) mi= 3 ew)Puuwn— A py)
weEWe

, is a basic problem

where, given v € t*, we define P,,(y) to be the number of distinct ways in which ~
can be written as a sum of positive noncompact roots (recall our identification
for which A, A, C t*). The number P,(7y) is a well-defined integer, since the
elements of A" span a cone which contains no straight lines. As usual, e(w) will

13



stand for the sign of w. Remark that, as u + p. and A + p, + p. are weights of T,
the element wy — A\ — p, is a weight of T

It is convenient to extend the definition of mf; to an antisymmetric function on
P/. As we observed already an element p € P, can be conjugated to a unique
regular element in the corresponding positive chamber a. C t* for compact roots,
via an element w € W,. Thus we define mf; = e(w)mi‘w. Of course with this
generalization the multiplicity of the K-type u is ]mm and we can complete our

picture for U(2,1), Figl3l in the following way:

e — e3 € — €3

WA A

e] — e

Figure 3: m), as antisymmetric function on U(2,1).

The representation 7jyest With Harish-Chandra parameter pjowest = A + pp is the
lowest K-type of the representation 7 and occurs with multiplicity 1. Tt is, in
general, difficult to compute mf; for general pu.

We will use Blattner’s formula to compute mf; Our algorithm is based on a
general scheme for computing partition functions using multidimensional residues.
Note that the presence of signs in Blattner formula doesn’t even allow to say if a
K -type appears without fully computing its multiplicity.

Recall that if A" is a positive root system of a semi-simple Lie algebra, the
formula for the partition function has been used to compute tensor product de-
composition or weight multiplicities ([4],[6]).
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2.3 Polynomial behavior of the Duistermaat-Heckman
measure

Recall Paradan’s results ([I6]) on the behavior of the function mﬁ and its support.
For this it is useful to first recall the semi-classical analog of Blattner formula.

Let us fix a positive system of roots A™ and consider the corresponding (closed)
positive chambers a, a, C t* for AT and AF. Our parameter \ varies in a and it is
non singular. In this subsection, the integrality condition A € Py is not required.

Let Oy C g* be the coadjoint orbit of A. It is a symplectic manifold, and thus
is provided with a Liouville measure dfy. Let p: Oy — €* be the projection. This
is a proper map. Each coadjoint K-orbit in * intersect a. C t* C €. Thus the
projection of Oy on t* is entirely determined by its intersection with a.. We recall
that the set p(Oy,) Na. is a closed convex polyhedron.

Definition 10 The Kirwan polyhedron Kirwan(\) is the polyhedron p(Oy) N a..

As far as we know, there are no algorithm to determine the Kirwan polyhedron.

A weak result on the support of Kirwan(\) is that Kirwan(\) is contained in
A + Cone(A;) where Cone(A}Y) is the cone generated by positive non compact
roots.

The push-forward of the measure dfgy along the projection p : Oy — ¥* gives
us an invariant positive measure on £*. By quotienting this measure by the signed
Liouville measures dfk, of the coadjoint orbits Ky in £*, we obtain a W,.-anti-
invariant measure dF* on t*. More precisely, for ¢ a test function on £*,

1
@ [ e =g [ e ([ o).

Here ¢, is the locally constant function on t* anti-invariant by W, and equal to 1
on the interior of the positive chamber a,. We refer to dF* as the Duistermaat-
Heckman measure.

If A" = [ay,...,an] is a sequence of elements in t* spanning a pointed cone,
the multispline distribution Y 4+ is defined by the following formula. For ¢ a test
function on t*:

oo oo N
3) (Ya+,0) :/0 /0 ¢ tici)dty - dty.
i=1

Then, for A € a and p € t*, we have the following result due to Duflo-Heckman-
Vergne, [15]:

(4) AP (p) = 3 e(wyw(dy * Yas).

wGWc
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where A is the system of positive noncompact roots defined by a.

To simplify our next statements, assume that G is semi-simple and has no
compact factors. Then t* is generated by non compact roots. Recall that the
spline function is given by a locally polynomial function on t* well defined outside
a finite number of hyperplanes (see the description later). Choosing the Lebesgue
measure dh associated to the root lattice, we may identify the measure YAi to a

function, denoted by Y,;F. Similarly, we identify the measure dF* to a function F*
on t*. Then we have, almost everywhere, the semi-classical analogue of Blattner
formula:

)= 3 e(w)¥; (wp— )
weWe

A € a and regular.
The (anti-invariant) function F(p) restricted to the positive compact chamber
. is a non negative measure with support the Kirwan polyhedron Kirwan(\).

It follows from the study of spline functions that there exists a finite number of
open polyhedral cones R’ in a x a. (so that the union of the cones R’ cover a x ac)
and polynomial functions p’ on a x a. such that F*(u) is given, for A € a,u €
a., (A, ) € RY, by the polynomial p*(\, ) on RY(\) = {u € a., (A, p) ei’} In
particular the Kirwan polyhedron Kirwan(\) is the union of the regions R!(\) for
which the polynomial p’ restricted to Ri(\) is not equal to 0. In fact the functions
p'(\, i) are linear combinations of polynomial functions of wA — pu where w are
some elements of W,.

If R is an open cone in a X a. such that F*(u) is given by a polynomial formula
pf(\, 1) when (\, 1) € R, A € a, we say that R is a domain of polynomiality and
that p’ is the local polynomial for F* on R.

Let us finally recall that the local polynomials p® belong to some particular
space of polynomials satisfying some system of partial differential equations. For «
a non compact root, consider the derivative d,. We say that an hyperplane H € t*
is admissible for A,, if H is spanned by a subset of dimt — 1 non compact roots,
that is roots in A,. We denote by H,, the set of admissible hyperplanes for A,,.

Definition 11 A polynomial p on t* is in the Dahmen-Micchelli space D(A) if
p satisfies the system of equations:

( H aoe)pzo

aeAT\Q

for any Q € H,.
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Remark that the space D(A) depends only of A, and not of a choice of A}
Then, the following result follows from Dahmen-Micchelli theory of the splines.

Proposition 12 For any domain of polynomiality R, the polynomial ju — pT(\, )
belongs to the space D(A}).

2.4 Quasi-polynomiality results

Let us come back to the discrete setting. Let us fix as before a positive system of
roots AT and consider the corresponding chambers a,a. C t* for AT and A}. Fix
A€ PyNaand u € B Na.. We can then define mf;, the multiplicity of 7, in the
discrete series 7.

By definition, a quasipolynomial function on a lattice L is a function on L
which coincides with a polynomial on each coset of some sublattice L’ of finite
index in L. The subsets Py, P are shifted lattices and we may say that a function
k on P/ is quasi polynomial on Py x P if the shifted function k(X — p, n — p) is
quasipolynomial on the lattice P x P.

Theorem 13 Let R be a domain of polynomiality in a X a. for the Duistermaat-
Heckman measure. Then there exists a quasi polynomial function PT on Py x P
such that mﬁ = PR(\, ) for any (A\,p) € RO (Py x P{), A€ a,p€ ac.

(In fact the functions P are linear combinations of quasi polynomial functions
of wA — p where w are some elements of W..)

The K-types occurring with non zero multiplicity in 7* are such that u is in
the interior of the Kirwan polyhedron Kirwan()). In particular the lowest K-type
Hiowest 18 In the interior of Kirwan()). In particular all the K-types occurring
with non zero multiplicity in 7 are such that g is in the interior of the cone
A + Cone(A). We believe they are contained in the cone pypywest + Cone(Ar),
but we do not know if this assertion is true or not (by Vogan’s theorem, they are
contained in fijoypest + Cone(A™)) .

If v € t*, we say that v is an asymptotic direction, if the line piowest + tv
is contained in Kirwan(\) for all ¢ > 0. The set of asymptotic directions form a
cone, which determines the wave-front set of 7|x-.

For the holomorphic discrete series, the descrition of the cone of asymptotic
diections is known. In fact if the lowest K-type of 7 is a one dimensional rep-
resentation of K, the exact support of the function mf; has been determined by
Schmid.

We will explain in Section B.7] how to compute regions of polynomiality R and
the quasi-polynomial P%.

A
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The quasi polynomials P are in some particular space of quasi polynomials
satisfying some system of partial difference equations. For o a non compact root,
consider the difference operator V,, acting on Z valued functions on F; by

(Vak) () = k(p) — k(p — ).

Definition 14 A quasi polynomial L on Pe is in the Dahmen-Micchelli space
DM (A if p satisfies the system of equations:

( JI VaL=o0

aeAT\Q

for any Q € H,,.

Then, the following result follows from Dahmen-Micchelli theory of partition func-
tions.

Proposition 15 The quasi polynomial i — PT(X, 1) belongs to the space DM (A)).

