ARRANGEMENT OF HYPERPLANES, II: THE SZENES FORMULA AND EISENSTEIN SERIES

MICHEL BRION and MICHÈLE VERGNE

To Victor Guillemin, for his 60th birthday

1. Introduction. Consider a sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ of linear forms in r complex variables, with integral coefficients. The linear forms α_{j} need not be distinct. For example, $r=2$ and $\alpha_{1}=\alpha_{2}=z_{1}, \alpha_{3}=\alpha_{4}=z_{2}, \alpha_{5}=\alpha_{6}=z_{1}+z_{2}$. For any such sequence, D. Zagier [5] introduced the series

$$
\sum_{n \in \mathbb{Z}^{r},\left\langle\alpha_{j}, n\right\rangle \neq 0} \frac{1}{\prod_{j=1}^{k}\left\langle\alpha_{j}, n\right\rangle}
$$

Assuming convergence, its sum is a rational multiple of π^{k}. For example (see [5]), we have

$$
\sum_{n_{1} \neq 0, n_{2} \neq 0, n_{1}+n_{2} \neq 0} \frac{1}{n_{1}^{2} n_{2}^{2}\left(n_{1}+n_{2}\right)^{2}}=\frac{(2 \pi)^{6}}{30240}
$$

These numbers are natural multidimensional generalizations of the value of the Riemann zeta function at even integers. A. Szenes gave in [3, Theorem 4.4] a residue formula for these numbers, relating them to Bernoulli numbers. The formula of Szenes [3] is the multidimensional analogue of the residue formula

$$
\sum_{n \neq 0} \frac{1}{n^{2 l}}=(2 \pi)^{2 l} \frac{B_{2 l}}{(2 l)!}=(-1)^{l}(2 \pi)^{2 l} \operatorname{Res}_{z=0}\left(\frac{1}{z^{2 l}\left(1-e^{z}\right)}\right)
$$

A motivation for computing such sums comes from the work of E. Witten [4]. In the special case where α_{j} are the positive roots of a compact connected Lie group G, each of these roots being repeated with multiplicity $2 g-2$, Witten expressed the symplectic volume of the space of homomorphisms of the fundamental group of a Riemann surface of genus g into G, in terms of these sums. In [2], L. Jeffrey and F. Kirwan proved a special case of the Szenes formula leading to the explicit computation of this symplectic volume, when G is $\mathrm{SU}(n)$.

Our interest in such series comes from a different motivation. Let us consider first the 1 -dimensional case. By the Poisson formula, for $\operatorname{Re}(z)>0$, the convergent series $\sum_{m=1}^{\infty} m e^{-m z}$ is also equal to $\sum_{n \in \mathbb{Z}} 1 /(z+2 i \pi n)^{2}$. Similarly, sums of products

2000 Mathematics Subject Classification. Primary 52C35; Secondary 11B68, 40H05.
of polynomial functions with exponential functions over all integral points of an r-dimensional rational convex cone are related to functions of r complex variables of the form

$$
\psi(z)=\sum_{n \in \mathbb{Z}^{r}} \frac{1}{\prod_{j=1}^{k}\left\langle\alpha_{j}, z+2 i \pi n\right\rangle}
$$

When this series is not convergent, introduce the oscillating factor $e^{\langle t, 2 i \pi n\rangle}$ and define the Eisenstein series

$$
\psi(t, z)=\sum_{n \in \mathbb{Z}^{r}} \frac{e^{\langle t, z+2 i \pi n\rangle}}{\prod_{j=1}^{k}\left\langle\alpha_{j}, z+2 i \pi n\right\rangle}
$$

a generalized function of $t \in \mathbb{R}^{r}$.
In Section 3, we construct a decomposition of an open dense subset of \mathbb{R}^{r} into alcoves such that $t \mapsto \psi(t, z)$ is given on each alcove by a polynomial in t, with rational functions of e^{z} as coefficients. Our first theorem (see Theorem 19) gives an explicit residue formula for $\psi(t, z)$. It follows easily from the obvious behaviour of $\psi(t, z)$ under differentiation in z.

This formula allows us to give a residual meaning " $\psi(t, 0)$ " for the value of $\psi(t, z)$ at $z=0$, although $\psi(t, z)$ clearly has poles along all hyperplanes $\left\langle\alpha_{j}, z\right\rangle=0$. An alternate way to define $\psi(t, 0)$ is to remove all infinities $1 / \alpha_{j}$ in the series

$$
\psi(t, 0)=\sum_{n \in \mathbb{Z}^{r}} \frac{e^{\langle t, 2 i \pi n\rangle}}{\prod_{j=1}^{k}\left\langle\alpha_{j}, 2 i \pi n\right\rangle}
$$

Indeed, we prove that the residue formula for " $\psi(t, 0)$ " coincides with the renormalized sum:

$$
" \psi(t, 0) "=\sum_{n \in \mathbb{Z}^{r},\left\langle\alpha_{j}, n\right\rangle \neq 0} \frac{e^{\langle t, 2 i \pi n\rangle}}{\prod_{j=1}^{k}\left\langle\alpha_{j}, 2 i \pi n\right\rangle}
$$

This equality gives another proof of the Szenes residue formula, as a "limit" of a natural formula for $\psi(t, z)$ when $z \rightarrow 0$ along a generic line.

To illustrate our method, let us consider the 1-dimensional case. For $k \geq 2$, we can define the Eisenstein series

$$
E_{k}(z)=\sum_{n \in \mathbb{Z}} \frac{1}{(z+2 i \pi n)^{k}}
$$

Clearly, $E_{k}(z)$ is periodic in z with respect to translation by the lattice $2 i \pi \mathbb{Z}$. From the residue theorem, when y is not in $2 i \pi \mathbb{Z}$, we have the kernel formula

$$
\begin{equation*}
E_{k}(y)=\operatorname{Res}_{z=0}\left(\frac{1}{z^{k}\left(1-e^{z-y}\right)}\right) \tag{1}
\end{equation*}
$$

Observe that the right-hand side has a meaning when $y=0$, and equals, by definition, the Bernoulli number B_{k} / k !. The function

$$
E_{k}(y)=\frac{1}{y^{k}}+\sum_{n \in \mathbb{Z}, n \neq 0} \frac{1}{(y+2 i \pi n)^{k}}
$$

has a Laurent expansion at $y=0$, with $1 / y^{k}$ as Laurent negative part. We see from the residue formula that the constant term $\mathrm{CT}\left(E_{k}\right)=\sum_{n \in \mathbb{Z}, n \neq 0} 1 /(2 i \pi n)^{k}$ equals $\operatorname{Res}_{z=0}\left(1 /\left(z^{k}\left(1-e^{z}\right)\right)\right)$.

In view of this example, we call the value " $\psi(t, 0)$ " of $\psi(t, y)$ at $y=0$ the constant term of the Eisenstein series

$$
\sum_{n \in \mathbb{Z}^{r}} \frac{e^{\langle t, z+2 i \pi n\rangle}}{\prod_{j=1}^{k}\left\langle\alpha_{j}, z+2 i \pi n\right\rangle}
$$

Acknowledgments. We thank A. Szenes and the referees of our paper for several suggestions.
2. Kernel formula. In this section, we briefly recall results of [1] with slightly modified notation. Let V be an r-dimensional complex vector space. Let V^{*} be the dual vector space, and let $\Delta \subset V^{*}$ be a finite subset of nonzero linear forms. Each $\alpha \in \Delta$ determines a hyperplane $\{\alpha=0\}$ in V. Consider the hyperplane arrangement

$$
\mathscr{H}=\bigcup_{\alpha \in \Delta}\{\alpha=0\} .
$$

An element $z \in V$ is called regular if z is not in \mathscr{H}. If S is a subset of V, we write $S_{\text {reg }}$ for the set of regular elements in S. The ring R_{Δ} of rational functions with poles on \mathscr{H} is the ring $\Delta^{-1} S\left(V^{*}\right)$ generated by the ring $S\left(V^{*}\right)$ of polynomial functions on V, together with inverses of the linear functions $\alpha \in \Delta$. The ring R_{Δ} has a \mathbb{Z}-gradation by the homogeneous degree that can be positive or negative. Elements of R_{Δ} are defined on the open subset $V_{\text {reg }}$. (Our notation differs from [1] in that the roles of V and V^{*} are interchanged.)

In the one-variable case, the function $1 / z$ is the unique function that cannot be obtained as a derivative. There is a similar description of a complement space to the space of derivatives in the ring R_{Δ}, which we recall now.

A subset σ of Δ is called a basis of Δ if the elements $\alpha \in \sigma$ form a basis of V. We denote by $\mathscr{B}(\Delta)$ the set of bases of Δ. An ordered basis is a sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ of elements of Δ such that the underlying set is a basis. We denote by $O \mathscr{B}(\Delta)$ the set of ordered bases.

