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0 Discrete series representations and K
multiplicities for U (p, q). User’s guide
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Abstract

This document is a companion for the Maple program Discrete
series and K-types for U(p, q) available on

\protect\vrule width0pt\protect\href{http://www.math.jussieu.fr/\string~vergne/}{htt

We explain an algorithm to compute the multiplicities of an irre-
ducible representation of U(p) × U(q) in a discrete series of U(p, q).
It is based on Blattner’s formula. We recall the general mathematical
background to compute Kostant partition functions via multidimen-
sional residues, and we outline our algorithm. We also point out some
properties of the piecewise polynomial functions describing multiplic-
ities based on Paradan’s results.
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Introduction

The present article is a user’s guide for the Maple program Discrete series and
K types for U(p, q), available at

\protect\vrule width0pt\protect\href{http://www.math.jussieu.fr/\string~vergne/}{http://

In the first part, we explain what our program does with simple examples.
The second part sets the general mathematical background. We recall Blattner’s
formula, and we discuss the piecewise (quasi)-polynomial behavior of multiplicities
for a discrete series of a reductive real group. In the third part, we outline the
algorithm of computing partition functions for arbitrary set of vectors, based on
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Jeffrey-Kirwan residue and maximally nested subsets. In the fourth part, we spe-
cialize the method to U(p, q). We in particular explain how to compute maximally
nested subsets of the set of non compact positive roots of U(p, q).

In the last two sections, we give more examples and some details on the im-
plementation of the algorithms for our present application.

Here G is the Lie group G = U(p, q) and K = U(p) × U(q) is a maximal
compact subgroup of G. Of course all these issues can be addressed for the other
reductive real Lie groups following the same approach described here. To introduce
the function we want to study, we briefly establish some notations (see Sec. 2.2).
We denote by πλ a discrete series representation with Harish Chandra parameter
λ. The restriction of πλ to the maximal compact subgroup K decomposes in irre-
ducible finite dimensional K representations with finite multiplicities, in formula

πλ |K =
∑

τµ

mλ
µτµ

where we sum over K̂: the classes τµ of irreducible finite dimensional K represen-
tations, µ being the Harish Chandra parameter of τµ.
mλ

µ is a finite number called the multiplicity of the K-type τµ, or simply of µ, in

πλ and this paper addresses the question of computing mλ
µ.

The algorithm described in this paper checks whether a certain K-type τµ appears
in the K-spectrum of a discrete series πλ by computing the multiplicity of such a
K-type. The input µ can also be a symbolic variable as we will explain shortly.
By Blattner’s formula, computing the K-multiplicity is equivalent to compute the
number of integral points, that is a partition function, for specific polytopes. We
thus use the formulae developed in [3] to write the algorithm.

One important aspect of these results is that the input datas (λ, µ) can also be
treated as parameters. Thus, in principle, given (λ0, µ0), we can output a convex
cone, containing (λ0, µ0), and a polynomial function of the parameters (λ, µ) whose
value at (λ, µ) is the multiplicity of theK-type µ in the representation πλ as long as
we stay within the region described by the cone and (λ, µ) satisfy some integrality
conditions to be defined later. We also plan to explicitly decompose our parameter
space (λ, µ) in such regions of polynomiality in a future study, thus describing fully
the piecewise polynomial function mλ

µ, at least for some low rank cases.
In practise here, we only address a simpler question: we will fix λ, µ and

a direction ~v and compute a piecewise polynomial function of t coinciding with
mλ

µ+t~v on integers t. This way, we can also check if a direction ~v is an asymptotic
direction of the K-spectrum, in the sense explained in Sec. 3.7.3.

The Atlas of Lie Groups and Representations, [1], within the problem of clas-
sifying all of the irreducible unitary representations of a given reductive Lie group,
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addresses in particular the problem of computing K-types of discrete series. The
multiplicities results needed for the general unitary problem is of different nature
as we are going to explain.

Given as input λ and some height h, Atlas computes the list with multiplic-
ities of all the representations occurring in πλ of height smaller than h. But the
efficiency, in this setting, is limited by the height. In contrast, the efficiency of our
program is unsensitive to the height of λ, µ, but the output is one number: the
multiplicity of µ in πλ. It takes (almost) the same time to compute the multiplicity
of the lowest K-type of πλ (fortunately the answer is 1) than the multiplicity of a
representation of very large height. Our calculation are also very sensitive to the
rank: p+ q − 1.

For other applications (weight multiplicities, tensor products multiplicities)
based on computations of Kostant partition functions in the context of finite di-
mensional representations, see [4], [6], [2].

1 The algorithm for Blattner’s formula: main

commands and simple examples

Let p, q be integers. We consider the group G = U(p, q). The maximal compact
subgroup isK := U(p)×U(q). More details in parametrization are given in Section
4.

A discrete series representation πλ is parametrized according to Harish-Chandra
parameter λ, that we input as discrete:

discrete := [[λ1, . . . , λp], [γ1, . . . , γq]].

Here λi, γj are integers if p+ q is odd, or half-integers if p+ q is even. They
are all distinct. Furthermore λ1 > · · · > λp and γ1 > · · · > γq.

A unitary irreducible representation ofK (that is a couple of unitary irreducible
representations of U(p) and of U(q)) is parametrized by its Harish-Chandra pa-
rameters µ that we input as Krep:

Krep := [[a1, a2, . . . , ap], [b1, . . . , bq]]

with a1 > · · · > ap and b1 > · · · > bq.
Here ai are integers if p is odd, half-integers if p is even. Similarly bj are

integers if q is odd, half-integers if q is even.
As we said, our objective is to study the functionmλ

µ for µ ∈ K̂ where µ = Krep
and λ = discrete.
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The examples are runned on a MacBook Pro, Intel Core 2 Duo, with a Processor
Speed of 2.4 GHz. The time of the examples is computed in seconds. They are
recorded by

TT

.
Some of these examples are very simple and can be checked by hand (as we

did, to reassure ourselves). Other examples are given at the end of this article.

To compute the multiplicity of the K-type given by Krep in the discrete series
with parameter given by discrete, the command is

>discretemult(Krep,discrete,p,q)

Example 1

Krep:=[[207/2, -3/2], [3/2, -207/2]];

discrete:=[[5/2, -3/2], [3/2, -5/2]];

>discretemult(Krep,discrete,2,2);

101

Here is another example of mλ
µ that our program can compute.

Example 2

We consider the discrete series indexed by

lambda33:=[[11/2, 7/2, 3/2], [9/2, 5/2, 1/2]];

Its lowest K-type is

lowlambda33:= [[7,4,1], [5,2,-1]];

Of course, the multiplicity of the lowest K-type is 1. Our programm fortunately returns the value 1 in
0.03 seconds.

Consider now the representation of K with parameter:

biglambda33:= [[10006, 4, -9998], [10004, 2, -10000]];

Then the multiplicity of this K-type is computed computed in 0.05 seconds as

> discretemult(biglambda33,lambda33,3,3);

2500999925005000;
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Here are two other examples that verify the known behavior of holomorphic dis-
crete series. The notation ab... that we use to label the discrete series parameters
is introduced in 4.1 and it very effective to picture the situation, but it is not
relevant to understand the following computation.

Example 3

Consider a holomorphic discrete series of type ”aaabbb” for G = U(3, 3) (see Sec.4.1) with lowest K-type
of dimension 1. We verify that the multiplicity is 1 for µ in the cone spanned by strongly orthogonal non
compact positive roots.

hol33:=[[11/2,9/2,7/2],[5/2,3/2,1/2]];

lowhol33:=[[7, 6, 5], [1, 0, -1]];

bighol33:=[[7+1000, 6+100, 5+10], [1-10, -100, -1-1000]];

>discretemult(lowhol33,hol33,3,3);

1

TT:= 0.052

>discretemult(bighol33,hol33,3,3);

1

TT:= 1.003

Example 4

Consider a holomorphic discrete series of type ”aaabbb” for G = U(3, 3) (see Sec. 4.1) with lowest K-type
of dimension d. We verify that the multiplicities are bounded by d.

Hol33:=[[27/2,9/2,7/2],[5/2,3/2,-5/2]];

lowHol33:=[[15, 6, 5], [1, 0, -4]];

bigHol33:=[[15+1000, 6+1000, 5+1000], [1-1000, -1000, -4-1000]];

verybigHol33:=[[15+100000, 6+10000, 5+10000], [1-10000, -10000, -4-100000]];

>discretemult(lowHol33,Hol33,3,3);

1

TT:= 0.069

>discretemult(bigHol33,Hol33,3,3);

4

TT:=0.971

>discretemult(verybigHol33,Hol33,3,3);

4

TT:= 0.873

Fix now a K-type µ, a direction ~v given by a dominant weight for K ( more
details in Sec. 3.7.3) and a discrete series parameter λ. The half-line µ+ t~v stays
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inside the dominant chamber forK. A very natural question is that of investigating
the behavior of the multiplicity function as a function of t ∈ Z, when we move
from µ along the positive ~v direction, that is the function t → mλ

µ+t~v , t ≥ 0.
The answer to this question will be given by two sets of datas: a covering of N
determined by a finite number of closed intervals Ii ⊂ R with integral end points,
that is N = ∪1≤i≤s(Ii∩N), together with polynomial functions Pi(t), 1 ≤ i ≤ s, of
degree bounded by pq− (p+q−1), that compute the multiplicity on such intervals
Ii: in formula mλ

µ+t~v = Pi(t) for t ∈ Ii ∩ N.
We remark two aspects. First the {Ii ∩ N, 1 ≤ i ≤ s} constitutes a covering
in the sense that we recover all of N but (Ij ∩ N) ∩ (Ij+1 ∩ N) can intersect in
the extreme points and hence in this case Pj and Pj+1 have to coincide on the
intersection. Secondly the ”intervals” Ii∩N can be reduced just to a point, so that
the polynomial Pi (if not constant) is not uniquely determined by its value on one
point !. More generally, if the length of the interval Ii is smaller that the degree
of Pi, the polynomial Pi is not uniquely determined.
Because of our focus on the polynomiality aspects we keep in the output of the
algorithm the polynomials Pi even if the intervals Ii are reduced to a point (or
with small numbers of integral points).
In our application, µ will be the lowest K-type and we will give some examples of
the situations occurring, in particular we will examine the following cases:

• The first example outputs a covering of N given by a unique interval and
a polynomial function on N that computes the multiplicity. Thus in this
case, all the integer points on the half line µ+ t~v, t ≥ 0 give rise to K-types
that appear in the restriction of the discrete series, in particular ~v is an
asymptotic direction, (see Sec. 2.4 and 3.7.3),

• In the other examples, the covering of N has at least two intervals and
illustrate different situations.

To compute, in the sense we just explained, the multiplicity of the K-type µ+ t~v
in the discrete series with parameter discrete, µ being the lowest K-type moving
in the positive direction ~v, labeled by direction , the command is

>function_discrete_mul_direction_lowest(discrete,direction,p,q);

Example 5
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discrete:=[[5/2, -3/2], [3/2, -5/2]];

direction:=[[1,0],[0,-1]];

>function_discrete_mul_direction_lowest(discrete,[[1,0],[0,-1]], 2,2);

[[t+1, [0, inf]]]

(inf stands for ∞ ).

Here the covering of N is N = [0,∞] ∩ N and the polynomial is P (t) = t+ 1. The

output explicitly compute:

mλ
µ+t~v = t+ 1, t ∈ N, t ≥ 0

with µ = [[7/2,−3/2], [3/2,−7/2]] the lowest K-type of the representation πλ (See
Ex.8 for computation of the lowest K-type). Thus we compute the multiplicity,
starting from the lowest K-type when we are moving off it in the direction of ~v.
In particular for t = 100 we get mλ

µ+100~v = 101 as predicted in Ex.1, since

discrete:=[[5/2, -3/2], [3/2, -5/2]]

and µ+ 100~v is equal to

Krep:=[[207/2, -3/2], [3/2, -207/2]];

Example 6

discrete:=[[9, 7], [-1, -2, -13]];

direction:= [[1, 0], [0, 0, -1]];

>function_discrete_mul_direction_lowest(discrete, direction,2,3);

[[1+(1/2)*t-(1/2)*t^2, [0, 0]], [1, [1, inf]]]

Here the covering is N = ([0, 0] ∩N)∪ ([1,∞]∩N and the polynomials are P1(t) =
1+ 1

2 t−
1
2t

2 on [0, 0]∩N and P2(t) = 1 on ([1,∞]∩N. Observe that [0, 0]∩N = [0]
is just a point and that P1(0) = 1 as it should be, since µ is the lowest K-type.
Explicitly we simply compute

mλ
µ+t~v = 1, t ∈ N, t ≥ 0.