2.5 Aim of the algorithm: what can we do?

Our algorithm addresses the following questions for U(p, ¢). All of these questions
will be analyzed in more details in Sec[3.7

2.5.1 Numeric

We enter as input two parameters A, u € Py x P;". The output is the integer m/’),

see Sec[3. 711

2.5.2 Regions of polynomiality

The input is two parameters Ao, uo € Py x ;. Let a, a. be the chambers determined
by Ag and pg. We also give two symbolic parameters A, .

Then the output is a closed cone R(Ag, po) C a @ a. described by linear in-
equations in A, u, containing (A, i) and a quasi-polynomial P in (A, x) such that
mﬁ = P(A, p) for any (A, ) € R(Xo, po) N (Py x F).

We worked out part of this program for U(p, q), but it is still not fully imple-
mented.

In particular, for the moment, we are not able to produce a cover of a x a.
by such regions. The number of regions needed grows very fast with the rank.
Furthermore, we are not able to decide when we have finished to cover a X a..
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2.5.3 Asymptotic directions

We implemented (for U(p, q)) a simpler question which gives a test for asymptotic
directions.

Let’s consider as input parameters )\ in P; and a weight ¥ € a.. Let ug be the
lowest K-type of 720, The line t + (Ag, o + t¥) cross domains of polynomiality
R' at a certain finite number of points 0 < ¢; < t3 < --- < ts. Let us define
to = 0,ts41 = 0o. Then we study the function P(t) = mf‘LgHv, teN,t>0.

We can find polynomials gy, 4, ] of degree bounded by pg — (p+q+1) such
that P(t) = qy, 1,,,](t) when t; <t <t;41 fori =0,...,s and t € N. In particular,
the direction @ belongs to the asymptotic cone of the Kirwan polyhedron, if and
only if our last polynomial gy, .. is non zero, see Sec3.7.31

As we discussed in the first part, if the intervals are two small, these polyno-
mials are not uniquely determined. However the last interval is infinite, and the
last polynomial is well determined. If this last data is non zero, then ¥ is in the
wave front set of 7*. The reciproc is not entirely clear. Indeed for a direction to
be in the wave front set, it is sufficient to be approached in the projective space
by lines R, with p,, € P{ N a, such that the multiplicity mf;n is non zero, and
the sequence pu,, is going to the infinity in a.. Thus we do not know if a rational
line pp + t¥ contained in the Kirwan polytope could totally avoid the support of
the function mf; We do not think this is possible.

3 Partition functions: the general scheme.

3.1 Definitions

Let U be a r-dimensional real vector space and V be its dual vector space. We
fix the choice of a Lebesgue measure dh on V. Consider a list A" of non-zero
generators for V' given by

.A+ = [0417042,. .. ,aN].

We recall several results concerning partition functions that appear in [3] in
the general context. However, let us describe right away the system of vectors
AT(A,B) C A, that will appear in our programs and that describe parabolic
subsystem of A,., (as we said the same method could be applied to other parabolic
root systems).

Example 16 e Let E be an r-dimensional vector space with basis e; (i =1,
..., r+1). Consider the sequence

Ar=lei—e|l<i<j<r+1].
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This is a system of positive roots of type A,.. We let V to be the vector space

r+1 r—+1
V= {h:ZhieieE‘ Zhizo}.
i=1 =1

Let Vi be the lattice spanned by Af. We may identify V with R by h
[h1,hay ..., hy]. In this identification the lattice Vyz is identified with 7.

o Let A, B be two complementary subsets of [1,2,3,...,p+q] with |A] = p and
|B| =q. Letr =p+q—1. We define AT (A, B) as the sublist of A defined
by

AT(A,B)=le;—ej|1<i<j<r+1),with i€ A,j € Borie B,j € A.

These systems are the system of positive roots for the maximal parabolics of
gl(r + 1), for different choices of orders.

Let us go back to the general scheme.
For any subset S of V', we denote by C(S) the convex cone generated by non-
negative linear combinations of elements of S. We assume that the convex cone
C(A™) is acute in V with non-empty interior.
If S is a subset of V', we denote by < S > the vector space spanned by S.

Definition 17 A hyperplane H in V is A*-admissible if it is spanned by a set of
vectors of AT.

When AT = A} (M) or AT (A, B) then an AT-admissible hyperplane will be
also called a noncompact wall.

Chambers

Let Vging(A™) be the union of the boundaries of the cones C(S), where S ranges
over all the subsets of A*. The complement of Vg;ng(A™1) in V is by definition the
open set Creg(AT) of regular elements. A connected component ¢ of Cpeq(AT) is
called a chamber of C(AT). Remark that, in our definition, the complement of the
cone C(A™) in V is a chamber that we call the exterior chamber. The chambers
contained in C(A™), that we will call interior chambers, are open convex cones.
Sometimes chambers are called cells or big cells by other authors.

The faces of the interior chambers span admissible hyperplanes.

The following pictures illustrate the situation for the (interior) chambers in the
case of A;f, Figll, and the (interior) chambers for various subsystems of A;f, of
type AT (A, B) relative to U(2,2), Fighl
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Polytopes

We consider the space RY with its standard basis w; and Lebesgue measure dz.
Ifx = Zf\il riw; € RN we simply write # = (21, ...,2y). Consider the surjective
map A : RY — V defined by A(w;) = a;.

If h € V, we define the convex polytope II 4+ (h) consisting of all non-negative
solutions of the system of r linear equations ZZ]\L 1 Tio; = h that is

HA+(h):{x:(xl,...,a;N)ERN\Aa;:h, z; >0} .

We call II 4+ (h) a partition polytope (associated to A* and h).

We identify the spline distribution Y+ (by Formula B) to a function still
denoted by Y+ using dh.
Recall the following theorem, which follows right away from Fubini theorem,

([0J, [x11.)

Theorem 18 The wvalue of the spline function Y+ at h is the volume of the
partition polytope 11 4+ (h) for the quotient measure dx/dh.

The spline function Y+ is given by a polynomial formula on each interior
chamber. It is identically equal to 0 on the exterior chamber.

Partition functions
Let V7 be a lattice in V and suppose now that the elements «; of our sequence
AT belong to the lattice V7. If h € V7 we define N4+ (h) = |TL4+ (h) N ZY|, the
number of integral points in the partition polytope II 4+ (h).

Thus N4+ (h) is the number of solutions (z1,x2,...,2y), in non-negative in-
tegers x;, of the equation Zjvzl xjo = h.
The function h — N 4+ (h) is called the partition function of A*. We refer to it as
Kostant partition function.

We will see after stating Theorem 24] that h — N 4+ (h) is quasipolynomial on
each chamber.

Let us recall briefly the theory that allows to compute Kostant partition func-
tions.

Jeffrey-Kirwan residue

Let v be asubset of {1,2,..., N}. We will say that v is generating (respectively
basic) if the set {a; |i € v} generates (respectively is a basis of) the vector space
V. We write Bases(A™) for the set of basic subsets.

Let R 4+ be the ring of rational functions on U, the dual vector space to V,
with poles on hyperplanes determined by kernel of elements o € A™.
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R 4+ is Z-graded by degree. Every function in R 4+ of degree —r decomposes
(see [B]) as the sum of basic fractions f,, fo = m, o € Bases(A") and
degenerate fractions; here degenerate fractions are those for which the linear forms
in the denominator do not span V.

Now having fixed a chamber ¢, we define a functional JK.(f,) on R 4+ called

the Jeffrey-Kirwan residue (or JK residue) as follows:

vol(o)~t, if ¢ C C(o),

(5) Kelfo) = {0 if cnClo) =0

where o € Bases(A™) and vol(o) is the volume of the parallelotope > _;[0, 1]oy;
computed for the measure dh.

There exists a linear form JK, that we call the Jeffrey-Kirwan residue, on R 4+
such that JK. takes the above values on the elements f,, and is equal to 0 on a
degenerate fraction or on a rational function of pure degree different from —r.

If ¢ is the exterior chamber, then clearly JK, is equal to 0, as ¢ is not contained
in C(A™).

We may go further and extend the definition of the Jeffrey-Kirwan residue to
the space R 4 which is the space consisting of functions P/@Q where @ is a product
of powers of the linear forms a; and P = Y2, Py is a formal power series. Then
we just define, if @ is of degree g,

JKc(P/Q) = JKC(Pq—r/Q)
as the JK residue of the component of degree —r of P/Q.

3.2 Spline functions and Kostant partition function
Let us recall the formulae for the spline function Y4+ and for N 4+ (h).

Definition 19 Let ¢ be an chamber contained in the cone C(AT). Define the
function Y® on V by

C eh
Y5 (h) =JK .
_A+( ) c Hi\ilai

More explicitly, as JK, vanishes outside the degree —r, we have

hN—r
Y. (h) = ﬁ JK, <m> .