For $\sigma \in \mathscr{B}(\Delta)$, set

$$
\phi_{\sigma}(z):=\frac{1}{\prod_{\alpha \in \sigma} \alpha(z)}
$$

We call ϕ_{σ} a simple fraction. Setting $z_{j}=\left\langle z, \alpha_{j}\right\rangle$, we have

$$
\phi_{\sigma}(z)=\frac{1}{z_{1} z_{2} \cdots z_{r}}
$$

Definition 1. The subspace S_{Δ} of R_{Δ} spanned by the elements $\phi_{\sigma}, \sigma \in \mathscr{B}(\Delta)$, will be called the space of simple elements of R_{Δ} :

$$
S_{\Delta}=\sum_{\sigma \in \mathscr{B}(\Delta)} \mathbb{C} \phi_{\sigma}
$$

The space S_{Δ} consists of homogeneous rational functions of degree $-r$. However, not every homogeneous element of degree $-r$ of R_{Δ} is in S_{Δ} (e.g., in the preceding notation, if $r \geq 2$, both functions $1 / z_{1}^{r}$ and z_{2} / z_{1}^{r+1} are not in S_{Δ}). Furthermore, we must be careful, as the elements ϕ_{σ} may be linearly dependent. For example, if $V=\mathbb{C}^{2}$ and $\Delta=\left\{z_{1}, z_{2}, z_{1}+z_{2}\right\}$, we have

$$
S_{\Delta}=\mathbb{C} \frac{1}{z_{1} z_{2}}+\mathbb{C} \frac{1}{z_{1}\left(z_{1}+z_{2}\right)}+\mathbb{C} \frac{1}{z_{2}\left(z_{1}+z_{2}\right)}
$$

and we have the relation

$$
\frac{1}{z_{1} z_{2}}=\frac{1}{z_{1}\left(z_{1}+z_{2}\right)}+\frac{1}{z_{2}\left(z_{1}+z_{2}\right)}
$$

A description due to Orlik and Solomon of all linear relations between the elements ϕ_{σ} is given in [1, Proposition 13].

Definition 2. A basis B of $\mathscr{B}(\Delta)$ is a subset of $\mathscr{B}(\Delta)$ such that the elements ϕ_{σ}, $\sigma \in B$, form a basis of S_{Δ} :

$$
S_{\Delta}=\bigoplus_{\sigma \in B} \mathbb{C} \phi_{\sigma}
$$

We let elements v of V act on R_{Δ} by differentiation:

$$
(\partial(v) f)(z):=\left.\frac{d}{d \epsilon} f(z+\epsilon v)\right|_{\epsilon=0}
$$

Then the following holds (see [1, Proposition 7]).
Theorem 3. We have

$$
R_{\Delta}=\partial(V) R_{\Delta} \oplus S_{\Delta}
$$

Thus, we see that only simple fractions cannot be obtained as derivatives.
As a corollary of this decomposition, we can define the projection map

$$
\operatorname{Res}_{\Delta}: R_{\Delta} \longrightarrow S_{\Delta}
$$

The projection $\operatorname{Res}_{\Delta} f(z)$ of a function $f(z)$ is a function of z that we call the Jeffrey-Kirwan residue of f. By definition, this function can be expressed as a linear combination of the simple fractions ϕ_{σ}. The main property of the map $\operatorname{Res}_{\Delta}$ is that it vanishes on derivatives, so that for $v \in V, f, g \in R_{\Delta}$,

$$
\begin{equation*}
\operatorname{Res}_{\Delta}((\partial(v) f) g)=-\operatorname{Res}_{\Delta}(f(\partial(v) g)) \tag{2}
\end{equation*}
$$

If $o \sigma \in O \mathscr{B}(\Delta)$ is an ordered basis, an important functional Res ${ }^{o \sigma}$ can be defined on R_{Δ} : the iterated residue with respect to the ordered basis $o \sigma$. If we write an element $z \in V$ on the basis $o \sigma=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ as $z=\left(z_{1}, \ldots, z_{r}\right)$, then

$$
\operatorname{Res}^{o \sigma}(f)=\operatorname{Res}_{z_{1}=0}\left(\operatorname{Res}_{z_{2}=0} \cdots\left(\operatorname{Res}_{z_{r}=0} f\left(z_{1}, z_{2}, \ldots, z_{r}\right)\right) \cdots\right) .
$$

The map Res ${ }^{\sigma \sigma}$ depends on the order $o \sigma$ chosen on σ and not only on the basis σ underlying $o \sigma$. The restriction of the functional $\operatorname{Res}^{o \sigma}$ to S_{Δ} is called $r^{o \sigma}$. We have

$$
\begin{equation*}
\operatorname{Res}^{o \sigma}=r^{o \sigma} \operatorname{Res}_{\Delta} \tag{3}
\end{equation*}
$$

Indeed, we have only to check that Res ${ }^{o \sigma}$ vanishes on derivatives. If $o \sigma=\left(\alpha_{1}, \alpha_{2}, \ldots\right.$, α_{r}) and $z=\left(z_{1}, \ldots, z_{r}\right)$, the iterated residue $\operatorname{Res}^{\circ \sigma}$ vanishes at the step $\operatorname{Res}_{z_{j}=0}$ on $\partial R_{\Delta} / \partial z_{j}$.

Recall the following definition from A. Szenes (see [3, Definition 3.3]).
Definition 4. A diagonal basis is a subset $O B$ of $O \mathscr{B}(\Delta)$ such that the following are true.
(1) The set of underlying (unordered) bases forms a basis B of $\mathscr{B}(\Delta)$.
(2) The dual basis to the basis $\left(\phi_{\sigma}, o \sigma \in O B\right)$ is the set of linear forms ($r^{\circ \sigma}$, $o \sigma \in O B)$:

$$
r^{o \tau}\left(\phi_{\sigma}\right)=\delta_{\sigma}^{\tau} .
$$

In [3, Proposition 3.4], it is proved that a total order on Δ gives rise to a diagonal basis. (This is proved again in more detail in [1, Proposition 14].)

In the 1-dimensional case, $S_{\Delta}=\mathbb{C} z^{-1}$, and the space $G=\sum_{k \leq-1} \mathbb{C} z^{k}$ of negative Laurent series is the space obtained from the function $1 / z$ by successive derivations. In the case of several variables, we can also characterize the space generated by simple fractions under differentiation.
Let κ be a sequence of (not necessarily distinct) elements of Δ. The sequence κ is called generating if the $\alpha \in \kappa$ generate the vector space V^{*}.
We denote by G_{Δ} the subspace of R_{Δ} spanned by the

$$
\phi_{\kappa}:=\frac{1}{\prod_{\alpha \in \kappa} \alpha},
$$

where κ is a generating sequence. Finally, we denote by $S(V)$ the ring of differential operators on V, with constant coefficients. This ring acts on $S\left(V^{*}\right)$ and on R_{Δ}.

Proposition 5 [1, Theorem 1]. The space G_{Δ} is the $S(V)$-submodule of R_{Δ} generated by S_{Δ}.
For example, if $\Delta=\left\{z_{1}, z_{2}, z_{1}+z_{2}\right\}$, we have

$$
\frac{1}{z_{1} z_{2}\left(z_{1}+z_{2}\right)}=-\frac{\partial}{\partial z_{1}}\left(\frac{1}{z_{1} z_{2}}\right)+\left(\frac{\partial}{\partial z_{1}}-\frac{\partial}{\partial z_{2}}\right)\left(\frac{1}{z_{1}\left(z_{1}+z_{2}\right)}\right) .
$$

In particular, every element of G_{Δ} can be expressed as a linear combination of elements

$$
\frac{1}{\prod_{\alpha \in \sigma} \alpha^{n_{\alpha}}}
$$

where σ is a basis and the n_{α} are positive integers.
For example, the above equality is equivalent to

$$
\frac{1}{z_{1} z_{2}\left(z_{1}+z_{2}\right)}=\frac{1}{z_{1}^{2} z_{2}}-\frac{1}{z_{1}^{2}\left(z_{1}+z_{2}\right)}
$$

The ring $S\left(V^{*}\right)$ operates by multiplication on R_{Δ}. It is also useful to consider the action of the ring $\mathscr{D}(V)$ of differential operators with polynomial coefficients, generated by $S(V)$ and $S\left(V^{*}\right)$. The following lemma is an obvious corollary of the description of G_{Δ}.

Lemma 6. The space R_{Δ} is generated by G_{Δ} as an $S\left(V^{*}\right)$-module. It is generated by S_{Δ} as a $\mathscr{D}(V)$-module.

Consider now the space 0 of holomorphic functions on V defined in a neighborhood of zero. Let $0_{\Delta}=\Delta^{-1} \mathbb{O}$ be the space of meromorphic functions in a neighborhood of zero, with products of elements of Δ as denominators. The space \mathcal{O}_{Δ} is a module for the action of differential operators with constant coefficients. Via the Taylor series at the origin of elements of \mathcal{O}, the residue $\operatorname{Res}_{\Delta} f(z)$ still has a meaning if $f(z) \in \mathbb{O}_{\Delta}$; indeed, $\operatorname{Res}_{\Delta} f(z)=0$ if $f \in R_{\Delta}$ is homogeneous of degree not equal to $-r$.

If $y \in V$ is sufficiently near zero and $f \in 0_{\Delta}$, the function

$$
(\mathscr{T}(y) f)(z):=f(z-y)
$$

is still an element of \mathscr{O}_{Δ}. Moreover, if y is regular, then $f(z-y)$ is defined for $z=0$ and thus is an element of 0 .

