
EULER-MACLAURIN FORMULA FOR THE

MULTIPLICITIES OF THE INDEX OF TRANSVERSALLY

ELLIPTIC OPERATORS

MICHÈLE VERGNE

Abstract. Let G be a connected compact Lie group acting on a man-
ifold M and let D be a transversally elliptic operator on M . The mul-

tiplicity of the index of D is a function on the set Ĝ of irreducible
representations of G. Let T be a maximal torus of G with Lie algebra t.
We construct a finite number of piecewise polynomial functions on t∗,
and give a formula for the multiplicity in term of these functions.

1. Introduction

Let G be a compact connected Lie group acting on a manifold M . Atiyah-
Singer [1] have associated to any G-transversally elliptic pseudo-differential
operator D on M a virtual trace class representation of G :

Index(D) =
∑
λ∈Ĝ

mult(D)(λ)Vλ.

If D is elliptic, the preceding sum of irreducible representations Vλ of G
is finite. As shown in [1], the computation of the function mult(D) : Ĝ→ Z
can be reduced to the case where G is a torus.

Thus we assume that G is a torus with Lie algebra g, and parameterize
the irreducible representations of G by the lattice Λ ⊂ g∗ of characters of
G. Assume, in this introduction, that the stabilizer of any point of M is
connected. We construct a particular “spline” function m on g∗, extending
the function mult(D) in a piecewise polynomial function on g∗. The con-
struction of the function m is based on the notion of infinitesimal index [8]
and is canonically associated to the equivariant Chern character ch(σ) of
the principal symbol σ of D.

A trivial example is when G acts on G = M by left translations and D is
the operator 0, with index

L2(G) =
∑
λ∈Λ

eiλ.

Then the function mult(D) is identically equal to 1 on Λ, and extended by
the constant function m = 1.

The construction of m was the object of the article [7], in the case where
M is a vector space with a linear action of G. In this note, we just state the
results. Our proofs are very similar to those of [7]. We use results of [1] (see
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2 MICHÈLE VERGNE

also [9]) on generators of the equivariant K-theory. Then our main tool is
(as in [7]) the Dahmen-Micchelli inversion formula for convolution with the
box spline, a “Riemann-Roch formula” for approximation theory ([5], see
[7]).

Let us briefly explain the origin of our construction. Denote by Index(D)(g)
the corresponding generalized function.

Index(D)(g) =
∑
λ∈Ĝ

mult(D)(λ)TrVλ(g)

on G. Recall the formula

(1) Index(D)(expX) =
1

(2iπ)dimM

∫
T ∗M

ch(σ)(X)

J(M)(X)
,

obtained in ([4], [3]), a ”delocalized” version of Atiyah-Bott-Segal-Singer
equivariant index formula. Here the inverse of J(M) is the equivariant Todd
class of T ∗M (considered as an almost complex manifold). The formula
above is valid when X varies in a neighborhood of 0 in the Lie algebra g of
G as an equality of generalized functions of X.

Here we replace the equivariant class J(M) by its formal series of homo-
geneous components. By Fourier transform, we obtain a series of generalized
functions on g∗. In a limit sense explained in this note, the restriction of
this series to Λ coincides with the function λ→ mult(D)(λ).

In a subsequent note, we will give a geometric interpretation of the piece-
wise polynomial function m, when D is a Dirac operator twisted by a line
bundle L in term of the moment map associated to an equivariant connection
on L.

I thank Michel Duflo, and Corrado de Concini for comments on this text.

2. Transversally elliptic symbols

Let G be a compact Lie group. Let M be a G-manifold, and T ∗M its
cotangent bundle. We denote by p : T ∗M →M the projection.

Let ω be the Liouville one form: for x ∈ M , ξ ∈ T ∗xM and V a tangent
vector at the point (x, ξ) ∈ T ∗M , ωx,ξ(V ) = 〈ξ, p∗V 〉. By definition, the
symplectic form Ω = −dω is the symplectic form of T ∗M , and we use the
corresponding orientation of T ∗M to compute integrals on T ∗M of differen-
tial forms with compact support.