We thus see Y, (h) is an homogeneous polynomial on V.
The proof of the following theorem is immediate ([10]).
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Theorem 20 Let Y +(h) be the multispline function associated to AT. Let ¢ be
a chamber contained in the cone C(A™).
We have for h € ¢:

Y (h) = Y5, ().

Remark 21 According to Theorem [I8, this theorem gives the formula for the
volume V 4+ (h) of the partition polytope 11 4+ (h).

Let us now give the residue formula for the number of integral points N 4+ of
the partition polytope II 4+ (h).

Consider the torus T' = U/Uyz where U is the dual vector space to V and
Uz C U is the dual lattice to Vz. If G € U, we denote by ¢ its image in T'.

For o € Bases(A™) we denote by T'(c) the subset of 7' defined by

T(o) = {g S T‘ el@2mV=16) — 1 for alla € o, G a representative of g € U/UZ}.

The set T'(0) is a finite subset of T'.
For G € U and h € V, consider the Kostant function K(G,h) on U defined
by
e(h,27r\/—_1G+u>

Hi\il(l — €_<O‘i’27r\/?1G+u>) .

(6) K(G,h)(u) =
Remark 22 If h € Vz, the function K(G,h) depends only of the class g of G in
U/Uy.

The function K (G, h)(u) is an element of R 4.
Indeed if we write I(g) = {z ‘ 1<i< N,e (en2mV/=16) — 1} , then

(hsu))y9
7 K(G, h _ (h2nV/=1G) € Y (u)
(7) (G, h)(u) =e Mherg ()

where 19 (u) is the holomorphic function of u (in a neighborhood of zero) defined
by

- <Oéi,u> 1
=[] 1= e fam) 11 (1= e—(@i2nV/—1G+u))’

iel(g) i¢1(g)

By taking the Taylor series of e!:%)q9 (u) at u = 0, we see that the function
u — K(G,h)(u) on U defines an element of R 4. If ¢ is a chamber of C(A™), the
Jeffrey-Kirwan residue JK (K (g, h)) is thus well defined.
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Definition 23 Let ¢ be a chamber. Let F' be a finite subset of U. We define the
function Nfﬁ on'V by

NG (h) = vol(V/ Vg, dh) > JK(K (G, h))
GeF

where vol(V/Vz, dh) is the volume of the fundamental domain of Vy for dh.

Finally introduce the zonotope Z(A™) to be the convex polyhedra defined by

N
Z(AY) == {)_ti;;0 <t; <1}

i=1

When AT is fixed, we just write Z = Z(A™), and if C' is a set, we denote by C' — Z
the set of elements {{ — z} where £ € C and z € Z.
The following theorem is due to Szenes-Vergne [9]. It generalizes [7], [13] and

[5].

Theorem 24 Let ¢ be a chamber. Let F be a finite subset of U. Assume that for
any o € Bases(A™) such that ¢ C C(o), we have T(o) C F/Uy.
Then for h € Vz N (¢ — Z), we have

N+ (h) = N9 (h).

We choose for any chamber ¢ such a finite set F' such that all elements g € F/Uy,
have finite order and such that F' satisfies the condition:

(C) for any o € Bases(A™) such that ¢ C C(o), we have T(0) C F/Uy.

It is possible to achieve this, for example choosing a set F' of representatives
of %UZ modulo Uy, where p is that pUy is contained in Zieo Zay; for any basis o.

We now simply denote N by N¥, leaving implicit the choice of the finite set
F.

Remark 25 e Observe that N, (h) does not depend on the measure dh, as it
should be.

e If ¢ is the exterior chamber, then Nf4+(h) = 0. In our algorithm, we are not
knowing in advance if the point h belongs to the cone C(A1) or not, so that this
remark is not as stupid as it looks.

e Observe also that if ¢ is an interior chamber, then ¢— Z contains the closure ©
of ¢, while if ¢ is the exterior chamber ¢ — Z = ¢. For an interior chamber, usually
the set ¢ — Z intersected with the lattice Vy, is strictly larger than © intersected with
Vz. This fact will be important for computing shifted partition functions, as we
will explain later.
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Let us explain the behavior of the partition function N 4+ on the domain ¢— Z.
We first explain the case of an unimodular system.

Definition 26 The system A" is unimodular if each o € Bases(A™) is a Z-basis
Of VZ .

Example 27 It is easy to see that A} is unimodular, so is any subsystem.

Thus if A" is unimodular, the set F' = {0} satisfies the condition (C) and we
choose this set F'.

Proposition 28 If AT is unimodular, the function N, (h) is a polynomial func-
tion on V.

Proof. We have just to consider K(G,h) = K(0,h) and we can write

- e
[T5 (1 — et TIE (anu) - [T, (1 — e (o)
N
where HNHl(ll% Z Yy (u) is a holomorphic function of u in a neighbor-

hood of 0 with g (u) =
It follows that N, (h) is given by the following polynomial function of A

elh
N+ (h) = Vol(V/VZ,dh)JKC<

1= 1 Qg U szk )

N—r —r—
(8) = vol(V/Vz,dh) JKC<<h’u>N kw’“(“)).

N
k:O Hi:l <ai7 u>

Note that the function N*, is a polynomial function of degree N — r whose
homogeneous component of degree N —r is the function Y, (h), that is the volume
of the polytope.

Let us now consider the general case where F' is no longer reduced to {0}.
For example for parabolic root systems of B,., C,., D,, the set F' satisfying the
condition (C) cannot longer be taken as equal to {0}.

We recall that an exponential polynomial function is a linear combination of
exponential functions multiplied by polynomials.

Proposition 29 The function N, (h) is an exponential polynomial function on
V' and the restriction of N, (h) to Vg is a quasipolynomial function on Vz.
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Proof. Let us denote by 99(u) = Y720 ¢/ (u) the series development of the
holomorphic function 99 appearing in formula (7). Then we see that JK (K (G, h))
equals

o)
(9) ATV T K e ()
CHz’el( ) (ai, u)
iy [1(g)|— (b @rk
= fhen TK, | o p9(u) | .
kZ:O |—T—k)! "\ Lier(y) (ci u) (v

The function

Hie[(g) (ai, u)

is a polynomial function of h of degree |I(g)|—r—k. Thus we see that JK (K (G, h))

is the product of the exponential function ¢»27V=1G) by a polynomial function of
h.

[1(g)|—r—Fk
h— JK, (ng(u))

Furthermore, if g is of order p and A varies in V7, the function h +— e(h2mV/=1G)
is constant on each coset h + pVz of the lattice pVy.

Return to the computation of the partition function N 4+(h). Thus we see
that when h varies in (¢ — Z) N V7, we have that N 4+(h) coincide with the quasi
polynomial function N +(h) above. Note that its highest degree component is
polynomial and is again the function Y, (h), the volume of the polytope II 4+ (h).

The quasipolynomial nature of the integral-point counting functions N;{ stems
precisely from the root of unity in formula (@]).

Furthermore for parabolic root systems of type B, C, and D, these roots of
unity are of order 2, as in the following example. Thus we summarize the properties
of our partition functions in the following remark:

Remark 30 o Al is unimodular, that is we can choose F' = 0 in Theorem
and thus the partition function Ng for any subset ® of A} coincide with
a polynomial function on each domain ¢ — Z(®).

e The integral-point counting functions Ng for any subsystem of B,,C., D,
coincide with quasipolynomials with period 2 on each domain ¢ — Z(®P).

We now compute the number of integral points in two different situations: a
non unimodular case and a unimodular one. We treat the non unimodular case
first.

Example 31 Here V is a vector space with real coordinates and basis e1,es and
U =V* has dual basis e',e®. We write v = Z?:l vie; €V oand u = Z?:l hiet € U
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for elements in V and U respectively. Let us compute the number of integral points
for the positive non compact root system occuring for the holomorphic discrete
series of SO(5,C) : that is we fir AT := {e1,e2,e1 +e3,e1 —e2} and AT = At :=
{e1,e1 + ea,e1 — ex}. We also write a vector h = hyey + hoey in the cone C(AT)
as (hi,hg). Of course, the calculation can be done by hand, but we illustrate the
method in this very simple example.

Observe that the root lattice is Zey ®Zes and vol (V/Vz,dh) = 1 for the measure
dh = dhydhs.

There are two chambers, namely ¢; = C({e1+e2,e1}) and ¢ = C({e1,e1 —ea}).

Now let us compute the Jeffrey-Kirwan residues on the chambers.

