ARRANGEMENT OF HYPERPLANES, II: THE SZENES FORMULA AND EISENSTEIN SERIES

MICHEL BRION AND MICHÈLE VERGNE

To Victor Guillemin, for his 60th birthday

1. Introduction. Consider a sequence $(\alpha_1, \alpha_2, ..., \alpha_k)$ of linear forms in *r* complex variables, with integral coefficients. The linear forms α_j need not be distinct. For example, r = 2 and $\alpha_1 = \alpha_2 = z_1$, $\alpha_3 = \alpha_4 = z_2$, $\alpha_5 = \alpha_6 = z_1 + z_2$. For any such sequence, D. Zagier [5] introduced the series

$$\sum_{n\in\mathbb{Z}^r,\langle\alpha_j,n\rangle\neq 0}\frac{1}{\prod_{j=1}^k\langle\alpha_j,n\rangle}.$$

Assuming convergence, its sum is a rational multiple of π^k . For example (see [5]), we have

$$\sum_{\substack{n_1 \neq 0, n_2 \neq 0, n_1 + n_2 \neq 0}} \frac{1}{n_1^2 n_2^2 (n_1 + n_2)^2} = \frac{(2\pi)^6}{30240}.$$

These numbers are natural multidimensional generalizations of the value of the Riemann zeta function at even integers. A. Szenes gave in [3, Theorem 4.4] a residue formula for these numbers, relating them to Bernoulli numbers. The formula of Szenes [3] is the multidimensional analogue of the residue formula

$$\sum_{n \neq 0} \frac{1}{n^{2l}} = (2\pi)^{2l} \frac{B_{2l}}{(2l)!} = (-1)^l (2\pi)^{2l} \operatorname{Res}_{z=0}\left(\frac{1}{z^{2l}(1-e^z)}\right).$$

A motivation for computing such sums comes from the work of E. Witten [4]. In the special case where α_j are the positive roots of a compact connected Lie group G, each of these roots being repeated with multiplicity 2g - 2, Witten expressed the symplectic volume of the space of homomorphisms of the fundamental group of a Riemann surface of genus g into G, in terms of these sums. In [2], L. Jeffrey and F. Kirwan proved a special case of the Szenes formula leading to the explicit computation of this symplectic volume, when G is SU(n).

Our interest in such series comes from a different motivation. Let us consider first the 1-dimensional case. By the Poisson formula, for $\operatorname{Re}(z) > 0$, the convergent series $\sum_{m=1}^{\infty} me^{-mz}$ is also equal to $\sum_{n \in \mathbb{Z}} 1/(z+2i\pi n)^2$. Similarly, sums of products

Received 5 March 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 52C35; Secondary 11B68, 40H05.

of polynomial functions with exponential functions over all integral points of an r-dimensional rational convex cone are related to functions of r complex variables of the form

$$\psi(z) = \sum_{n \in \mathbb{Z}^r} \frac{1}{\prod_{j=1}^k \langle \alpha_j, z + 2i\pi n \rangle}$$

When this series is not convergent, introduce the oscillating factor $e^{\langle t, 2i\pi n \rangle}$ and define the Eisenstein series

$$\psi(t,z) = \sum_{n \in \mathbb{Z}^r} \frac{e^{\langle t, z+2i\pi n \rangle}}{\prod_{j=1}^k \langle \alpha_j, z+2i\pi n \rangle},$$

a generalized function of $t \in \mathbb{R}^r$.

In Section 3, we construct a decomposition of an open dense subset of \mathbb{R}^r into alcoves such that $t \mapsto \psi(t, z)$ is given on each alcove by a polynomial in t, with rational functions of e^z as coefficients. Our first theorem (see Theorem 19) gives an explicit residue formula for $\psi(t, z)$. It follows easily from the obvious behaviour of $\psi(t, z)$ under differentiation in z.

This formula allows us to give a residual meaning " $\psi(t, 0)$ " for the value of $\psi(t, z)$ at z = 0, although $\psi(t, z)$ clearly has poles along all hyperplanes $\langle \alpha_j, z \rangle = 0$. An alternate way to define $\psi(t, 0)$ is to remove all infinities $1/\alpha_i$ in the series

$$\psi(t,0) = \sum_{n \in \mathbb{Z}^r} \frac{e^{\langle t,2i\pi n \rangle}}{\prod_{j=1}^k \langle \alpha_j,2i\pi n \rangle}$$

Indeed, we prove that the residue formula for " $\psi(t, 0)$ " coincides with the renormalized sum:

$$``\psi(t,0)" = \sum_{n \in \mathbb{Z}^r, \langle \alpha_j, n \rangle \neq 0} \frac{e^{\langle t, 2i\pi n \rangle}}{\prod_{j=1}^k \langle \alpha_j, 2i\pi n \rangle}.$$

This equality gives another proof of the Szenes residue formula, as a "limit" of a natural formula for $\psi(t, z)$ when $z \to 0$ along a generic line.

To illustrate our method, let us consider the 1-dimensional case. For $k \ge 2$, we can define the Eisenstein series

$$E_k(z) = \sum_{n \in \mathbb{Z}} \frac{1}{(z+2i\pi n)^k}.$$

Clearly, $E_k(z)$ is periodic in z with respect to translation by the lattice $2i\pi\mathbb{Z}$. From the residue theorem, when y is not in $2i\pi\mathbb{Z}$, we have the kernel formula

(1)
$$E_k(y) = \operatorname{Res}_{z=0}\left(\frac{1}{z^k(1 - e^{z-y})}\right).$$

Observe that the right-hand side has a meaning when y = 0, and equals, by definition, the Bernoulli number $B_k/k!$. The function

$$E_k(y) = \frac{1}{y^k} + \sum_{n \in \mathbb{Z}, n \neq 0} \frac{1}{(y + 2i\pi n)^k}$$

has a Laurent expansion at y = 0, with $1/y^k$ as Laurent negative part. We see from the residue formula that the constant term $CT(E_k) = \sum_{n \in \mathbb{Z}, n \neq 0} 1/(2i\pi n)^k$ equals $\operatorname{Res}_{z=0}(1/(z^k(1-e^z))).$

In view of this example, we call the value " $\psi(t, 0)$ " of $\psi(t, y)$ at y = 0 the constant term of the Eisenstein series

$$\sum_{n \in \mathbb{Z}^r} \frac{e^{\langle t, z+2i\pi n \rangle}}{\prod_{j=1}^k \langle \alpha_j, z+2i\pi n \rangle}$$

Acknowledgments. We thank A. Szenes and the referees of our paper for several suggestions.

2. Kernel formula. In this section, we briefly recall results of [1] with slightly modified notation. Let *V* be an *r*-dimensional complex vector space. Let *V*^{*} be the dual vector space, and let $\Delta \subset V^*$ be a finite subset of nonzero linear forms. Each $\alpha \in \Delta$ determines a hyperplane { $\alpha = 0$ } in *V*. Consider the hyperplane arrangement

$$\mathcal{H} = \bigcup_{\alpha \in \Delta} \{ \alpha = 0 \}.$$

An element $z \in V$ is called *regular* if z is not in \mathcal{H} . If S is a subset of V, we write S_{reg} for the set of regular elements in S. The ring R_{Δ} of rational functions with poles on \mathcal{H} is the ring $\Delta^{-1}S(V^*)$ generated by the ring $S(V^*)$ of polynomial functions on V, together with inverses of the linear functions $\alpha \in \Delta$. The ring R_{Δ} has a \mathbb{Z} -gradation by the homogeneous degree that can be positive or negative. Elements of R_{Δ} are defined on the open subset V_{reg} . (Our notation differs from [1] in that the roles of V and V^* are interchanged.)

In the one-variable case, the function 1/z is the unique function that cannot be obtained as a derivative. There is a similar description of a complement space to the space of derivatives in the ring R_{Δ} , which we recall now.

A subset σ of Δ is called a *basis of* Δ if the elements $\alpha \in \sigma$ form a basis of *V*. We denote by $\mathfrak{B}(\Delta)$ the set of bases of Δ . An *ordered basis* is a sequence $(\alpha_1, \alpha_2, \ldots, \alpha_r)$ of elements of Δ such that the underlying set is a basis. We denote by $O\mathfrak{B}(\Delta)$ the set of ordered bases.

For $\sigma \in \mathfrak{B}(\Delta)$, set

$$\phi_{\sigma}(z) := \frac{1}{\prod_{\alpha \in \sigma} \alpha(z)}.$$

We call ϕ_{σ} a *simple fraction*. Setting $z_i = \langle z, \alpha_i \rangle$, we have

$$\phi_{\sigma}(z) = \frac{1}{z_1 z_2 \cdots z_r}.$$

Definition 1. The subspace S_{Δ} of R_{Δ} spanned by the elements ϕ_{σ} , $\sigma \in \mathfrak{B}(\Delta)$, will be called the space of *simple elements* of R_{Δ} :

$$S_{\Delta} = \sum_{\sigma \in \mathfrak{B}(\Delta)} \mathbb{C} \phi_{\sigma}$$

The space S_{Δ} consists of homogeneous rational functions of degree -r. However, not every homogeneous element of degree -r of R_{Δ} is in S_{Δ} (e.g., in the preceding notation, if $r \ge 2$, both functions $1/z_1^r$ and z_2/z_1^{r+1} are not in S_{Δ}). Furthermore, we must be careful, as the elements ϕ_{σ} may be linearly dependent. For example, if $V = \mathbb{C}^2$ and $\Delta = \{z_1, z_2, z_1 + z_2\}$, we have

$$S_{\Delta} = \mathbb{C}\frac{1}{z_1 z_2} + \mathbb{C}\frac{1}{z_1 (z_1 + z_2)} + \mathbb{C}\frac{1}{z_2 (z_1 + z_2)}$$

and we have the relation

$$\frac{1}{z_1 z_2} = \frac{1}{z_1 (z_1 + z_2)} + \frac{1}{z_2 (z_1 + z_2)}.$$

A description due to Orlik and Solomon of all linear relations between the elements ϕ_{σ} is given in [1, Proposition 13].