We conclude with one example in which the multiplicity grows: the last poly-
nomial is not zero and has degree two. We give more examples at the end of this
article.
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Example 7

discrete:= [[57/2, 39/2, 3/2], [51/2, 5/2, -155/2]];

direction:=[[1, 0, 0], [0, 0, -1]];

>function_discrete_mul_direction_lowest(discrete,direction,3,3);

[(1/24)*t^4+(5/12)*t^3+(35/24)*t^2+(25/12)*t+1, [0, 16]], [-3059+(2242/3)*t-(133/2)*t^2+(19/6)*t^3, [17, 21]],

[-11914+(9597/4)*t-(4367/24)*t^2+(27/4)*t^3-(1/24)*t^4, [22, 40]], [100016-8664*t+228*t^2, [41, inf]]

That is for λ =discrete and µ = [[30, 20, 1], [26, 2,−79]] the lowest K-type

mλ
µ+t~v =





(1/24) ∗ t4 + (5/12) ∗ t3 + (35/24) ∗ t2 + (25/12) ∗ t+ 1 0 ≤ t ≤ 16
−3059 + (2242/3) ∗ t− (133/2) ∗ t2 + (19/6) ∗ t3 17 ≤ t ≤ 21
−11914 + (9597/4) ∗ t− (4367/24) ∗ t2 + (27/4) ∗ t3 − (1/24) ∗ t4 22 ≤ t ≤ 40
100016 − 8664 ∗ t+ 228 ∗ t2 t ≥ 41

The time to compute the example is TT := 0.835 and the formula says for instance
that mλ

µ+2000000~v = 911982672100016

To compare with other parametrizations of the discrete series representations,
it may be useful also to give here the command for the lowest K-type of the discrete
series with parameter λ = discrete of the group U(p, q). The command is:

>Inf_lowestKtype(p,q, discrete)

Example 8

> Inf_lowestKtype([[5/2,-3/2],[3/2,-5/2]],2,2);

[[7/2,-3/2], [3/2, -7/2]]

Similarly, we may want to parametrize a representation of K by its highest
weight. Then the command is:

> voganlowestKtype(discrete,p,q)

Example 9

> voganlowestKtype([[5/2,-3/2],[3/2,-5/2]],2,2);

[[3,-1], [1, -3]]

9



Let us finally recall the simple case of the multiplicity function for G = U(2, 1)
(see Sec. 4.1 for the notations).

Choose as positive compact root the root e1 − e2 and denote by w the corre-
sponding simple reflection. Fix λ = [[λ1, λ2], [λ3]] the Harish Chandra parameter
for a discrete series representation. We assume λ regular and λ1 > λ2. There
are three chambers c1, c2, c3 and hence three systems of positive roots containing
e1 − e2. Precisely c1 corresponds to the positive system {e1 − e2, e1 − e3, e2 − e3},
c2 corresponds to the positive system {e1 − e2, e1 − e3, e3 − e2} and c3 to {e1 −
e2, e3 − e1, e3 − e2}.

We examine the situation in which the discrete series parameter belongs to one
of these chambers. Fig.1 and Fig.2, picture the two chambers c1, c2 and evidentiate
the values for mλ

µ when λ is in the chamber. The black lines mark the chambers
containing the compact root e1 − e2 and the red ones the system of positive roots
for the given chamber.

e2 − e3
e1 − e3

e1 − e2

λ

0

1

Figure 1: mλ
µ for the chamber c1 of U(2,1).
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e1 − e3

j

O

e1 − e2

λ

e3 − e2

1

e − e1 3

Figure 2: mλ
µ for the chamber c2 of U(2,1)

We give some examples concerning the two situations. The parameter λ in
Fig.1 is

hol21 := [[2, 1], [−3]]

In Figure 2 the parameter λ is

aba := [[2,−3], [1]].
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2 Mathematical background

2.1 Notations

G, g semi-simple real Lie group, Lie algebra of G.
K, k maximal compact subgroup of G, Lie algebra of K.
T, t maximal torus of K, Lie algebra of T .
P ⊂ t∗ lattice of weights of T .
∆+,∆+(λ) ⊂ t∗ system of positive roots for G.
∆+

c ,∆
+
c (λ) system of positive compact roots.

∆+
n ,∆

+
n (λ) system of positive non compact roots.

∆+(A,B) system of positive roots of parabolic type determined by (A,B).
a, ac positive chamber for G and K respectively
ρ, ρ+c , ρ

+
n half the sum of positive, positive compact, positive non compact roots.

Pg, Pk set of G admissible, K admissible parameters.
P r
g , P

r
k set of G admissible and regular , K admissible and regular parameters.

U r-dimensional real vector space; x ∈ U .
V dual vector space of U , h ∈ V .
〈 , 〉 the pairing between U and V .
VZ lattice of V .
UZ dual lattice in U .
A+ a sequence of vectors in VZ; α ∈ A+.
τ a tope.
T torus U/UZ; t ∈ T .
F finite subset of T .
ΠA+(h) polytope defined by A+.
NA+(h) number of integral points for ΠA+(h).
c chamber.
JKc Jeffrey-Kirwan residue.
Ires iterated residue.

2.2 Blattner formula and multiplicities

Let G be a reductive connected linear Lie group with Lie algebra g and denote by
K a maximal compact subgroup of G with Lie algebra k.

We assume that the ranks of G and K are equal. Under this hypothesis the
group G has discrete series representations. Recall Harish-Chandra’s parametriza-
tion of discrete series representations. We choose a compact Cartan subgroup
T ⊂ K with Lie algebra t. Let P ⊂ t∗ be the lattice of weights of T . They
correspond to characters of T . Here if λ ∈ P , the corresponding character of T

12



is eiλ. Let ∆+ ⊂ P be a positive system of roots and ρ = 1
2

∑
α∈∆+ α. Then the

subset ρ + P ⊂ t∗ does not depend of the choice of the positive system ∆+. We
denote it by Pg. We denote by P r

g ⊂ Pg the subset of g-regular elements. We
can similarly define P r

k . We denote by Wc the Weyl group of K. For any λ ∈ P r
g ,

Harish-Chandra defined a discrete series representation πλ. Elements of P r
g are

called Harish-Chandra parameters for G. Two representations, πλ and πλ
′
, co-

incide precisely when their parameters λ, λ′ are related by an an element of Wc.
Thus the set of discrete series representations is parametrized by P r

g /Wc.

In the same way we can parametrize the set K̂ of classes of irreducible finite
dimensional representations of K by their Harish-Chandra parameter µ ∈ P r

k /Wc.
Once a positive system of compact roots is chosen, an element µ ∈ P r

k can be
conjugated to a unique regular element in the corresponding positive chamber
ac ⊂ t∗ for the compact roots. We denote by τµ ∈ K̂, or simply by µ ∈ K̂, the
corresponding representation.

A discrete series representation πλ is K-finite:

πλ |K =
∑

τµ∈K̂

mλ
µτµ.

To determinemλ
µ, that is the multiplicity of theK-type τµ in πλ, is a basic problem

in representation theory.
Blattner’s formula, [14], gives an answer to this problem. We need to introduce

a little more notations before stating it.
We let ∆ be the root system for g with respect to t, ∆c the system of compact

roots , that is the roots of k with respect to t, and ∆n the system of noncompact
roots. We let ∆+ be the unique positive system for ∆ with respect to which λ
is dominant. We write ρ = 1

2

∑
α∈∆+ α , ρc = 1

2

∑
α∈∆+

c
α and ρn = 1

2

∑
α∈∆+

n
α

where ∆+
c = ∆+ ∩∆c and ∆+

n = ∆+ ∩∆n. Therefore Pg = ρ + P , Pk = ρc + P
and if ξ ∈ Pg, then ξ + ρn ∈ Pk.

Write a, ac ⊂ t∗ for the (closed) positive chambers corresponding to ∆+ and
∆+

c . We will also write ∆+(λ),∆+
c (λ) and ∆+

n (λ) for ∆
+,∆+

c ,∆
+
n if necessary to

stress that these systems depend on λ.
Then for µ ∈ P r

k ∩ ac, Blattner’s formula says:

(1) mλ
µ =

∑

w∈Wc

ǫ(w)Pn(wµ − λ− ρn)

where, given γ ∈ t∗, we define Pn(γ) to be the number of distinct ways in which γ
can be written as a sum of positive noncompact roots (recall our identification
for which ∆,∆c ⊂ t∗). The number Pn(γ) is a well-defined integer, since the
elements of ∆+

n span a cone which contains no straight lines. As usual, ǫ(w) will
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stand for the sign of w. Remark that, as µ+ ρc and λ+ ρn + ρc are weights of T ,
the element wµ − λ− ρn is a weight of T .
It is convenient to extend the definition of mλ

µ to an antisymmetric function on
P r
k . As we observed already an element µ ∈ P r

k can be conjugated to a unique
regular element in the corresponding positive chamber ac ⊂ t∗ for compact roots,
via an element w ∈ Wc. Thus we define mλ

µ = ǫ(w)mλ
wµ. Of course with this

generalization the multiplicity of the K-type µ is |mλ
µ| and we can complete our

picture for U(2, 1), Fig.3, in the following way:

e2 − e3 e1 − e3

e1 − e2

wλ λ

0

− 1 1

Figure 3: mλ
µ as antisymmetric function on U(2, 1).

The representation τlowest with Harish-Chandra parameter µlowest = λ+ ρn is the
lowest K-type of the representation πλ and occurs with multiplicity 1. It is, in
general, difficult to compute mλ

µ for general µ.

We will use Blattner’s formula to compute mλ
µ. Our algorithm is based on a

general scheme for computing partition functions using multidimensional residues.
Note that the presence of signs in Blattner formula doesn’t even allow to say if a
K -type appears without fully computing its multiplicity.

Recall that if A+ is a positive root system of a semi-simple Lie algebra, the
formula for the partition function has been used to compute tensor product de-
composition or weight multiplicities ([4],[6]).
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2.3 Polynomial behavior of the Duistermaat-Heckman

measure

Recall Paradan’s results ([16]) on the behavior of the function mλ
µ and its support.

For this it is useful to first recall the semi-classical analog of Blattner formula.
Let us fix a positive system of roots ∆+ and consider the corresponding (closed)

positive chambers a, ac ⊂ t∗ for ∆+ and ∆+
c . Our parameter λ varies in a and it is

non singular. In this subsection, the integrality condition λ ∈ P r
g is not required.

Let Oλ ⊂ g∗ be the coadjoint orbit of λ. It is a symplectic manifold, and thus
is provided with a Liouville measure dβλ. Let p : Oλ → k∗ be the projection. This
is a proper map. Each coadjoint K-orbit in k∗ intersect ac ⊂ t∗ ⊂ k∗. Thus the
projection of Oλ on k∗ is entirely determined by its intersection with ac. We recall
that the set p(Oλ) ∩ ac is a closed convex polyhedron.

Definition 10 The Kirwan polyhedron Kirwan(λ) is the polyhedron p(Oλ) ∩ ac.

As far as we know, there are no algorithm to determine the Kirwan polyhedron.
A weak result on the support of Kirwan(λ) is that Kirwan(λ) is contained in

λ + Cone(∆+
n ) where Cone(∆+

n ) is the cone generated by positive non compact
roots.

The push-forward of the measure dβλ along the projection p : Oλ → k∗ gives
us an invariant positive measure on k∗. By quotienting this measure by the signed
Liouville measures dβKµ of the coadjoint orbits Kµ in k∗, we obtain a Wc-anti-
invariant measure dF λ on t∗. More precisely, for φ a test function on k∗,

(2)

∫

Oλ

φ(p(f))dβλ(f) =
1

#Wc

∫

t∗
dF λ(µ)ǫµ

(∫

Kµ
dβKµ(f)φ(f)

)
.

Here ǫµ is the locally constant function on t∗ anti-invariant by Wc and equal to 1
on the interior of the positive chamber ac. We refer to dF λ as the Duistermaat-
Heckman measure.

If A+ = [α1, . . . , αN ] is a sequence of elements in t∗ spanning a pointed cone,
the multispline distribution YA+ is defined by the following formula. For φ a test
function on t∗:

(3) 〈YA+ , φ〉 =

∫ ∞

0
· · ·

∫ ∞

0
φ(

N∑

i=1

tiαi)dt1 · · · dtN .