Let E± be two G-equivariant complex vector bundles over M . A G-
equivariant bundle map σ : p∗E+ → p∗E− will be called a symbol. The
support supp(σ) ⊂ T ∗M of σ is the set of elements n ∈ T ∗M such that the
linear map σ(n) : E+

p(n) → E
−
p(n) is not invertible. An elliptic symbol is a

symbol such that supp(σ) is compact.
Denote by T ∗GM ⊂ T ∗M the union of the space of covectors conormal

to the G orbit through x. If X ∈ g, we denote by vX the vector field
on N generated by −X ∈ g. Let µ : T ∗M → g∗ be the moment map
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〈µ(x, ξ), X〉 = −〈ξ, vX〉. Then the zero fiber Z = µ−1(0) of the moment
map µ is the space T ∗GM . If the support of the symbol σ intersects Z in a
compact set, we say that σ is a transversally elliptic symbol (it is elliptic in
the directions transverse to the G-orbits). Then σ determines an element in
the topological equivariant K group K0

G(Z), still denoted by σ.
If D is a pseudo-differential operator with principal symbol σ, we say that

D is transversally elliptic if its principal symbol is transversally elliptic. The
index of D depends only of the class of σ ∈ K0

G(Z).
Atiyah-Singer [1] have associated to any transversally elliptic symbol σ a

virtual trace class representation of G :

Index(σ) =
∑
λ∈Ĝ

mult(σ)(λ)Vλ.

If σ is elliptic, the preceding sum of irreducible representations Vλ of G is
finite. By construction, if D is a pseudo-differential operator with principal
symbol σ, then Index(D) = Index(σ) (and mult(D) = mult(σ)).

Let us give examples of such operators.

Example 2.1. Elliptic operators are transversally elliptic. If M is an even
dimensional compact manifold and is oriented, then, up to stable homotopy,
any elliptic symbol is the principal symbol of a twisted Dirac operator.

Example 2.2. Let M = G and let H ⊂ G be a compact connected sub-
group of G. Then the 0 operator is transversally elliptic with respect to the
action of G × H, acting by left and right multiplication, and Index(0) =∑

λ∈Ĝ,µ∈Ĥ m(λ, µ)V G
λ ⊗ V H

µ , where m(λ, µ) is the multiplicity of the irre-

ducible representation V H
µ of H in the irreducible representation (V G

λ )∗ of
G.

Example 2.3. Let M be a compact manifold and let G be a group acting
on M , and such that G acts infinitesimally freely on M . Then M/G is an
orbifold. Let σ be a G-transversally elliptic symbol on M . Denote by λ0

the trivial representation of G. If D is a G-invariant operator with principal
symbol σ, mult(σ)(λ0) is the index of the elliptic operator associated to D
on the orbifold M/G.

Example 2.4. Let V be a Hermitian vector space and G a subgroup of
U(V ). Let c be the Clifford representation of V ∗ in the superspace E = ΛV ∗.

Consider the moment map Φ : V → g∗. Assume Φ−1(0) = {0}. Identify
the Kirwan vector field associated to the moment map Φ to a G-invariant one
form λ on V . Then the pushed symbol σ(v, ξ) = c(ξ+ λv) is a transversally
elliptic symbol on V . The function mult(σ)(λ) is the multiplicity of the
representation Vλ of G in the space S(V ∗) of polynomial functions on V
(see [6]). In particular, if G is a torus, then λ → mult(σ)(λ) is the vector
partition function associated to the list of weights of G in V .
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3. Definitions

3.1. Equivariant cohomology. Let G be a compact Lie group, with Lie
algebra g, acting on a manifold N . Let A(N) be the space of differential
forms on N . If X ∈ g, we denote by ιX the contraction of a differential form
on N by vX . Let D = d−ι(vX) be the equivariant differential. In the Cartan
model, a representative of an element of the equivariant cohomology H∗G(N)
is an equivariant form α : g→ A(N) such that D(α) = 0. The dependance
of α in X ∈ g is polynomial. Then H∗G(N) is a Z-graded algebra.

Let q be a formal variable. If F is a vector space and f([q]) =
∑∞

k=0 q
kfk

is a formal series of elements of F , we write f ∈ F [[q]]. If f(q, x) is a smooth
function of q, defined near q = 0, and depending of some parameters x, we
denote by f([q], x) =

∑∞
k=0 q

kfk(x) its Taylor series at q = 0, a formal series
of functions of x. If the series f([q]) is finite, we write f([1]) of f([q])q=1 for
the sum

∑
k fk.

We introduce formal series

α([q], X) =
∞∑
k=0

qkαk(X)

of equivariant forms onN . If the constant term β0 of β([q], X) =
∑∞

k=0 q
kβk(X)

is a non zero constant, we can define the formal series α([q], X)/β([q], X). If
N is oriented, we can integrate such series against any equivariant form c(X)
with compact support, and obtain a formal power series

∫
N c(X)α([q], X) =∑∞

k=0 q
k
∫
N c(X)αk(X) of functions of X ∈ g.