If $f \in R_{\Delta}$, we denote by $m(f)$ the operator of multiplication by f :

$$
(m(f) \phi)(z):=f(z) \phi(z)
$$

It operates on O_{Δ}. Finally, we denote by C the operator

$$
(C f)(z):=f(-z)
$$

on O_{Δ}.
Theorem 7 (Kernel theorem). Let $A: R_{\Delta} \rightarrow 0_{\Delta}$ be an operator commuting with the action of differential operators with constant coefficients. For $y \in V$ regular, sufficiently near zero, and for $f \in G_{\Delta}$, we have the formula

$$
(A f)(y)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m(f) C \mathscr{T}(y) A \operatorname{Res}_{\Delta}\right)
$$

More explicitly, choose a basis B of $\mathscr{B}(\Delta)$, and let $\left(\phi^{\sigma}, \sigma \in B\right)$ be the basis of S_{Δ}^{*} dual to the basis $\left(\phi_{\sigma}, \sigma \in B\right)$ of S_{Δ}. Then we have the kernel formula

$$
(A f)(y)=\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}(y-z)\right)\right\rangle
$$

where $A_{\sigma}(z)=A\left(\phi_{\sigma}\right)(z)$.
Concretely, this formula has the following meaning. Let f be homogeneous of degree d. We fix y regular and small. The function $z \mapsto A_{\sigma}(y-z)$ is defined near $z=0$. The Jeffrey-Kirwan residue $\operatorname{Res}_{\Delta}$ of the function $z \mapsto f(z) A_{\sigma}(y-z)$ is a function of z belonging to the space S_{Δ}. We pair it with the linear form ϕ^{σ} on S_{Δ}, and we obtain a certain complex number depending on y. More precisely, consider the Taylor expansion

$$
A_{\sigma}(y-z)=A_{\sigma}(y)+\sum_{j=1}^{\infty} A_{\sigma}^{j}(y, z)
$$

where $A_{\sigma}^{j}(y, z)$ is the part of the Taylor expansion at zero of the holomorphic function $z \mapsto A_{\sigma}(y-z)$, which is homogeneous of degree j in z. We have

$$
A_{\sigma}^{j}(y, z)=(-1)^{j} \sum_{(k),|(k)|=j} A_{\sigma}^{(k)}(y) \frac{z^{(k)}}{(k)!}
$$

where $(k)=\left(k_{1}, \ldots, k_{r}\right)$ is a multi-index, and $A_{\sigma}^{(k)}(y)=\left((\partial / \partial y)^{(k)} A_{\sigma}\right)(y)$. Then, as the Jeffrey-Kirwan residue vanishes on homogeneous terms of degree not equal to $-r$, we obtain

$$
\begin{aligned}
\operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}(y-z)\right) & =\operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}^{-d-r}(y, z)\right) \\
& =(-1)^{d+r} \sum_{(k),|(k)|=-d-r} A_{\sigma}^{(k)}(y) \operatorname{Res}_{\Delta}\left(f(z) \frac{z^{(k)}}{(k)!}\right)
\end{aligned}
$$

Thus, $\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}(y-z)\right)\right\rangle$ is equal to

$$
(-1)^{d+r} \sum_{(k),|(k)|=-d-r} A_{\sigma}^{(k)}(y)\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z) \frac{z^{(k)}}{(k)!}\right)\right\rangle .
$$

Set $c_{\sigma}^{(k)}(f)=\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z)\left(z^{(k)} /(k)!\right)\right)\right\rangle$. Let $P_{\sigma}^{f}(\partial / \partial y)$ be the differential operator with constant coefficients defined by

$$
P_{\sigma}^{f}\left(\frac{\partial}{\partial y}\right)=(-1)^{d+r} \sum_{(k),|(k)|=-d-r} c_{\sigma}^{(k)}(f)\left(\frac{\partial}{\partial y}\right)^{(k)}
$$

Then P_{σ}^{f} depends linearly on f, and

$$
\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}(y-z)\right)\right\rangle=\left(P_{\sigma}^{f}\left(\frac{\partial}{\partial y}\right) A_{\sigma}\right)(y) .
$$

The claim of the theorem is that

$$
(A f)(y)=\sum_{\sigma \in B} P_{\sigma}^{f}\left(\frac{\partial}{\partial y}\right) \cdot A_{\sigma}(y)
$$

We now prove this theorem.
Proof. Define an operator $A^{\prime}: R_{\Delta} \rightarrow \mathbb{O}_{\Delta}$ by

$$
\left(A^{\prime} f\right)(y)=\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}(y-z)\right)\right\rangle
$$

We first check that A^{\prime} commutes with the action of differential operators with constant coefficients. Using the equation

$$
\left(\partial_{y}(v) \phi\right)(y-z)=-\left(\partial_{z}(v) \phi\right)(y-z)
$$

and the main property (2) of $\operatorname{Res}_{\Delta}$, we obtain

$$
\begin{aligned}
\partial_{y}(v) \cdot\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z) A_{\sigma}(y-z)\right)\right\rangle & =\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z)\left(\partial_{y}(v) \cdot A_{\sigma}(y-z)\right)\right)\right\rangle \\
& =-\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z)\left(\partial_{z}(v) \cdot A_{\sigma}(y-z)\right)\right)\right\rangle \\
& =\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(\left(\partial_{z}(v) \cdot f\right) A_{\sigma}(y-z)\right)\right\rangle .
\end{aligned}
$$

It remains to see that A and A^{\prime} coincide on S_{Δ}. For this, we use the following formula. If P is a polynomial and ϕ a simple fraction, then

$$
\begin{equation*}
\operatorname{Res}_{\Delta}(P \phi)=P(0) \phi \tag{4}
\end{equation*}
$$

To see this, recall that the function ϕ is homogeneous of degree $-r$. As $P \in S\left(V^{*}\right)$, $P-P(0)$ is a sum of homogeneous terms of positive degree. Thus, for homogeneity reasons, $\operatorname{Res}_{\Delta}((P-P(0)) \phi)=0$.

Let y be regular, and let $\sigma, \tau \in B$. As the function $z \rightarrow A_{\sigma}(y-z)$ is an element of 0 , by formula (4) we obtain

$$
\operatorname{Res}_{\Delta}\left(\phi_{\tau}(z) A_{\sigma}(y-z)\right)=A_{\sigma}(y) \phi_{\tau}(z)
$$

Thus,

$$
\begin{aligned}
A^{\prime}\left(\phi_{\tau}\right)(y) & =\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(\phi_{\tau}(z) A_{\sigma}(y-z)\right)\right\rangle \\
& =\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \phi_{\tau}\right\rangle A_{\sigma}(y)=\sum_{\sigma \in B} \delta_{\sigma}^{\tau} A_{\sigma}(y)=A_{\tau}(y)=A\left(\phi_{\tau}\right)(y)
\end{aligned}
$$

Choosing a diagonal basis $O B$ and using equation (3), we obtain an iterated residue formula for $(A f)(y)$.

Corollary 8. For any diagonal basis $O B$ of $\mathscr{B}(\Delta)$, we have, for $f \in G_{\Delta}$,

$$
(A f)(y)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(f(z) A_{\sigma}(y-z)\right)
$$

where $A_{\sigma}(z)=A\left(\phi_{\sigma}\right)(z)$.
Corollary 8 applies to the identity operator $A: R_{\Delta} \rightarrow R_{\Delta}$. If $f \in G_{\Delta}$, we obtain $f(y)=\sum_{o \sigma \in O B} \operatorname{Res}^{\sigma \sigma}\left(f(z) \phi_{\sigma}(y-z)\right)$. But if $f \in N G_{\Delta}$, then clearly $\operatorname{Res}^{\sigma \sigma}(f(z)$ $\left.\phi_{\sigma}(y-z)\right)=0$, as the Taylor series of $f(z) \phi_{\sigma}(y-z)$ at $z=0$ is also in $N G_{\Delta}$. As a consequence, we obtain a formula for the Jeffrey-Kirwan residue as a function of iterated residues.

Lemma 9. For any $f \in R_{\Delta}$, we have

$$
\left(\operatorname{Res}_{\Delta} f\right)(y)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}(f) \phi_{\sigma}(y)
$$

Similarly, if $Z: R_{\Delta} \rightarrow \mathbb{O}$ is an operator commuting with the action of differential operators with constant coefficients, the formula

$$
Z(f)(y)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m(f) C \mathscr{T}(y) Z \operatorname{Res}_{\Delta}\right)
$$

is valid for all elements $y \in V$ sufficiently near zero and for all $f \in G_{\Delta}$. In particular, we have the following proposition.

Proposition 10. Let $Z: R_{\Delta} \rightarrow \mathbb{O}$ be an operator commuting with the action of differential operators with constant coefficients. Then we have, for $f \in G_{\Delta}$,

$$
Z(f)(0)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m(f) C Z \operatorname{Res}_{\Delta}\right)
$$

where $(C Z)(\phi)(z)=Z(\phi)(-z)$.
Choosing a diagonal basis of $O \mathscr{B}(\Delta)$, we can express the preceding formula as a residue formula in several variables:

$$
Z(f)(0)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(f(z) Z_{\sigma}(-z)\right)
$$

with $Z_{\sigma}(z)=Z\left(\phi_{\sigma}\right)(z)$.
For later use, we prove a vanishing property of the linear form Res ${ }^{o \sigma}$. Let $o \sigma$ be an ordered basis. We write $o \sigma=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ and $z=\left(z_{1}, z_{2}, \ldots, z_{r}\right)$. Set $o \sigma^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{r}\right)$ and $z^{\prime}=\left(z_{2}, \ldots, z_{r}\right)$; then $z=\left(z_{1}, z^{\prime}\right)$. Let $\psi\left(z^{\prime}\right)$ in $0_{\Delta^{\prime}}$ be a meromorphic function with a product of linear forms $\alpha\left(z^{\prime}\right)$, where $\alpha \in \Delta$ is not a multiple of α_{1}, as a denominator.