Then, for λ ∈ a and µ ∈ t∗, we have the following result due to Duflo-Heckman-
Vergne,[15]:

(4) dF λ(µ) =
∑

w∈Wc

ǫ(w)w(δλ ∗ Y∆+
n
).
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where ∆+
n is the system of positive noncompact roots defined by a.

To simplify our next statements, assume that G is semi-simple and has no
compact factors. Then t∗ is generated by non compact roots. Recall that the
spline function is given by a locally polynomial function on t∗ well defined outside
a finite number of hyperplanes (see the description later). Choosing the Lebesgue
measure dh associated to the root lattice, we may identify the measure Y∆+

n
to a

function, denoted by Y +
n . Similarly, we identify the measure dF λ to a function F λ

on t∗. Then we have, almost everywhere, the semi-classical analogue of Blattner
formula:

F λ(µ) =
∑

w∈Wc

ǫ(w)Y +
n (wµ− λ)

λ ∈ a and regular.
The (anti-invariant) function F λ(µ) restricted to the positive compact chamber

ac is a non negative measure with support the Kirwan polyhedron Kirwan(λ).

It follows from the study of spline functions that there exists a finite number of

open polyhedral cones Ri in a× ac (so that the union of the cones R
i
cover a× ac)

and polynomial functions pi on a × ac such that F λ(µ) is given, for λ ∈ a, µ ∈
ac, (λ, µ) ∈ Ri, by the polynomial pi(λ, µ) on Ri(λ) = {µ ∈ ac, (λ, µ) ∈ Ri}. In
particular the Kirwan polyhedron Kirwan(λ) is the union of the regions Ri(λ) for
which the polynomial pi restricted to Ri(λ) is not equal to 0. In fact the functions
pi(λ, µ) are linear combinations of polynomial functions of wλ − µ where w are
some elements of Wc.

If R is an open cone in a×ac such that F λ(µ) is given by a polynomial formula
pR(λ, µ) when (λ, µ) ∈ R, λ ∈ a, we say that R is a domain of polynomiality and
that pR is the local polynomial for F λ on R.

Let us finally recall that the local polynomials pR belong to some particular
space of polynomials satisfying some system of partial differential equations. For α
a non compact root, consider the derivative ∂α. We say that an hyperplane H ∈ t∗

is admissible for ∆n if H is spanned by a subset of dim t − 1 non compact roots,
that is roots in ∆n. We denote by Hn the set of admissible hyperplanes for ∆n.

Definition 11 A polynomial p on t∗ is in the Dahmen-Micchelli space D(∆+
n ) if

p satisfies the system of equations:

(
∏

α∈∆+
n \Q

∂α)p = 0

for any Q ∈ Hn.

16



Remark that the space D(∆+
n ) depends only of ∆n and not of a choice of ∆+

n .
Then, the following result follows from Dahmen-Micchelli theory of the splines.

Proposition 12 For any domain of polynomiality R, the polynomial µ→ pR(λ, µ)
belongs to the space D(∆+

n ).

2.4 Quasi-polynomiality results

Let us come back to the discrete setting. Let us fix as before a positive system of
roots ∆+ and consider the corresponding chambers a, ac ⊂ t∗ for ∆+ and ∆+

c . Fix
λ ∈ P r

g ∩ a and µ ∈ P r
k ∩ ac. We can then define mλ

µ, the multiplicity of τµ in the

discrete series πλ.
By definition, a quasipolynomial function on a lattice L is a function on L

which coincides with a polynomial on each coset of some sublattice L′ of finite
index in L. The subsets Pg, Pk are shifted lattices and we may say that a function
k on P r

k is quasi polynomial on Pg × Pk if the shifted function k(λ − ρ, µ − ρc) is
quasipolynomial on the lattice P × P .

Theorem 13 Let R be a domain of polynomiality in a× ac for the Duistermaat-
Heckman measure. Then there exists a quasi polynomial function PR on Pg × Pk

such that mλ
µ = PR(λ, µ) for any (λ, µ) ∈ R ∩ (P r

g × P r
k ), λ ∈ a, µ ∈ ac.

(In fact the functions PR are linear combinations of quasi polynomial functions
of wλ− µ where w are some elements of Wc.)

The K-types occurring with non zero multiplicity in πλ are such that µ is in
the interior of the Kirwan polyhedron Kirwan(λ). In particular the lowest K-type
µlowest is in the interior of Kirwan(λ). In particular all the K-types occurring
with non zero multiplicity in πλ are such that µ is in the interior of the cone
λ + Cone(∆+

n ). We believe they are contained in the cone µlowest + Cone(∆+
n ),

but we do not know if this assertion is true or not (by Vogan’s theorem, they are
contained in µlowest +Cone(∆+)) .

If v ∈ t∗, we say that v is an asymptotic direction, if the line µlowest + tv
is contained in Kirwan(λ) for all t ≥ 0. The set of asymptotic directions form a
cone, which determines the wave-front set of πλ|K .

For the holomorphic discrete series, the descrition of the cone of asymptotic
diections is known. In fact if the lowest K-type of πλ is a one dimensional rep-
resentation of K, the exact support of the function mλ

µ has been determined by
Schmid.

We will explain in Section 3.7 how to compute regions of polynomiality R and
the quasi-polynomial PR.
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The quasi polynomials PR are in some particular space of quasi polynomials
satisfying some system of partial difference equations. For α a non compact root,
consider the difference operator ∇α acting on Z valued functions on Pk by

(∇αk)(µ) = k(µ)− k(µ − α).

Definition 14 A quasi polynomial L on Pk is in the Dahmen-Micchelli space
DM(∆+

n ) if p satisfies the system of equations:

(
∏

α∈∆+
n \Q

∇α)L = 0

for any Q ∈ Hn.

Then, the following result follows from Dahmen-Micchelli theory of partition func-
tions.

Proposition 15 The quasi polynomial µ→ PR(λ, µ) belongs to the space DM(∆+
n ).

2.5 Aim of the algorithm: what can we do?

Our algorithm addresses the following questions for U(p, q). All of these questions
will be analyzed in more details in Sec.3.7.

2.5.1 Numeric

We enter as input two parameters λ, µ ∈ P r
g × P r

k . The output is the integer mλ
µ,

see Sec.3.7.1.

2.5.2 Regions of polynomiality

The input is two parameters λ0, µ0 ∈ P r
g×P

r
k . Let a, ac be the chambers determined

by λ0 and µ0. We also give two symbolic parameters λ, µ.
Then the output is a closed cone R(λ0, µ0) ⊂ a ⊕ ac described by linear in-

equations in λ, µ, containing (λ0, µ0) and a quasi-polynomial P in (λ, µ) such that
mλ

µ = P (λ, µ) for any (λ, µ) ∈ R(λ0, µ0) ∩ (P r
g × P r

k ).
We worked out part of this program for U(p, q), but it is still not fully imple-

mented.
In particular, for the moment, we are not able to produce a cover of a × ac

by such regions. The number of regions needed grows very fast with the rank.
Furthermore, we are not able to decide when we have finished to cover a× ac.
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2.5.3 Asymptotic directions

We implemented (for U(p, q)) a simpler question which gives a test for asymptotic
directions.

Let’s consider as input parameters λ0 in P
r
g and a weight ~v ∈ ac. Let µ0 be the

lowest K-type of πλ0 . The line t 7→ (λ0, µ0 + t~v) cross domains of polynomiality
Ri at a certain finite number of points 0 ≤ t1 < t2 < · · · < ts. Let us define
t0 = 0, ts+1 = ∞. Then we study the function P (t) = mλ0

µ0+tv, t ∈ N, t ≥ 0.
We can find polynomials q[ti,ti+1] of degree bounded by pq − (p + q + 1) such

that P (t) = q[ti,ti+1](t) when ti ≤ t ≤ ti+1 for i = 0, . . . , s and t ∈ N. In particular,
the direction ~v belongs to the asymptotic cone of the Kirwan polyhedron, if and
only if our last polynomial q[ts,∞] is non zero, see Sec.3.7.3.

As we discussed in the first part, if the intervals are two small, these polyno-
mials are not uniquely determined. However the last interval is infinite, and the
last polynomial is well determined. If this last data is non zero, then ~v is in the
wave front set of πλ. The reciproc is not entirely clear. Indeed for a direction to
be in the wave front set, it is sufficient to be approached in the projective space
by lines R+µn with µn ∈ P r

k ∩ ac such that the multiplicity mλ
µn

is non zero, and
the sequence µn is going to the infinity in ac. Thus we do not know if a rational
line µ0 + t~v contained in the Kirwan polytope could totally avoid the support of
the function mλ

µ. We do not think this is possible.

3 Partition functions: the general scheme.

3.1 Definitions

Let U be a r-dimensional real vector space and V be its dual vector space. We
fix the choice of a Lebesgue measure dh on V . Consider a list A+ of non-zero
generators for V given by

A+ = [α1, α2, . . . , αN ].

We recall several results concerning partition functions that appear in [3] in
the general context. However, let us describe right away the system of vectors
∆+(A,B) ⊂ Ar that will appear in our programs and that describe parabolic
subsystem of Ar, (as we said the same method could be applied to other parabolic
root systems).

Example 16 • Let E be an r-dimensional vector space with basis ei (i = 1,
. . . , r + 1). Consider the sequence

A+
r = [ei − ej | 1 ≤ i < j ≤ r + 1].
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This is a system of positive roots of type Ar. We let V to be the vector space

V =

{
h =

r+1∑

i=1

hiei ∈ E
∣∣∣
r+1∑

i=1

hi = 0

}
.

Let VZ be the lattice spanned by A+
r . We may identify V with Rr by h 7→

[h1, h2, . . . , hr]. In this identification the lattice VZ is identified with Zr.

• Let A,B be two complementary subsets of [1, 2, 3, . . . , p+q] with |A| = p and
|B| = q. Let r = p+ q− 1. We define ∆+(A,B) as the sublist of A+

r defined
by

∆+(A,B) = [ei − ej | 1 ≤ i < j ≤ r + 1],with i ∈ A, j ∈ B or i ∈ B, j ∈ A.

These systems are the system of positive roots for the maximal parabolics of
gl(r + 1), for different choices of orders.

Let us go back to the general scheme.
For any subset S of V , we denote by C(S) the convex cone generated by non-
negative linear combinations of elements of S. We assume that the convex cone
C(A+) is acute in V with non-empty interior.
If S is a subset of V , we denote by < S > the vector space spanned by S.

Definition 17 A hyperplane H in V is A+-admissible if it is spanned by a set of
vectors of A+.

When A+ = ∆+
n (λ) or ∆+(A,B) then an A+-admissible hyperplane will be

also called a noncompact wall.

Chambers
Let Vsing(A

+) be the union of the boundaries of the cones C(S), where S ranges
over all the subsets of A+. The complement of Vsing(A

+) in V is by definition the
open set Creg(A

+) of regular elements. A connected component c of Creg(A
+) is

called a chamber of C(A+). Remark that, in our definition, the complement of the
cone C(A+) in V is a chamber that we call the exterior chamber. The chambers
contained in C(A+), that we will call interior chambers, are open convex cones.
Sometimes chambers are called cells or big cells by other authors.
The faces of the interior chambers span admissible hyperplanes.
The following pictures illustrate the situation for the (interior) chambers in the
case of A+

3 , Fig.4, and the (interior) chambers for various subsystems of A+
3 , of

type ∆+(A,B) relative to U(2, 2), Fig.5.
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Polytopes
We consider the space RN with its standard basis ωi and Lebesgue measure dx.
If x =

∑N
i=1 xiωi ∈ RN , we simply write x = (x1, . . . , xN ). Consider the surjective

map A : RN → V defined by A(ωi) = αi.
If h ∈ V , we define the convex polytope ΠA+(h) consisting of all non-negative
solutions of the system of r linear equations

∑N
i=1 xiαi = h that is

ΠA+(h) =
{
x = (x1, . . . , xN ) ∈ RN |Ax = h, xi ≥ 0

}
.

We call ΠA+(h) a partition polytope (associated to A+ and h).

We identify the spline distribution YA+ (by Formula 3) to a function still
denoted by YA+ using dh.

Recall the following theorem, which follows right away from Fubini theorem,
([10], [11].)

Theorem 18 The value of the spline function YA+ at h is the volume of the
partition polytope ΠA+(h) for the quotient measure dx/dh.

The spline function YA+ is given by a polynomial formula on each interior
chamber. It is identically equal to 0 on the exterior chamber.