Definition 2. A basis B of $\mathfrak{B}(\Delta)$ is a subset of $\mathfrak{B}(\Delta)$ such that the elements ϕ_{σ} , $\sigma \in B$, form a basis of S_{Δ} :

$$S_{\Delta} = \bigoplus_{\sigma \in B} \mathbb{C} \phi_{\sigma}.$$

We let elements v of V act on R_{Δ} by differentiation:

$$(\partial(v)f)(z) := \frac{d}{d\epsilon}f(z+\epsilon v)|_{\epsilon=0}$$

Then the following holds (see [1, Proposition 7]).

THEOREM 3. We have

$$R_{\Delta} = \partial(V) R_{\Delta} \oplus S_{\Delta}$$

Thus, we see that only simple fractions cannot be obtained as derivatives.

As a corollary of this decomposition, we can define the projection map

$$\operatorname{Res}_{\Delta}: R_{\Delta} \longrightarrow S_{\Delta}.$$

The projection $\operatorname{Res}_{\Delta} f(z)$ of a function f(z) is a function of z that we call the *Jeffrey-Kirwan residue* of f. By definition, this function can be expressed as a linear combination of the simple fractions ϕ_{σ} . The main property of the map $\operatorname{Res}_{\Delta}$ is that it vanishes on derivatives, so that for $v \in V$, $f, g \in R_{\Delta}$,

(2)
$$\operatorname{Res}_{\Delta}\left(\left(\partial(v)f\right)g\right) = -\operatorname{Res}_{\Delta}\left(f\left(\partial(v)g\right)\right).$$

If $o\sigma \in O\mathcal{B}(\Delta)$ is an ordered basis, an important functional Res^{*o* σ} can be defined on R_{Δ} : the *iterated residue* with respect to the ordered basis $o\sigma$. If we write an element $z \in V$ on the basis $o\sigma = (\alpha_1, \alpha_2, ..., \alpha_r)$ as $z = (z_1, ..., z_r)$, then

$$\operatorname{Res}^{o\sigma}(f) = \operatorname{Res}_{z_1=0} \left(\operatorname{Res}_{z_2=0} \cdots \left(\operatorname{Res}_{z_r=0} f(z_1, z_2, \dots, z_r) \right) \cdots \right).$$

The map $\operatorname{Res}^{o\sigma}$ depends on the order $o\sigma$ chosen on σ and not only on the basis σ underlying $o\sigma$. The restriction of the functional $\operatorname{Res}^{o\sigma}$ to S_{Δ} is called $r^{o\sigma}$. We have

(3)
$$\operatorname{Res}^{o\sigma} = r^{o\sigma} \operatorname{Res}_{\Delta}$$

Indeed, we have only to check that $\operatorname{Res}^{o\sigma}$ vanishes on derivatives. If $o\sigma = (\alpha_1, \alpha_2, ..., \alpha_r)$ and $z = (z_1, ..., z_r)$, the iterated residue $\operatorname{Res}^{o\sigma}$ vanishes at the step $\operatorname{Res}_{z_j=0}$ on $\partial R_{\Delta}/\partial z_j$.

Recall the following definition from A. Szenes (see [3, Definition 3.3]).

Definition 4. A diagonal basis is a subset OB of $O\mathcal{B}(\Delta)$ such that the following are true.

(1) The set of underlying (unordered) bases forms a basis B of $\Re(\Delta)$.

(2) The dual basis to the basis ($\phi_{\sigma}, o\sigma \in OB$) is the set of linear forms ($r^{o\sigma}$, $o\sigma \in OB$):

$$r^{o\tau}(\phi_{\sigma}) = \delta^{\tau}_{\sigma}$$

In [3, Proposition 3.4], it is proved that a total order on Δ gives rise to a diagonal basis. (This is proved again in more detail in [1, Proposition 14].)

In the 1-dimensional case, $S_{\Delta} = \mathbb{C}z^{-1}$, and the space $G = \sum_{k \le -1} \mathbb{C}z^k$ of negative Laurent series is the space obtained from the function 1/z by successive derivations. In the case of several variables, we can also characterize the space generated by simple fractions under differentiation.

Let κ be a sequence of (not necessarily distinct) elements of Δ . The sequence κ is called *generating* if the $\alpha \in \kappa$ generate the vector space V^* .

We denote by G_{Δ} the subspace of R_{Δ} spanned by the

$$\phi_{\kappa}:=\frac{1}{\prod_{\alpha\in\kappa}\alpha},$$

where κ is a generating sequence. Finally, we denote by S(V) the ring of differential operators on V, with constant coefficients. This ring acts on $S(V^*)$ and on R_{Δ} .

PROPOSITION 5 [1, Theorem 1]. The space G_{Δ} is the S(V)-submodule of R_{Δ} generated by S_{Δ} .

For example, if $\Delta = \{z_1, z_2, z_1 + z_2\}$, we have

$$\frac{1}{z_1 z_2 (z_1 + z_2)} = -\frac{\partial}{\partial z_1} \left(\frac{1}{z_1 z_2} \right) + \left(\frac{\partial}{\partial z_1} - \frac{\partial}{\partial z_2} \right) \left(\frac{1}{z_1 (z_1 + z_2)} \right).$$

In particular, every element of G_{Δ} can be expressed as a linear combination of elements

$$\frac{1}{\prod_{\alpha\in\sigma}\alpha^{n_{\alpha}}},$$

where σ is a basis and the n_{α} are positive integers.

For example, the above equality is equivalent to

$$\frac{1}{z_1 z_2(z_1 + z_2)} = \frac{1}{z_1^2 z_2} - \frac{1}{z_1^2(z_1 + z_2)}$$

The ring $S(V^*)$ operates by multiplication on R_{Δ} . It is also useful to consider the action of the ring $\mathfrak{D}(V)$ of differential operators with polynomial coefficients, generated by S(V) and $S(V^*)$. The following lemma is an obvious corollary of the description of G_{Δ} .

LEMMA 6. The space R_{Δ} is generated by G_{Δ} as an $S(V^*)$ -module. It is generated by S_{Δ} as a $\mathfrak{D}(V)$ -module.

Consider now the space \mathbb{O} of holomorphic functions on *V* defined in a neighborhood of zero. Let $\mathbb{O}_{\Delta} = \Delta^{-1}\mathbb{O}$ be the space of meromorphic functions in a neighborhood of zero, with products of elements of Δ as denominators. The space \mathbb{O}_{Δ} is a module for the action of differential operators with constant coefficients. Via the Taylor series at the origin of elements of \mathbb{O} , the residue $\operatorname{Res}_{\Delta} f(z)$ still has a meaning if $f(z) \in \mathbb{O}_{\Delta}$; indeed, $\operatorname{Res}_{\Delta} f(z) = 0$ if $f \in R_{\Delta}$ is homogeneous of degree not equal to -r.

If $y \in V$ is sufficiently near zero and $f \in \mathbb{O}_{\Delta}$, the function

$$\left(\mathcal{T}(\mathbf{y})f\right)(z) := f(z-\mathbf{y})$$

is still an element of \mathbb{O}_{Δ} . Moreover, if y is regular, then f(z-y) is defined for z = 0 and thus is an element of \mathbb{O} .

If $f \in R_{\Delta}$, we denote by m(f) the operator of multiplication by f:

$$(m(f)\phi)(z) := f(z)\phi(z).$$

It operates on \mathbb{O}_{Δ} . Finally, we denote by *C* the operator

$$(Cf)(z) := f(-z)$$

on \mathbb{O}_{Δ} .

THEOREM 7 (Kernel theorem). Let $A : R_{\Delta} \to \mathbb{O}_{\Delta}$ be an operator commuting with the action of differential operators with constant coefficients. For $y \in V$ regular, sufficiently near zero, and for $f \in G_{\Delta}$, we have the formula

$$(Af)(y) = \operatorname{Tr}_{S_{\Delta}} (\operatorname{Res}_{\Delta} m(f) C \mathcal{T}(y) A \operatorname{Res}_{\Delta}).$$

More explicitly, choose a basis B of $\mathfrak{B}(\Delta)$, and let $(\phi^{\sigma}, \sigma \in B)$ be the basis of S^*_{Δ} dual to the basis $(\phi_{\sigma}, \sigma \in B)$ of S_{Δ} . Then we have the kernel formula

$$(Af)(y) = \sum_{\sigma \in B} \langle \phi^{\sigma}, \operatorname{Res}_{\Delta} (f(z)A_{\sigma}(y-z)) \rangle,$$

where $A_{\sigma}(z) = A(\phi_{\sigma})(z)$.