If Z is a G-invariant closed subset of N , we have defined in [8] a Car-
tan model for the space H∞G,c(Z) of equivariant cohomology with compact

supports. A representative is an equivariant form α : g→ Ac(N) such that
D(α) = 0 in a neighborhood of Z. Here Ac(N) is the space of differential
forms with compact supports and the dependance of α in X is C∞.

Let M be a G-manifold, T ∗M its cotangent bundle and Z = T ∗GM . If α
is an equivariant cohomology class on M , its pull back p∗α is an equivariant
cohomology class on T ∗M , that we denote simply by α.

Let σ : p∗E+ → p∗E− be a transversally elliptic symbol. Choosing G-
invariant connections on p∗E±, coinciding via σ outside a small neighbor-
hood of supp(σ), we can construct the equivariant Chern character ch(σ) ∈
H∞G,c(Z) of σ, an equivariant cohomology class, represented by a differential

form with compact support on T ∗M , still denoted by ch(σ).
Let V →M be a real or complex vector bundle on M with typical fiber a

vector space V . The Chern-Weil map W associates to an invariant polyno-
mial f on End(V ) an equivariant characteristic class W (f) in H∗G(M). If f
is homogeneous of degree k, then W (f) is homogeneous of degree 2k. Our
conventions for the Chern-Weil homorphism W and the Chern character are
as in [2].

Let A ∈ End(V ). Introduce a variable q, and consider the Taylor expan-
sion
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det
V

(
eqA − 1

qA
) =

∞∑
k=0

qkTk(A) = 1 +
q

2
Tr(A) + · · · .

Thus Tk is an invariant homogeneous polynomial of degree k on End(V ).
Our main new concept is the introduction of the following formal equi-

variant characteristic class of M .

Definition 3.2. The formal J-class of M is the series of elements of H∗G(M)
defined by

J([q],M) =

∞∑
k=0

qkW (Tk)

obtained by applying the Chern-Weil map for the real vector bundle V =

TM →M to the series detV ( e
qA−1
qA ) =

∑∞
k=0 q

kTk(A).

Here W (Tk) is homogeneous of degree 2k.
When G = {1}, then p∗J([1],M) = J(M) is the inverse of the usual

Todd class of the tangent bundle to T ∗M (considered as an almost complex
manifold). Furthermore, if σ is elliptic, Atiyah-Singer formula for Index(σ) ∈
Z is

Index(σ) =
1

(2iπ)dimM

∫
T ∗M

ch(σ)

J(M)
.

3.3. Piecewise polynomial generalized functions. In this subsection,
G is a torus.

Let V = g∗ equipped with the lattice Λ ⊂ g∗ of weights of G. If g = expX,
we denote by gλ = ei〈λ,X〉. The function g 7→ gλ is a character of G.

We denote by C(Λ) the space of (complex valued) functions on Λ. If g ∈ G,
we denote by ĝ the function g → gλ on Λ. If m ∈ C(Λ), then ĝm ∈ C(Λ) is
defined by (ĝm)(λ) = gλm(λ).

Using the Lebesgue measure dξ associated to Λ, we identify generalized
functions on g∗ and distributions on g∗. Let f be a test function on g∗, we
define f̂(X) =

∫
g∗ e

i〈ξ,X〉f(ξ)dξ. The Lebesgue measure dX on g is such that

the Fourier inversion
∫
g e
−i〈ξ,X〉f̂(X)dX = f(ξ) holds. If h is a generalized

function on g∗, we denote by
∫
g∗ h(ξ)f(ξ)dξ its value on the test function f .

We denote by δv the Dirac function at the point v ∈ V .
Let H be a finite collection of rational hyperplanes in g∗. An element

of H will be called an admissible hyperplane. An element v ∈ V is called
H-generic if v is not on any hyperplane of the collection H. We just say
that v is generic.

An admissible wall is a translate of an hyperplane in H by an element of
Λ. A tope τ is a connected component of the complement of all admissible
walls and we denote by Vreg the union of topes.

A piecewise polynomial function is a function on Vreg which is given by a
polynomial formula on each tope. We denote by PW the space of piecewise
polynomial functions.
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Consider f ∈ PW (defined on Vreg) as a locally L1-function on V , thus
f defines a generalized function on V . An element of PW , considered as a
generalized function on V , will be called a piecewise polynomial generalized
function.