Partition functions
Let VZ be a lattice in V and suppose now that the elements αi of our sequence
A+ belong to the lattice VZ. If h ∈ VZ we define NA+(h) = |ΠA+(h) ∩ ZN |, the
number of integral points in the partition polytope ΠA+(h).

Thus NA+(h) is the number of solutions (x1, x2, . . . , xN ), in non-negative in-
tegers xj , of the equation

∑N
j=1 xjαj = h.

The function h 7→ NA+(h) is called the partition function of A+. We refer to it as
Kostant partition function.

We will see after stating Theorem 24 that h 7→ NA+(h) is quasipolynomial on
each chamber.

Let us recall briefly the theory that allows to compute Kostant partition func-
tions.

Jeffrey-Kirwan residue
Let ν be a subset of {1, 2, . . . , N}. We will say that ν is generating (respectively

basic) if the set {αi | i ∈ ν} generates (respectively is a basis of) the vector space
V . We write Bases(A+) for the set of basic subsets.

Let RA+ be the ring of rational functions on U , the dual vector space to V ,
with poles on hyperplanes determined by kernel of elements α ∈ A+.
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RA+ is Z-graded by degree. Every function in RA+ of degree −r decomposes
(see [5]) as the sum of basic fractions fσ, fσ = 1

∏

i∈σ αi
, σ ∈ Bases(A+) and

degenerate fractions; here degenerate fractions are those for which the linear forms
in the denominator do not span V .

Now having fixed a chamber c, we define a functional JKc(fσ) on RA+ called
the Jeffrey-Kirwan residue (or JK residue) as follows:

(5) JKc(fσ) =

{
vol(σ)−1, if c ⊂ C(σ),

0, if c ∩ C(σ) = ∅

where σ ∈ Bases(A+) and vol(σ) is the volume of the parallelotope
∑r

i=1[0, 1]αi

computed for the measure dh.
There exists a linear form JKc, that we call the Jeffrey-Kirwan residue, on RA+

such that JKc takes the above values on the elements fσ, and is equal to 0 on a
degenerate fraction or on a rational function of pure degree different from −r.

If c is the exterior chamber, then clearly JKc is equal to 0, as c is not contained
in C(A+).

We may go further and extend the definition of the Jeffrey-Kirwan residue to
the space R̂A which is the space consisting of functions P/Q where Q is a product
of powers of the linear forms αi and P =

∑∞
k=0 Pk is a formal power series. Then

we just define, if Q is of degree q,

JKc(P/Q) = JKc(Pq−r/Q)

as the JK residue of the component of degree −r of P/Q.

3.2 Spline functions and Kostant partition function

Let us recall the formulae for the spline function YA+ and for NA+(h).

Definition 19 Let c be an chamber contained in the cone C(A+). Define the
function Yc on V by

Yc
A+(h) = JKc

(
eh

∏N
i=1 αi

)
.

More explicitly, as JKc vanishes outside the degree −r, we have

Yc
A+(h) =

1

(N − r)!
JKc

(
hN−r

∏N
i=1 αi

)
.

We thus see Yc
A+(h) is an homogeneous polynomial on V .

The proof of the following theorem is immediate ([10]).
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Theorem 20 Let YA+(h) be the multispline function associated to A+. Let c be
a chamber contained in the cone C(A+).

We have for h ∈ c:

YA+(h) = Yc
A+(h).

Remark 21 According to Theorem 18, this theorem gives the formula for the
volume VA+(h) of the partition polytope ΠA+(h).

Let us now give the residue formula for the number of integral points NA+ of
the partition polytope ΠA+(h).

Consider the torus T = U/UZ where U is the dual vector space to V and
UZ ⊂ U is the dual lattice to VZ. If G ∈ U , we denote by g its image in T .

For σ ∈ Bases(A+) we denote by T (σ) the subset of T defined by

T (σ) =
{
g ∈ T

∣∣∣ e〈α,2π
√
−1G〉 = 1 for allα ∈ σ, G a representative of g ∈ U/UZ

}
.

The set T (σ) is a finite subset of T .
For G ∈ U and h ∈ V , consider the Kostant function K(G,h) on U defined

by

(6) K(G,h)(u) =
e〈h,2π

√
−1G+u〉

∏N
i=1(1− e−〈αi,2π

√
−1G+u〉)

.

Remark 22 If h ∈ VZ, the function K(G,h) depends only of the class g of G in
U/UZ.

The function K(G,h)(u) is an element of R̂A.

Indeed if we write I(g) =
{
i
∣∣∣ 1 ≤ i ≤ N, e−〈αi,2π

√
−1G〉 = 1

}
, then

(7) K(G,h)(u) = e〈h,2π
√
−1G〉 e〈h,u〉ψg(u)∏

i∈I(g) 〈αi, u〉

where ψg(u) is the holomorphic function of u (in a neighborhood of zero) defined
by

ψg(u) =
∏

i∈I(g)

〈αi, u〉

(1− e−〈αi,u〉)
×
∏

i/∈I(g)

1

(1− e−〈αi,2π
√
−1G+u〉)

.

By taking the Taylor series of e〈h,u〉ψg(u) at u = 0, we see that the function
u → K(G,h)(u) on U defines an element of R̂A. If c is a chamber of C(A+), the
Jeffrey-Kirwan residue JKc(K(g, h)) is thus well defined.
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Definition 23 Let c be a chamber. Let F be a finite subset of U . We define the
function Nc,F

A+ on V by

Nc,F
A+(h) = vol(V/VZ, dh)

∑

G∈F
JKc(K(G,h))

where vol(V/VZ, dh) is the volume of the fundamental domain of VZ for dh.

Finally introduce the zonotope Z(A+) to be the convex polyhedra defined by

Z(A+) := {
N∑

i=1

tiαi; 0 ≤ ti ≤ 1}.

When A+ is fixed, we just write Z = Z(A+), and if C is a set, we denote by C−Z
the set of elements {ξ − z} where ξ ∈ C and z ∈ Z.

The following theorem is due to Szenes-Vergne [9]. It generalizes [7], [13] and
[5].

Theorem 24 Let c be a chamber. Let F be a finite subset of U . Assume that for
any σ ∈ Bases(A+) such that c ⊂ C(σ), we have T (σ) ⊂ F/UZ.

Then for h ∈ VZ ∩ (c− Z), we have

NA+(h) = Nc,F
A+(h).

We choose for any chamber c such a finite set F such that all elements g ∈ F/UZ

have finite order and such that F satisfies the condition:
(C) for any σ ∈ Bases(A+) such that c ⊂ C(σ), we have T (σ) ⊂ F/UZ.
It is possible to achieve this, for example choosing a set F of representatives

of 1
pUZ modulo UZ, where p is that pUZ is contained in

∑
i∈σ Zαi for any basis σ.

We now simply denote Nc,F by Nc, leaving implicit the choice of the finite set
F .

Remark 25 • Observe that Nc
A+(h) does not depend on the measure dh, as it

should be.
• If c is the exterior chamber, then Nc

A+(h) = 0. In our algorithm, we are not
knowing in advance if the point h belongs to the cone C(A+) or not, so that this
remark is not as stupid as it looks.

• Observe also that if c is an interior chamber, then c−Z contains the closure c

of c, while if c is the exterior chamber c−Z = c. For an interior chamber, usually
the set c−Z intersected with the lattice VZ is strictly larger than c intersected with
VZ. This fact will be important for computing shifted partition functions, as we
will explain later.
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Let us explain the behavior of the partition function NA+ on the domain c−Z.
We first explain the case of an unimodular system.

Definition 26 The system A+ is unimodular if each σ ∈ Bases(A+) is a Z-basis
of VZ.

Example 27 It is easy to see that A+
r is unimodular, so is any subsystem.

Thus if A+ is unimodular, the set F = {0} satisfies the condition (C) and we
choose this set F .

Proposition 28 If A+ is unimodular, the function Nc
A+(h) is a polynomial func-

tion on V .

Proof. We have just to consider K(G,h) = K(0, h) and we can write

K(0, h)(u) =
e〈h,u〉

∏N
i=1(1− e−〈αi,u〉)

=
e〈h,u〉

∏N
i=1 〈αi, u〉

×

∏N
i=1 〈αi, u〉∏N

i=1(1− e−〈αi,u〉)

where
∏N

i=1 〈αi,u〉
∏N

i=1(1−e−〈αi,u〉)
=
∑+∞

k=0 ψk(u) is a holomorphic function of u in a neighbor-

hood of 0 with ψ0(u) = 1.
It follows that Nc

A+(h) is given by the following polynomial function of h

Nc
A+(h) = vol (V/VZ, dh) JKc

(
e〈h,u〉

∏N
i=1 〈αi, u〉

×
+∞∑

k=0

ψk(u)

)

= vol (V/VZ, dh)

N−r∑

k=0

1

(N − r − k)!
JKc

(
〈h, u〉N−r−kψk(u)∏N

i=1 〈αi, u〉

)
.(8)

Note that the function Nc
A+ is a polynomial function of degree N − r whose

homogeneous component of degree N−r is the functionYc
A+(h), that is the volume

of the polytope.

Let us now consider the general case where F is no longer reduced to {0}.
For example for parabolic root systems of Br, Cr, Dr, the set F satisfying the
condition (C) cannot longer be taken as equal to {0}.

We recall that an exponential polynomial function is a linear combination of
exponential functions multiplied by polynomials.

Proposition 29 The function Nc
A+(h) is an exponential polynomial function on

V and the restriction of Nc
A+(h) to VZ is a quasipolynomial function on VZ.
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Proof. Let us denote by ψg(u) =
∑+∞

k=0 ψ
g
k(u) the series development of the

holomorphic function ψg appearing in formula (7). Then we see that JKc(K(G,h))
equals

(
e〈h,2π

√
−1G〉JKc

e〈h,u〉∏
i∈I(g) 〈αi, u〉

ψg(u)

)
(9)

= e〈h,2π
√
−1G〉

|I(g)|−r∑

k=0

1

(|I(g)| − r − k)!
JKc

(
〈h, u〉|I(g)|−r−k

∏
i∈I(g) 〈αi, u〉

ψg
k(u)

)
.

The function

h 7→ JKc

(
〈h, u〉|I(g)|−r−k

∏
i∈I(g) 〈αi, u〉

ψg
k(u)

)

is a polynomial function of h of degree |I(g)|−r−k. Thus we see that JKc(K(G,h))

is the product of the exponential function e〈h,2π
√
−1G〉 by a polynomial function of

h.
Furthermore, if g is of order p and h varies in VZ, the function h 7→ e〈h,2π

√
−1G〉

is constant on each coset h+ pVZ of the lattice pVZ.
Return to the computation of the partition function NA+(h). Thus we see

that when h varies in (c − Z) ∩ VZ, we have that NA+(h) coincide with the quasi
polynomial function Nc

A+(h) above. Note that its highest degree component is
polynomial and is again the function Yc

A+(h), the volume of the polytope ΠA+(h).
The quasipolynomial nature of the integral-point counting functions N+

A stems
precisely from the root of unity in formula (9).

Furthermore for parabolic root systems of type B, C, and D, these roots of
unity are of order 2, as in the following example. Thus we summarize the properties
of our partition functions in the following remark:

Remark 30 • A+
r is unimodular, that is we can choose F = 0 in Theorem

24, and thus the partition function NΦ for any subset Φ of A+
r coincide with

a polynomial function on each domain c− Z(Φ).

• The integral-point counting functions NΦ for any subsystem of Br, Cr,Dr

coincide with quasipolynomials with period 2 on each domain c− Z(Φ).

We now compute the number of integral points in two different situations: a
non unimodular case and a unimodular one. We treat the non unimodular case
first.

Example 31 Here V is a vector space with real coordinates and basis e1, e2 and
U = V ∗ has dual basis e1, e2. We write v =

∑2
i=1 viei ∈ V and u =

∑2
i=1 hie

i ∈ U
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for elements in V and U respectively. Let us compute the number of integral points
for the positive non compact root system occuring for the holomorphic discrete
series of SO(5,C) : that is we fix ∆+ := {e1, e2, e1 + e2, e1 − e2} and A+ = ∆+

n :=
{e1, e1 + e2, e1 − e2}. We also write a vector h = h1e1 + h2e2 in the cone C(A+)
as (h1, h2). Of course, the calculation can be done by hand, but we illustrate the
method in this very simple example.

Observe that the root lattice is Ze1⊕Ze2 and vol (V/VZ, dh) = 1 for the measure
dh = dh1dh2.