Concretely, this formula has the following meaning. Let f be homogeneous of degree d. We fix y regular and small. The function $z \mapsto A_{\sigma}(y-z)$ is defined near z = 0. The Jeffrey-Kirwan residue Res_{Δ} of the function $z \mapsto f(z)A_{\sigma}(y-z)$ is a function of z belonging to the space S_{Δ} . We pair it with the linear form ϕ^{σ} on S_{Δ} , and we obtain a certain complex number depending on y. More precisely, consider the Taylor expansion

$$A_{\sigma}(y-z) = A_{\sigma}(y) + \sum_{j=1}^{\infty} A_{\sigma}^{j}(y,z),$$

where $A_{\sigma}^{j}(y, z)$ is the part of the Taylor expansion at zero of the holomorphic function $z \mapsto A_{\sigma}(y-z)$, which is homogeneous of degree j in z. We have

$$A_{\sigma}^{j}(y,z) = (-1)^{j} \sum_{(k), |(k)|=j} A_{\sigma}^{(k)}(y) \frac{z^{(k)}}{(k)!},$$

where $(k) = (k_1, ..., k_r)$ is a multi-index, and $A_{\sigma}^{(k)}(y) = ((\partial/\partial y)^{(k)}A_{\sigma})(y)$. Then, as the Jeffrey-Kirwan residue vanishes on homogeneous terms of degree not equal to -r, we obtain

$$\operatorname{Res}_{\Delta}\left(f(z)A_{\sigma}(y-z)\right) = \operatorname{Res}_{\Delta}\left(f(z)A_{\sigma}^{-d-r}(y,z)\right)$$
$$= (-1)^{d+r} \sum_{(k),|(k)|=-d-r} A_{\sigma}^{(k)}(y)\operatorname{Res}_{\Delta}\left(f(z)\frac{z^{(k)}}{(k)!}\right).$$

Thus, $\langle \phi^{\sigma}, \operatorname{Res}_{\Delta}(f(z)A_{\sigma}(y-z)) \rangle$ is equal to

$$(-1)^{d+r} \sum_{(k),|(k)|=-d-r} A_{\sigma}^{(k)}(y) \left\langle \phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z)\frac{z^{(k)}}{(k)!}\right) \right\rangle.$$

(1)

Set $c_{\sigma}^{(k)}(f) = \langle \phi^{\sigma}, \operatorname{Res}_{\Delta}(f(z)(z^{(k)}/(k)!)) \rangle$. Let $P_{\sigma}^{f}(\partial/\partial y)$ be the differential operator with constant coefficients defined by

$$P_{\sigma}^{f}\left(\frac{\partial}{\partial y}\right) = (-1)^{d+r} \sum_{(k), |(k)| = -d-r} c_{\sigma}^{(k)}(f) \left(\frac{\partial}{\partial y}\right)^{(k)}.$$

Then P_{σ}^{f} depends linearly on f, and

$$\langle \phi^{\sigma}, \operatorname{Res}_{\Delta}\left(f(z)A_{\sigma}(y-z)\right) \rangle = \left(P_{\sigma}^{f}\left(\frac{\partial}{\partial y}\right)A_{\sigma}\right)(y).$$

The claim of the theorem is that

$$(Af)(y) = \sum_{\sigma \in B} P_{\sigma}^{f} \left(\frac{\partial}{\partial y}\right) \cdot A_{\sigma}(y).$$

We now prove this theorem.

Proof. Define an operator $A' : R_{\Delta} \to \mathbb{O}_{\Delta}$ by

$$(A'f)(y) = \sum_{\sigma \in B} \langle \phi^{\sigma}, \operatorname{Res}_{\Delta} (f(z)A_{\sigma}(y-z)) \rangle.$$

We first check that A' commutes with the action of differential operators with constant coefficients. Using the equation

$$(\partial_y(v)\phi)(y-z) = -(\partial_z(v)\phi)(y-z)$$

and the main property (2) of Res_{Δ} , we obtain

$$\begin{aligned} \partial_{y}(v) \cdot \langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(f(z) A_{\sigma}(y-z) \right) \rangle &= \langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(f(z) \left(\partial_{y}(v) \cdot A_{\sigma}(y-z) \right) \right) \rangle \\ &= - \langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(f(z) \left(\partial_{z}(v) \cdot A_{\sigma}(y-z) \right) \right) \rangle \\ &= \langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(\left(\partial_{z}(v) \cdot f \right) A_{\sigma}(y-z) \right) \rangle. \end{aligned}$$

It remains to see that A and A' coincide on S_{Δ} . For this, we use the following formula. If P is a polynomial and ϕ a simple fraction, then

(4)
$$\operatorname{Res}_{\Delta}(P\phi) = P(0)\phi.$$

To see this, recall that the function ϕ is homogeneous of degree -r. As $P \in S(V^*)$, P - P(0) is a sum of homogeneous terms of positive degree. Thus, for homogeneity reasons, $\text{Res}_{\Delta}((P - P(0))\phi) = 0$.

Let y be regular, and let $\sigma, \tau \in B$. As the function $z \to A_{\sigma}(y-z)$ is an element of \mathbb{O} , by formula (4) we obtain

$$\operatorname{Res}_{\Delta}\left(\phi_{\tau}(z)A_{\sigma}(y-z)\right) = A_{\sigma}(y)\phi_{\tau}(z).$$

Thus,

$$A'(\phi_{\tau})(y) = \sum_{\sigma \in B} \left\langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(\phi_{\tau}(z) A_{\sigma}(y - z) \right) \right\rangle$$
$$= \sum_{\sigma \in B} \left\langle \phi^{\sigma}, \phi_{\tau} \right\rangle A_{\sigma}(y) = \sum_{\sigma \in B} \delta_{\sigma}^{\tau} A_{\sigma}(y) = A_{\tau}(y) = A(\phi_{\tau})(y).$$

Choosing a diagonal basis *OB* and using equation (3), we obtain an iterated residue formula for (Af)(y).

COROLLARY 8. For any diagonal basis OB of $\mathfrak{B}(\Delta)$, we have, for $f \in G_{\Delta}$,

$$(Af)(y) = \sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma} \left(f(z)A_{\sigma}(y-z) \right),$$

where $A_{\sigma}(z) = A(\phi_{\sigma})(z)$.

Corollary 8 applies to the identity operator $A : R_{\Delta} \to R_{\Delta}$. If $f \in G_{\Delta}$, we obtain $f(y) = \sum_{\sigma\sigma \in OB} \operatorname{Res}^{\sigma\sigma} (f(z)\phi_{\sigma}(y-z))$. But if $f \in NG_{\Delta}$, then clearly $\operatorname{Res}^{\sigma\sigma}(f(z)\phi_{\sigma}(y-z)) = 0$, as the Taylor series of $f(z)\phi_{\sigma}(y-z)$ at z = 0 is also in NG_{Δ} . As a consequence, we obtain a formula for the Jeffrey-Kirwan residue as a function of iterated residues.

LEMMA 9. For any $f \in R_{\Delta}$, we have

$$(\operatorname{Res}_{\Delta} f)(y) = \sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma}(f)\phi_{\sigma}(y).$$

Similarly, if $Z : R_{\Delta} \to \mathbb{O}$ is an operator commuting with the action of differential operators with constant coefficients, the formula

$$Z(f)(y) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m(f) C \mathcal{T}(y) Z \operatorname{Res}_{\Delta} \right)$$

is valid for *all* elements $y \in V$ sufficiently near zero and for all $f \in G_{\Delta}$. In particular, we have the following proposition.

PROPOSITION 10. Let $Z : R_{\Delta} \to \mathbb{C}$ be an operator commuting with the action of differential operators with constant coefficients. Then we have, for $f \in G_{\Delta}$,

$$Z(f)(0) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m(f) C Z \operatorname{Res}_{\Delta} \right),$$

where $(CZ)(\phi)(z) = Z(\phi)(-z)$.

Choosing a diagonal basis of $O\Re(\Delta)$, we can express the preceding formula as a residue formula in several variables:

$$Z(f)(0) = \sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma} \left(f(z) Z_{\sigma}(-z) \right),$$

with $Z_{\sigma}(z) = Z(\phi_{\sigma})(z)$.

For later use, we prove a vanishing property of the linear form $\operatorname{Res}^{o\sigma}$. Let $\sigma\sigma$ be an ordered basis. We write $\sigma\sigma = (\alpha_1, \alpha_2, \dots, \alpha_r)$ and $z = (z_1, z_2, \dots, z_r)$. Set $\sigma\sigma' = (\alpha_2, \dots, \alpha_r)$ and $z' = (z_2, \dots, z_r)$; then $z = (z_1, z')$. Let $\psi(z')$ in $\mathbb{O}_{\Delta'}$ be a meromorphic function with a product of linear forms $\alpha(z')$, where $\alpha \in \Delta$ is not a multiple of α_1 , as a denominator.