We have for example:

1 _ 1 _

IK«, (u1(u1+u2) = 1, IKe, (u1(u1+u2) = 0

1 _ 1 1 1

Ko (@rram=m) = & 9K (G b2
1 _ 1 _

JK, (71“(1“_“2) _— K., (7“(“1_%) — 1

For the number of integral points, we first note that F' = {(0,0),(1/2,1/2)}.
Consequently N+ (h) is equal to the Jeffrey-Kirwan residue of fi = K((1,1),h)

plus fo = K((1/2,1/2),h). We rewrite the series f; (j = 1, 2) as f; = f]’- X
eurthituzhz foy) (yy + ug)(ug — ug) where

f/ _ u1 uy + ug Ul — U2

L7 1w 1 — e—(u1tu2) 1 — e—(u1—u2)’

; Ul ul + ug UL — U yhi4ho
2= 1+ eu1 1 — e (u1tuz) x 1 — e (u1—u2) x (=1) :

Using the series expansions o= = 14224+ 52240(23) and e = s2+0(z?),
we obtain that the number of integral points is the JK residue of

b pat TG
(w1 —u2)(ur +u2)  wi(ur +wuz)  wi(ur —w2)  wi(ur —wu2)(ur +uz) (w1 +uz)(ur — uz)
h1 + % + %(—1)h1+h2 % % ha ho
= + - +
(w1 — u2)(u1 + uz2) wr(ur +u2)  wi(ur —u2)  ui(ur +uz) (w1 +wuz)(ur —us2)
We then obtain:
1 1 3 1
N, y(h) = Zhi+=(=1)mth24 2 _Zp if h
A (h) g+ 7(=1) +3mghn  dhea,
1 1 3 1
N, y(h) = Zhi+=(=1)mth24 24 2p if h
A (h) g+ 7(=1) +yTghn  dhean,

Note that the functions NAfL agree on walls, that is ho = 0, and the formulae
above are valid on the closures of the chambers.

28



The second example treats the unimodular case of A, see Example Since
we have identified V' with R", then we have a canonical identification of U = V*
with R" defined by duality: v € R" tou = >, uje’ € E*, where €’ is the dual
basis to e;. Thus the root e; —e; (1 <4 < j < r) produces the linear function
u; —uj on U, while the root e; — e,41 produces the linear function u;. Recall also
the identification h = E;:ll hie; = [h1,..., h],

We compute the number of integral points for the parabolic subsystems of
U(2,2) illustrated in Fighl

Example 32 We consider the 3 different systems of non compact roots as de-
scribed in Figld and give the formulae for the partition function.

1. If A = AT([1,4],[2,3]) then

hi+ha+1 if h€c,
_ ) hi+ha+hs+1 if he€co,
Nyt (h) = hi+4hs+1 if h€cs,
h1+1 if h€cy
2. If AF = AY([1,2],[3,4]) then
1+ ho if h€c,
. 1+hi+ha+hs if hEcg,
Npj(h) = 1+ hy if h€cs,
1—hs if h€c
3. If A = AT([1,3],[2,4]) then
1+ hi+he if heca
NA+(h): 14+ h1 +ha+hs if he€Eca,
n 14+ h1 if h € cs,

We have to compute the Jeffrey-Kirwan residue of the function

[ = hox g where i(h)(u) = Taeay oy x cmihrushesiohs, The
computation is immediate since we need only term of degree one for the expansion
of fi. We omit the details. Remark though that once again the formulae agree on

walls as it should be.

3.3 Shifted partition functions

Let us consider as before our lattice V7 and our sequence AT of elements of V.

Let 1
Pn = 5 Z Q.
acAt
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We introduce
P, = Pn + Vz.

Thus for any pu € P, the function N 4+ (u — py,) is well defined.
Let H be the complement of all admissible hyperplanes, that is hyperplanes
generated by elements of AT, Def[ITl

Definition 33 A tope is a connected component of the open subset V.—H of V.

We choose once for all a finite set F' of elements G of U, so that the image of
elements g cover all groups T'(o).

If 7 is a tope, then 7 is contained in a unique chamber ¢, and we denote by
N7+ the exponential polynomial function N;’g given in Definition 23] If 7 is not
contained in C(A"), then N7, =

The closures of the topes 7 form a cover of V. A consequence of Theorem 24]
is the following.

Theorem 34 For any tope T such that p € TN P, we have

Na+(p = pn) = Ny (10 = pn).

3.4 A formula for the Jeffrey-Kirwan residue

Having stated a formula for partition functions (or shifted partition functions)
in terms of JK., we will explicit it using the notion of maximal proper nested
sets, as developed in [12], and the notion of iterated residues. The algorithmic
implementation of this formula is working in a quite impressive way, at least for
low dimension.

This general scheme will be then be applied to Blattners’ formula.

3.4.1 Iterated residue

If f is a meromorphic function of one variable z with a pole of order less than or
equal to k at z = 0, then we can write f(z) = Q(z)/2*, where Q(2) is a holomorphic
function near z = 0. If the Taylor series of @ is given by Q(z) = Y o0 ¢s2°, then
as usual the residue at z = 0 of the function f(z) =Y .2, qs2°7% is the coefficient
of 1/z, that is, gx—1. We will denote it by res,—of(z). To compute this residue we
can either expand () into a power series and search for the coefficient of z=!, or
employ the formula

1

(10) resacof () = gy @) (+44()

z:O'
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We now introduce the notion of iterated residue on the space R 4+.

Let 7 = [a1,0a9,...,a,] be an ordered basis of V' consisting of elements of
AT (here we have implicitly renumbered the elements of A" in order that the
elements of our basis are listed first). We choose a system of coordinates on U
such that o;(u) = u;. A function ¢ € R 4+ is thus written as a rational fraction

Plus s,
b(ur, ug, . .. uy) = Lliatze.un)

= Q) where the denominator @) is a product of linear
forms.

Definition 35 If ¢ € R4, the iterated residue Iresz(¢) of ¢ for U is the scalar

Iresy(¢p) = resy,—oresy, ,—o - - resy,—oP(ur, ug, ..., uy)

where each residue is taken assuming that the variables with higher indices are
considered constants.

Keep in mind that at each step the residue operation augments the homoge-
neous degree of a rational function by +1 (as for example res,—o(1/zy) = 1/y)
so that the iterated residue vanishes on homogeneous elements ¢ € R4, if the
homogeneous degree of ¢ is different from —r.

Observe that the value of Iresz(¢) depends on the order of . For example, for
f=1/(z(y — z)) we have resy—gresy—o(f) = 0 and resy—oresy—o(f) = 1.

Remark 36 Choose any basis v1, Y2, ..., Y of V such that @f;:lozj = 69?%:171'
for every 1 < j <r and such that yy Ayo A+~ ANy =a3 ANas A--- Aa,.. Then, by
induction, it is easy to see that for ¢ € R 4+

ISy, =0 * * - T€Sq; =0@ = €Sy, —( * - - TSy, —0¢.

Thus given an ordered basis, we may modify as by as + cay, ..., with the
purpose of getting easier computations.

As for the usual residue, the iterated residue can be expressed as an integral as
explained in [3]. This fact allows change of variables.

3.4.2 Maximal proper nested sets adapted to a vector

We recall briefly the notion of maximal proper nested set, M NPS in short, and
some of their properties (see [12]).

A subset S of AT is complete if S = (S) N A" : here recall that (S) is the
vector space spanned by S. A complete subset S is called reducible if we can find
a decomposition V = V; @ V5 such that S = S; U Sy with S7 C V4 and Sy C V5.
Otherwise S is said to be irreducible.
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A set M = {I,I,..., I} of irreducible subsets of A" is called nested if, given
any subfamily {I,..., I} of M such that there exists no ¢, j with I; C I;, then
the set Iy U---UI,, is complete and the elements I; are the irreducible components
of LUl U---UlI,. Then every maximal nested set M, M NS in short, contains
AT and has exactly r elements.

We now recall how to construct all maximal nested sets. We may assume that
AT is irreducible, otherwise just take one of the irreducible components. If M
is a maximal nested set, the vector space (M \ AT) is an hyperplane H, thus an
admissible hyperplane.

Definition 37 Let H be a AT -admissible hyperplane. A mazimal nested set M
such that (M \ A") = H is said attached to H.

Given M a M NS for AT attached to H, then (M \ AT)isa MNS for HNAT.
Therefore maximal nested sets for an irreducible set A" can be determined by
induction over the set of AT-admissible hyperplanes.

For computing the Jeffrey-Kirwan residue, we only need some particular M N S’s.
Let us briefly review the main ingredients.

Fix a total order ht on AT. Let M = {S1,S59,...,S,} be a set of subsets of
A™ and choose in each S; the element «; maximal for the order given by ht. This
defines a map © from M to A" and we say that M is proper if ©(M) = ]\_4> is a
basis of V. We denote by P(AT) the set of MPNS.

So we have associated to every maximal proper nested set M an ordered basis,

. —
by sorting the set M = [y, ag, ..., a;] of elements of AT.
Let v be an element in V' not belonging to any admissible hyperplane.

Definition 38 Define P(v, A") to be the set of M € P(A") such thatv € C(M) =
Claa,..., o).

When there is no possibility of confusion we will drop simply write P(v) for
P(v, AT).