There are two chambers, namely c1 = C({e1+e2, e1}) and c2 = C({e1, e1−e2}).
Now let us compute the Jeffrey-Kirwan residues on the chambers.
We have for example:

JKc1

(
1

u1(u1+u2)

)
= 1, JKc2

(
1

u1(u1+u2)

)
= 0,

JKc1

(
1

(u1+u2)(u1−u2)

)
= 1

2 , JKc2

(
1

(u1+u2)(u1−u2)

)
= 1

2 ,

JKc1

(
1

u1(u1−u2)

)
= 0, JKc2

(
1

u1(u1−u2)

)
= 1

For the number of integral points, we first note that F = {(0, 0), (1/2, 1/2)}.
Consequently N∆+

n
(h) is equal to the Jeffrey-Kirwan residue of f1 = K((1, 1), h)

plus f2 = K((1/2, 1/2), h). We rewrite the series fj (j = 1, 2) as fj = f ′j ×

eu1h1+u2h2/u1(u1 + u2)(u1 − u2) where

f ′
1 =

u1

1− e−u1
× u1 + u2

1− e−(u1+u2)
× u1 − u2

1− e−(u1−u2)
,

f ′
2 =

u1

1 + e−u1

u1 + u2

1− e−(u1+u2)
× u1 − u2

1− e−(u1−u2)
× (−1)h1+h2 .

Using the series expansions x
1−e−x = 1+ 1

2x+
1
12x

2+O(x3) and x
1+e−x = 1

2x+O(x2),
we obtain that the number of integral points is the JK residue of

h1 + 1
2

(u1 − u2)(u1 + u2)
+

1
2

u1(u1 + u2)
+

1
2

u1(u1 − u2)
+

h2u2

u1(u1 − u2)(u1 + u2)
+

1
2
(−1)h1+h2

(u1 + u2)(u1 − u2)

=
h1 + 1

2
+ 1

2
(−1)h1+h2

(u1 − u2)(u1 + u2)
+

1
2

u1(u1 + u2)
+

1
2

u1(u1 − u2)
− h2

u1(u1 + u2)
+

h2

(u1 + u2)(u1 − u2)

We then obtain:

N
∆+

n

(h) =
1

2
h1 +

1

4
(−1)h1+h2 +

3

4
− 1

2
h2, if h ∈ c1,

N
∆+

n

(h) =
1

2
h1 +

1

4
(−1)h1+h2 +

3

4
+

1

2
h2, if h ∈ c2,

Note that the functions N∆+
n

agree on walls, that is h2 = 0, and the formulae
above are valid on the closures of the chambers.
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The second example treats the unimodular case of A+
r , see Example 16. Since

we have identified V with Rr, then we have a canonical identification of U = V ∗

with Rr defined by duality: u ∈ Rr to u =
∑r

i=1 uie
i ∈ E∗, where ei is the dual

basis to ei. Thus the root ei − ej (1 ≤ i < j ≤ r) produces the linear function
ui − uj on U , while the root ei − er+1 produces the linear function ui. Recall also
the identification h =

∑r+1
i=1 hiei = [h1, . . . , hr],

We compute the number of integral points for the parabolic subsystems of
U(2, 2) illustrated in Fig.5.

Example 32 We consider the 3 different systems of non compact roots as de-
scribed in Fig.5 and give the formulae for the partition function.

1. If ∆+
n = ∆+([1, 4], [2, 3]) then

N
∆+

n

(h) =















h1 + h2 + 1 if h ∈ c1,
h1 + h2 + h3 + 1 if h ∈ c2,
h1 + h3 + 1 if h ∈ c3,
h1 + 1 if h ∈ c4

2. If ∆+
n = ∆+([1, 2], [3, 4]) then

N
∆+

n

(h) =















1 + h2 if h ∈ c1,
1 + h1 + h2 + h3 if h ∈ c2,
1 + h1 if h ∈ c3,
1− h3 if h ∈ c4

3. If ∆+
n = ∆+([1, 3], [2, 4]) then

N
∆+

n

(h) =







1 + h1 + h2 if h ∈ c1
1 + h1 + h2 + h3 if h ∈ c2,
1 + h1 if h ∈ c3,

We have to compute the Jeffrey-Kirwan residue of the function
f = f1 ×

1
∏

α∈∆+
n
α where f1(h)(u) =

∏
α∈∆+

n

〈α,u〉
1−e−〈α,u〉 × eu1h1+u2h2+u3h3 . The

computation is immediate since we need only term of degree one for the expansion
of f1. We omit the details. Remark though that once again the formulae agree on
walls as it should be.

3.3 Shifted partition functions

Let us consider as before our lattice VZ and our sequence A+ of elements of VZ.
Let

ρn =
1

2

∑

α∈A+

α.
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We introduce
Pn = ρn + VZ.

Thus for any µ ∈ Pn, the function NA+(µ− ρn) is well defined.
Let H be the complement of all admissible hyperplanes, that is hyperplanes

generated by elements of A+, Def.17.

Definition 33 A tope is a connected component of the open subset V −H of V .

We choose once for all a finite set F of elements G of U , so that the image of
elements g cover all groups T (σ).

If τ is a tope, then τ is contained in a unique chamber c, and we denote by
Nτ

A+ the exponential polynomial function Nc,F
A+ given in Definition 23. If τ is not

contained in C(A+), then Nτ
A+ = 0.

The closures of the topes τ form a cover of V . A consequence of Theorem 24,
is the following.

Theorem 34 For any tope τ such that µ ∈ τ ∩ Pn, we have

NA+(µ− ρn) = Nτ
A+(µ − ρn).

3.4 A formula for the Jeffrey-Kirwan residue

Having stated a formula for partition functions (or shifted partition functions)
in terms of JKc, we will explicit it using the notion of maximal proper nested
sets, as developed in [12], and the notion of iterated residues. The algorithmic
implementation of this formula is working in a quite impressive way, at least for
low dimension.

This general scheme will be then be applied to Blattners’ formula.

3.4.1 Iterated residue

If f is a meromorphic function of one variable z with a pole of order less than or
equal to k at z = 0, then we can write f(z) = Q(z)/zk , whereQ(z) is a holomorphic
function near z = 0. If the Taylor series of Q is given by Q(z) =

∑∞
s=0 qsz

s, then
as usual the residue at z = 0 of the function f(z) =

∑∞
s=0 qsz

s−k is the coefficient
of 1/z, that is, qk−1. We will denote it by resz=0f(z). To compute this residue we
can either expand Q into a power series and search for the coefficient of z−1, or
employ the formula

(10) resz=0f(z) =
1

(k − 1)!
(∂z)

k−1
(
zkf(z)

) ∣∣∣
z=0

.
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We now introduce the notion of iterated residue on the space RA+ .
Let ~ν = [α1, α2, . . . , αr] be an ordered basis of V consisting of elements of

A+ (here we have implicitly renumbered the elements of A+ in order that the
elements of our basis are listed first). We choose a system of coordinates on U
such that αi(u) = ui. A function φ ∈ RA+ is thus written as a rational fraction

φ(u1, u2, . . . , ur) = P (u1,u2,...,ur)
Q(u1,u2,...,ur)

where the denominator Q is a product of linear
forms.

Definition 35 If φ ∈ RA, the iterated residue Ires~ν(φ) of φ for ~ν is the scalar

Ires~ν(φ) = resur=0resur−1=0 · · · resu1=0φ(u1, u2, . . . , ur)

where each residue is taken assuming that the variables with higher indices are
considered constants.

Keep in mind that at each step the residue operation augments the homoge-
neous degree of a rational function by +1 (as for example resx=0(1/xy) = 1/y)
so that the iterated residue vanishes on homogeneous elements φ ∈ RA, if the
homogeneous degree of φ is different from −r.

Observe that the value of Ires~ν(φ) depends on the order of ~ν. For example, for
f = 1/(x(y − x)) we have resx=0resy=0(f) = 0 and resy=0resx=0(f) = 1.

Remark 36 Choose any basis γ1, γ2, . . . , γr of V such that ⊕j
k=1αj = ⊕j

k=1γj
for every 1 ≤ j ≤ r and such that γ1 ∧ γ2 ∧ · · · ∧ γr = α1 ∧ α2 ∧ · · · ∧ αr. Then, by
induction, it is easy to see that for φ ∈ RA+

resαr=0 · · · resα1=0φ = resγr=0 · · · resγ1=0φ.

Thus given an ordered basis, we may modify α2 by α2 + cα1, . . . , with the
purpose of getting easier computations.

As for the usual residue, the iterated residue can be expressed as an integral as
explained in [3]. This fact allows change of variables.

3.4.2 Maximal proper nested sets adapted to a vector

We recall briefly the notion of maximal proper nested set, MNPS in short, and
some of their properties (see [12]).

A subset S of A+ is complete if S = 〈S〉 ∩ A+ : here recall that 〈S〉 is the
vector space spanned by S. A complete subset S is called reducible if we can find
a decomposition V = V1 ⊕ V2 such that S = S1 ∪ S2 with S1 ⊂ V1 and S2 ⊂ V2.
Otherwise S is said to be irreducible.
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A setM = {I1, I2, . . . , Ik} of irreducible subsets of A+ is called nested if, given
any subfamily {I1, . . . , Im} of M such that there exists no i, j with Ii ⊂ Ij , then
the set I1∪· · ·∪Im is complete and the elements Ij are the irreducible components
of I1 ∪ I2 ∪ · · · ∪ Im. Then every maximal nested set M , MNS in short, contains
A+ and has exactly r elements.

We now recall how to construct all maximal nested sets. We may assume that
A+ is irreducible, otherwise just take one of the irreducible components. If M
is a maximal nested set, the vector space 〈M \ A+〉 is an hyperplane H, thus an
admissible hyperplane.

Definition 37 Let H be a A+-admissible hyperplane. A maximal nested set M
such that 〈M \ A+〉 = H is said attached to H.

Given M aMNS for A+ attached to H, then 〈M \A+〉 is aMNS for H∩A+.
Therefore maximal nested sets for an irreducible set A+ can be determined by
induction over the set of A+-admissible hyperplanes.

For computing the Jeffrey-Kirwan residue, we only need some particularMNS’s.
Let us briefly review the main ingredients.

Fix a total order ht on A+. Let M = {S1, S2, . . . , Sk} be a set of subsets of
A+ and choose in each Sj the element αj maximal for the order given by ht. This

defines a map Θ from M to A+ and we say that M is proper if Θ(M) =
−→
M is a

basis of V . We denote by P(A+) the set of MPNS.
So we have associated to every maximal proper nested set M an ordered basis,

by sorting the set
−→
M = [α1, α2, . . . , αr] of elements of A+.

Let v be an element in V not belonging to any admissible hyperplane.

Definition 38 Define P(v,A+) to be the set ofM ∈ P(A+) such that v ∈ C(M) =
C(α1, . . . , αr).

When there is no possibility of confusion we will drop simply write P(v) for
P(v,A+).

We are now ready to state the basic formula for our calculations.

Theorem 39 ( [12]) Let c be a chamber and let v ∈ c. Then, for φ ∈ R̂A+ , we
have

JKc(φ) =
∑

M∈P(v,A+)

1

vol(M)
Ires−→

M
φ.

Let us finally sketch the algorithm to determine P(v,A+) without going to
construct all the MNS’s. If A+ = A+

1 × A+
2 is reducible, then P(v,A+) is the

product of the corresponding sets P(vi,A
+
i ).
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Assume A+ is irreducible. Let θ be the highest root of the system A+ (for our
order ht). We start by constructing all possible A+-admissible hyperplanes H for
which v and θ are strictly on the same side of H. In particular, the hyperplane H
does not contain the highest root.

Then we compute the projected vector projHv onH parallel to θ: v = projH v+
tθ, with projH v ∈ H and t > 0 and compute A+∩H. If MH is in P(projHv,A

+∩
H), thenM = {op(MH),A+} is in P(v,A+). Running through all hyperplanes H,
for which v and θ are strictly on the same side of H, we obtain the set P(v,A+).
Let us summarize the scheme of the algorithm in Figure 6. Recall that we have
as input a regular vector v, and as output the list of all MPNS’s belonging to
P(v,A+).

for each hyperplane H do
check if v and θ are on the same side of H

if not, then skip this hyperplane
define the projection projH (v) of v on H along θ
write A ∩H as the union of its irreducible components I1 ∪ · · · ∪ Ik
write v as v1 ⊕ · · · ⊕ vk according to the previous decomposition

for ēach Ij do
compute all MPNS’s for vj and Ij
collect all these MPNS’s for vj and Ij
end of loop running across Ij ’s

collect all MPNS’s for the hyperplane H by taking the product of P(Ij , vj)
end of loop running across H’s
return the set of all MPNS’s for all hyperplanes

Figure 6: Algorithm for MPNS’s computation (general case)

In our program, we run this algorithm for an element v not in any admissible
hyperplane, without knowing in advance if v belongs to the cone C(A+). The
algorithm returns a non empty set if and only if v belongs to C(A+).