LEMMA 11. For any $f \in G_{\Delta}$ and for any $\psi \in \mathbb{O}_{\Delta'}$,

$$\operatorname{Res}^{o\sigma}\left(\frac{1}{z_1}f(z_1,z')\psi(z')\right) = 0.$$

Proof. We have

$$\operatorname{Res}^{o\sigma}\left(\frac{1}{z_1}f(z_1,z')\psi(z')\right) = \operatorname{Res}_{z_1=0}\left(\frac{1}{z_1}\operatorname{Res}^{o\sigma'}\left(f(z_1,z')\psi(z')\right)\right).$$

In computing $\operatorname{Res}^{o\sigma'}(f(z_1, z')\psi(z'))$, the variable z_1 is fixed to a nonzero value. The result $\operatorname{Res}^{o\sigma'}(f(z_1, z')\psi(z'))$ is a meromorphic function of z_1 . It is thus sufficient to prove that $\operatorname{Res}^{o\sigma'}(f(z_1, z')\psi(z'))$ belongs to the space $G = \sum_{k \le -1} \mathbb{C} z_1^k$.

We check this for $f = \phi_{\kappa}$, where

$$\phi_{\kappa}(z) = \frac{1}{\prod_{\alpha \in \kappa} \langle \alpha, z \rangle}$$

and κ is a generating sequence. Let

$$\kappa_1 := \left\{ \alpha \in \kappa, \langle \alpha, (z_1, 0) \rangle \neq 0 \right\}$$

and

$$\kappa' = \left\{ \alpha \in \kappa, \langle \alpha, (z_1, 0) \rangle = 0 \right\}$$

As κ is generating, the set κ_1 is nonempty. We fix $z_1 \neq 0$. We have

$$\phi_{\kappa}(z_1, z')\psi(z') = \phi_{\kappa_1}(z_1, z')\phi_{\kappa'}(z')\psi(z')$$

and $\phi_{\kappa'} \in \mathbb{O}_{\Delta'}$. For $\alpha \in \kappa_1$, we set $\langle \alpha, (z_1, z') \rangle = c_{\alpha} z_1 + \langle \beta, z' \rangle$, with $c_{\alpha} \neq 0$. We consider the Taylor expansion at z' = 0 of the holomorphic function of z':

$$\frac{1}{\langle \alpha, (z_1, z') \rangle} = \frac{1}{c_{\alpha} z_1 + \langle \beta, z' \rangle} = \frac{1}{c_{\alpha} z_1 \left(1 + \langle \beta, z' \rangle / (c_{\alpha} z_1)\right)}$$

This is of the form

$$\sum_{k=1}^{\infty} z_1^{-k} P_{k-1}(z'),$$

where $P_{k-1}(z')$ is homogeneous of degree k-1 in z'. Let $n = |\kappa_1|$; then $n \ge 1$. We see that the function

$$z' \longmapsto \phi_{\kappa_1}(z_1, z') = \frac{1}{\prod_{\alpha \in \kappa_1} \langle \alpha, (z_1, z') \rangle}$$

has a Taylor expansion of the form

$$\sum_{k\geq n} z_1^{-k} \mathcal{Q}_{k-1}(z'),$$

where $Q_{k-1}(z')$ is homogeneous of degree k-1 in z'. Thus

$$\operatorname{Res}^{o\sigma'}\left(\phi_{\kappa_{1}}(z_{1},z')\phi_{\kappa'}(z')\psi(z')\right) = \sum_{k\geq n} z_{1}^{-k}\operatorname{Res}^{o\sigma'}\left(Q_{k-1}(z')\phi_{\kappa'}(z')\psi(z')\right).$$

Via the Taylor series at z' = 0, the function $\phi_{\kappa'}(z')\psi(z')$ can be expressed as an infinite sum of homogeneous elements with finitely many negative degrees. As the iterated residue $\operatorname{Res}^{o\sigma'}$ vanishes on elements of degree not equal to -(r-1) and as

 $Q_{k-1}(z')$ is homogeneous of degree k-1, we see that the sum is finite and that $\operatorname{Res}^{o\sigma'}(\phi_{\kappa_1}(z_1, z')\phi_{\kappa'}(z')\psi(z'))$ is in the space G as claimed.

3. Eisenstein series. Results of Section 2 are used for a complex vector space that is the complexification of a real vector space. Thus, we slightly change the notation in this section.

Let V be a *real* vector space of dimension r equipped with a lattice N. The complex vector space $V_{\mathbb{C}}$ is the space to which we apply the results of Section 2.

We consider the dual lattice $M = N^*$ to N. We consider the compact torus $T = iV/(2i\pi N)$ and its complexification $T_{\mathbb{C}} = V_{\mathbb{C}}/(2i\pi N)$. The projection map $V_{\mathbb{C}} \to T_{\mathbb{C}}$ is denoted by the exponential notation $v \to e^v$. If $\{e^1, e^2, \dots, e^r\}$ is a \mathbb{Z} -basis of N, we write an element of $V_{\mathbb{C}}$ as $z = z_1e^1 + z_2e^2 + \dots + z_re^r$ with $z_j \in \mathbb{C}$. We can identify $T_{\mathbb{C}}$ with $\mathbb{C}^* \times \mathbb{C}^* \times \dots \times \mathbb{C}^*$ by $z \mapsto (e^{z_1}, e^{z_2}, \dots, e^{z_r})$.

If $m \in M$, we denote by e^m the character of T defined by $\langle e^m, e^v \rangle = e^{\langle m, v \rangle}$. We extend e^m to a holomorphic character of the complex torus $T_{\mathbb{C}}$. The ring of holomorphic functions on $T_{\mathbb{C}}$ generated by the functions e^m is denoted by R(T). A quotient of two elements of R(T) is called a *rational function* on the complex torus $T_{\mathbb{C}}$. Via the exponential map $V_{\mathbb{C}} \to T_{\mathbb{C}}$, a function on $T_{\mathbb{C}}$ is sometimes identified with a function on $V_{\mathbb{C}}$, invariant under translation by the lattice $2i\pi N$. If $\{e^1, e^2, \ldots, e^r\}$ is a \mathbb{Z} -basis of N, a rational function on $T_{\mathbb{C}}$ written in exponential coordinates is a rational function of $e^{z_1}, e^{z_2}, \ldots, e^{z_r}$. We briefly say that it is a rational function of e^z .

Let us consider a finite set Δ of nontrivial characters of T. We identify Δ with a subset of M; for $\alpha \in \Delta$, we denote by e^{α} the corresponding character of $T_{\mathbb{C}}$.

Definition 12. We denote by $R(T)_{\Delta}$ the subring of rational functions on T generated by R(T) and the inverses of the functions $1 - e^{-\alpha}$ with $\alpha \in \Delta$.

Observe that R_{Δ} is left unchanged when each element of Δ is replaced by a nonzero scalar multiple, but that $R(T)_{\Delta}$ strictly increases when (say) each $\alpha \in \Delta$ is replaced by 2α . We assume from now on that all elements of Δ are indivisible in the lattice M.

Via the exponential map, we consider elements of $R(T)_{\Delta}$ as periodic meromorphic functions on $V_{\mathbb{C}}$. On $V_{\mathbb{C}}$, the function

$$\frac{\langle \alpha, z \rangle}{1 - e^{-\langle \alpha, z \rangle}}$$

is defined at z = 0, so it is an element of \mathbb{O} . Writing

$$\frac{1}{1-e^{-\langle \alpha,z\rangle}} = \frac{1}{\langle \alpha,z\rangle} \frac{\langle \alpha,z\rangle}{1-e^{-\langle \alpha,z\rangle}},$$

we see that $R(T)_{\Delta}$ is contained in \mathbb{O}_{Δ} . We see furthermore from the formula

$$\frac{d}{dz}\frac{1}{1-e^{-z}} = \frac{1}{(1-e^z)(1-e^{-z})} = \frac{-e^{-z}}{(1-e^{-z})^2}$$

that $R(T)_{\Delta} \subset \mathbb{O}_{\Delta}$ is stable under differentiation.

Our aim is to find a natural map from R_{Δ} to $R(T)_{\Delta}$ commuting with the action of differential operators with constant coefficients. In particular, we want to force a rational function of $z \in V_{\mathbb{C}}$ to become periodic, so that it is natural to define the Eisenstein series

$$E(f)(z) = \sum_{n \in N} f(z + 2i\pi n).$$

We need to be more careful, as the sum is usually not convergent for an arbitrary $f \in R_{\Delta}$. We introduce an oscillating factor $e^{\langle t, 2i\pi n \rangle}$ with $t \in V^*$ in front of each term of this infinite sum.

Let

$$U_{\Delta} = \left\{ z \in V_{\mathbb{C}}, \langle \alpha, z + 2i\pi n \rangle \neq 0 \text{ for all } n \in N \text{ and for all } \alpha \in \Delta \right\}.$$

Then $R(T)_{\Delta}$ consists of periodic holomorphic functions on U_{Δ} .

Let $f \in R_{\Delta}$; then $f(z+2i\pi n)$ is defined for each $n \in N$ if $z \in U_{\Delta}$. For $z \in U_{\Delta}$, we consider the function on V^* defined by

$$t\longmapsto \sum_{n\in N} e^{\langle t,z+2i\pi n\rangle} f(z+2i\pi n).$$

If $n \mapsto f(z + 2i\pi n)$ is sufficiently decreasing at infinity, the series is absolutely convergent and sums up to a continuous function of t with value at t = 0 equal to

$$\sum_{n\in N} f(z+2i\pi n).$$

In any case, it is easy to see that this series of functions of *t* converges to a generalized function of *t*.