Lemma 11. For any $f \in G_{\Delta}$ and for any $\psi \in \mathcal{O}_{\Delta^{\prime}}$,

$$
\operatorname{Res}^{o \sigma}\left(\frac{1}{z_{1}} f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)\right)=0
$$

Proof. We have

$$
\operatorname{Res}^{o \sigma}\left(\frac{1}{z_{1}} f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)\right)=\operatorname{Res}_{z_{1}=0}\left(\frac{1}{z_{1}} \operatorname{Res}^{o \sigma^{\prime}}\left(f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)\right)\right)
$$

In computing $\operatorname{Res}^{\sigma \sigma^{\prime}}\left(f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)\right)$, the variable z_{1} is fixed to a nonzero value. The result $\operatorname{Res}^{o \sigma^{\prime}}\left(f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)\right)$ is a meromorphic function of z_{1}. It is thus sufficient to prove that $\operatorname{Res}^{o \sigma^{\prime}}\left(f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)\right)$ belongs to the space $G=\sum_{k \leq-1} \mathbb{C} z_{1}^{k}$.

We check this for $f=\phi_{\kappa}$, where

$$
\phi_{\kappa}(z)=\frac{1}{\prod_{\alpha \in \kappa}\langle\alpha, z\rangle}
$$

and κ is a generating sequence. Let

$$
\kappa_{1}:=\left\{\alpha \in \kappa,\left\langle\alpha,\left(z_{1}, 0\right)\right\rangle \neq 0\right\}
$$

and

$$
\kappa^{\prime}=\left\{\alpha \in \kappa,\left\langle\alpha,\left(z_{1}, 0\right)\right\rangle=0\right\} .
$$

As κ is generating, the set κ_{1} is nonempty. We fix $z_{1} \neq 0$. We have

$$
\phi_{\kappa}\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)=\phi_{\kappa_{1}}\left(z_{1}, z^{\prime}\right) \phi_{\kappa^{\prime}}\left(z^{\prime}\right) \psi\left(z^{\prime}\right)
$$

and $\phi_{\kappa^{\prime}} \in \mathcal{O}_{\Delta^{\prime}}$. For $\alpha \in \kappa_{1}$, we set $\left\langle\alpha,\left(z_{1}, z^{\prime}\right)\right\rangle=c_{\alpha} z_{1}+\left\langle\beta, z^{\prime}\right\rangle$, with $c_{\alpha} \neq 0$. We consider the Taylor expansion at $z^{\prime}=0$ of the holomorphic function of z^{\prime} :

$$
\frac{1}{\left\langle\alpha,\left(z_{1}, z^{\prime}\right)\right\rangle}=\frac{1}{c_{\alpha} z_{1}+\left\langle\beta, z^{\prime}\right\rangle}=\frac{1}{c_{\alpha} z_{1}\left(1+\left\langle\beta, z^{\prime}\right\rangle /\left(c_{\alpha} z_{1}\right)\right)}
$$

This is of the form

$$
\sum_{k=1}^{\infty} z_{1}^{-k} P_{k-1}\left(z^{\prime}\right)
$$

where $P_{k-1}\left(z^{\prime}\right)$ is homogeneous of degree $k-1$ in z^{\prime}. Let $n=\left|\kappa_{1}\right|$; then $n \geq 1$. We see that the function

$$
z^{\prime} \longmapsto \phi_{\kappa_{1}}\left(z_{1}, z^{\prime}\right)=\frac{1}{\prod_{\alpha \in \kappa_{1}}\left\langle\alpha,\left(z_{1}, z^{\prime}\right)\right\rangle}
$$

has a Taylor expansion of the form

$$
\sum_{k \geq n} z_{1}^{-k} Q_{k-1}\left(z^{\prime}\right)
$$

where $Q_{k-1}\left(z^{\prime}\right)$ is homogeneous of degree $k-1$ in z^{\prime}. Thus

$$
\operatorname{Res}^{o \sigma^{\prime}}\left(\phi_{\kappa_{1}}\left(z_{1}, z^{\prime}\right) \phi_{\kappa^{\prime}}\left(z^{\prime}\right) \psi\left(z^{\prime}\right)\right)=\sum_{k \geq n} z_{1}^{-k} \operatorname{Res}^{o \sigma^{\prime}}\left(Q_{k-1}\left(z^{\prime}\right) \phi_{\kappa^{\prime}}\left(z^{\prime}\right) \psi\left(z^{\prime}\right)\right)
$$

Via the Taylor series at $z^{\prime}=0$, the function $\phi_{\kappa^{\prime}}\left(z^{\prime}\right) \psi\left(z^{\prime}\right)$ can be expressed as an infinite sum of homogeneous elements with finitely many negative degrees.As the iterated residue $\operatorname{Res}^{\sigma \sigma^{\prime}}$ vanishes on elements ofdegree not equal to $-(r-1)$ and as
$Q_{k-1}\left(z^{\prime}\right)$ is homogeneous of degree $k-1$, we see that the sum is finite and that $\operatorname{Res}^{\sigma \sigma^{\prime}}\left(\phi_{\kappa_{1}}\left(z_{1}, z^{\prime}\right) \phi_{\kappa^{\prime}}\left(z^{\prime}\right) \psi\left(z^{\prime}\right)\right)$ is in the space G as claimed.
3. Eisenstein series. Results of Section 2 are used for a complex vector space that is the complexification of a real vector space. Thus, we slightly change the notation in this section.

Let V be a real vector space of dimension r equipped with a lattice N. The complex vector space $V_{\mathbb{C}}$ is the space to which we apply the results of Section 2.

We consider the dual lattice $M=N^{*}$ to N. We consider the compact torus $T=$ $i V /(2 i \pi N)$ and its complexification $T_{\mathbb{C}}=V_{\mathbb{C}} /(2 i \pi N)$. The projection map $V_{\mathbb{C}} \rightarrow$ $T_{\mathbb{C}}$ is denoted by the exponential notation $v \rightarrow e^{v}$. If $\left\{e^{1}, e^{2}, \ldots, e^{r}\right\}$ is a \mathbb{Z}-basis of N, we write an element of $V_{\mathbb{C}}$ as $z=z_{1} e^{1}+z_{2} e^{2}+\cdots+z_{r} e^{r}$ with $z_{j} \in \mathbb{C}$. We can identify $T_{\mathbb{C}}$ with $\mathbb{C}^{*} \times \mathbb{C}^{*} \times \cdots \times \mathbb{C}^{*}$ by $z \mapsto\left(e^{z_{1}}, e^{z_{2}}, \ldots, e^{z_{r}}\right)$.

If $m \in M$, we denote by e^{m} the character of T defined by $\left\langle e^{m}, e^{v}\right\rangle=e^{\langle m, v\rangle}$. We extend e^{m} to a holomorphic character of the complex torus $T_{\mathbb{C}}$. The ring of holomorphic functions on $T_{\mathbb{C}}$ generated by the functions e^{m} is denoted by $R(T)$. A quotient of two elements of $R(T)$ is called a rational function on the complex torus $T_{\mathbb{C}}$. Via the exponential map $V_{\mathbb{C}} \rightarrow T_{\mathbb{C}}$, a function on $T_{\mathbb{C}}$ is sometimes identified with a function on $V_{\mathbb{C}}$, invariant under translation by the lattice $2 i \pi N$. If $\left\{e^{1}, e^{2}, \ldots, e^{r}\right\}$ is a \mathbb{Z}-basis of N, a rational function on $T_{\mathbb{C}}$ written in exponential coordinates is a rational function of $e^{z_{1}}, e^{z_{2}}, \ldots, e^{z_{r}}$. We briefly say that it is a rational function of e^{z}.

Let us consider a finite set Δ of nontrivial characters of T. We identify Δ with a subset of M; for $\alpha \in \Delta$, we denote by e^{α} the corresponding character of $T_{\mathbb{C}}$.

Definition 12. We denote by $R(T)_{\Delta}$ the subring of rational functions on T generated by $R(T)$ and the inverses of the functions $1-e^{-\alpha}$ with $\alpha \in \Delta$.

Observe that R_{Δ} is left unchanged when each element of Δ is replaced by a nonzero scalar multiple, but that $R(T)_{\Delta}$ strictly increases when (say) each $\alpha \in \Delta$ is replaced by 2α. We assume from now on that all elements of Δ are indivisible in the lattice M.

Via the exponential map, we consider elements of $R(T)_{\Delta}$ as periodic meromorphic functions on $V_{\mathbb{C}}$. On $V_{\mathbb{C}}$, the function

$$
\frac{\langle\alpha, z\rangle}{1-e^{-\langle\alpha, z\rangle}}
$$

is defined at $z=0$, so it is an element of \mathbb{O}. Writing

$$
\frac{1}{1-e^{-\langle\alpha, z\rangle}}=\frac{1}{\langle\alpha, z\rangle} \frac{\langle\alpha, z\rangle}{1-e^{-\langle\alpha, z\rangle}}
$$

we see that $R(T)_{\Delta}$ is contained in 0_{Δ}. We see furthermore from the formula

$$
\frac{d}{d z} \frac{1}{1-e^{-z}}=\frac{1}{\left(1-e^{z}\right)\left(1-e^{-z}\right)}=\frac{-e^{-z}}{\left(1-e^{-z}\right)^{2}}
$$

that $R(T)_{\Delta} \subset \mathcal{O}_{\Delta}$ is stable under differentiation.

Our aim is to find a natural map from R_{Δ} to $R(T)_{\Delta}$ commuting with the action of differential operators with constant coefficients. In particular, we want to force a rational function of $z \in V_{\mathbb{C}}$ to become periodic, so that it is natural to define the Eisenstein series

$$
E(f)(z)=\sum_{n \in N} f(z+2 i \pi n)
$$

We need to be more careful, as the sum is usually not convergent for an arbitrary $f \in R_{\Delta}$. We introduce an oscillating factor $e^{\langle t, 2 i \pi n\rangle}$ with $t \in V^{*}$ in front of each term of this infinite sum.