3.5 The Kostant function: another formula for subsys-

tems of A+
r

In this article, we will be using partition functions for lists ∆+(A,B) described in
the Example 16. These lists are sublists of a system of type A+

r (with r = p+q−1).
In residue calculation, we can use change of variables and thus use a formula for
which iterated residues will be easier to compute.

Let us describe this formula. We will describe it for sublists, eventually, with
multiplicities of a system A+

r . We take the notations of Example 16.
Let Φ be a sequence of vectors generating V and of the form (ei − ej), 1 ≤ i <

j ≤ (r + 1), eventually with multiplicities. Let mi,j (i < j) be the multiplicity of
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the vector ei − ej in Φ and define tj = mj,j+1 + · · · + mj,r+1 − 1. We recall our
identification of V with Rr and of U = V ∗ with Rr defined by duality. In this
way, as we already observed the root ei − ej (1 ≤ i < j ≤ r) produces the linear
function ui − uj on U , while the root ei − er+1 produces the linear function ui.

We are now ready to give another formula for the Kostant function in this
situation.

Theorem 40 Let c be a chamber of C(Φ). Let h =
∑r+1

i=1 hiei = [h1, . . . , hr], then

Nc
Φ(h) = vol (V/VZ, dh) JKc(fΦ(h)(u)),where

fΦ(h)(u) =

r∏
i=1

(1 + ui)
hi+ti

r∏
i=1

u
mi,r+1

i

∏
1≤i<j≤r

(ui − uj)mi,j

Thus, when h ∈ VZ ∩ (c− Z(Φ)), we have

NΦ(h) = Nc
Φ(h).

Example 41 • If Φ = A+
r , then

fA+
r
(h)(u) =

∏r
i=1(1 + ui)

hi+r−i

∏
1≤i<j≤r(ui − uj)×

∏r
i=1 ui

.

• Let p, q integers such that p + q = r + 1 and Φ be the system of positive
noncompact root for A+

r defined by Φ = {ei−ej , 1 ≤ i ≤ p, p+1 ≤ j ≤ r+1}.
That is Φ = ∆+(A,B) with A = [1, . . . , p] and B = [p + 1, . . . , p+ q].

Then
fΦ(h1, h2, . . . , hr)(u) =

(1 + u1)
h1+q−1 · · · (1 + up)

hp+q−1(1 + up+1)
hp+1−1 · · · (1 + up+q−1)

hp+q−1−1

(u1 − up+1) · · · (u1 − up+q−1) · · · (up − up+1) · · · (up − up+q−1)u1u2 · · · up

Proof. The function K(0, h)(u) = e〈h,u〉/
∏

α∈Φ(1 − e−〈α,u〉) computed for the
system Φ is

K(0, h)(u) =
eh1u1eh2u2 · · · ehrur

r∏
i=1

(1− e−ui)mi,r+1
∏

1≤i<j≤r
(1− e−(ui−uj))mi,j

Note that the change of variable 1 + zi = eui preserves the hyperplanes ui = 0
and ui = uj and that zi = eui − 1 leads to dzi = euidui = (1 + zi)dui. Thus after
the change of variable we get the required formulae.
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3.6 Computation of Kostant partition function: gen-

eral scheme

3.6.1 Numeric

We have as input A+ a sequence of vectors in our lattice VZ, a vector h ∈ VZ, and
we want to compute NA+(h). We will compute it by !!

NA+(h) = NA+(h+ ρn − ρn).

We mean: Let τ be any tope such that h′ = h + ρn belongs to the closure of τ .
Using Theorem 34 then

NA+(h) = NA+(h′ − ρn) = Nτ
A+(h

′ − ρn).

To compute a tope τ containing h′, we can move h+ρn in any generic direction
ǫ.

Here is an outline of the steps needed to compute the number NA+(h) by the
formula NA+(h) = Nτ

A+(h).
Input: a vector h ∈ VZ, and A+ a sequence of vectors in VZ.
Output: the number NA+(h).

• Step 1 Compute the Kostant function

K(h) = K(0, h) =
eh∏

α∈A+(1− e−α)

or more generally compute a set F and the functions K(G,h) for G ∈ F .

• Step 2 Find a small vector ǫ so that if h is in VZ, the vector h+ ρn+ ǫ does
not belong to any admissible hyperplane. Thus the vector hreg = h+ρn+ǫ is
in a unique tope τ . The procedure to obtain hreg is called DefV ectornc(h).

• Step 3 Compute the set All := P(hreg,A
+) as explained in Fig.6.

• Step 4 Compute Nτ
A+(h) by computing the iterated residues of K(G,h)

associated to the various ordered basis
−→
M for M varying in the set All.

That is compute the number

out :=
∑

G∈F
e〈h,2π

√
−1G〉 ∑

M∈All

Ires−→
M
K(G,h)

where
−→
M is the ordered basis attached to M .

Then NA+(h) = out
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3.6.2 Symbolic

The previous calculation runs with symbolic parameters. If hfix is an element in
VZ, we might want to find a tope τ such that hfix belongs to the closure of τ .
Then

NA+(h) = Nτ
A+(h)

will be valid whenever h is in the closure of τ . Here is the outline of the algorithm.
Input: hfix is an element in VZ and A+ a sequence of vectors.
Output: A domain D ⊂ V and an exponential polynomial function P (h) on

V .
The domain D is a closed convex cone in V (described by linear inequations)

such that hfix is in D. The formula P (h) = NA+(h) is valid whenever h ∈ D∩VZ.

• Step 1 Consider h as a parameter and compute the Kostant function
K(h)(u) as a function of (h, u) given by

K(h)(u) = K(0, h)(u) =
e<h,u>

∏
α∈A+(1− e−<α,u>)

or more generally compute a set F and the functions K(G,h)(u) for G ∈ F,
as function of (h, u).

• Step 2 Find a small vector ǫ so that if hfix is in VZ, then the vector
hfixreg := hfix+ ρn + ǫ does not belong to any admissible hyperplane.

Compute the domainD := τ where τ is the unique tope τ containing hfixreg.

• Step 3 Compute the set All := P(hfixreg,A
+) as explained in Fig.6.

• Step 4 Compute Nτ
A+(h) by computing the iterated residues of K(G,h)

associated to the various ordered basis
−→
M for M varying in the set All, here

h is treated now as a parameter.

That is we compute

out :=
∑

G∈F
e〈h,2π

√
−1G〉 ∑

M∈All

Ires−→
M
K(G,h)

where
−→
M is the ordered basis attached to M . The output out is an expo-

nential polynomial function P (h) of h and once again we compute

NA+(h) = P (h) = out, ∀h ∈ D ∩ VZ

The domain D is a rational polyhedral cone which includes hfix.

In practice, this works only for small dimensions and when A+ is not too big.
We will program variations of these algorithms, with less ambitious goals.
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3.7 Computation of Blattner formula: general scheme.

In this subsection, we summarize the steps to compute Blattner’s formula and the
general scheme to obtain the region of polynomiality. The relative algorithms will
be outlined in Section 6.

Let G,K, T be given as in Section 2.2. Let ∆n ⊂ t∗ be the list of noncompact
roots.

Our inputs are λ ∈ P r
g and µ ∈ P r

k . The goal is the study of the function

µ→ mλ
µ. Let A

+ = ∆+
n (λ) and recall that in this case a A+-admissible hyperplane

is called a noncompact wall.
We use Blattner’s formula. In our notations:

(11) mλ
µ =

∑

w∈Wc

ǫ(w)N∆+
n (λ)(wµ − λ− ρn)

3.7.1 Numeric

Input λ ∈ P r
g and µ ∈ P r

k .
Output a number.

The algorithm is clear:

• Compute A+ = ∆+
n (λ) and ρn.

• Compute the Kostant function K(G,h) for this system A+.

• Compute a finite set F satisfying condition (C).

• Compute a small element ǫ such that µreg = µ + ǫ does not belong to any
affine hyperplane of the form wλ+H whereH is a noncompact wall, w ∈ Wc.

• Compute for all w ∈ Wc the number

contributionw := NA+(wµ − λ− ρn)

using the algorithm described in 3.6.1.

That is compute

Allw := P(w ∗ (µreg)− λ,A+) as explained in Fig.6.

Then compute

contributionw :=
∑

G∈F
e〈h,2π

√
−1G〉 ∑

M∈Allw

Ires−→
M
K(G,wµ − λ− ρn).

ENDs
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• Finally compute

out := mλ
µ =

∑

w∈Wc

ǫ(w) ∗ contributionw

Let us comment briefly: If w(µreg) − λ is not in the cone generated by non
compact positive roots, the set Allw is an empty set. In particular we may restrict
the computation by diverse consideration to valid permutations which have
some chance to give a non empty set, see Section 4.3.)

3.7.2 Symbolic

The preceding calculation runs with symbolic parameter and we take advantage
of this to find regions of polynomiality.

Let’s explain how.
Let a be a chamber in t∗ for the system ∆ of roots of g. Let U be the open set

of (λ, µ) ∈ a× t∗ such that wλ− µ does not belong to any non compact wall. Let
(λ0, µ0) ∈ U . Then we define R(λ0, µ0) to be the closure of connected component
of U containing (λ0, µ0). This region is a cone in t∗ × t∗ with non empty interior
and can be described by linear inequalities in λ, µ.

For this domain we can compute a polynomial formula and state the following
result.

If λ varies in a, the systems ∆+
n (λ),∆

+
c (λ) determined by λ remains the same.

We denote it by ∆+
n , ∆

+
c .

Furthermore, if (λ, µ) ∈ R(λ0, µ0), for any w ∈ Wc, the element wλ− µ lies in
a tope τw for the system ∆+

n which depends only of w.

Theorem 42 The domain R(λ0, τ0) is a domain of polynomiality for the Duistermaat-
Heckman measure and thus is a domain of quasi-polynomiality for the multiplicity
function mλ

µ.
More precisely, for (λ, µ) ∈ R(λ0, µ0) ∩ (P r

g × P r
k ), we have

(12) mλ
µ =

∑

w∈Wc

ǫ(w)Nτw
∆+

n
(wλ − µ− ρn).

The right hand side of Equation 12 is a quasi polynomial function of λ, µ,
antisymmetric in µ. It takes positive values if µ is dominant for ∆+

c . Recall that,
in this case, the multiplicity of µ on λ is the absolute value of the function mλ

µ

above, (Sec.2.2).
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Of course, the symbolic calculation above, with the present approach, is limited
to very small examples.

Also, we are not able to determine the largest domains where the function mλ
µ

is given by a quasi polynomial formula.

3.7.3 Asymptotic directions

We address now a simpler problem. We have the same setting that in the previous
section, but we are now testing only the noncompact walls crossing in one fixed
direction ~v.

Let µ0, λ0 be given, with λ0 ∈ a ∩ P r
g an Harish-Chandra parameter, and

µ0 ∈ ac ∩ P r
k . Let ~v ∈ ac be integral. We will do the calculation of mλ0

µt
when

µt = µ0+ t~v, with t ≥ 0, is in the half-line in the direction ~v. In the application µ0
will be the lowest K-type λ0−ρn of our discrete series πλ0 . We compute the values
ti where µ0 + t~v − wλ0 cross a non compact wall (other than the ones which may
contain the line µ0 + t~v − wλ0). These are the values where the line µt may cross
the domains of quasipolynomiality described above. We order this finite set of
values 0 ≤ t1 < t2 < ti < · · · < ts. Consider the interval Ii = [ti, ti+1], 0 ≤ i ≤ s,
where t0 = 0 and ts+1 = ∞.

Consider Ii ∩ Z, an ”interval” in Z, described by two integers [ai, bi], with
ai = ceil(ti) and bi = floor(ti+1).

The ”interval” Ii ∩ Z can also be reduced to a point.
Then we find exponential polynomial function P i(t) on R such that mλ

µt
is

equal to P i(t) for t ∈ Ii ∩ Z.
If particular, ~v is an asymptotic direction, if and only if the last quasipolyno-

mial P s(t) does not vanish.
The algorithm is as follows.
For each consecutive value ti, ti+1, choose µr = µ + trv with ti < tr < ti+1.