PROPOSITION 13. For each $f \in R_{\Delta}$ and $z \in U_{\Delta}$, the function on V^* defined by

$$t\longmapsto \sum_{n\in N} e^{\langle t,z+2i\pi n\rangle} f(z+2i\pi n)$$

is well defined as a generalized function of t, which depends holomorphically on z for z in the open set U_{Δ} .

Proof. Indeed, if s(t) is a smooth function on V^* with compact support, consider the series

$$\sum_{n \in \mathbb{N}} f(z+2i\pi n) \int_{V^*} e^{\langle t, z+2i\pi n \rangle} s(t) dt = \sum_{n \in \mathbb{N}} c(z,n) f(z+2i\pi n).$$

The coefficient

$$c(z,n) = \int_{V^*} e^{2i\pi \langle t,n \rangle} e^{\langle t,z \rangle} s(t) dt$$

is rapidly decreasing in *n*, as the function $t \mapsto e^{\langle t, z \rangle} s(t)$ is smooth and compactly supported. Thus, $c(z, n) f(z + 2i\pi n)$ is also a rapidly decreasing function of *n*.

Furthermore, $c(z,n) f(z+2i\pi n)$ depends holomorphically on $z \in U_{\Delta}$. So the result of the summation

$$\sum_{n \in N} c(z,n) f(z+2i\pi n)$$

exists and is a holomorphic function of z.

We write

$$E(f)(t,z) = \sum_{n \in N} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n)$$

for this generalized function of t depending holomorphically on z. We analyze this function of $(t, z), t \in V^*, z \in U_{\Delta}$.

We first summarize some of the obvious properties of E(f)(t, z).

PROPOSITION 14. The following equations are satisfied. (1) For every $P \in S(V^*)$ and $f \in R_{\Delta}$,

$$E(Pf)(t,z) = P(\partial_t)E(f)(t,z).$$

(2) For every $v \in V$ and $f \in R_{\Delta}$,

$$E(\partial(v)f)(t,z) = \partial_z(v)E(f)(t,z) - \langle t,v\rangle E(f)(t,z).$$

(3) For every $m \in M$ and $z \in U_{\Delta}$,

$$E(f)(t+m,z) = e^{\langle m,z \rangle} E(f)(t,z).$$

As R_{Δ} is generated by S_{Δ} under the action of S(V) and $S(V^*)$, we see that the operator *E* is completely determined by the functions $E(\phi_{\sigma})(t, z)$ ($\sigma \in \Re(\Delta)$).

A wall of Δ is a hyperplane of V^* generated by r-1 linearly independent vectors of Δ . We consider the system of affine hyperplanes generated by the walls of Δ together with their translates by M (the dual lattice of N). We denote by $V^*_{\Delta, \text{areg}}$ the complement of the union of these affine hyperplanes. A connected component of $V^*_{\Delta, \text{areg}}$ is called an *alcove* and is denoted by \mathfrak{a} .

PROPOSITION 15. The function E(f)(t, z) is smooth when t varies on $V_{\Delta, \text{areg}}^*$ and when $z \in U_{\Delta}$. More precisely, let \mathfrak{a} be an alcove. Assume that f is homogeneous of degree d. Then, on the open set $\mathfrak{a} \times U_{\Delta}$, the function E(f)(t, z) is a polynomial in t of degree at most -d-r, with coefficients in $R(T)_{\Delta}$.

Proof. Consider first the one-variable case. The set $V_{\Delta, \text{areg}}^*$ is $\mathbb{R} - \mathbb{Z}$. Let [t] be the integral part of t. Fix $z \in \mathbb{C} - 2i\pi\mathbb{Z}$. Consider the locally constant function of $t \in \mathbb{R} - \mathbb{Z}$ defined by

$$t\longmapsto \frac{e^{[t]z}}{1-e^{-z}}.$$

We extend this function as a locally L^1 -function on \mathbb{R} (defined except on the set \mathbb{Z} of measure zero).

291

LEMMA 16. We have the equality of generalized functions of t:

$$\sum_{n \in \mathbb{Z}} \frac{e^{t(z+2i\pi n)}}{z+2i\pi n} = \frac{e^{[t]z}}{1-e^{-z}}.$$

Proof. We compute the derivative in t of the left-hand side. It is equal to

$$\sum_{n\in\mathbb{Z}}e^{t(z+2i\pi n)}=e^{tz}\delta_{\mathbb{Z}}(t),$$

where $\delta_{\mathbb{Z}}$ is the delta function of the set of integers.

We compute the derivative in *t* of the right-hand side. This function of *t* is constant on each interval (n, n+1). The jump at the integer *n* is

$$\frac{e^{nz}}{1-e^{-z}}-\frac{e^{(n-1)z}}{1-e^{-z}}=e^{nz}.$$

It follows that the derivative in t of the right-hand side is also equal to $e^{tz}\delta_{\mathbb{Z}}(t)$. Thus,

$$\sum_{n \in \mathbb{Z}} \frac{e^{t(z+2i\pi n)}}{z+2i\pi n} = c(z) + \frac{e^{[t]z}}{1-e^{-z}},$$

where c(z) is a constant. We verify that c(z) is equal to zero by using periodicity properties in *t*. It is clear that

$$e^{-tz} \sum_{n \in \mathbb{Z}} \frac{e^{t(z+2i\pi n)}}{z+2i\pi n} = \sum_{n \in \mathbb{Z}} \frac{e^{2i\pi nt}}{z+2i\pi n}$$

is a periodic function of t as is

$$e^{-tz} \frac{e^{[t]z}}{1-e^{-z}} = \frac{e^{([t]-t)z}}{1-e^{-z}}.$$

It follows that $e^{-tz}c(z)$ is also a periodic function of t. This implies c(z) = 0.

Consider now, for $k \in \mathbb{Z}$,

$$E_k(t,z) = \sum_{n \in \mathbb{Z}} e^{t(z+2i\pi n)} (z+2i\pi n)^k.$$

We just saw that

$$E_{-1}(t,z) = \frac{e^{[t]z}}{1 - e^{-z}}$$

To determine $E_k(t, z)$ for $k \le -1$, we use the differential equation in z,

$$\partial_z E_k(t,z) = t E_k(t,z) + k E_{k-1}(t,z).$$

Using decreasing induction over k, we see that $E_k(t, z)$ is an L^1 -function of t, equal to a polynomial function of t of degree -k - 1 on each interval (n, n + 1) and with rational functions of e^z as coefficients. For example, we obtain the value of the convergent series

$$\sum_{n} \frac{e^{t(z+2i\pi n)}}{(z+2i\pi n)^2} = (t-[t])\frac{e^{[t]z}}{1-e^{-z}} - \frac{e^{[t]z}}{(1-e^{-z})(1-e^z)}$$

When $k \ge 0$, we use the differential equation

$$\partial_t E_k(t,z) = E_{k+1}(t,z)$$

so that, as we have already used,

$$E_0(t,z) = \sum_{n \in \mathbb{Z}} e^{t(z+2i\pi n)} = e^{tz} \delta_{\mathbb{Z}}(t).$$

More generally, $E_k(t, z) = (\partial_t)^k (e^{tz} \delta_{\mathbb{Z}}(t))$ is supported on \mathbb{Z} ; in particular, it is identically zero on $\mathbb{R} - \mathbb{Z}$.

We return to the proof of Proposition 15. For a simple fraction ϕ , consider the function

$$t \longmapsto E(\phi)(t,z).$$

We first prove that it is a locally L^1 -function, which is constant when t varies in an alcove.

Let $\sigma = \{\alpha_1, \alpha_2, ..., \alpha_r\}$ be a basis of Δ . Let $t \in V^*$. If $t = \sum_j t_j \alpha_j$ is the decomposition of *t* on the basis σ , set $[t]_{\sigma} = \sum_j [t_j] \alpha_j$. The function $t \mapsto [t]_{\sigma}$ is constant when *t* varies in an alcove. Consider the sublattice

$$M_{\sigma} = \bigoplus_{\alpha \in \sigma} \mathbb{Z} \, \alpha \subseteq M.$$

We say that σ is a \mathbb{Z} -basis if $M_{\sigma} = M$. In general, the quotient M/M_{σ} is a finite set; let \mathcal{R} be a set of representatives of this quotient. We can choose \mathcal{R} in the following standard way. We consider the box

$$Q_{\sigma} = \bigoplus_{\alpha \in \sigma} [0, 1)\alpha = \left\{ u \in V^*, [u]_{\sigma} = 0 \right\}.$$

Then we can take

$$\mathscr{R} = Q_{\sigma} \cap M = \left\{ u \in M, [u]_{\sigma} = 0 \right\}.$$

Define

$$\Re(t,\sigma) = (t - Q_{\sigma}) \cap M = \left\{ u \in M, [t - u]_{\sigma} = 0 \right\}$$

The set $\Re(t, \sigma)$ is also a set of representatives of M/M_{σ} . If σ is a \mathbb{Z} -basis of M, this set is reduced to the single element $[t]_{\sigma}$. Remark that the set $\Re(t, \sigma)$ is constant when t varies in an alcove \mathfrak{a} . We denote it by $\Re(\mathfrak{a}, \sigma)$.