Definition 3.4. The space S is the space of generalized functions on V
generated by the action of constant coefficients differential operators on
piecewise polynomial generalized functions.

For example, the Heaviside function on R is a piecewise polynomial func-
tion. Its derivative in the sense of generalized functions is the Dirac function
at 0.

A function in S can be evaluated at any point of Vreg. If v ∈ V , and ε is
a generic vector, then v + tε is in Vreg if t > 0 and sufficiently small.

Definition 3.5. Let v ∈ V , and f ∈ S. Let ε a generic vector. Define
(limε f)(v) = limt>0,t→0 f(v + tε).

Remark that this definition depends only of the restriction of f to Vreg.

Introduce formal series m([q]) =
∑∞

k=0 q
kmk of generalized functions on

V . Then if f is a test function∫
g∗
m([q])(ξ)f(ξ)dξ =

∞∑
k=0

qk
∫
g∗
mk(ξ)f(ξ)dξ

is a formal power series in q. It may be evaluated at q = 1 if the preceding
series is finite (or convergent).

If ε is generic, we define a map limΛ
ε : S[[q]]→ C(Λ)[[q]] by

(
Λ

lim
ε
m([q]))(λ) =

∞∑
k=0

qk(lim
ε
mk)(λ).

If all, but a finite number, the functions mk are equal to 0 on Vreg, then

limΛ
ε m([q])|q=1 is an element of C(Λ).

Formal series of distributions occur naturally in the context of Euler-
MacLaurin formula.

3.6. Fourier transforms of equivariant integrals. In this section, G is
a torus acting on a manifold M , V = g∗ and Z = T ∗GM . We assume that M
admits a G-equivariant embedding in a vector space provided with a linear
representation of G. For x ∈M , denote by gx ⊂ g the infinitesimal stabilizer
of x ∈M . We assume that the generic infinitesimal stabilizer for the action
of G on M is equal to 0. We denote by I1 the set of infinitesimal stabilizers
of dimension 1. Let H be the finite collection of hyperplanes `⊥ where the
line ` varies in I1. Let S be the corresponding space of generalized functions
on V = g∗.

Consider a transversally elliptic symbol σ. We then use the notion of
infinitesimal index to perform the integration on T ∗M .
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If α is a closed equivariant form with polynomial coefficients, and f a
test function on g∗, the double integral∫

T ∗M

∫
g
eisDω(X)ch(σ)(X)α(X)f̂(X)dX

is independent of s ∈ R, for s positive and sufficiently large. We denote it
by ∫ ω

T ∗M

∫
g

ch(σ)(X)α(X)f̂(X)dX.

Definition 3.7. If σ is a transversally elliptic symbol and α is a closed
equivariant form with polynomial coefficients, we define the generalized
function m(σ, α) on g∗ so that∫ ω

T ∗M

∫
g

ch(σ)(X)α(X)f̂(X)dX =

∫
g∗
m(σ, α)(ξ)f(ξ)dξ

for any test function f(ξ) on g∗.

Then m(σ, α) depends only of the cohomology class of α (still denoted by
α).

Proposition 3.8. • The generalized function m(σ, α) belongs to S.
• If α is an homogeneous equivariant class of degree 2k , then m(σ, α)

restricts to a polynomial of degree less or equal to dimM − dimG − k on
each connected component of Vreg. In particular, when k is greater that
dimM − dimG, m(σ, α) restricts to 0 on Vreg.

4. The elliptic case

Let G be a torus acting on a connected manifold M . To explain the flavor
of our formula, we assume that σ is an elliptic symbol and we make a further
simplification. We assume that the stabilizer of any point of M is connected
and that the generic stabilizer is trivial.

We write

Index(σ) =
∑
λ∈Λ

mult(σ)(λ)eiλ

with mult(σ) ∈ C(Λ).
To the elliptic symbol σ, we associate a series m([q], σ) of generalized

functions on g∗.

Definition 4.1. Define m([q], σ) =
∑∞

k=0 q
kmk to be the series of general-

ized functions on g∗ such that, for any test function f on g∗,

(2) (2iπ)− dimM

∫
T ∗M

∫
g

ch(σ)(X)

J([q],M)(X)
f̂(X)dX =

∫
g∗
m([q], σ)(ξ)f(ξ)dξ.
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All distributions mk are compactly supported, as we are in the elliptic
case. The restriction of mk to each connected component of Vreg is a poly-
nomial of degree less or equal to dimM − dimG− k.