We are now ready to state the basic formula for our calculations.

Theorem 39 ( [12]) Let ¢ be a chamber and let v € c. Then, for ¢ € R 4+, we
have

1
JK(¢) = Z WIresgtﬁ.

MeP(v,At)
Let us finally sketch the algorithm to determine P(v, A") without going to

construct all the MNS’s. If At = Af x AJ is reducible, then P(v, AT) is the
product of the corresponding sets P(v;, A:r)
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Assume AT is irreducible. Let 6 be the highest root of the system A™ (for our
order ht). We start by constructing all possible A*-admissible hyperplanes H for
which v and @ are strictly on the same side of H. In particular, the hyperplane H
does not contain the highest root.

Then we compute the projected vector projgv on H parallel to §: v = projyz v+
t0, with proj; v € H and t > 0 and compute AT N H. If My is in P(projgv, AT N
H), then M = {op(My), A"} is in P(v, AT). Running through all hyperplanes H,
for which v and  are strictly on the same side of H, we obtain the set P(v, AT).
Let us summarize the scheme of the algorithm in Figure 6l Recall that we have
as input a regular vector v, and as output the list of all M PNS’s belonging to
P(v, AT).

for each hyperplane H do
check if v and 6 are on the same side of H
if not, then skip this hyperplane
define the projection projg (v) of v on H along 6
write A N H as the union of its irreducible components I3 U -+ U I}
write v as v1 @ - -+ B v according to the previous decomposition
for @ach I; do
compute all MPNS’s for v; and I
collect all these MPNS’s for v; and I,
end of loop running across I;’s
collect all MPNS’s for the hyperplane H by taking the product of P(I;,v;)
end of loop running across H'’s
return the set of all MPNS’s for all hyperplanes

Figure 6: Algorithm for MPNS’s computation (general case)

In our program, we run this algorithm for an element v not in any admissible
hyperplane, without knowing in advance if v belongs to the cone C(A"). The
algorithm returns a non empty set if and only if v belongs to C(A™).

3.5 The Kostant function: another formula for subsys-
tems of AT

In this article, we will be using partition functions for lists AT (A, B) described in
the Example[I6l These lists are sublists of a system of type A;f (with r = p+q—1).
In residue calculation, we can use change of variables and thus use a formula for
which iterated residues will be easier to compute.

Let us describe this formula. We will describe it for sublists, eventually, with
multiplicities of a system A;". We take the notations of Example

Let ® be a sequence of vectors generating V' and of the form (e; —e;),1 <i <
J < (r+1), eventually with multiplicities. Let m;; (i < j) be the multiplicity of
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the vector e; — e; in ® and define t; = m; i1+ --- + m; 41 — 1. We recall our
identification of V' with R" and of U = V* with R” defined by duality. In this
way, as we already observed the root e; —e; (1 < < j < r) produces the linear
function u; — u; on U, while the root e; — e,41 produces the linear function ;.

We are now ready to give another formula for the Kostant function in this
situation.

Theorem 40 Let ¢ be a chamber of C(®). Let h = 3."" hie; = [ha, ..., hy], then

N§(h) = vol (V/Vz,dh) JK:(fo(h)(u)), where

T
11+ ug)hitt
=1

fa(h)(u) =

umi,r'Jrl

i 1<i<j<r

Thus, when h € Vz N (¢ — Z(®)), we have
Ng(h) = N (h).

Example 41 o IfD = A}, then

=

(ug — uy)™id

<.
I

T (1 + uy)litr—

B H1§i<j§r(ui —uj) X H2:1 u;

fAj(h)(U)

o Let p,q integers such that p+q = r+ 1 and ® be the system of positive
noncompact root for A defined by ® = {e;—e;,1 <i <p, p+1<j <r+1}.
That is ® = AT(A,B) with A=11,...,pl and B=[p+1,...,p+q].
Then
f@(hl, h27 A 7h7”)(u) -
(14 )™ (1 4 )P (1 g )P0 7 (L g ) rbe !
(ur = ups1) -+ (U1 = Uppq—1) -+ (Up = Upg1) -+ (Up — Upgg—1)Uruz - -~ Up
Proof. The function K(0,h)(u) = e /], co(l — e~*®) computed for the
system P is

ehiuighaua | chrur

K(0,h)(u) =

.

(1 _ e—ui)mi,r+1 H (1 _ e—(ui—uj))miyj

i=1 1<i<y<r

Note that the change of variable 1 + z; = e“¢ preserves the hyperplanes u; = 0
and u; = u; and that z; = e" — 1 leads to dz; = e"du; = (1 + z;)du;. Thus after
the change of variable we get the required formulae.
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3.6 Computation of Kostant partition function: gen-
eral scheme

3.6.1 Numeric

We have as input AT a sequence of vectors in our lattice V7, a vector h € Vz, and
we want to compute N 4+(h). We will compute it by !!
N+ (h) = N+ (h+ pp = pn)-
We mean: Let 7 be any tope such that ' = h + p, belongs to the closure of .
Using Theorem [B4] then
N+ (h) = N+ (h, —pn) = Nj4+ (h, — Pn)-

To compute a tope T containing b/, we can move h+ p,, in any generic direction

Here is an outline of the steps needed to compute the number N 4+ (h) by the
formula N 4+ (h) = N7, (h).

Input: a vector h € V7, and A" a sequence of vectors in V7.

Output: the number N4+ (h).

e Step 1 Compute the Kostant function

el

[locar (1 —e®)
or more generally compute a set F' and the functions K (G, h) for G € F.

K(h) = K(0,h) =

e Step 2 Find a small vector € so that if h is in Vz, the vector h + p,, + € does
not belong to any admissible hyperplane. Thus the vector h,ey = h+pp,+e€is
in a unique tope 7. The procedure to obtain h,, is called DefVector,.(h).

e Step 3 Compute the set All := P(hyeg, A1) as explained in Figlel
e Step 4 Compute N7, (h) by computing the iterated residues of K(G,h)

associated to the various ordered basis M for M varying in the set All.
That is compute the number

out := Z eh2mV=1G) Z Iress K (G, h)
GeF MeAll

where ]\7 is the ordered basis attached to M.

Then ‘ N g+ (h) = out ‘
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3.6.2 Symbolic

The previous calculation runs with symbolic parameters. If hfiz is an element in
Vz, we might want to find a tope 7 such that hfiz belongs to the closure of 7.
Then
Nar (h) = N7 ()

will be valid whenever h is in the closure of 7. Here is the outline of the algorithm.

Input: hfiz is an element in Vz and A" a sequence of vectors.

Output: A domain D C V and an exponential polynomial function P(h) on
V.

The domain D is a closed convex cone in V' (described by linear inequations)
such that hfiz isin D. The formula P(h) = N 4+ (h) is valid whenever h € DNV7.

e Step 1 Consider h as a parameter and compute the Kostant function
K (h)(u) as a function of (h,u) given by

e<h,u>

Ha€A+(1 _ e—<a,u>)

or more generally compute a set F' and the functions K (G, h)(u) for G € F,
as function of (h,u).

K(h)(u) = K(0,h)(u) =

e Step 2 Find a small vector ¢ so that if hfiz is in Vz, then the vector
hfixyeq := hfix + p, + € does not belong to any admissible hyperplane.

Compute the domain D := 7 where 7 is the unique tope 7 containing A fix,¢4.
e Step 3 Compute the set All := P(hfiz,eq, AT) as explained in Figltl
e Step 4 Compute N7, (h) by computing the iterated residues of K(G,h)

associated to the various ordered basis M for M varying in the set All, here
h is treated now as a parameter.

That is we compute

out := Z elh2mV=1G) Z Ires2 K (G, h)
GeF MeAll

_)
where M is the ordered basis attached to M. The output out is an expo-
nential polynomial function P(h) of h and once again we compute

| N+ (h) = P(h) = out, Yh € DNV |

The domain D is a rational polyhedral cone which includes hfiz.

In practice, this works only for small dimensions and when A™ is not too big.
We will program variations of these algorithms, with less ambitious goals.
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3.7 Computation of Blattner formula: general scheme.

In this subsection, we summarize the steps to compute Blattner’s formula and the
general scheme to obtain the region of polynomiality. The relative algorithms will
be outlined in Section [6l

Let G, K, T be given as in Section 221 Let A,, C t* be the list of noncompact
roots.

Our inputs are A € P and p € B. The goal is the study of the function
uw— mﬁ Let AT = A ()) and recall that in this case a AT-admissible hyperplane
is called a noncompact wall.