Definition 17. If a is an alcove and if σ is a basis of Δ , we set

$$F_{\sigma}^{\mathfrak{a}} = \left| \frac{M}{M_{\sigma}} \right|^{-1} \frac{\sum_{m \in \mathcal{R}(\mathfrak{a},\sigma)} e^{m}}{\prod_{\alpha \in \sigma} (1 - e^{-\alpha})}.$$

Thus, an alcove a together with a basis $\sigma \in \mathfrak{B}(\Delta)$ produces a particular element $F_{\sigma}^{\mathfrak{a}}$ of $R(T)_{\Delta}$.

Consider on the set $V_{\Delta,\text{areg}}^*$ the locally constant function of t defined by $F_{\sigma}(t, z) = F_{\sigma}^{\mathfrak{a}}(z)$ when t is in the alcove a. This defines a locally L^1 -function of t, still denoted by $F_{\sigma}(t, z)$, defined except on the set $V^* - V_{\Delta,\text{areg}}^*$ of measure zero. This locally L^1 -function of t defines a generalized function of t which depends holomorphically on z.

LEMMA 18. We have the equality of generalized functions of $t \in V^*$:

$$E(\phi_{\sigma})(t,z) = F_{\sigma}(t,z).$$

Proof. If σ is a \mathbb{Z} -basis of M, this follows from the formula in dimension 1. In general, we consider $M_{\sigma} \subseteq M$ and the dual lattice $N_{\sigma} = M_{\sigma}^*$. Then $N \subseteq N_{\sigma}$. We set

$$E_{\sigma}(\phi_{\sigma})(t,z) := \sum_{\ell \in N_{\sigma}} e^{\langle t, z+2i\pi\ell \rangle} \phi_{\sigma}(z+2i\pi\ell).$$

For any set of representatives \Re of M/M_{σ} , we have $\sum_{u \in \Re} e^{-\langle u, 2i\pi\ell \rangle} = 0$ if $\ell \in N_{\sigma}$ is not in *N*, while this sum equals $|M/M_{\sigma}|$ if $n \in N$. Thus,

$$\begin{split} E(\phi_{\sigma})(t,z) &= \sum_{n \in N} \phi_{\sigma} (z+2i\pi n) e^{\langle t, z+2i\pi n \rangle} \\ &= \sum_{\ell \in N_{\sigma}} \phi_{\sigma} (z+2i\pi \ell) e^{\langle t, z+2i\pi \ell \rangle} \left(\left| \frac{M}{M_{\sigma}} \right|^{-1} \sum_{u \in \mathcal{R}} e^{-\langle u, 2i\pi \ell \rangle} \right) \\ &= \left| \frac{M}{M_{\sigma}} \right|^{-1} \sum_{u \in \mathcal{R}} \sum_{\ell \in N_{\sigma}} \phi_{\sigma} (z+2i\pi \ell) e^{\langle t-u, z+2i\pi \ell \rangle} e^{\langle u, z \rangle} \\ &= \left| \frac{M}{M_{\sigma}} \right|^{-1} \sum_{u \in \mathcal{R}} e^{\langle u, z \rangle} E_{\sigma} (\phi_{\sigma}) (t-u, z). \end{split}$$

This holds as an equality of generalized functions of t. Further, we have the following, by the 1-dimensional case:

$$E_{\sigma}(\phi_{\sigma})(t,z) = \frac{e^{\langle [t]_{\sigma},z\rangle}}{\prod_{\alpha\in\sigma}\left(1-e^{-\langle\alpha,z\rangle}\right)}.$$

It follows that $E(\phi_{\sigma})(t, z)$ is a locally L^1 -function of t, as is $E_{\sigma}(\phi_{\sigma})$. It remains to determine the value of this function when t is in an alcove. For $m \in M_{\sigma}$, we have

$$E_{\sigma}(\phi_{\sigma})(t+m,z) = e^{\langle m,z \rangle} E_{\sigma}(\phi_{\sigma})(t,z),$$

so that the sum $\sum_{u \in \Re} e^{\langle u, z \rangle} E_{\sigma}(\phi_{\sigma})(t-u, z)$ is independent of the choice of the system of representatives \Re of M/M_{σ} . We choose $\Re = \Re(t, \sigma)$. Then

$$E(\phi_{\sigma})(t,z) = \left|\frac{M}{M_{\sigma}}\right|^{-1} \frac{\sum_{u \in \mathcal{R}(t,\sigma)} e^{\langle u, z \rangle}}{\prod_{\alpha \in \sigma} \left(1 - e^{-\langle \alpha, z \rangle}\right)}$$

because $[t - u]_{\sigma} = 0$ for all $u \in \Re(t, \sigma)$.

Every function $f \in R_{\Delta}$, homogeneous of degree d, is obtained from an element of S_{Δ} by the action of a differential operator with polynomial coefficients. This operator is of degree d+r, if multiplication by z_j is given degree 1, while derivation $\partial/\partial z_j$ is given degree -1. Using Proposition 14, we see that Proposition 15 follows from the fact that the function $t \mapsto E(\phi_{\sigma})(t, z)$ is constant on each alcove.

From Proposition 15, we see that there exist functions $\phi_{(k)}^{\mathfrak{a}}(z) \in R(T)_{\Delta}$ such that we have the equality for *t* in the alcove \mathfrak{a} :

$$E(f)(t,z) = \sum_{n \in \mathbb{N}} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n) = \sum_{(k)} t^{(k)} \phi^{\mathfrak{a}}_{(k)}(z),$$

where the sum is over a finite number of multi-indices (k). This defines an operator

$$E^t: R_{\Delta} \longrightarrow R(T)_{\Delta}, \qquad f \longmapsto E(f)(t,z)$$

obtained by fixing the regular value t.

The operator E^t satisfies the following relation, which is just relation (2) in Proposition 14: For $v \in V$ and $f \in R_{\Delta}$,

$$E^{t}(\partial(v)f)(z) = \partial_{z}(v)E^{t}(f)(z) - \langle t, v \rangle E^{t}(f)(z).$$

Let *B* be a basis of $\mathfrak{B}(\Delta)$. Let $(\phi_{\sigma}, \sigma \in B)$ be the corresponding basis of S_{Δ} , and let $(\phi^{\sigma}, \sigma \in B)$ be the dual basis of S_{Δ}^* . For $\sigma \in B$ and an alcove \mathfrak{a} , consider the element $F_{\sigma}^{\mathfrak{a}}$ of $R(T)_{\Delta} \subset \mathbb{O}_{\Delta}$ associated to σ, \mathfrak{a} . We obtain a kernel formula for the operator E^t .

THEOREM 19. Let $f \in G_{\Delta}$. For $y \in U_{\Delta}$ and $t \in \mathfrak{a}$, we have

$$E^{t}(f)(y) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m \left(e^{\langle t, \cdot \rangle} f \right) C \mathcal{T}(y) E^{t} \operatorname{Res}_{\Delta} \right)$$
$$= \sum_{\sigma \in B} \left\langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(e^{\langle t, z \rangle} f(z) F_{\sigma}^{\mathfrak{a}}(y-z) \right) \right\rangle,$$

where $F_{\sigma}^{\mathfrak{a}}$ is given by Definition 17. Moreover, if B is the underlying basis of a diagonal basis OB, then

$$E^{t}(f)(y) = \sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma} \left(e^{\langle t, z \rangle} f(z) F_{\sigma}^{\mathfrak{a}}(y-z) \right).$$

Proof. By a method entirely similar to the proof of Theorem 1, we see that the operator

$$A^{t}(f)(y) = \sum_{\sigma \in B} \left\langle \phi^{\sigma}, \operatorname{Res}_{\Delta} \left(e^{\langle t, z \rangle} f(z) F^{\mathfrak{a}}_{\sigma}(y-z) \right) \right\rangle$$

satisfies the relation

$$A^{t}(\partial(v)f)(z) = \partial_{z}(v)A^{t}(f)(z) - \langle t, v \rangle A^{t}(f)(z)$$

for $v \in V$, $f \in R_{\Delta}$. Thus, to prove that $E^t = A^t$ on G_{Δ} , it is sufficient to prove that they coincide for $f = \phi_{\tau}$. In this case, we obtain

$$A^{t}(\phi_{\tau})(y) = \sum_{\sigma \in B} \langle \phi^{\sigma}, \phi_{\tau}(z) \rangle F^{\mathfrak{a}}_{\sigma}(y) = F^{\mathfrak{a}}_{\tau}(y) = E^{t}(\phi_{\tau})(y).$$

In view of the kernel formula for the Eisenstein series E^t , it is natural to introduce the following definition.