Let

$$
U_{\Delta}=\left\{z \in V_{\mathbb{C}},\langle\alpha, z+2 i \pi n\rangle \neq 0 \text { for all } n \in N \text { and for all } \alpha \in \Delta\right\}
$$

Then $R(T)_{\Delta}$ consists of periodic holomorphic functions on U_{Δ}.
Let $f \in R_{\Delta}$; then $f(z+2 i \pi n)$ is defined for each $n \in N$ if $z \in U_{\Delta}$. For $z \in U_{\Delta}$, we consider the function on V^{*} defined by

$$
t \longmapsto \sum_{n \in N} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

If $n \mapsto f(z+2 i \pi n)$ is sufficiently decreasing at infinity, the series is absolutely convergent and sums up to a continuous function of t with value at $t=0$ equal to

$$
\sum_{n \in N} f(z+2 i \pi n)
$$

In any case, it is easy to see that this series of functions of t converges to a generalized function of t.

Proposition 13. For each $f \in R_{\Delta}$ and $z \in U_{\Delta}$, the function on V^{*} defined by

$$
t \longmapsto \sum_{n \in N} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

is well defined as a generalized function of t, which depends holomorphically on z for z in the open set U_{Δ}.

Proof. Indeed, if $s(t)$ is a smooth function on V^{*} with compact support, consider the series

$$
\sum_{n \in N} f(z+2 i \pi n) \int_{V^{*}} e^{\langle t, z+2 i \pi n\rangle} s(t) d t=\sum_{n \in N} c(z, n) f(z+2 i \pi n)
$$

The coefficient

$$
c(z, n)=\int_{V^{*}} e^{2 i \pi\langle t, n\rangle} e^{\langle t, z\rangle} s(t) d t
$$

is rapidly decreasing in n, as the function $t \mapsto e^{\langle t, z\rangle} s(t)$ is smooth and compactly supported. Thus, $c(z, n) f(z+2 i \pi n)$ is also a rapidly decreasing function of n.

Furthermore, $c(z, n) f(z+2 i \pi n)$ depends holomorphically on $z \in U_{\Delta}$. So the result of the summation

$$
\sum_{n \in N} c(z, n) f(z+2 i \pi n)
$$

exists and is a holomorphic function of z.
We write

$$
E(f)(t, z)=\sum_{n \in N} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

for this generalized function of t depending holomorphically on z. We analyze this function of $(t, z), t \in V^{*}, z \in U_{\Delta}$.

We first summarize some of the obvious properties of $E(f)(t, z)$.
Proposition 14. The following equations are satisfied.
(1) For every $P \in S\left(V^{*}\right)$ and $f \in R_{\Delta}$,

$$
E(P f)(t, z)=P\left(\partial_{t}\right) E(f)(t, z)
$$

(2) For every $v \in V$ and $f \in R_{\Delta}$,

$$
E(\partial(v) f)(t, z)=\partial_{z}(v) E(f)(t, z)-\langle t, v\rangle E(f)(t, z)
$$

(3) For every $m \in M$ and $z \in U_{\Delta}$,

$$
E(f)(t+m, z)=e^{\langle m, z\rangle} E(f)(t, z)
$$

As R_{Δ} is generated by S_{Δ} under the action of $S(V)$ and $S\left(V^{*}\right)$, we see that the operator E is completely determined by the functions $E\left(\phi_{\sigma}\right)(t, z)(\sigma \in \mathscr{B}(\Delta))$.

A wall of Δ is a hyperplane of V^{*} generated by $r-1$ linearly independent vectors of Δ. We consider the system of affine hyperplanes generated by the walls of Δ together with their translates by M (the dual lattice of N). We denote by V_{Δ}^{*},areg the complement of the union of these affine hyperplanes. A connected component of $V_{\Delta, \text { areg }}^{*}$ is called an alcove and is denoted by \mathfrak{a}.

Proposition 15. The function $E(f)(t, z)$ is smooth when t varies on $V_{\Delta, \text { areg }}^{*}$ and when $z \in U_{\Delta}$. More precisely, let \mathfrak{a} be an alcove. Assume that f is homogeneous of degree d. Then, on the open set $\mathfrak{a} \times U_{\Delta}$, the function $E(f)(t, z)$ is a polynomial in t of degree at most $-d-r$, with coefficients in $R(T)_{\Delta}$.

Proof. Consider first the one-variable case. The set $V_{\Delta \text {,areg }}^{*}$ is $\mathbb{R}-\mathbb{Z}$. Let $[t]$ be the integral part of t. Fix $z \in \mathbb{C}-2 i \pi \mathbb{Z}$. Consider the locally constant function of $t \in \mathbb{R}-\mathbb{Z}$ defined by

$$
t \longmapsto \frac{e^{[t] z}}{1-e^{-z}}
$$

We extend this function as a locally L^{1}-function on \mathbb{R} (defined except on the set \mathbb{Z} of measure zero).

Lemma 16. We have the equality of generalized functions of t :

$$
\sum_{n \in \mathbb{Z}} \frac{e^{t(z+2 i \pi n)}}{z+2 i \pi n}=\frac{e^{[t] z}}{1-e^{-z}}
$$

Proof. We compute the derivative in t of the left-hand side. It is equal to

$$
\sum_{n \in \mathbb{Z}} e^{t(z+2 i \pi n)}=e^{t z} \delta_{\mathbb{Z}}(t)
$$

where $\delta_{\mathbb{Z}}$ is the delta function of the set of integers.
We compute the derivative in t of the right-hand side. This function of t is constant on each interval $(n, n+1)$. The jump at the integer n is

$$
\frac{e^{n z}}{1-e^{-z}}-\frac{e^{(n-1) z}}{1-e^{-z}}=e^{n z}
$$

It follows that the derivative in t of the right-hand side is also equal to $e^{t z} \delta_{\mathbb{Z}}(t)$. Thus,

$$
\sum_{n \in \mathbb{Z}} \frac{e^{t(z+2 i \pi n)}}{z+2 i \pi n}=c(z)+\frac{e^{[t] z}}{1-e^{-z}}
$$

where $c(z)$ is a constant. We verify that $c(z)$ is equal to zero by using periodicity properties in t. It is clear that

$$
e^{-t z} \sum_{n \in \mathbb{Z}} \frac{e^{t(z+2 i \pi n)}}{z+2 i \pi n}=\sum_{n \in \mathbb{Z}} \frac{e^{2 i \pi n t}}{z+2 i \pi n}
$$

is a periodic function of t as is

$$
e^{-t z} \frac{e^{[t] z}}{1-e^{-z}}=\frac{e^{([t]-t) z}}{1-e^{-z}}
$$

It follows that $e^{-t z} c(z)$ is also a periodic function of t. This implies $c(z)=0$.
Consider now, for $k \in \mathbb{Z}$,

$$
E_{k}(t, z)=\sum_{n \in \mathbb{Z}} e^{t(z+2 i \pi n)}(z+2 i \pi n)^{k}
$$

We just saw that

$$
E_{-1}(t, z)=\frac{e^{[t] z}}{1-e^{-z}}
$$

To determine $E_{k}(t, z)$ for $k \leq-1$, we use the differential equation in z,

$$
\partial_{z} E_{k}(t, z)=t E_{k}(t, z)+k E_{k-1}(t, z)
$$

Using decreasing induction over k, we see that $E_{k}(t, z)$ is an L^{1}-function of t, equal to a polynomial function of t of degree $-k-1$ on each interval $(n, n+1)$ and with rational functions of e^{z} as coefficients. For example, we obtain the value of the convergent series

$$
\sum_{n} \frac{e^{t(z+2 i \pi n)}}{(z+2 i \pi n)^{2}}=(t-[t]) \frac{e^{[t] z}}{1-e^{-z}}-\frac{e^{[t] z}}{\left(1-e^{-z}\right)\left(1-e^{z}\right)}
$$

When $k \geq 0$, we use the differential equation

$$
\partial_{t} E_{k}(t, z)=E_{k+1}(t, z)
$$

so that, as we have already used,

$$
E_{0}(t, z)=\sum_{n \in \mathbb{Z}} e^{t(z+2 i \pi n)}=e^{t z} \delta_{\mathbb{Z}}(t)
$$

More generally, $E_{k}(t, z)=\left(\partial_{t}\right)^{k}\left(e^{t z} \delta_{\mathbb{Z}}(t)\right)$ is supported on \mathbb{Z}; in particular, it is identically zero on $\mathbb{R}-\mathbb{Z}$.

We return to the proof of Proposition 15. For a simple fraction ϕ, consider the function

$$
t \longmapsto E(\phi)(t, z)
$$

We first prove that it is a locally L^{1}-function, which is constant when t varies in an alcove.

Let $\sigma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ be a basis of Δ. Let $t \in V^{*}$. If $t=\sum_{j} t_{j} \alpha_{j}$ is the decomposition of t on the basis σ, set $[t]_{\sigma}=\sum_{j}\left[t_{j}\right] \alpha_{j}$. The function $t \mapsto[t]_{\sigma}$ is constant when t varies in an alcove. Consider the sublattice

$$
M_{\sigma}=\bigoplus_{\alpha \in \sigma} \mathbb{Z} \alpha \subseteq M
$$

We say that σ is a \mathbb{Z}-basis if $M_{\sigma}=M$. In general, the quotient M / M_{σ} is a finite set; let \mathscr{R} be a set of representatives of this quotient. We can choose \mathscr{R} in the following standard way. We consider the box

$$
Q_{\sigma}=\bigoplus_{\alpha \in \sigma}[0,1) \alpha=\left\{u \in V^{*},[u]_{\sigma}=0\right\}
$$

Then we can take

$$
\mathscr{R}=Q_{\sigma} \cap M=\left\{u \in M,[u]_{\sigma}=0\right\} .
$$

Define

$$
\mathscr{R}(t, \sigma)=\left(t-Q_{\sigma}\right) \cap M=\left\{u \in M,[t-u]_{\sigma}=0\right\} .
$$

The set $\mathscr{R}(t, \sigma)$ is also a set of representatives of M / M_{σ}. If σ is a \mathbb{Z}-basis of M, this set is reduced to the single element $[t]_{\sigma}$. Remark that the set $\mathscr{R}(t, \sigma)$ is constant when t varies in an alcove \mathfrak{a}. We denote it by $\mathscr{R}(\mathfrak{a}, \sigma)$.