Then, move very slightly µr in µǫr. Then for each w ∈ Wc, wµ
ǫ
r − λ0 lies in a tope

τwi for ∆+
n (λ0). Then

Pi(t) =
∑

w

ǫ(w)N
τwi
∆+

n (λ)
(wµt − λ− ρn).

The right hand side of this formula is an exponential polynomial function of
t ∈ Z.

The algorithm implementing this procedure is described in Fig.9. Let us remark
that our algorithm implementation is for type Ar and thus the Pi are polynomials.
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4 Blattner’s formula for U(p, q)

4.1 Non compact positive roots

With the notation of Section 1 we let G = U(p, q) and K = Up×Uq be a maximal
compact subgroup.

Let E be a p+ q-dimensional vector space with basis ei (i = 1, . . . , p+ q) and
V as in Ex. 16). Let r = p+ q − 1. Consider the set of roots

∆ = ±{ei − ej | 1 ≤ i < j ≤ p+ q}.

We then choose T to be the diagonal subgroup of U(p, q), and identify t∗ with
E. In this identification the lattice of weights is identified with Zp+q: the element
(n1, . . . , np+q) giving rise to the character

t = (exp(iθ1), . . . , exp(iθp+q)) → ein1θ1 · · · einp+qθp+q .

The system of compact roots ∆c is

∆c = ±{ei − ej | 1 ≤ i < j ≤ p} ∪ ±{ei − ej | p + 1 ≤ i < j ≤ p+ q}.

The system of non compact roots is

∆n = ±{ei − ej | 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q}.

Let λ be the Harish Chandra parameter of a discrete series for G and µ the
Harish-Chandra parameter of a finite dimensional irreducible representation of K.

Because discrete series are equivalent under the action of the Weyl group of K,
then we may assume that λ = [α, β] where α =

∑p
i=1 αiei = [α1, . . . , αp], α1 >

α2 > · · · > αp and β =
∑p+q

i=p+1 βiei = [β1, . . . , βq], β1 > β2 · · · > βq.
Here αi, βj are integers if p + q is odd, or half-integers if p+ q is even, that is

we fix as system of positive compact roots the system ∆+
c = {ei − ej | 1 ≤ i < j ≤

p} ∪ {ei − ej | p+ 1 ≤ i < j ≤ p+ q}.
We parametrize µ ∈ P r

k by another couple

µ := [a, b] = [[a1, a2, . . . , ap], [b1, . . . , bq]]

with a1 > · · · > ap and b1 > · · · > bq.
Here ai are integers if p is odd, half-integers if p is even. Similarly bj are

integers if q is odd, half-integers if q is even.
As the center of G acts by a scalar in an irreducible representation, we need

that the sum of the coefficients of λ has to be equal to the sum of the coefficients
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of µ for the multiplicity of µ in πλ to be non zero. Thus λ − µ is in V , (see Ex.
16).

We now parametrize the different dominant chambers of t∗ modulo the Weyl
group of K by a subset A of [1, 2, . . . , r+1] of cardinal p. Let B its complementary
subset in [1, 2, . . . , r + 1].

To visualize A,B we write a sequence of lenght p + q of elements a, b with a
in the places of A, b in the places of B: for example if A = [3, 5] and B = [1, 2, 4],
then we write [b, b, a, b, a] or simply bbaba. Now we use this visual aid and describe
a permutation wA of the index [1, 2, . . . , p + q], by putting the index [1, . . . , p] in
order and in the places marked by a, and the remaining indices [p+1, . . . , p+ q] in
order and in the places marked by b, precisely wA : [1, 2, 3, 4, 5] → [3, 4, 1, 5, 2]. The
elements wA where A varies describe a system of representatives of Σp+q/(Σp×Σq),
(Σn being the permutations on n letters), that is also the chambers of t∗ for ∆(g, t)
moduloWc. In the above the chamber is described by {h = [h1, h2, h3, h4, h5] h3 >
h4 > h1 > h5 > h2}

Let astandard be the chamber α1 > α2 > · · · > αp > β1 > β2 · · · > βq.
Then if λ ∈ wAastandard, we have ∆+

c (λ) = ∆+
c and ∆+

n (λ) is isomorphic
to ∆+(A,B), by relabeling the roots via w−1

A . The next example will clarify the
situation. The subset A can be read from λ: we reorder completely the sequence
λ and define A as the indices where the first p elements of λ are relocated.

Example 43 Let G = U(2, 3) with compact roots ∆c = ±{e1 − e2, e3 − e4, e3 −
e5, e4−e5} and noncompact roots ∆n = ±{e1−e3, e1−e4, e1−e5, e2−e3, e2−e4, e2−
e5}. Let λ = [α, β] with α = [4, 2] = 4e1 + 2e2 and β = [6, 5, 3] = 6e3 + 5e4 + 3e5.

Then A = [3, 5], B = [1, 2, 4] that is the configuration bbaba. The system of non
compact positive roots for λ is e3 − e1, e4 − e− 1, e− 1− e5, e3 − e2, e4− e2, e5 − e2,
isomorphic to ∆+(A,B) by the relabeling of the roots suggested by w−1

A , that is
e3 = f1, e4 = f2, e1 = f3, e5 = f4, e2 = f5.

Thus relabeling the roots, our calculations will be done for ∆+(A,B) inside A+
r ,

where ∆+(A,B) is given in Example 16.
Remark here that ∆+(A,B) is irreducible if p and q are strictly greater than 1.

In contrast, when p or q = 1, the system is fully reducible. Consider for example
the case p = 1.

Example 44

In this case A has only 1 element and the system ∆+(A,B) has r elements and
is a base of V . Thus ∆+(A,B) is fully reducible in the direct sum of p+ q− 1 one
dimensional systems.

For example take U(1, r) with A = [1] and B = [2, . . . , r+1]. Then ∆+(A,B) =
{e1 − e2, e1 − e3, . . . , e1 − er+1} is isomorphic to A+

1 ×A+
1 × · · · ×A+

1 .
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Remark that when A1, A2 have the same number of elements, although the sys-
tem of noncompact roots ±∆+

n (A1, B1) and ±∆+
n (A2, B2) are clearly isomorphic,

the combinatorial properties of ∆+
n (A,B) may vary.

For example, (see Figure 5), if A = [1, 2], B = [3, 4], the cone generated by the
non compact roots has basis a square and is not a simplicial cone. If A = [1, 3]
and B = [2, 4], then the cone generated by the non compact roots is the simplicial
cone generated by e1 − e2, e2 − e3, e3 − e4.

4.2 Algorithm to computeMPNS: the case of ∆+(A,B)

With the notations of Ex.16, we denote by A a proper subset of [1, 2, . . . , r + 1]
(with r = p+ q − 1) and by B the complementary subset to A in [1, 2, . . . r + 1].

Given v ∈ V , and not on any admissible hyperplane, we describe the algorithm
to compute P(v,∆+(A,B)).

If p or q = 1, roots α in ∆+(A,B) form a basis on V , thus there is only one
maximal nested set M = {{α}, α ∈ ∆+(A,B)}. Thus P(v,∆+(A,B)) is empty or
equal to { ~M} depending if v belongs to the cone generated by ∆+(A,B), or not.
This is very easy to check.

If p > 1 and q > 1 , we determine the set P(v,∆+(A,B)) by induction, going
to admissible hyperplanes.

If L ( [1, 2, . . . , r + 1] is a proper subset of [1, 2, . . . , r + 1], we will also use
the notation L′ = [i /∈ L | 1 ≤ i ≤ r + 1] for the complement of L. We denote by
HL := {v ∈ V |

∑
i∈L vi = 0} the hyperplane determined by L; the hyperplane

HL is equal to the hyperplane HL′ determined by L′.
It is very simple to describe ∆+(A,B)-admissible hyperplanes, that is noncompact
walls. The description is an adaptation of the A+

r -admissible hyperplanes that
appear in [3].

Keeping A fixed, with |A| 6= 1, r, we consider hyperplanes HL indexed by
subsets L ⊂ 1, 2, . . . , r + 1] with the following properties:

• if |L| 6= 1 or r, then HL is a noncompact wall if and only if both A and B
intersect L and L′. In this case ∆+

n (A,B)∩HL is the product of two systems
∆+

n (A ∩ L,B ∩ L)×∆+
n (A ∩ L′, B ∩ L′) and thus reducible.

• if L is of cardinal 1, then HL is a noncompact wall. In this case ∆+
n (A,B)∩

HL is ∆+
n (A ∩ L′, B ∩ L′) and thus irreducible.

At this point to compute the MNPS or better, as we explained the
−→
M ′s, we

can proceed as in Fig.6. The algorithm is outlined in Fig.7.
We conclude with the following observation. A necessary and sufficient con-

dition for the set MPNS(v,∆+
n (A,B)) to be non empty is that v belongs to the
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cone generated by ∆+
n (A,B). As far as we know, the equations of this cone are

not known, except in a few cases. It is clearly necessary that v belongs to the
simplicial cone generated by all positive roots. To speed up the calculations, we
check this condition at each step of the algorithm.

We conclude with a simple example with p = 2, q = 2 and A = [1, 2], B =
[3, 4]. We follow the outline described in Fig.6. The highest non compact root
is θ := e1 − e4. There are 3 noncompact walls not containing the highest root.
L = [1], [4], [1, 3] We choose a vector v = [4, 3,−2,−5] not on any noncompact
walls. Then [1], [4], [1, 3] are all such that v and θ are on the same side.

For L = [1], the v projection do not belong to the cone generated by ∆+
n (A,B)∩

HL = [e2 − e3, e3 − e4].
For L = [4], we obtain the elementM := {[1, 2, 3, 4], [1, 3], [2, 3]} in P(v,∆+

n (A,B)).
For L := [1, 3], we obtain the elementM = {[1, 2, 3, 4], [1, 3], [2, 3]} in P(v,∆+

n (A,B)).

4.3 Valid permutations

Let w ∈ Wc. Remark that if wµ − λ does not belong to the cone of non compact
positive roots, then the term corresponding to w in Blattner formula is equal to
0. It is important to minimize the number of terms in Blattner formula. To this
purpose, we use a weaker condition: we say that w ∈ Wc is a valid element if
wµ − λ is in the cone spanned by (all) positive roots. Thus if w is not valid, the
corresponding term to w in Blattner formula is equal to 0. As there is a simple
description of the faces of cone spanned by all positive roots (it is the simplicial
cone dual to the simplicial cone generated by fundamental weights), there is a
simple algorithm that constructs valid permutations one at the time depending on
the conditions they have to satisfy, instead of listing all the elements of Wc. The
corresponding algorithm is used in [4],[6], and we just reproduced it.

5 Examples

Example 45

We consider the discrete series representation indexed by λ and we test for the
multiplicity mλ

µ where µ is a K type. We write µlowest for the lowest K-type. We
use the algorithm whose command is :

>discretemult(λ,µ,p,q)
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mλ
µ: numeric case

Group Input Output Time
λ=[[31/2,15/2,9/2],[5/2,3/2,-5/2]]
µlowest=[[17, 9, 6], [1, 0, -4]] 1 0.026 sec.

U(3,3)
µ=[[1017, 1009, 1006], [-999, -1000, -1004]] 9 0.97 sec.
µ=[[100017, 10009, 10006], [-9999, -10000, -100004]] 9 0.91 sec.
λ=[[31/2, 19/2, 11/2], [ 15/2, 7/2, -37/2]]
µlowest=[[17, 11, 6], [7, 2, -20]] 1 0.073 sec.

U(3,3)
µ=[[1017, 1011, 1006], [-993, -998, -1020]] 275 0.529 sec.
µ=[[100017, 10011, 10006], [-9993, -9998, -100020]] 11700255 0.538 sec.
λ=[[11/2,7/2,3/2,-1/2],[9/2,5/2,1/2,-3/2]]

U(4,4) µlowest=[[15/2, 9/2, 3/2, -3/2], [11/2, 5/2, -1/2, -7/2]] 1 0.565 sec.
µ=[[2015/2, 9/2, 3/2, -3/2], [11/2, 5/2, -1/2, -2007/2]] 120495492015 3.493 sec.
λ=[[11/2, 9/2, 7/2, 5/2], [3/2, 1/2, -1/2, -3/2]]

U(4,4) µlowest=[[15/2, 13/2, 11/2, 9/2], [-1/2, -3/2, -5/2, -7/2]] 1 0.334 sec.
µ=[[20015/2, 2013/2, 211/2, 29/2], [-21/2, -203/2, -2005/2, -20007/2]] 1 273.719 sec.
λ=[[5, 3, 1, -1, -3], [4, 2, 0, -2]]

U(5,4) µlowest=[[7, 4, 1, -2, -5], [11/2, 5/2, -1/2, -7/2]] 1 3.952 sec.
µ=[[1007, 4, 1, -2, -5], [11/2, 5/2, -1/2, -2007/2]] 120495492015 13.752 sec.
λ=[[11/2,7/2,3/2,-1/2,-5/2],[9/2,5/2,1/2,-3/2,-7/2]]

U(5,5) µlowest=[[8, 5, 2, -1, -4], [6, 3, 0, -3, -6]] 1 51.910 sec.
µ=[[106,4,2,0,-102],[104,2,0,-2,-104]] 1458704380546472381 163.104 sec.