Definition 20. The *constant term* of the Eisenstein series E^t is the linear form $f \to CT(f)(t)$ defined for $f \in R_{\Delta}$ and t in the alcove a by

$$\operatorname{CT}(f)(t) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m \left(e^{\langle t, \cdot \rangle} f \right) C E^{t} \operatorname{Res}_{\Delta} \right).$$

More explicitly, if *OB* is a diagonal basis of $\mathfrak{B}(\Delta)$, then

$$\operatorname{CT}(f)(t) = \sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma} \left(e^{\langle t, z \rangle} f(z) F_{\sigma}^{\mathfrak{a}}(-z) \right).$$

4. Partial Eisenstein series. Let $N_{\text{reg}} = N \cap V_{\text{reg}}$ be the set of regular elements of *N*. The aim of this section is to prove that the function

$$E_{N_{\text{reg}}}(f)(t,z) = \sum_{n \in N_{\text{reg}}} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n)$$

is analytic in (t, z) when t is in an alcove and $z \in V_{\mathbb{C}}$ is close to zero. In the next section we prove the Szenes residue formula for

$$E_{N_{\text{reg}}}(f)(t,0) = \sum_{n \in N_{\text{reg}}} e^{\langle t, 2i\pi n \rangle} f(2i\pi n).$$

Let Γ be a subset of *N*. We can define, for $f \in R_{\Delta}$, the generalized function of *t*,

$$E_{\Gamma}(f)(t,z) = \sum_{n \in \Gamma} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n).$$

Introduce the set

$$U_{\Delta,\Gamma} = \{ z \in V_{\mathbb{C}}, \langle \alpha, z + 2i\pi n \rangle \neq 0 \text{ for all } \alpha \in \Delta \text{ and } n \in \Gamma \}.$$

The generalized function $E_{\Gamma}(f)(t, z)$ depends holomorphically on z, when $z \in U_{\Delta, \Gamma}$.

Let W be a rational subspace of V. Then $N \cap W$ is a lattice in W. Consider, for $f \in R_{\Delta}$,

$$E_{N\cap W}(f)(t,z) = \sum_{n \in N\cap W} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n).$$

We analyze the singularities in (t, z) of $E_{N \cap W}(f)(t, z)$. If W is zero, then $E_{\{0\}}(f)(t, z) = e^{\langle t, z \rangle} f(z)$ is analytic in (t, z) when z is regular in $V_{\mathbb{C}}$. Assume that W is nonzero and consider the subspace W^{\perp} of V^* . Notice that if $u \in M + W^{\perp}$, we have the relation

$$E_{N\cap W}(f)(t+u,z) = e^{\langle u,z \rangle} E_{N\cap W}(f)(t,z).$$

It is clear that the singular set of $E_{N\cap W}(f)(t, z)$ is stable by translation by $M + W^{\perp}$. Define a (W, Δ) -wall in V^* as a hyperplane generated by W^{\perp} together with dim W - 1 vectors of Δ . We introduce the set $\mathcal{H}^*_{W,\Delta,M}$ consisting of the union of all (W, Δ) -walls and of their translates by elements of M. We define $V^*_{W,\Delta,\text{areg}}$ as the complement of $\mathcal{H}^*_{W,\Delta,M}$ in V^* . This set $V^*_{W,\Delta,\text{areg}}$ is invariant by translation by $M + W^{\perp}$.

LEMMA 21. For $f \in R_{\Delta}$, the function $E_{N \cap W}(f)(t, z)$ is analytic in (t, z) when t varies on $V_{W,\Delta,\text{areg}}^*$ and $z \in U_{\Delta,N \cap W}$. Furthermore, if $t \in V_{W,\Delta,\text{areg}}^*$ and z is near zero, the function $z \mapsto E_{N \cap W}(f)(t, z)$ defines an element of \mathbb{O}_{Δ} .

Proof. Let σ be a basis of Δ . Although we are not able to give a nice formula for the function $E_{N\cap W}(\phi_{\sigma})(t, z)$, we can still obtain an inductive expression that suffices to give some information on it. Consider the set $V_{W,\sigma,\text{areg}}^*$, that is, the complement of the union of (W, σ) -walls together with their translates by M. Let $U_{\sigma,N\cap W}$ be the set of all $z \in V_{\mathbb{C}}$ such that $\langle \alpha, z+2i\pi n \rangle \neq 0$ for all $\alpha \in \sigma$ and $n \in N \cap W$. The intersection of this set with a small neighborhood of zero is contained in the complement of the union of the complex hyperplanes $\{z \in V_{\mathbb{C}}, \langle \alpha, z \rangle = 0\}$, for $\alpha \in \sigma$.

LEMMA 22. The function $E_{N\cap W}(\phi_{\sigma})(t,z)$ is analytic in $t \in V^*_{W,\sigma,\text{areg}}$ and $z \in U_{\sigma,N\cap W}$. Furthermore, when $t \in V^*_{W,\sigma,\text{areg}}$, the function

$$z\longmapsto \left(\prod_{\alpha\in\sigma}\langle\alpha,z\rangle\right)E_{N\cap W}(\phi_{\sigma})(t,z)$$

is holomorphic at z = 0.

We prove this by induction on the codimension of W. If W = V, this follows from the explicit formula for $E(\phi_{\sigma})(t, z)$. Let α be an indivisible element of M such that W is contained in the real hyperplane

$$H_{\alpha} = \{ y \in V, \ \langle \alpha, y \rangle = 0 \}.$$

We assume first that α is an element of σ . We number it the first vector α_1 of the basis σ . We set $\sigma' = (\alpha_2, ..., \alpha_r)$, $z' = (z_2, ..., z_r)$, and so on; then $z = (z_1, z')$. Our subspace *W* is contained in $V' = V \cap \{z_1 = 0\}$. Thus, we have

$$E_{N\cap W}(\phi_{\sigma})(t,z) = \sum_{n\in N\cap W} e^{\langle t,z+2i\pi n\rangle} \phi_{\sigma}(z+2i\pi n) = \frac{e^{t_1z_1}}{z_1} E_{N'\cap W}(\phi_{\sigma'})(t',z').$$

By induction, $E_{N'\cap W}(\phi_{\sigma'})(t', z')$ is analytic in (t', z') for $z' \in U_{\sigma', N'}$, except if there exist $m' \in M'$ such that t' + m' is in a hyperplane generated by $W^{\perp'}$ (the orthogonal of W in V') and some vectors of σ' . As $W^{\perp} = W^{\perp'} \oplus \mathbb{R}\alpha_1$, we see that the singular set of $E_{N\cap W}(\phi_{\sigma})(t, z)$ is contained in $\mathcal{H}^*_{W,\sigma,M}$. Furthermore, the function

$$z_1 z_2 \cdots z_r E_{N \cap W}(\phi_{\sigma})(t,z) = e^{t_1 z_1} z_2 \cdots z_r E_{N' \cap W}(\phi_{\sigma'})(t',z')$$

is holomorphic in z near z = 0.

Assume now that α is not an element of σ . We add it to the system Δ if α is not an element of Δ . Writing $\alpha = \sum_{j} c_{j} \alpha_{j}$, we obtain one of the Orlik-Solomon relations of the system $\Delta \cup \{\alpha\}$,

$$\phi_{\sigma} = \sum_{j} c_{j} \phi_{\sigma^{j}},$$

where $\sigma^j = \sigma \cup \{\alpha\} - \{\alpha_j\}$. A (W, σ^j) -wall is a hyperplane of V^* generated by W^{\perp} and dim W - 1 vectors of σ^j ; then these vectors are distinct from α , because $\alpha \in W^{\perp}$. Thus, all *W*-walls for the basis σ^j are also *W*-walls for the basis σ . By our first calculation, it follows that $E_{N \cap W}(\phi_{\sigma^j})(t, z)$ is analytic when *t* is not on a translate of a (W, σ) -wall. Moreover, we have

$$E_{N\cap W}(\phi_{\sigma})(t,z) = \sum_{j} c_{j} E_{N\cap W}(\phi_{\sigma^{j}})(t,z),$$

so that the function

$$z\longmapsto \langle \alpha, z\rangle \left(\prod_{j=1}^r \langle \alpha_j, z\rangle\right) E_{N\cap W}(\phi_{\sigma})(t, z)$$

is holomorphic in z in a neighborhood of zero.

By the induction hypothesis applied to $W \subseteq V' = \{\alpha = 0\}$, the function $z \mapsto E_{N \cap W}(\phi_{\sigma})(t, z)$ is holomorphic on a nonempty open subset of $V'_{\mathbb{C}}$. So this function, considered as a function of $z \in V_{\mathbb{C}}$, has no pole along $\alpha = 0$. This proves Lemma 22 and, hence, Lemma 21 when f is a simple fraction. The operator $E_{N \cap W}$ satisfies also the commutation relation of Proposition 14. Thus, using differential operators with polynomial coefficients, we obtain the statement of Lemma 21 when f is any element in R_{Δ} .

Let *I* be a subset of Δ , and let $W_I = \bigcap_{i \in I} H_{\alpha_i}$. This is a rational subspace of *V*, and the (W_I, Δ) -walls are some of the walls of Δ . Then it follows from Lemma 21 that $E_{N \cap W_I}(f)(t, z)$ is *a fortiori* analytic when $t \in V_{\text{areg}}^*$ and $z \in U_{\Delta}$.

Definition 23. A subset Γ of N is *admissible* if the characteristic function of Γ is a linear combination of characteristic functions of sets $N \cap W_I$, where I ranges over subsets of Δ .

Then we have the following by Lemma 21.

