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ARRANGEMENT OF HYPERPLANES, II: THE SZENES
FORMULA AND EISENSTEIN SERIES

MICHEL BRION and MICHÈLE VERGNE

To Victor Guillemin, for his 60th birthday

1. Introduction. Consider a sequence(α1,α2, . . . ,αk) of linear forms inr com-
plex variables, with integral coefficients. The linear formsαj need not be distinct.
For example,r = 2 andα1 = α2 = z1, α3 = α4 = z2, α5 = α6 = z1+z2. For any such
sequence, D. Zagier [5] introduced the series

∑
n∈Zr ,〈αj ,n〉�=0

1∏k
j=1〈αj ,n〉 .

Assuming convergence, its sum is a rational multiple ofπk. For example (see [5]),
we have ∑

n1 �=0,n2 �=0,n1+n2 �=0

1

n21n
2
2(n1+n2)2

= (2π)6

30240
.

These numbers are natural multidimensional generalizations of the value of the
Riemann zeta function at even integers. A. Szenes gave in [3, Theorem 4.4] a residue
formula for these numbers, relating them to Bernoulli numbers. The formula of Szenes
[3] is the multidimensional analogue of the residue formula

∑
n�=0

1

n2l
= (2π)2l

B2l

(2l)! = (−1)l(2π)2lResz=0
(

1

z2l(1−ez)

)
.

A motivation for computing such sums comes from the work of E. Witten [4]. In
the special case whereαj are the positive roots of a compact connected Lie group
G, each of these roots being repeated with multiplicity 2g − 2, Witten expressed
the symplectic volume of the space of homomorphisms of the fundamental group
of a Riemann surface of genusg into G, in terms of these sums. In [2], L. Jeffrey
and F. Kirwan proved a special case of the Szenes formula leading to the explicit
computation of this symplectic volume, whenG is SU(n).
Our interest in such series comes from a different motivation. Let us consider

first the 1-dimensional case. By the Poisson formula, for Re(z) > 0, the convergent
series

∑∞
m=1me−mz is also equal to

∑
n∈Z1/(z+2iπn)2. Similarly, sums of products
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of polynomial functions with exponential functions over all integral points of an
r-dimensional rational convex cone are related to functions ofr complex variables of
the form

ψ(z) =
∑
n∈Zr

1∏k
j=1〈αj ,z+2iπn〉 .

When this series is not convergent, introduce the oscillating factore〈t,2iπn〉 and define
the Eisenstein series

ψ(t,z) =
∑
n∈Zr

e〈t,z+2iπn〉∏k
j=1〈αj ,z+2iπn〉 ,

a generalized function oft ∈Rr .
In Section 3, we construct a decomposition of an open dense subset ofRr into

alcoves such thatt 
→ ψ(t,z) is given on each alcove by a polynomial int , with
rational functions ofez as coefficients. Our first theorem (see Theorem 19) gives an
explicit residue formula forψ(t,z). It follows easily from the obvious behaviour of
ψ(t,z) under differentiation inz.
This formula allows us to give a residual meaning “ψ(t,0)” for the value ofψ(t,z)

at z = 0, althoughψ(t,z) clearly has poles along all hyperplanes〈αj ,z〉 = 0. An
alternate way to defineψ(t,0) is to remove all infinities 1/αj in the series

ψ(t,0) =
∑
n∈Zr

e〈t,2iπn〉∏k
j=1〈αj ,2iπn〉 .

Indeed, we prove that the residue formula for “ψ(t,0)” coincides with the renormal-
ized sum:

“ψ(t,0)” =
∑

n∈Zr ,〈αj ,n〉�=0

e〈t,2iπn〉∏k
j=1〈αj ,2iπn〉 .

This equality gives another proof of the Szenes residue formula, as a “limit” of a
natural formula forψ(t,z) whenz → 0 along a generic line.
To illustrate our method, let us consider the 1-dimensional case. Fork ≥ 2, we can

define the Eisenstein series

Ek(z) =
∑
n∈Z

1

(z+2iπn)k
.