Compare with Formula (1) (for D with principal symbol σ). The equi-

variant form ch(σ)(X)
J([q],M)(X) is for q = 1 equal to ch(σ)(X)

J(M)(X) . The left hand side of

the equality (2) cannot be evaluated for q = 1, as J(M)(X) is not invertible
for X large. Here comes the miracle. The right hand side can be evaluated
at q = 1, when restricted to Λ and we have the following theorem.

Theorem 4.2. For any generic vector ε,

mult(σ) =
Λ

lim
ε
m([q], σ)|q=1.

When f is a polynomial, f̂(X) is supported at 0, and the two formulae (1),
(2) coincide at q = 1, thus we have the following Euler-MacLaurin formula.

Theorem 4.3. For any polynomial function f on g∗,
∫
g∗mk(ξ)f(ξ)dξ is

equal to 0 when k is sufficiently large, and∑
λ

mult(σ)(λ)f(λ) =

∞∑
k=0

∫
g∗
mk(ξ)f(ξ)dξ.

Let us give a simple example. Let M = P1(C), let A be a non negative
integer and ∂A the ∂ operator on sections of LA, where L is the dual of the
tautological bundle. Let S1 be the circle group with generator J , acting on
[x, y] ∈ P 1(C) by exp(θJ)[x, y] = [eiθx, y]. Here [x, y] are the homogeneous
coordinates on P1(C). Then

Index(∂A)(exp(θJ)) =
A∑
d=0

eidθ.

We identify g∗ with R and Λ with Z. The multiplicity function mult(∂A) is
such that mult(∂A)(n) = 1 of 0 ≤ n ≤ A, otherwise is equal to 0.

Consider the function

F (q, θ) =
(1− e−iθ)

(1− eiqθ)(1− e−iqθ)
+

eiAθ(1− eiθ)
(1− eiqθ)(1− e−iqθ)

.

The Taylor series F ([q], θ) is a series of analytic functions of θ and it follows
from the localisation formula on T ∗P1(C) that, for X = θJ ,

(2iπ)− dimM

∫
T ∗M

ch(σ)(X)

J([q],M)(X)
= F ([q], θ).

Let us write the first terms of the expansion of F ([q], θ). This is

(eiAθ + 1− ei(A+1)θ − e−iθ)(− 1

i2θ2
+

1

12
q2 − 1

240
i2θ2q4 +

1

6048
i4θ4q6 + · · · )
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Figure 1. m0(ξ) for A = 3

The Fourier transform of F ([q], θ) is the series of generalized functions

m([q], ξ) =
∞∑
k=0

qkmk(ξ).

We see that only m0(ξ) is non zero on R \ Z, and given by the piecewise
polynomial function

m0(ξ) =



0 ξ ≤ −1

ξ + 1 −1 ≤ ξ ≤ 0

1 0 ≤ ξ ≤ A
(A+ 1)− ξ A ≤ ξ ≤ A+ 1

0 (A+ 1) ≤ ξ
Remark that m0(ξ) continuous and coincide with the function mult(∂A)

on Z. This is the content of Theorem 4.2.
We can compute further terms of the expansion,

m([q], ξ) = m0(ξ) +
q2

12
(δ0 + δA − δ−1 − δA+1)− q4

240
(
d

dξ
)2(δ0 + δA − δ−1 − δA+1) + · · ·

Then for any polynomial function f , we obtain a version of Euler-MacLaurin
formula:

A∑
d=0

f(d) =

∫
R
f(ξ)m0(ξ)dξ
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+
1

12
(f(0) + f(A)− f(−1)− f(A+ 1))− 1

240
(f
′′
(0) + f

′′
(A)− f ′′(−1)− f ′′(A+ 1)) + · · ·

This is the content of Theorem 4.3.

5. The general formula for a torus

Let G be a torus acting on M . The collection of hyperplanes H in g∗ is
as in Subsection 3.6 and Z = T ∗GM .

Let σ ∈ p∗E+ → p∗E− be a transversally elliptic symbol on M . We
assume that the generic infinitesimal stabilizer for the action of G on M is
equal to 0. We can always reduce the problem to this case.

For g ∈ G, denote by Mg = {x ∈ M ; gx = x}. This is a manifold, which
might not be connected. We say that g is a vertex if there exists x ∈ Mg

with a finite stabilizer under the action of G (if stabilizers are all connected,
then the only vertex is g = 1). We denote by V(M) the set of vertices of
the action of G on M . This is a finite subset of G.