Definition 17. If \mathfrak{a} is an alcove and if σ is a basis of Δ, we set

$$
F_{\sigma}^{\mathfrak{a}}=\left|\frac{M}{M_{\sigma}}\right|^{-1} \frac{\sum_{m \in \mathscr{R}(\mathbf{a}, \sigma)} e^{m}}{\prod_{\alpha \in \sigma}\left(1-e^{-\alpha}\right)} .
$$

Thus, an alcove \mathfrak{a} together with a basis $\sigma \in \mathscr{B}(\Delta)$ produces a particular element $F_{\sigma}^{\mathfrak{a}}$ of $R(T)_{\Delta}$.

Consider on the set $V_{\Delta, \text { areg }}^{*}$ the locally constant function of t defined by $F_{\sigma}(t, z)=$ $F_{\sigma}^{\mathfrak{a}}(z)$ when t is in the alcove \mathfrak{a}. This defines a locally L^{1}-function of t, still denoted by $F_{\sigma}(t, z)$, defined except on the set $V^{*}-V_{\Delta, \text { areg }}^{*}$ of measure zero. This locally L^{1}-function of t defines a generalized function of t which depends holomorphically on z.

LEMMA 18. We have the equality of generalized functions of $t \in V^{*}$:

$$
E\left(\phi_{\sigma}\right)(t, z)=F_{\sigma}(t, z)
$$

Proof. If σ is a \mathbb{Z}-basis of M, this follows from the formula in dimension 1. In general, we consider $M_{\sigma} \subseteq M$ and the dual lattice $N_{\sigma}=M_{\sigma}^{*}$. Then $N \subseteq N_{\sigma}$. We set

$$
E_{\sigma}\left(\phi_{\sigma}\right)(t, z):=\sum_{\ell \in N_{\sigma}} e^{\langle t, z+2 i \pi \ell\rangle} \phi_{\sigma}(z+2 i \pi \ell)
$$

For any set of representatives \mathscr{R} of M / M_{σ}, we have $\sum_{u \in \mathscr{R}} e^{-\langle u, 2 i \pi \ell\rangle}=0$ if $\ell \in N_{\sigma}$ is not in N, while this sum equals $\left|M / M_{\sigma}\right|$ if $n \in N$. Thus,

$$
\begin{aligned}
E\left(\phi_{\sigma}\right)(t, z) & =\sum_{n \in N} \phi_{\sigma}(z+2 i \pi n) e^{\langle t, z+2 i \pi n\rangle} \\
& =\sum_{\ell \in N_{\sigma}} \phi_{\sigma}(z+2 i \pi \ell) e^{\langle t, z+2 i \pi \ell\rangle}\left(\left|\frac{M}{M_{\sigma}}\right|^{-1} \sum_{u \in \mathscr{R}} e^{-\langle u, 2 i \pi \ell\rangle}\right) \\
& =\left|\frac{M}{M_{\sigma}}\right|^{-1} \sum_{u \in \mathscr{R}} \sum_{\ell \in N_{\sigma}} \phi_{\sigma}(z+2 i \pi \ell) e^{\langle t-u, z+2 i \pi \ell\rangle} e^{\langle u, z\rangle} \\
& =\left|\frac{M}{M_{\sigma}}\right|^{-1} \sum_{u \in \mathscr{R}} e^{\langle u, z\rangle} E_{\sigma}\left(\phi_{\sigma}\right)(t-u, z) .
\end{aligned}
$$

This holds as an equality of generalized functions of t. Further, we have the following, by the 1-dimensional case:

$$
E_{\sigma}\left(\phi_{\sigma}\right)(t, z)=\frac{e^{\left\langle[t]_{\sigma}, z\right\rangle}}{\prod_{\alpha \in \sigma}\left(1-e^{-\langle\alpha, z\rangle}\right)} .
$$

It follows that $E\left(\phi_{\sigma}\right)(t, z)$ is a locally L^{1}-function of t, as is $E_{\sigma}\left(\phi_{\sigma}\right)$. It remains to determine the value of this function when t is in an alcove. For $m \in M_{\sigma}$, we have

$$
E_{\sigma}\left(\phi_{\sigma}\right)(t+m, z)=e^{\langle m, z\rangle} E_{\sigma}\left(\phi_{\sigma}\right)(t, z)
$$

so that the $\operatorname{sum} \sum_{u \in \mathscr{R}} e^{\langle u, z\rangle} E_{\sigma}\left(\phi_{\sigma}\right)(t-u, z)$ is independent of the choice of the system of representatives \mathscr{R} of M / M_{σ}. We choose $\mathscr{R}=\mathscr{R}(t, \sigma)$. Then

$$
E\left(\phi_{\sigma}\right)(t, z)=\left|\frac{M}{M_{\sigma}}\right|^{-1} \frac{\sum_{u \in \mathscr{R}(t, \sigma)} e^{\langle u, z\rangle}}{\prod_{\alpha \in \sigma}\left(1-e^{-\langle\alpha, z\rangle}\right)}
$$

because $[t-u]_{\sigma}=0$ for all $u \in \mathscr{R}(t, \sigma)$.
Every function $f \in R_{\Delta}$, homogeneous of degree d, is obtained from an element of S_{Δ} by the action of a differential operator with polynomial coefficients. This operator is of degree $d+r$, if multiplication by z_{j} is given degree 1 , while derivation $\partial / \partial z_{j}$ is given degree -1 . Using Proposition 14, we see that Proposition 15 follows from the fact that the function $t \mapsto E\left(\phi_{\sigma}\right)(t, z)$ is constant on each alcove.

From Proposition 15, we see that there exist functions $\phi_{(k)}^{\mathfrak{a}}(z) \in R(T)_{\Delta}$ such that we have the equality for t in the alcove \mathfrak{a} :

$$
E(f)(t, z)=\sum_{n \in N} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)=\sum_{(k)} t^{(k)} \phi_{(k)}^{\mathfrak{a}}(z)
$$

where the sum is over a finite number of multi-indices (k). This defines an operator

$$
E^{t}: R_{\Delta} \longrightarrow R(T)_{\Delta}, \quad f \longmapsto E(f)(t, z)
$$

obtained by fixing the regular value t.
The operator E^{t} satisfies the following relation, which is just relation (2) in Proposition 14: For $v \in V$ and $f \in R_{\Delta}$,

$$
E^{t}(\partial(v) f)(z)=\partial_{z}(v) E^{t}(f)(z)-\langle t, v\rangle E^{t}(f)(z)
$$

Let B be a basis of $\mathscr{B}(\Delta)$. Let $\left(\phi_{\sigma}, \sigma \in B\right)$ be the corresponding basis of S_{Δ}, and let $\left(\phi^{\sigma}, \sigma \in B\right)$ be the dual basis of S_{Δ}^{*}. For $\sigma \in B$ and an alcove \mathfrak{a}, consider the element $F_{\sigma}^{\mathfrak{a}}$ of $R(T)_{\Delta} \subset \mathbb{O}_{\Delta}$ associated to σ, \mathfrak{a}. We obtain a kernel formula for the operator E^{t}.

Theorem 19. Let $f \in G_{\Delta}$. For $y \in U_{\Delta}$ and $t \in \mathfrak{a}$, we have

$$
\begin{aligned}
E^{t}(f)(y) & =\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C \mathscr{T}(y) E^{t} \operatorname{Res}_{\Delta}\right) \\
& =\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(e^{\langle t, z\rangle} f(z) F_{\sigma}^{\mathfrak{a}}(y-z)\right)\right\rangle
\end{aligned}
$$

where $F_{\sigma}^{\mathfrak{a}}$ is given by Definition 17. Moreover, if B is the underlying basis of a diagonal basis $O B$, then

$$
E^{t}(f)(y)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(e^{\langle t, z\rangle} f(z) F_{\sigma}^{\mathfrak{a}}(y-z)\right)
$$

Proof. By a method entirely similar to the proof of Theorem 1, we see that the operator

$$
A^{t}(f)(y)=\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \operatorname{Res}_{\Delta}\left(e^{\langle t, z\rangle} f(z) F_{\sigma}^{\mathfrak{a}}(y-z)\right)\right\rangle
$$

satisfies the relation

$$
A^{t}(\partial(v) f)(z)=\partial_{z}(v) A^{t}(f)(z)-\langle t, v\rangle A^{t}(f)(z)
$$

for $v \in V, f \in R_{\Delta}$. Thus, to prove that $E^{t}=A^{t}$ on G_{Δ}, it is sufficient to prove that they coincide for $f=\phi_{\tau}$. In this case, we obtain

$$
A^{t}\left(\phi_{\tau}\right)(y)=\sum_{\sigma \in B}\left\langle\phi^{\sigma}, \phi_{\tau}(z)\right\rangle F_{\sigma}^{\mathfrak{a}}(y)=F_{\tau}^{\mathfrak{a}}(y)=E^{t}\left(\phi_{\tau}\right)(y)
$$

In view of the kernel formula for the Eisenstein series E^{t}, it is natural to introduce the following definition.