We use Blattner’s formula. In our notations:

(11) m;)l = Z E(W)NAjg(A)(w,“ — A= pn)
wWEW,

3.7.1 Numeric

Input A € Py and p € Py
Output a number.
The algorithm is clear:

e Compute AT = A} (\) and p,,.
e Compute the Kostant function K (G, h) for this system A™.
e Compute a finite set F satisfying condition (C).

e Compute a small element € such that ji,..q = p + € does not belong to any
affine hyperplane of the form wA+H where H is a noncompact wall, w € W..

e Compute for all w € W, the number
contribution,, := N 4+ (wp — X — py)

using the algorithm described in B.6.11
That is compute
Ally = P(w * (freg) — X\, AT) as explained in Figlol
Then compute
contribution,, := Z eh2mV=1G) Z Ires K(G,wp — A — pp).
GeF MeAllw

ENDs
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e Finally compute

out := mf; = Z e(w) * contribution,,
wGWc

Let us comment briefly: If w(j,eq) — A is not in the cone generated by non
compact positive roots, the set All,, is an empty set. In particular we may restrict
the computation by diverse consideration to valid permutations which have
some chance to give a non empty set, see Section [A.3])

3.7.2 Symbolic

The preceding calculation runs with symbolic parameter and we take advantage
of this to find regions of polynomiality.

Let’s explain how.

Let a be a chamber in t* for the system A of roots of g. Let U be the open set
of (A, ) € a x t* such that wA — p does not belong to any non compact wall. Let
(Mo, o) € U. Then we define R(Ag, i1p) to be the closure of connected component
of U containing (Ao, ip). This region is a cone in t* x t* with non empty interior
and can be described by linear inequalities in A, u.

For this domain we can compute a polynomial formula and state the following
result.

If X varies in a, the systems A;F(A\), A} ()\) determined by A remains the same.
We denote it by At AT,

Furthermore, if (A, 1) € R(\o, 11o), for any w € W,, the element wA — p lies in
a tope 7, for the system A} which depends only of w.

Theorem 42 The domain R(\g, 7o) is a domain of polynomiality for the Duistermaat-
Heckman measure and thus is a domain of quasi-polynomiality for the multiplicity
function m/’).

More precisely, for (A, i) € R(Ao, o) N (Py x ), we have

(12) mi= 3 cwN (WA — = po).
wGWc

The right hand side of Equation is a quasi polynomial function of A, u,
antisymmetric in p. It takes positive values if p is dominant for Af. Recall that,
in this case, the multiplicity of & on A is the absolute value of the function m?

n
above, (Sec2.2]).
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Of course, the symbolic calculation above, with the present approach, is limited
to very small examples.

Also, we are not able to determine the largest domains where the function m
is given by a quasi polynomial formula.

A
I

3.7.3 Asymptotic directions

We address now a simpler problem. We have the same setting that in the previous
section, but we are now testing only the noncompact walls crossing in one fixed
direction 7.

Let po, Ao be given, with Ag € a N Py an Harish-Chandra parameter, and
to € a. NP Let ¥ € a. be integral. We will do the calculation of mf;g when
e = po +t0, with ¢ > 0, is in the half-line in the direction . In the application ug
will be the lowest K-type A\g— py of our discrete series 70, We compute the values
t; where g + t0 — wlg cross a non compact wall (other than the ones which may
contain the line pg + t0'— wlp). These are the values where the line p; may cross
the domains of quasipolynomiality described above. We order this finite set of
values 0 < t; < tg < t; < -+ < ts. Consider the interval I; = [t;, ti+1], 0<1i <s,
where tg = 0 and t541 = 0.

Consider I; N Z, an ”interval” in Z, described by two integers [a;,b;], with
a; = ceil(t;) and b; = floor(ti+1).

The "interval” I; N Z can also be reduced to a point.

Then we find exponential polynomial function P%(¢) on R such that mﬁt is
equal to P(t) for t € I; N Z.

If particular, ¢’ is an asymptotic direction, if and only if the last quasipolyno-
mial P*(t) does not vanish.

The algorithm is as follows.

For each consecutive value t;,t;11, choose p, = p + t.v with t; < t,. < t;11.
Then, move very slightly p, in uf. Then for each w € W,, wus — A\ lies in a tope
7 for A (Xg). Then

Bt)=>" e(w)NZi oo (Wt = A = pn).

w

The right hand side of this formula is an exponential polynomial function of
teZ.

The algorithm implementing this procedure is described in Fig[l Let us remark
that our algorithm implementation is for type A, and thus the P; are polynomials.
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4  Blattner’s formula for U(p,q)

4.1 Non compact positive roots

With the notation of Section [l we let G = U(p, q) and K = U, x U, be a maximal
compact subgroup.

Let E be a p + ¢g-dimensional vector space with basis e; (i =1, ..., p+¢) and
V as in Ex. [I0). Let r = p+ ¢ — 1. Consider the set of roots

A=H{e;—e;|1<i<j<p+q}.

We then choose T' to be the diagonal subgroup of U(p, ¢), and identify t* with
E. In this identification the lattice of weights is identified with ZP*9: the element
(n1,...,np+q) giving rise to the character

t = (exp(ify),...,exp(ibptq)) — ™0 eialpia,

The system of compact roots A, is

Ac==3{e;—e;|1<i<j<plUx{e;—ej|lp+1<i<j<p+q}l.
The system of non compact roots is

Ap==H{ei—ej|1<i<pp+1<j<p+gq}

Let A be the Harish Chandra parameter of a discrete series for G and u the
Harish-Chandra parameter of a finite dimensional irreducible representation of K.

Because discrete series are equivalent under the action of the Weyl group of K,
then we may assume that A = [o,8] where o = >0 | ave; = [, ..., 5], 1 >
ag > -+ > ap and B = ?:g_;_lﬁiei = [/817---75(1]7/81 > By > /Bq-

Here «;, B; are integers if p + ¢ is odd, or half-integers if p + ¢ is even, that is
we fix as system of positive compact roots the system A} = {e; —e; |1 <i < j <
ptU{ei—ej|lp+1<i<j<p+gq}

We parametrize u € P by another couple

= la,b] = [[a1,as,...,ap], [b1,...,bg]

with a1 > -+ >ap, and by > --- > b,.

Here a; are integers if p is odd, half-integers if p is even. Similarly b; are
integers if ¢ is odd, half-integers if ¢ is even.

As the center of G acts by a scalar in an irreducible representation, we need
that the sum of the coefficients of A has to be equal to the sum of the coefficients
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of p for the multiplicity of 4 in 7* to be non zero. Thus A — x is in V, (see Ex.
[14).

We now parametrize the different dominant chambers of t* modulo the Weyl
group of K by a subset A of [1,2,...,7+1] of cardinal p. Let B its complementary
subset in [1,2,...,r + 1].

To visualize A, B we write a sequence of lenght p + ¢ of elements a,b with a
in the places of A, b in the places of B: for example if A = [3,5] and B = [1,2,4],
then we write [b, b, a, b, a] or simply bbaba. Now we use this visual aid and describe
a permutation wy of the index [1,2,...,p + ¢], by putting the index [1,...,p] in
order and in the places marked by a, and the remaining indices [p+1,...,p+¢| in
order and in the places marked by b, precisely wy : [1,2,3,4,5] — [3,4,1,5,2]. The
elements w4 where A varies describe a system of representatives of ¥, ,/(2, x %),
(X, being the permutations on n letters), that is also the chambers of t* for A(g, t)
modulo W,. In the above the chamber is described by {h = [h1, ha, h3, hg, hs] hs >
h4>h1>h5>h2}

Let astandara be the chamber ay > ag > -+ > ap, > 1 > o+ > By

Then if A € wAQstandard, Wwe have AT(X) = AT and Af()\) is isomorphic
to AT(A, B), by relabeling the roots via wgl. The next example will clarify the
situation. The subset A can be read from A: we reorder completely the sequence
A and define A as the indices where the first p elements of A\ are relocated.

Example 43 Let G = U(2,3) with compact roots A, = +{e1 — ea,e3 — e4,€3 —
€5, 64—65} and noncompact roots An = :]:{61—63, €1 —€4,€61 —€5,9—€3,€2—€4,€E2—
e5}. Let A = [a, B] with o = [4,2] = 4e1 + 2e5 and B = [6,5, 3] = 6es + ey + 3es.

Then A = [3,5], B = [1,2,4] that is the configuration bbaba. The system of non
compact positive roots for X ises3 —ej,eq —e—1,e—1—e5,e3 —e9,64 — €2, 65 — €9,
isomorphic to AT (A, B) by the relabeling of the roots suggested by wzl, that is
e3 = fi,e4 = fo,€1 = f3,€5 = fa,€2 = f5.

Thus relabeling the roots, our calculations will be done for AT (A, B) inside A;f,
where AT (A, B) is given in Example

Remark here that AT (A, B) is irreducible if p and ¢ are strictly greater than 1.
In contrast, when p or ¢ = 1, the system is fully reducible. Consider for example
the case p = 1.