Let g ∈ G. Then g acts by a fiberwise transformation on E± → Mg still
denoted g. The morphism σ commutes with g over T ∗Mg. The equivariant
twisted Chern character chg(σ) is defined in [7] as an element of H∞G,c(Z

g).

If α ∈ H∗G(Mg), we can define a generalized function m(g, σ, α) on g∗ by
the formula∫ ω

T ∗Mg

∫
g

chg(σ)(X)α(X)f̂(X)dX =

∫
g∗
m(g, σ, α)(ξ)f(ξ)dξ

for any test function f on g∗.

Lemma 5.1. The generalized function m(g, σ, α) belong to S.
If g is not a vertex, the generalized function m(g, σ, α) vanishes on Vreg.

If E is a vector space and s ∈ End(E) is an invertible and semi-simple
transformation of E, we denote by GL(s) the group of invertible linear
transformation of E commuting with s. We consider for A ∈ End(E)

D(q, s, A) = det
E

(1− seqA),

an analytic function of A ∈ End(E). Write the Taylor series

D([q], s, A) =

∞∑
k=0

qkDs
k(A).

Then A→ Ds
k(A) are homogeneous polynomials of degree k, invariant under

GL(s).
Consider the normal bundle N → Mg. Thus g produces an invertible

linear transformation of Nx at any x ∈ Mg. The Chern Weil homomor-
phism for the bundle N (with structure group GL(g)) produces a series
D([q], g,M/Mg) :=

∑∞
k=0 q

kW (Dg
k) of closed equivariant forms on Mg. The

coefficient in q0 of this series is just the function x→ detNx(1−g), a function
which is a non zero constant on each connected component of Mg. Similarly
the function dimMg is constant on each connected component of Mg.
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Recall that we have defined the class of J([q],Mg) on Mg.

Definition 5.2. Define the series of generalized functions m([q], g, σ) of
generalized functions on g∗ such that∫ ω

T ∗Mg

∫
g
(2iπ)− dimMg chg(σ)(X)

J([q],Mg)(X)D([q], g,M/Mg)(X)
f̂(X)dX

=

∫
g∗
m([q], g, σ)(ξ)f(ξ)dξ

for any test function f(ξ) on g∗.

Here is the multiplicity formula for the index of a transversally elliptic
symbol σ.

Theorem 5.3. For any ε generic

mult(σ) =
∑

g∈V(M)

ĝ
Λ

lim
ε
m([q], g−1, σ)|q=1.

6. Compact groups

Let G be a compact simply connected Lie group acting on a manifold M
and let Z = T ∗GM . Let T be a maximal torus of G. The action of T on M
defines a set of hyperplanes H in t∗ and a space S of distributions on t∗. We
denote by V(M) ⊂ T the set of vertices for the action of T on M .

We parameterize the set of irreducible representations of G as follows.
We consider Λ ⊂ t∗ to be the set of weights of T . We choose a system of
positive roots ∆+ ⊂ t∗. Let ρ = 1

2

∑
α>0 α, and t∗>0 be the positive Weyl

chamber. For λ ∈ Λ, regular and dominant, we denote by Vλ the irreducible
representation of G of highest weight λ− ρ.

Let σ ∈ K0
G(Z). We write

Index(σ) =
∑

λ∈Λ∩t∗>0

mult(σ)(λ)Vλ

and we extend the function mult(σ) in an antiinvariant (under the action

of the Weyl group W ) function ˜mult(σ) on Λ. The function ˜mult(σ) is the
multiplicity index of a T -transversally elliptic symbol σ̃ on M , constructed
in [1]. (If σ is itself T transversally elliptic, denote by σT the symbol σ
considered as a T -transversally elliptic symbol. Then σ̃ is the symbol σT

twisted by the representation of T in the spinor superspace of g/t, and then
˜mult(σ) =

∑
w∈W ε(w)mult(σT )(λ+ wρ).)

The multiplicity of σ̃ is an anti-invariant function on Λ. Thus we construct
from σ̃ the series m([q], g, σ̃) of anti-invariant generalized functions on t∗.
belonging to the space S.
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Theorem 6.1. • For any ε generic,

˜mult(σ) =
∑

g∈V(M)

ĝ
Λ

lim
ε

(m([q], g, σ̃))|q=1.
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