LEMMA 24. If Γ is an admissible subset of N, the function $(t, z) \mapsto E_{\Gamma}(f)(t, z)$ is analytic when $t \in V^*_{\Delta, areg}$ and $z \in U_{\Delta, \Gamma}$. Furthermore, when z is near zero and $t \in V^*_{\Delta, areg}$, the function $z \mapsto E_{\Gamma}(f)(t, z)$ defines an element of \mathbb{O}_{Δ} .

If Γ is an admissible subset of *N*, we can take the value at *t* of the generalized function

$$E_{\Gamma}(f)(t,z) = \sum_{n \in \Gamma} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n)$$

provided that *t* is in an alcove \mathfrak{a} . Thus, for $t \in \mathfrak{a}$, we can define the operator E_{Γ}^{t} : $R_{\Delta} \to \mathbb{O}_{\Delta}, f \mapsto E_{\Gamma}(f)(t, z)$. Now the argument of Theorem 19 proves the following proposition.

PROPOSITION 25. For $f \in G_{\Delta}$, $t \in V^*_{\Delta, \text{areg}}$, and $y \in U_{\Delta, \Gamma}$, we have

$$E_{\Gamma}^{t}(f)(y) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m \left(e^{\langle t, \cdot \rangle} f \right) C \mathcal{T}(y) E_{\Gamma}^{t} \operatorname{Res}_{\Delta} \right).$$

More explicitly, if we choose a diagonal basis OB, then

$$E_{\Gamma}^{t}(f)(y) = \sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma} \left(f(z)e^{\langle t, z \rangle} F_{\Gamma, \sigma}^{t}(y-z) \right),$$

where $F_{\Gamma,\sigma}^t(z) = E_{\Gamma}(\phi_{\sigma})(t,z)$.

5. Witten series and the Szenes formula. For $f \in R_{\Delta}$, let us form the series

$$Z(f)(t,z) = \sum_{n \in N_{\text{reg}}} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n),$$

where N_{reg} is the set of regular elements of N. Then Z(f)(t, z) is defined as a generalized function of t. As n varies in N_{reg} , this generalized function of t depends holomorphically on z when z varies in a neighborhood of zero. As N_{reg} is an admissible subset of N, we obtain the following from Lemma 24.

PROPOSITION 26. For any alcove \mathfrak{a} , Z(f)(t, z) is an analytic function of (t, z) when $t \in \mathfrak{a}$ and z is in a neighborhood of zero.

We have

$$Z(f)(t,0) = \sum_{n \in N_{\text{reg}}} e^{\langle t, 2i\pi n \rangle} f(2i\pi n).$$

This is well defined as a generalized function of t when t is in an alcove. If $n \mapsto f(2i\pi n)$ is sufficiently decreasing, then Z(f)(t,0) is a continuous function of t; it generalizes the Bernoulli polynomial

$$B_k(t) = \sum_{n \neq 0} \frac{e^{2i\pi nt}}{(2i\pi n)^k},$$

where 0 < t < 1.

We reformulate the Szenes formula as an equality between Z(f)(t, 0) and the constant term of the Eisenstein series E(f)(t, z).

THEOREM 27. For any $f \in R_{\Delta}$ and t in an alcove \mathfrak{a} , we have

$$Z(f)(t,0) = \operatorname{CT}(f)(t) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m \left(e^{\langle t, \cdot \rangle} f \right) C E^{t} \operatorname{Res}_{\Delta} \right).$$

In particular, Z(f)(t,0) is a polynomial function of t when t varies in an alcove a.

As a consequence, if *OB* is a diagonal basis, then we recover the following residue formula (see [3, Theorem 4.4]):

$$\sum_{n \in N_{\text{reg}}} e^{\langle t, 2i\pi n \rangle} f(2i\pi n) = \sum_{o\sigma \in OB} \text{Res}^{o\sigma} \left(e^{\langle t, z \rangle} f(z) F^{\mathfrak{a}}_{\sigma}(-z) \right).$$

Thus, when

$$f = \frac{1}{\prod_{j=1}^{k} \alpha_j}$$

is sufficiently decreasing, this formula expresses the series

$$\sum_{n\in\mathbb{Z}^r,\langle\alpha_j,n\rangle\neq 0}\frac{1}{\prod_{j=1}^k\langle\alpha_j,2i\pi n\rangle}$$

as an explicit rational number.

Proof. From the definitions of Z(f)(t, z) and CT(f)(t), we obtain, for any $P \in S(V^*)$,

$$P(\partial_t)Z(f)(t,0) = Z(Pf)(t,0), \qquad P(\partial_t)\operatorname{CT}(f)(t) = \operatorname{CT}(Pf)(t).$$

Thus, it is enough to prove that Z(f)(t, 0) = CT(f)(t) for $f \in G_{\Delta}$, because G_{Δ} generates R_{Δ} as a $S(V^*)$ -module by Lemma 6.

For *t* in an alcove \mathfrak{a} , we can define the operator $Z^t : R_{\Delta} \to \mathbb{O}$ by

$$Z^{t}(f)(z) = \sum_{n \in N_{\text{reg}}} e^{\langle t, z+2i\pi n \rangle} f(z+2i\pi n).$$

The kernel formula holds for the operator Z^t . In particular, we obtain, for $f \in G_{\Delta}$,

$$Z^{t}(f)(0) = \operatorname{Tr}_{S_{\Delta}} \left(\operatorname{Res}_{\Delta} m \left(e^{\langle t, \cdot \rangle} f \right) C Z^{t} \operatorname{Res}_{\Delta} \right)$$

We thus need to prove that, for $f \in G_{\Delta}$,

 $\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta}m(e^{\langle t,\cdot\rangle}f)C(E^{t}-Z^{t})\operatorname{Res}_{\Delta}\right)=0.$

But E^t is given by a sum over the full lattice N, while Z^t is only over the regular elements of N. Thus, we can write (in many ways) $E^t - Z^t$ as a linear combination of operators $E_{\Gamma_{\alpha}}^t$, where each Γ_{α} is an admissible subset of N contained in the real hyperplane H_{α} . Now the Szenes formula follows from the next proposition.

PROPOSITION 28. Let Γ be an admissible subset of N contained in the real hyperplane H_{α} . Then, for $f \in G_{\Lambda}$,

$$\operatorname{Tr}_{S_{\Delta}}\left(\operatorname{Res}_{\Delta}m\left(e^{\langle t,\cdot\rangle}f\right)CE_{\Gamma}^{t}\operatorname{Res}_{\Delta}\right)=0$$

Proof. It suffices to prove that

$$\sum_{o\sigma \in OB} \operatorname{Res}^{o\sigma} \left(e^{\langle t, z \rangle} f(z) E_{\Gamma}^{t}(\phi_{\sigma})(-z) \right) = 0$$

for some diagonal basis OB.

A total order on Δ provides us with a special diagonal basis *OB* of $O\mathcal{B}(\Delta)$ (see, for example, [1, Proposition 14]). We choose this order such that α is minimal. In this case, every element of *OB* is of the form $o\sigma = (\alpha_1, \alpha_2, ..., \alpha_r)$ with $\alpha_1 = \alpha$. We claim that for each $o\sigma \in OB$,

$$\operatorname{Res}^{o\sigma}\left(e^{\langle t,z\rangle}f(z)E_{\Gamma}^{t}(\phi_{\sigma})(-z)\right)=0$$

Indeed, we use the notation of Lemma 11 and write $V' = H_{\alpha}$. Then our set Γ is contained in V'. Thus,

$$E_{\Gamma}^{t}(\phi_{\sigma})(z_{1},z') = \frac{e^{t_{1}z_{1}}}{z_{1}} \sum_{\gamma \in \Gamma} \frac{e^{\langle t',z'+2i\pi\gamma\rangle}}{\prod_{j=2}^{r} \langle \alpha_{j},z'+2i\pi\gamma\rangle}.$$

We see that for *t* fixed and regular,

$$e^{\langle t,z\rangle}f(z)E_{\Gamma}^{t}(\phi_{\sigma})(-z) = \frac{1}{z_{1}}f(z_{1},z')\psi(z'),$$

where $f \in G_{\Delta}$ and $\psi(z')$ has poles at most on the complex hyperplanes $\alpha_j = 0$ for j = 2, ..., r. Thus the claim follows from Lemma 11. Therefore, both Theorem 27 and Proposition 28 are proved.

References

- M. BRION AND M. VERGNE, Arrangement of hyperplanes, I: Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. (4) 32 (1999), 715–741.
- [2] L. JEFFREY AND F. KIRWAN, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. (2) 148 (1998), 109–196.

BRION AND VERGNE

- [3] A. SZENES, Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices 1998, 937–956.
- [4] E. WITTEN, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), 153–209.
- [5] D. ZAGIER, "Values of zeta functions and their applications" in *First European Congress of Mathematics (Paris, 1992), Vol. II, Progr. Math.* **120**, Birkhäuser, Basel, 1994, 497–512.

BRION: INSTITUT FOURIER, BOÎTE POSTALE 74, F-38402 SAINT-MARTIN D'HÈRES CEDEX, FRANCE VERGNE: CENTRE DE MATHÉMATIQUES, ÉCOLE POLYTECHNIQUE, F-91128 PALAISEAU CEDEX, FRANCE