Example 44

In this case A has only 1 element and the system A™(A, B) has r elements and
is a base of V. Thus AT (A, B) is fully reducible in the direct sum of p+ ¢ — 1 one
dimensional systems.

For example take U(1,7) with A = [1] and B = [2,...,7+1]. Then A*(A, B) =
{e1 —ez,e1 —e3,...,e1 — €,41} is isomorphic to Af X Af X o X Af.
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Remark that when A, A have the same number of elements, although the sys-

tem of noncompact roots +A(Ay, By) and £A;(Ay, By) are clearly isomorphic,
the combinatorial properties of Al (A, B) may vary.
For example, (see Figure [Bl), if A = [1,2], B = [3,4], the cone generated by the
non compact roots has basis a square and is not a simplicial cone. If A = [1, 3]
and B = [2,4], then the cone generated by the non compact roots is the simplicial
cone generated by e; — eg,e9 —e3,e3 — e4.

4.2 Algorithm to compute M PNS: the case of AT (A, B)

With the notations of Ex[T6, we denote by A a proper subset of [1,2,...,r + 1]
(with r = p+ ¢ — 1) and by B the complementary subset to A in [1,2,...r + 1].

Given v € V, and not on any admissible hyperplane, we describe the algorithm
to compute P(v, AT (A4, B)).

If por g =1, roots a in AT(A, B) form a basis on V, thus there is only one
maximal nested set M = {{a},a € AT(A, B)}. Thus P(v, A" (A, B)) is empty or
equal to {M} depending if v belongs to the cone generated by A*(A, B), or not.
This is very easy to check.

If p>1and g >1, we determine the set P(v, AT (A, B)) by induction, going
to admissible hyperplanes.

If L C[1,2,...,7+ 1] is a proper subset of [1,2,...,7 4+ 1], we will also use
the notation L' = [i ¢ L|1 < i < r+ 1] for the complement of L. We denote by
Hp == {v € V| Y ;cpvi = 0} the hyperplane determined by L; the hyperplane
Hj is equal to the hyperplane H;, determined by L'.

It is very simple to describe A1 (A, B)-admissible hyperplanes, that is noncompact
walls. The description is an adaptation of the Af-admissible hyperplanes that
appear in [3].

Keeping A fixed, with |A| # 1,7, we consider hyperplanes Hj indexed by

subsets L C 1,2,...,r + 1] with the following properties:

e if |[L| # 1 or 7, then Hy, is a noncompact wall if and only if both A and B
intersect L and L'. In this case A} (A, B)N Hy, is the product of two systems
AFT(ANL,BNL)x Af(ANL',BN L' and thus reducible.

e if L is of cardinal 1, then Hy, is a noncompact wall. In this case At (A, B)N
Hpis Af(ANL,BNL') and thus irreducible.

At this point to compute the M N PS or better, as we explained the ]\7 's, we
can proceed as in Figltl The algorithm is outlined in Figlfl

We conclude with the following observation. A necessary and sufficient con-
dition for the set MPNS(v, A} (A, B)) to be non empty is that v belongs to the
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cone generated by A} (A, B). As far as we know, the equations of this cone are
not known, except in a few cases. It is clearly necessary that v belongs to the
simplicial cone generated by all positive roots. To speed up the calculations, we
check this condition at each step of the algorithm.

We conclude with a simple example with p = 2,¢ = 2 and A = [1,2], B =
[3,4]. We follow the outline described in Figl6l The highest non compact root
is 6 := e; — e4. There are 3 noncompact walls not containing the highest root.
L = [1],[4],[1,3] We choose a vector v = [4,3,—2,—5] not on any noncompact
walls. Then [1],[4],[1,3] are all such that v and 6 are on the same side.

For L = [1], the v projection do not belong to the cone generated by A (A, B)N
HL = [62 — €3,€63 — 64].

For L = [4], we obtain the element M := {[1,2,3,4],[1,3],[2, 3]} in P(v, A (A, B)).

For L := [1, 3], we obtain the element M = {[1,2,3,4],[1, 3],[2, 3]} in P(v, A} (A, B)).

4.3 Valid permutations

Let w € W,. Remark that if wu — A does not belong to the cone of non compact
positive roots, then the term corresponding to w in Blattner formula is equal to
0. It is important to minimize the number of terms in Blattner formula. To this
purpose, we use a weaker condition: we say that w € W, is a valid element if
wp — A is in the cone spanned by (all) positive roots. Thus if w is not valid, the
corresponding term to w in Blattner formula is equal to 0. As there is a simple
description of the faces of cone spanned by all positive roots (it is the simplicial
cone dual to the simplicial cone generated by fundamental weights), there is a
simple algorithm that constructs valid permutations one at the time depending on
the conditions they have to satisfy, instead of listing all the elements of W,. The
corresponding algorithm is used in [4],[6], and we just reproduced it.

5 Examples

Example 45

We consider the discrete series representation indexed by A and we test for the
multiplicity mﬁ where 1 is a K type. We write pjowest for the lowest K-type. We
use the algorithm whose command is :

>discretemult(\,u,p,q)
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mﬁ: numeric case
Group | Input Output Time
U(3 3) ulowest:[[177 97 6]7 [17 07 _4” 1 0.026 sec.
’ [=[[1017, 1009, 1006], [-999, -1000, -1004]] 9 0.97 sec.

1=[[100017, 10009, 10006], [-9999, -10000, -100004]] 9 0.91 sec.
X=[[31/2, 19/2, 11/2], [ 15/2, 7/2, -37/2]]

U(3,3) Hiowest =117, 11, 6], [7, 2, -20]] 1 0.073 sec.

’ p=[[1017, 1011, 1006], [-993, -998, -1020]] 275 0.529 sec.

p=[[100017, 10011, 10006], [-9993, -9998, -100020]] 11700255 0.538 sec.
A= 11/277/273/27'1/2]7[9/275/271/27'3/2”

U(454) ulowest:[[lg)/zv 9/27 3/27 '3/2]7 [11/27 5/27 _1/27 _7/2“ 1 0.565 sec.
1=[[2015/2, 9/2, 372, -3/2], [11/2, 5/2, -1/2, -2007/2]] 120495492015 3.493 sec.
A= 11/27 9/27 7/27 5/2]7 [3/27 1/27 '1/27 '3/2”

U(4,4) [ fiowest=[[15/2, 13/2, 11/2, 9/2], [-1/2, -3/2, -5]2, -7/2]] I 0.334 sec.
1=[[20015/2, 2013/2, 211/2, 29/2], [-21/2, -203/2, -2005/2, -20007/2]] | 1 273.719 sec.
A= 57 37 17 _17 _3}7 [47 27 07 _2”

U(554) ulowest:[[’?? 47 17 '27 _5}7 [11/27 5/27 _1/27 '7/2” 1 3.952 sec.
1=[[1007, 4, 1, -2, -B], [11/2, 5/2, -1/2, -2007/2]] 120495492015 13.752 sec.
A= 11/277/273/27'1/27_5/2}7[9/275/271/27'3/27'7/2”

U(555) ulowest:[[gv 57 27 '17 _4}7 [67 37 07 '37 _6“ 1 51.910 sec.
1=[[106,4,2,0,-102],[104,2,0,-2,-104]] 1458704380546472381 | 163.104 sec.

Example 46

We consider the discrete series representation indexed by A, a direction ¥ and we
test for the multiplicity mi‘ 41y Where (= fowest is the lowest K-type. We use the
algorithm whose command is

> function_discrete_mu_direction_lowest_(\,7,p,q)
For completeness we list poest relative to each example.
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6 — (7/2) *t + (1/2) * t2,[2,3]], [0, [3, inf]]

A6 :=[1+ (13/4) * t — (51/8) » tZ + (61/4) » t3 — (89/8) x t%,[0,0]], [1 + (3/2) = t + (1/2) = t,[1,1]],
[—3 4+ (27/4) xt — (1/8) x t2 — (3/4) = t3 + (1/8) * t*,[2, 3]}, [6, [4, 170]],
[32664996 — (9380059/12) * t + (168227/24) * t* — (335/12) * t3 + (1/24) = ¢4, [171,172]],
(15225 — (349/2) =t + (1/2) % t2,[172,173]]
[78155000 — (10718575/6) * t + (183749/12) * t2 — (175/3) % 3 + (1/12) * t*, [174,175]], [0, [176, in f]]

AT = [1 + (5/4) * 1+ (1/24) * tz - (1/4) * td - (1/24) * t47 [07 0”7 [t + 17 [17 154”7
[23726781 — (2457885/4)  t 4 (143207/24) * t2 — (103/4) = t3 4 (1/24) = t*, [155, 156]], [156, [156, inf]]

Remark that in some of the examples above, it can happen that although the
polynomials P; and P;;; (displayed in the last table giving the A;) are different,
the polynomial P;;; may coincide with P; on I; (recall that several polynomials
can have the same values on I; N N). Thus in this case, we join the two intervals
I; and I;11 and give only the polynomial P;;q. This streamlining of the function
is given in the third column of the table describing the asymptotic behavior

A
mu+t17
of m*

pAto”

We now give an example on U(3,4).