Definition 20. The constant term of the Eisenstein series E^{t} is the linear form $f \rightarrow \mathrm{CT}(f)(t)$ defined for $f \in R_{\Delta}$ and t in the alcove \mathfrak{a} by

$$
\mathrm{CT}(f)(t)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C E^{t} \operatorname{Res}_{\Delta}\right)
$$

More explicitly, if $O B$ is a diagonal basis of $\mathscr{B}(\Delta)$, then

$$
\mathrm{CT}(f)(t)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(e^{\langle t, z\rangle} f(z) F_{\sigma}^{\mathfrak{a}}(-z)\right)
$$

4. Partial Eisenstein series. Let $N_{\text {reg }}=N \cap V_{\text {reg }}$ be the set of regular elements of N. The aim of this section is to prove that the function

$$
E_{N_{\mathrm{reg}}}(f)(t, z)=\sum_{n \in N_{\mathrm{reg}}} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

is analytic in (t, z) when t is in an alcove and $z \in V_{\mathbb{C}}$ is close to zero. In the next section we prove the Szenes residue formula for

$$
E_{N_{\mathrm{reg}}}(f)(t, 0)=\sum_{n \in N_{\mathrm{reg}}} e^{\langle t, 2 i \pi n\rangle} f(2 i \pi n)
$$

Let Γ be a subset of N. We can define, for $f \in R_{\Delta}$, the generalized function of t,

$$
E_{\Gamma}(f)(t, z)=\sum_{n \in \Gamma} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

Introduce the set

$$
U_{\Delta, \Gamma}=\left\{z \in V_{\mathbb{C}},\langle\alpha, z+2 i \pi n\rangle \neq 0 \text { for all } \alpha \in \Delta \text { and } n \in \Gamma\right\}
$$

The generalized function $E_{\Gamma}(f)(t, z)$ depends holomorphically on z, when $z \in U_{\Delta, \Gamma}$.
Let W be a rational subspace of V. Then $N \cap W$ is a lattice in W. Consider, for $f \in R_{\Delta}$,

$$
E_{N \cap W}(f)(t, z)=\sum_{n \in N \cap W} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

We analyze the singularities in (t, z) of $E_{N \cap W}(f)(t, z)$. If W is zero, then $E_{\{0\}}(f)(t, z)$ $=e^{\langle t, z\rangle} f(z)$ is analytic in (t, z) when z is regular in $V_{\mathbb{C}}$. Assume that W is nonzero and consider the subspace W^{\perp} of V^{*}. Notice that if $u \in M+W^{\perp}$, we have the relation

$$
E_{N \cap W}(f)(t+u, z)=e^{\langle u, z\rangle} E_{N \cap W}(f)(t, z)
$$

It is clear that the singular set of $E_{N \cap W}(f)(t, z)$ is stable by translation by $M+W^{\perp}$. Define a (W, Δ)-wall in V^{*} as a hyperplane generated by W^{\perp} together with $\operatorname{dim} W-1$ vectors of Δ. We introduce the set $\mathscr{L}_{W, \Delta, M}^{*}$ consisting of the union of all (W, Δ)-walls and of their translates by elements of M. We define $V_{W, \Delta, \text { areg }}^{*}$ as the complement of $\mathscr{H}_{W, \Delta, M}^{*}$ in V^{*}. This set $V_{W, \Delta, \text { areg }}^{*}$ is invariant by translation by $M+W^{\perp}$.

Lemma 21. For $f \in R_{\Delta}$, the function $E_{N \cap W}(f)(t, z)$ is analytic in (t, z) when t varies on $V_{W, \Delta, \text { areg }}^{*}$ and $z \in U_{\Delta, N \cap W}$. Furthermore, if $t \in V_{W, \Delta, \text { areg }}^{*}$ and z is near zero, the function $z \mapsto E_{N \cap W}(f)(t, z)$ defines an element of 0_{Δ}.

Proof. Let σ be a basis of Δ. Although we are not able to give a nice formula for the function $E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)$, we can still obtain an inductive expression that suffices to give some information on it. Consider the set $V_{W, \sigma, \text { areg }}^{*}$, that is, the complement of the union of (W, σ)-walls together with their translates by M. Let $U_{\sigma, N \cap W}$ be the set of all $z \in V_{\mathbb{C}}$ such that $\langle\alpha, z+2 i \pi n\rangle \neq 0$ for all $\alpha \in \sigma$ and $n \in N \cap W$. The intersection of this set with a small neighborhood of zero is contained in the complement of the union of the complex hyperplanes $\left\{z \in V_{\mathbb{C}},\langle\alpha, z\rangle=0\right\}$, for $\alpha \in \sigma$.

Lemma 22. The function $E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)$ is analytic in $t \in V_{W, \sigma, \text { areg }}^{*}$ and $z \in$ $U_{\sigma, N \cap W}$. Furthermore, when $t \in V_{W, \sigma, \text { areg }}^{*}$, the function

$$
z \longmapsto\left(\prod_{\alpha \in \sigma}\langle\alpha, z\rangle\right) E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)
$$

is holomorphic at $z=0$.
We prove this by induction on the codimension of W. If $W=V$, this follows from the explicit formula for $E\left(\phi_{\sigma}\right)(t, z)$. Let α be an indivisible element of M such that W is contained in the real hyperplane

$$
H_{\alpha}=\{y \in V,\langle\alpha, y\rangle=0\} .
$$

We assume first that α is an element of σ. We number it the first vector α_{1} of the basis σ. We set $\sigma^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{r}\right), z^{\prime}=\left(z_{2}, \ldots, z_{r}\right)$, and so on; then $z=\left(z_{1}, z^{\prime}\right)$. Our subspace W is contained in $V^{\prime}=V \cap\left\{z_{1}=0\right\}$. Thus, we have

$$
E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)=\sum_{n \in N \cap W} e^{\langle t, z+2 i \pi n\rangle} \phi_{\sigma}(z+2 i \pi n)=\frac{e^{t_{1} z_{1}}}{z_{1}} E_{N^{\prime} \cap W}\left(\phi_{\sigma^{\prime}}\right)\left(t^{\prime}, z^{\prime}\right)
$$

By induction, $E_{N^{\prime} \cap W}\left(\phi_{\sigma^{\prime}}\right)\left(t^{\prime}, z^{\prime}\right)$ is analytic in $\left(t^{\prime}, z^{\prime}\right)$ for $z^{\prime} \in U_{\sigma^{\prime}, N^{\prime}}$, except if there exist $m^{\prime} \in M^{\prime}$ such that $t^{\prime}+m^{\prime}$ is in a hyperplane generated by $W^{\perp^{\prime}}$ (the orthogonal of W in V^{\prime}) and some vectors of σ^{\prime}. As $W^{\perp}=W^{\perp^{\prime}} \oplus \mathbb{R} \alpha_{1}$, we see that the singular set of $E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)$ is contained in $\mathscr{H}_{W, \sigma, M}^{*}$. Furthermore, the function

$$
z_{1} z_{2} \cdots z_{r} E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)=e^{t_{1} z_{1}} z_{2} \cdots z_{r} E_{N^{\prime} \cap W}\left(\phi_{\sigma^{\prime}}\right)\left(t^{\prime}, z^{\prime}\right)
$$

is holomorphic in z near $z=0$.
Assume now that α is not an element of σ. We add it to the system Δ if α is not an element of Δ. Writing $\alpha=\sum_{j} c_{j} \alpha_{j}$, we obtain one of the Orlik-Solomon relations of the system $\Delta \cup\{\alpha\}$,

$$
\phi_{\sigma}=\sum_{j} c_{j} \phi_{\sigma^{j}}
$$

where $\sigma^{j}=\sigma \cup\{\alpha\}-\left\{\alpha_{j}\right\}$. A $\left(W, \sigma^{j}\right)$-wall is a hyperplane of V^{*} generated by W^{\perp} and $\operatorname{dim} W-1$ vectors of σ^{j}; then these vectors are distinct from α, because $\alpha \in W^{\perp}$. Thus, all W-walls for the basis σ^{j} are also W-walls for the basis σ. By our first calculation, it follows that $E_{N \cap W}\left(\phi_{\sigma^{j}}\right)(t, z)$ is analytic when t is not on a translate of a (W, σ)-wall. Moreover, we have

$$
E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)=\sum_{j} c_{j} E_{N \cap W}\left(\phi_{\sigma^{j}}\right)(t, z)
$$

so that the function

$$
z \longmapsto\langle\alpha, z\rangle\left(\prod_{j=1}^{r}\left\langle\alpha_{j}, z\right\rangle\right) E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)
$$

is holomorphic in z in a neighborhood of zero.
By the induction hypothesis applied to $W \subseteq V^{\prime}=\{\alpha=0\}$, the function $z \mapsto$ $E_{N \cap W}\left(\phi_{\sigma}\right)(t, z)$ is holomorphic on a nonempty open subset of $V_{\mathbb{C}}^{\prime}$. So this function, considered as a function of $z \in V_{\mathbb{C}}$, has no pole along $\alpha=0$. This proves Lemma 22 and, hence, Lemma 21 when f is a simple fraction. The operator $E_{N \cap W}$ satisfies also the commutation relation of Proposition 14. Thus, using differential operators with polynomial coefficients, we obtain the statement of Lemma 21 when f is any element in R_{Δ}.

Let I be a subset of Δ, and let $W_{I}=\cap_{i \in I} H_{\alpha_{i}}$. This is a rational subspace of V, and the $\left(W_{I}, \Delta\right)$-walls are some of the walls of Δ. Then it follows from Lemma 21 that $E_{N \cap W_{I}}(f)(t, z)$ is a fortiori analytic when $t \in V_{\text {areg }}^{*}$ and $z \in U_{\Delta}$.