Example 46

We consider the discrete series representation indexed by λ, a direction ~v and we
test for the multiplicity mλ

µ+t~v where µ = µlowest is the lowest K-type. We use the
algorithm whose command is
> function−discrete−mu−direction−lowest−(λ,~v,p,q)
For completeness we list µlowest relative to each example.
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mλ
µ+t~v

, t ∈ N: asymptotic case

Group Input mλ
µ+t~v

Output Time

λ=[[9, 7], [-1, -2, -13]]
µlowest=[[21/2, 17/2], [-2, -3, -14]]

~v=[[1, 0], [-1, 0, 0]] mλ
µ+t~v

=

{

1 if t = 0
0 if t ≥ 1

A1 0.054 sec.

U(2,3)
~v=[[6, 1], [-1, -1, -5]] mλ

µ+t~v
=

{

1 if t ≤ 10
0 if t ≥ 11

A2 0.736 sec.

~v=[[1, 0], [0, 0, -1]] mλ
µ+t~v

= 1 if t ≥ 0 A3 0.26 sec.

λ=[[59, 39], [51, 7, -156]]
U(2,3) µlowest=[[121/2, 79/2], [51, 6, -157]]

~v=[[1,0], [0,0,-1]] mλ
µ+t~v

= t+ 1 A4 0.71 sec.

λ=[[341/2, 49/2], [-3/2, -5/2, -11/2, -371/2]]
U(2,4) µlowest=[[345/2, 53/2], [-5/2, -7/2, -13/2, -373/2]]

~v=[[6, 1], [-1, -1, -1, -4]] mλ
µ+t~v

=

{

1 if t ≤ 2
0 if t ≥ 3

A5 46.754 sec.

λ=[[343/2, 31/2, 21/2], [-13/2,-19/2,-363/2]]
µlowest=[[173, 17, 12], [-8, -11, -183]]

U(3,3) ~v=[[6, 1, 0], [-1, -1, -5]] mλ
µ+t~v

=



























1 if t = 0
3 if t = 1
6 if 2 ≤ t ≤ 171
3 if t = 172
1 if t = 173
0 if t ≥ 174

A6 52.020 sec.

~v=[[1, 1, 0], [0,-1, -1]] mλ
µ+t~v

=

{

t+ 1 if 0 ≤ t ≤ 155
156 if t ≥ 156

A7 7.1730 sec.

where

A1 := [[−(1/2) ∗ t2 + (1/2) ∗ t+ 1, [0, 0]], [1 + (1/2) ∗ t2 − (3/2) ∗ t, [1, 1]], [0, [2, inf ]]]
A2 := [[−(15/2) ∗ t2 + (7/2) ∗ t+ 1, [0, 0]], [1, [1, 10]], [66 + (1/2) ∗ t2 − (23/2) ∗ t, [11, 11]], [0, [12, inf ]]]
A3 := [[−(1/2) ∗ t2 + (1/2) ∗ t+ 1, [0, 0]], [1, [1, inf ]]]
A4 := [[t+ 1, [0, inf ]]
A5 := [1 + (10/3) ∗ t− (7/2) ∗ t2 + (25/6) ∗ t3, [0, 0]], [1 + (1/3) ∗ t − (1/2) ∗ t2 + (1/6) ∗ t3, [1, 1]], [1, [1, 2]],

[6− (7/2) ∗ t+ (1/2) ∗ t2, [2, 3]], [0, [3, inf ]]
A6 := [1 + (13/4) ∗ t− (51/8) ∗ t2 + (61/4) ∗ t3 − (89/8) ∗ t4, [0, 0]], [1 + (3/2) ∗ t+ (1/2) ∗ t2, [1, 1]],

[−3 + (27/4) ∗ t− (1/8) ∗ t2 − (3/4) ∗ t3 + (1/8) ∗ t4, [2, 3]], [6, [4, 170]],
[32664996 − (9380059/12) ∗ t+ (168227/24) ∗ t2 − (335/12) ∗ t3 + (1/24) ∗ t4, [171, 172]],
[15225 − (349/2) ∗ t+ (1/2) ∗ t2, [172, 173]]
[78155000 − (10718575/6) ∗ t+ (183749/12) ∗ t2 − (175/3) ∗ t3 + (1/12) ∗ t4, [174, 175]], [0, [176, inf ]]

A7 := [1 + (5/4) ∗ t+ (1/24) ∗ t2 − (1/4) ∗ t3 − (1/24) ∗ t4, [0, 0]], [t+ 1, [1, 154]],
[23726781 − (2457885/4) ∗ t+ (143207/24) ∗ t2 − (103/4) ∗ t3 + (1/24) ∗ t4, [155, 156]], [156, [156, inf ]]

Remark that in some of the examples above, it can happen that although the
polynomials Pi and Pi+1 (displayed in the last table giving the Ai) are different,
the polynomial Pi+1 may coincide with Pi on Ii (recall that several polynomials
can have the same values on Ii ∩ N). Thus in this case, we join the two intervals
Ii and Ii+1 and give only the polynomial Pi+1. This streamlining of the function
mλ

µ+t~v is given in the third column of the table describing the asymptotic behavior

of mλ
µ+t~v .
We now give an example on U(3, 4).

Example 47
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discrete:=[[473, 39, 1], [3, 51, 5, -572]];

direction:=,[[1, 0, 0], [0, 0, 0, -1]];

>function_discrete_mul_direction_lowest(discrete,direction,3,4);

[1+51/20 t-1/120 t^5-1/360 t^6+851/360 t^2+23/24 t^3+5/36 t^4,[0,0]],

[1+31/12 t+19/8 t^2+11/12 t^3+1/8 t^4,[1,37]],

[-3262622+2687514/5 t+73/240 t^5-1/720 t^6-13275857/360 t^2+64795/48 t^3-3977/144 t^4,[38,39]],

[-265030+27790 t-1090 t^2+20 t^3,[39,44]],

[-9631849+79305707/60 t+29/80 t^5-1/720 t^6-3399664/45 t^2+110609/48 t^3-5675/144 t^4,[45,45]],

[27182687-212385511/60 t-31/40 t^5+1/360 t^6+69073219/360 t^2-132929/24 t^3+1619/18 t^4,[46,46]],

[-784945+886169/12 t-20959/8 t^2+511/12 t^3-1/8 t^4,[47,83]],

[469370132-337238937/10 t-167/240 t^5+1/720 t^6+363465857/360 t^2-774005/48 t^3+20897/144 t^4,[84,85]],

[5790400-235000 t+2820 t^2,[86,inf]]

Thus the multiplicity mλ
µ+t~v can be completely described by the following

piecewise polynomial function:

mλ
µ+t~v =















1 + (31/12) ∗ t+ (1/8) ∗ t4 + (11/12) ∗ t3 + (19/8) ∗ t2 if 0 ≤ t ≤ 39
−265030 + 27790 ∗ t+ 20 ∗ t3 − 1090 ∗ t2 if 40 ≤ t ≤ 46
−784945 + (886169/12) ∗ t − (1/8) ∗ t4 + (511/12) ∗ t3 − (20959/8) ∗ t2 if 47 ≤ t ≤ 85
5790400 − 235000 ∗ t+ 2820 ∗ t2 if 86 ≤ t.

The time to compute the example is TT := 19.487 and the formula says
for instance that, for λ =discrete and µ = [[475, 40, 0], [103/2, 9/2, 5/2,−1147/2]]
the lowest K-type, then

mλ
µ+20000000~v = 1127995300005790400.

6 The program: ”Discrete series and K mul-

tiplicities for type Ar”

We give a brief sketch of the main steps for the algorithms involved in Blat-
tner’s formula.

6.1 MNPS non compact

We outline the algorithm that computes directly
−→
M forM ∈ P(v,∆+(A,B)).

We are taking advantage of the fact that we know the
−→
M ′s in the case of

|A| = 1, r, as we saw in Ex. 44. In the following scheme p, q are integers, A ⊂
[1, 2, . . . , p+ q] is a set of cardinality p, B is the complement subset defining
U(A,B), θI is the highest noncompact root for I. If L ⊂ [1, 2, . . . , p+ q] we
denote by L′ the complement set.
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Input [v, A, I], v a vector and A ⊂ I = [1, 2, . . . , p+ q], |A| = p
proceed by induction on the cardinality of A.

if |A| = 1 ōr |A| = r write the unique
−→
M , M ∈ MNPS determined by the situation

if v ∈ C(
−→
M) then the output is

−→
M ,

construct the hyperplane HL.
check īf v and θI are on the same side then HL

if not skip the hyperplane
define the projection v′ = projHL

(v) of v on HL along θI
compute [v1, A1, I1], [v2, A2, I2]
where A1 = L ∩A, A2 = L′ ∩ A, I1 = L, I2 = L′ and
v1, v2 āre the components of v′ on L and L′ respectively.

if v1 (̄resp. v2) is not in the positive cone for ∆(I1) then skip the hyperplane

if |A1| = 1, apply the induction and compute
−→
M1, M1 ∈ MNPS(v1, A1, I1),

add to M1 the root θI1 (do the same if |A2| = 1 )

else apply the induction and compute
−→
Mi, Mi ∈ P(vi, Ai, Ii), i = 1, 2

do the cartesian product
−→
M1 ×−→

M2 and add to each set the root θI
collect all

−→
M ′s, for the wall L

end of loop running across L’s
end induction

return the set of all
−→
M ′s, M ∈ MPNS for all hyperplanes

Figure 7: P(v,∆+(A,B))

6.2 Numeric

The scheme is described in Fig.8.

6.3 Asymptotic directions

We fix the parameter λ0 and µ0, regular in the chambers a, ac and a weight ~v.
We want to compute mλ0

µ+t~v. In the application µ0 will be the lowest K-type.
The scheme is described in Fig.9.
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Subroutines:

• Procedure to find A+-admissible hyperplanes.

• Procedure to deform a vector: DefV ecnc(v,A+)

• Procedure to compute
−→
M , M ∈ P(v,A+) as in Fig.7.

• Procedure to compute Kostant function K(h) = K(0, h) = eh∏

α∈∆
+
n

(1−e−α)
or more generally

K(g, h).

• Compute the valid permutation V alid(u, v) ⊂ Wc

Input: λ, µ

Compute A+ = ∆+
n (λ):

Compute V alid(λ, µ)
for each w ∈ V alid(λ, µ),
compute µreg = DefV ecnc(v,A+)

compute Allw := P(wµreg − λ,∆+
n )

compute contw =
∑

−→
M⊂Allw

Ires−→
M

K(wµ− λ− ρn)

end of loop running across w’s
collect all the terms and return
mλ

µ =
∑

w∈V alid(λ,µ) ǫ(w)contw

Figure 8: Blattner’s algorithm (numeric case)

Subroutines:

• Procedure to find A+-admissible hyperplanes.

• Procedure to deform a vector: DefV ecnc(v,A+)

• Procedure to compute
−→
M , M ∈ |CP (v,A+) as in Fig.7.

• Procedure to compute Kostant function K(h) = K(0, h) = eh∏

α∈∆
+
n

(1−e−α)
or more generally

K(g, h).

Input λ0 and ~v for each H noncompact wall
if (H,~v) = 0 then skip H
else if (H, λ0 −wµ0)(H,~v) < 0 then skip H else
collect tH = (H, λ0 − wµ0)/(H,~v)

end of loop running across H’s
order list t′Hs as [t0, t1, . . . , ts] where t0 = 0, ts = ∞
choose an interior point t̄i in each interval [ti, ti+1]
Compute polynomial on each [ti, ti+1] following the scheme Fig.8 and the ordered basis determined by t̄i

output: the sequence of values mλ0

µ0+t~v
valid on [ti, ti+1], t ∈ N

Figure 9: Blattner’s algorithm: asymptotic case
.
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