Example 47

45

mﬁﬂﬁ , t € N: asymptotic case
Group | Input m;‘Hﬁ Output | Time
A=[[9, 7], [-1, -2, -13]]
Ulowest:[[21/27 17/2}7 ['27 '37 _14”
1 if ¢t=0
L -
o=[[1, 0], [-1, 0, 0]] Nty = { 0 if t>1 Al 0.054 sec.
U(23) | x  _J 1 if t<10
U_H67 1]7 ['17 ‘17 _5” mH‘Ftﬁ - 0 lf t 2 11 A2 0.736 sec.
o=[[1, 0], [0, 0, -1]] mi y= 1 if >0 A3 0.26 sec.
A=[[59, 39], [51, 7, -156]
U(2,3) | miowest=[[121/2, 79/2], [51, 6, -157]]
o=[[1,0], [0,0,-1]] m2+tﬁ =t+1 A4 0.71 sec.
A=[[341/2, 49/2], [-3/2, -5/2, -11/2, -371/2]]
U(2’4) :u'lowest:[[345/27 53/2]7 [_5/27 '7/27 '13/27 '373/2”
L . 1 if t<2
o=[[6, 1], [-1, -1, -1, -4]] MLy = { 0 if t>3 A5 46.754 sec.
A=[[343/2, 31/2, 21/2], [-13/2,-19/2,-363/2]]
Hiowest=[[173, 17, 12], [-8, -11, -183]]
1 if t=0
3 if t=1
6 if 2<t<171
L e N -~ <t< .
U(3,3) | v=[[6, 1, 0], [-1, -1, -5]] Mi =9 3 if t— 172 A6 52.020 sec.
1 if ¢t=173
0 if t>174
S 2 _ t+1 if 0<t<155
=[[1, 1, 0], [0-1, -1]] My = { 156 if ¢> 156 AT 7.1730 sec.
where
Al:=[[-(1/2) £ + (1/2) xt + 1,0, 0], [1 + (1/2) * 7 — (3/2) » ¢, [1, 1]], [0, [2, in f]]]
A2:= _(15/2) * tz + (7/2) *t+ 17 [07 0”7 [17 [17 10“7 [66 + (1/2) * tz — (23/2) * tv [117 11“7 [07 [1272nf]”
A3:=[[-(1/2) *t* + (1/2) *t +1,[0,0]], [1, [1, in f]]]
Ad = [[t+1,[0,inf]]
A5 = [1+ (10/3) %t — (7/2) % > +(25/6) + t2, [0, 0]), [L + (1/3) * ¢ — (1/2) % t* + (1/6) * £, [1,1]], [1, [1, 2]],




discrete:=[[473, 39, 1], [3, 51, 5, -572]1];
direction:=,[[1, 0, 0], [0, 0, O, -1]1;

>function_discrete_mul_direction_lowest(discrete,direction,3,4);

[1+51/20 t-1/120 t~5-1/360 t~6+851/360 t~2+23/24 t~3+5/36 t~4,[0,01],

[1+31/12 t+19/8 t~2+11/12 t~3+1/8 t°4,[1,371],

[-3262622+2687514/5 t+73/240 t~5-1/720 t~6-13275857/360 t~2+64795/48 t~3-3977/144 t-4,[38,39]1],
[-265030+27790 t-1090 t~2+20 t~3,[39,4411,

[-9631849+79305707/60 t+29/80 t~5-1/720 t~6-3399664/45 t~2+110609/48 t~3-5675/144 t-4,[45,45]11,
[27182687-212385511/60 t-31/40 t~5+1/360 t~6+69073219/360 t~2-132929/24 t-3+1619/18 t-4,[46,46]],
[-784945+886169/12 t-20959/8 t~2+511/12 t~3-1/8 t~4,[47,831],

[469370132-337238937/10 t-167/240 t~5+1/720 t~6+363465857/360 t~2-774005/48 t~3+20897/144 t-4,[84,85]],
[5790400-235000 t+2820 t~2, [86,inf]]

Thus the multiplicity mﬁ 1+ can be completely described by the following
piecewise polynomial function:

14 (31/12) *t + (1/8) x t* + (11/12) % 3 + (19/8) * 2 if 0<t<39
A ) —265030 + 27790 * t + 20 x t3 — 1090 * t2 if 40 <t <46
Mt = ) —784945 + (886169/12) * ¢ — (1/8) * t* 4 (511/12) % 3 — (20959/8) * t2 if 47 <t < 85
5790400 — 235000 * t + 2820 * t2 if 86<t.

The time to compute the example is 77T := 19.487 and the formula says
for instance that, for A =discrete and p = [[475, 40, 0], [103/2,9/2,5/2, —1147/2]]
the lowest K-type, then

M2 4200000005 = 1127995300005790400.

6 The program: ”Discrete series and K mul-
tiplicities for type A,”

We give a brief sketch of the main steps for the algorithms involved in Blat-
tner’s formula.

6.1 MNPS non compact

We outline the algorithm that computes directly M for M e P(v, AT(A, B)).
We are taking advantage of the fact that we know the M’s in the case of
|A] =1, r, as we saw in Ex. @4l In the following scheme p, ¢ are integers, A C
[1,2,...,p+q] is a set of cardinality p, B is the complement subset defining
U(A, B), 0; is the highest noncompact root for I. If L C [1,2,...,p+ q] we
denote by L' the complement set.
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Input [v, A,I], v a vector and A C I =[1,2,...,p+4q|, |A|=p
proceed by induction on the cardinality gA.
if |A| =1 or |A| = r write the unique M, M € MNPS determined by the situation
if v € C(M) then the output is M),
construct the hyperplane Hy,.
check if v and 07 are on the same side then Hyp,
if not skip the hyperplane
define the projection v’ = Projp, (v) of v on Hy, along 0
compute [v1, A1, 1], [v2, A2, I2]
where A1 = LNA, Ao =L'NA I =L, I =L" and
v1,v2 are the components of v’ on L and L’ respectively.
if v1(resp. v2) is not in the positive cone for A(h_))then skip the hyperplane
if |A1| = 1, apply the induction and compute M1, M1 € MNPS(v1, A1, 1),
add to M7 the root 07, (do the same if [A2| =1)
else apply the induction aﬁi} conl))ute i, My € P(vi, A, I;), i =1,2
do the Cgtesian product M7 X Ms and add to each set the root 6;
collect all M’s, for the wall L
end of loop running across L’s
end induction -
return the set of all M’s, M € MPNS for all hyperplanes

Figure 7: P(v, AT(A, B))

6.2 Numeric

The scheme is described in Fig[8l.

6.3 Asymptotic directions

We fix the parameter A\g and p, regular in the chambers a, a. and a weight .
We want to compute m/’i‘lw. In the application py will be the lowest K-type.

The scheme is described in Fig[9l.
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Subroutines:
e Procedure to find At-admissible hyperplanes.
e Procedure to deform a vector: DefVecnc(v, AT)

—)
e Procedure to compute M, M € P(v, A") as in Fig[ll

e Procedure to compute Kostant function K(h) = K(0,h) = e or more generally

Moeat @™
K(g,h).

e Compute the valid permutation Valid(u, v) C We

Input: A, p
Compute AT = AT (\):
Compute Valid(\, p)
for each w € Valid(A, p),
compute preg = DefVecnc(v, A1)
compute Ally 1= P(wpreg — A, Af{)
compute cont,, = ZﬁcAllw IresMK(wu —A—pn)
end of loop running across w’s
collect all the terms and return

A
My = P wevatid(aw) C(Wconty

Figure 8: Blattner’s algorithm (numeric case)
Subroutines:
e Procedure to find A*-admissible hyperplanes.
e Procedure to deform a vector: DefVecnc(v, AT)

e Procedure to compute ﬁ, M € |CP(v, At) as in Fig[ll

e Procedure to compute Kostant function K(h) = K(0,h) = e or more generally

HaeAﬁ (1—e—@)
K(g,h).

Input A\g and ¥ for each H noncompact wall
if (H,7) = 0 then skip H
else if (H, Ao — wpo)(H,¥) < 0 then skip H else
collect tg = (H, Ao — wpo)/(H, 7)
end of loop running across H’s
order list t}; s as [to, t1,...,ts] where tg = 0,t5 = oo
choose an interior point ¢; in each interval [¢;, t;+1]
Compute polynomial on each [t;,t;41] following the scheme Fig[§ and the ordered basis determined by #;

output: the sequence of values mi“ .5 valid on [t;, t;11], t €N

ot

Figure 9: Blattner’s algorithm: asymptotic case
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