Definition 23. A subset Γ of N is admissible if the characteristic function of Γ is a linear combination of characteristic functions of sets $N \cap W_{I}$, where I ranges over subsets of Δ.

Then we have the following by Lemma 21.
Lemma 24. If Γ is an admissible subset of N, the function $(t, z) \mapsto E_{\Gamma}(f)(t, z)$ is analytic when $t \in V_{\Delta, \text { areg }}^{*}$ and $z \in U_{\Delta, \Gamma}$. Furthermore, when z is near zero and $t \in V_{\Delta, \text { areg }}^{*}$, the function $z \mapsto E_{\Gamma}(f)(t, z)$ defines an element of 0_{Δ}.

If Γ is an admissible subset of N, we can take the value at t of the generalized function

$$
E_{\Gamma}(f)(t, z)=\sum_{n \in \Gamma} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

provided that t is in an alcove \mathfrak{a}. Thus, for $t \in \mathfrak{a}$, we can define the operator E_{Γ}^{t} : $R_{\Delta} \rightarrow 0_{\Delta}, f \mapsto E_{\Gamma}(f)(t, z)$. Now the argument of Theorem 19 proves the following proposition.

Proposition 25. For $f \in G_{\Delta}, t \in V_{\Delta \text {, areg }}^{*}$, and $y \in U_{\Delta, \Gamma}$, we have

$$
E_{\Gamma}^{t}(f)(y)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C \mathscr{T}(y) E_{\Gamma}^{t} \operatorname{Res}_{\Delta}\right)
$$

More explicitly, if we choose a diagonal basis $O B$, then

$$
E_{\Gamma}^{t}(f)(y)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(f(z) e^{\langle t, z\rangle} F_{\Gamma, \sigma}^{t}(y-z)\right)
$$

where $F_{\Gamma, \sigma}^{t}(z)=E_{\Gamma}\left(\phi_{\sigma}\right)(t, z)$.
5. Witten series and the Szenes formula. For $f \in R_{\Delta}$, let us form the series

$$
Z(f)(t, z)=\sum_{n \in N_{\mathrm{reg}}} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

where $N_{\text {reg }}$ is the set of regular elements of N. Then $Z(f)(t, z)$ is defined as a generalized function of t. As n varies in $N_{\text {reg }}$, this generalized function of t depends holomorphically on z when z varies in a neighborhood of zero. As $N_{\text {reg }}$ is an admissible subset of N, we obtain the following from Lemma 24.

Proposition 26. For any alcove $\mathfrak{a}, Z(f)(t, z)$ is an analytic function of (t, z) when $t \in \mathfrak{a}$ and z is in a neighborhood of zero.

We have

$$
Z(f)(t, 0)=\sum_{n \in N_{\mathrm{reg}}} e^{\langle t, 2 i \pi n\rangle} f(2 i \pi n)
$$

This is well defined as a generalized function of t when t is in an alcove. If $n \mapsto$ $f(2 i \pi n)$ is sufficiently decreasing, then $Z(f)(t, 0)$ is a continuous function of t; it generalizes the Bernoulli polynomial

$$
B_{k}(t)=\sum_{n \neq 0} \frac{e^{2 i \pi n t}}{(2 i \pi n)^{k}},
$$

where $0<t<1$.
We reformulate the Szenes formula as an equality between $Z(f)(t, 0)$ and the constant term of the Eisenstein series $E(f)(t, z)$.

Theorem 27. For any $f \in R_{\Delta}$ and t in an alcove \mathfrak{a}, we have

$$
Z(f)(t, 0)=\mathrm{CT}(f)(t)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C E^{t} \operatorname{Res}_{\Delta}\right)
$$

In particular, $Z(f)(t, 0)$ is a polynomial function of t when t varies in an alcove \mathfrak{a}.
As a consequence, if $O B$ is a diagonal basis, then we recover the following residue formula (see [3, Theorem 4.4]):

$$
\sum_{n \in N_{\mathrm{reg}}} e^{\langle t, 2 i \pi n\rangle} f(2 i \pi n)=\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(e^{\langle t, z\rangle} f(z) F_{\sigma}^{\mathfrak{a}}(-z)\right)
$$

Thus, when

$$
f=\frac{1}{\prod_{j=1}^{k} \alpha_{j}}
$$

is sufficiently decreasing, this formula expresses the series

$$
\sum_{n \in \mathbb{Z}^{r},\left\langle\alpha_{j}, n\right\rangle \neq 0} \frac{1}{\prod_{j=1}^{k}\left\langle\alpha_{j}, 2 i \pi n\right\rangle}
$$

as an explicit rational number.
Proof. From the definitions of $Z(f)(t, z)$ and $\mathrm{CT}(f)(t)$, we obtain, for any $P \in$ $S\left(V^{*}\right)$,

$$
P\left(\partial_{t}\right) Z(f)(t, 0)=Z(P f)(t, 0), \quad P\left(\partial_{t}\right) \mathrm{CT}(f)(t)=\mathrm{CT}(P f)(t)
$$

Thus, it is enough to prove that $Z(f)(t, 0)=\mathrm{CT}(f)(t)$ for $f \in G_{\Delta}$, because G_{Δ} generates R_{Δ} as a $S\left(V^{*}\right)$-module by Lemma 6.

For t in an alcove \mathfrak{a}, we can define the operator $Z^{t}: R_{\Delta} \rightarrow \mathbb{O}$ by

$$
Z^{t}(f)(z)=\sum_{n \in N_{\mathrm{reg}}} e^{\langle t, z+2 i \pi n\rangle} f(z+2 i \pi n)
$$

The kernel formula holds for the operator Z^{t}. In particular, we obtain, for $f \in G_{\Delta}$,

$$
Z^{t}(f)(0)=\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C Z^{t} \operatorname{Res}_{\Delta}\right)
$$

We thus need to prove that, for $f \in G_{\Delta}$,

$$
\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C\left(E^{t}-Z^{t}\right) \operatorname{Res}_{\Delta}\right)=0
$$

But E^{t} is given by a sum over the full lattice N, while Z^{t} is only over the regular elements of N. Thus, we can write (in many ways) $E^{t}-Z^{t}$ as a linear combination of operators $E_{\Gamma_{\alpha}}^{t}$, where each Γ_{α} is an admissible subset of N contained in the real hyperplane H_{α}. Now the Szenes formula follows from the next proposition.

Proposition 28. Let Γ be an admissible subset of N contained in the real hyperplane H_{α}. Then, for $f \in G_{\Delta}$,

$$
\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta} m\left(e^{\langle t, \cdot\rangle} f\right) C E_{\Gamma}^{t} \operatorname{Res}_{\Delta}\right)=0
$$

Proof. It suffices to prove that

$$
\sum_{o \sigma \in O B} \operatorname{Res}^{o \sigma}\left(e^{\langle t, z\rangle} f(z) E_{\Gamma}^{t}\left(\phi_{\sigma}\right)(-z)\right)=0
$$

for some diagonal basis $O B$.
A total order on Δ provides us with a special diagonal basis $O B$ of $O \mathscr{B}(\Delta)$ (see, for example, [1, Proposition 14]). We choose this order such that α is minimal. In this case, every element of $O B$ is of the form $o \sigma=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ with $\alpha_{1}=\alpha$. We claim that for each $o \sigma \in O B$,

$$
\operatorname{Res}^{o \sigma}\left(e^{\langle t, z\rangle} f(z) E_{\Gamma}^{t}\left(\phi_{\sigma}\right)(-z)\right)=0
$$

Indeed, we use the notation of Lemma 11 and write $V^{\prime}=H_{\alpha}$. Then our set Γ is contained in V^{\prime}. Thus,

$$
E_{\Gamma}^{t}\left(\phi_{\sigma}\right)\left(z_{1}, z^{\prime}\right)=\frac{e^{t_{1} z_{1}}}{z_{1}} \sum_{\gamma \in \Gamma} \frac{e^{\left\langle t^{\prime}, z^{\prime}+2 i \pi \gamma\right\rangle}}{\prod_{j=2}^{r}\left\langle\alpha_{j}, z^{\prime}+2 i \pi \gamma\right\rangle}
$$

We see that for t fixed and regular,

$$
e^{\langle t, z\rangle} f(z) E_{\Gamma}^{t}\left(\phi_{\sigma}\right)(-z)=\frac{1}{z_{1}} f\left(z_{1}, z^{\prime}\right) \psi\left(z^{\prime}\right)
$$

where $f \in G_{\Delta}$ and $\psi\left(z^{\prime}\right)$ has poles at most on the complex hyperplanes $\alpha_{j}=0$ for $j=2, \ldots, r$. Thus the claim follows from Lemma 11. Therefore, both Theorem 27 and Proposition 28 are proved.

References

[1] M. Brion and M. Vergne, Arrangement of hyperplanes, I: Rational functions and JeffreyKirwan residue, Ann. Sci. École Norm. Sup. (4) 32 (1999), 715-741.
[2] L. Jeffrey and F. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. (2) 148 (1998), 109-196.
[3] A. Szenes, Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices 1998, 937-956.
[4] E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), 153-209.
[5] D. Zagier, "Values of zeta functions and their applications" in First European Congress of Mathematics (Paris, 1992), Vol. II, Progr. Math. 120, Birkhäuser, Basel, 1994, 497-512.

Brion: Institut Fourier, Boîte Postale 74, F-38402 Saint-Martin d’Hères Cedex, France Vergne: Centre de Mathématiques, École Polytechnique, F-91128 Palaiseau Cedex, France