Clearly,Ek(z) is periodic inz with respect to translation by the lattice 2iπZ. From
the residue theorem, wheny is not in 2iπZ, we have the kernel formula

Ek(y) = Resz=0
(

1

zk(1−ez−y)

)
.(1)

Observe that the right-hand side has a meaning wheny = 0, and equals, by definition,
the Bernoulli numberBk/k!. The function
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Ek(y) = 1

yk
+

∑
n∈Z,n�=0

1

(y+2iπn)k

has a Laurent expansion aty = 0, with 1/yk as Laurent negative part. We see from
the residue formula that the constant term CT(Ek) = ∑

n∈Z,n�=01/(2iπn)k equals

Resz=0(1/(zk(1−ez))).
In view of this example, we call the value “ψ(t,0)” of ψ(t,y) aty = 0 the constant

term of the Eisenstein series∑
n∈Zr

e〈t,z+2iπn〉∏k
j=1

〈
αj ,z+2iπn

〉 .
Acknowledgments.We thank A. Szenes and the referees of our paper for several

suggestions.

2. Kernel formula. In this section, we briefly recall results of [1] with slightly
modified notation. LetV be anr-dimensional complex vector space. LetV ∗ be the
dual vector space, and let� ⊂ V ∗ be a finite subset of nonzero linear forms. Each
α ∈ � determines a hyperplane{α = 0} in V . Consider the hyperplane arrangement

� =
⋃
α∈�

{α = 0}.

An elementz ∈ V is calledregular if z is not in�. If S is a subset ofV , we writeSreg
for the set of regular elements inS. The ringR� of rational functions with poles on
� is the ring�−1S(V ∗) generated by the ringS(V ∗) of polynomial functions onV ,
together with inverses of the linear functionsα ∈ �. The ringR� has aZ-gradation
by the homogeneous degree that can be positive or negative. Elements ofR� are
defined on the open subsetVreg. (Our notation differs from [1] in that the roles ofV
andV ∗ are interchanged.)
In the one-variable case, the function 1/z is the unique function that cannot be

obtained as a derivative. There is a similar description of a complement space to the
space of derivatives in the ringR�, which we recall now.
A subsetσ of� is called abasis of� if the elementsα ∈ σ form a basis ofV . We

denote by�(�) the set of bases of�. An ordered basisis a sequence(α1,α2, . . . ,αr)

of elements of� such that the underlying set is a basis. We denote byO�(�) the set
of ordered bases.
For σ ∈ �(�), set

φσ (z) := 1∏
α∈σ α(z)

.

We callφσ a simple fraction. Settingzj = 〈z,αj 〉, we have

φσ (z) = 1

z1z2 · · ·zr .
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Definition 1. The subspaceS� of R� spanned by the elementsφσ , σ ∈ �(�),

will be called the space ofsimple elementsof R�:

S� =
∑

σ∈�(�)

Cφσ .

The spaceS� consists of homogeneous rational functions of degree−r. However,
not every homogeneous element of degree−r of R� is in S� (e.g., in the preceding
notation, if r ≥ 2, both functions 1/zr1 and z2/z

r+1
1 are not inS�). Furthermore,

we must be careful, as the elementsφσ may be linearly dependent. For example, if
V = C2 and� = {z1,z2,z1+z2}, we have

S� = C 1

z1z2
+C 1

z1(z1+z2)
+C 1

z2(z1+z2)

and we have the relation

1

z1z2
= 1

z1(z1+z2)
+ 1

z2(z1+z2)
.

A description due to Orlik and Solomon of all linear relations between the elements
φσ is given in [1, Proposition 13].

Definition 2. A basisB of �(�) is a subset of�(�) such that the elementsφσ ,
σ ∈ B, form a basis ofS�:

S� =
⊕
σ∈B

Cφσ .

We let elementsv of V act onR� by differentiation:

(
∂(v)f

)
(z) := d

dε
f (z+εv)|ε=0.

Then the following holds (see [1, Proposition 7]).

Theorem 3. We have
R� = ∂(V )R�⊕S�.

Thus, we see that only simple fractions cannot be obtained as derivatives.
As a corollary of this decomposition, we can define the projection map

Res� : R� −→ S�.

The projection Res�f (z) of a functionf (z) is a function ofz that we call the
Jeffrey-Kirwan residueof f . By definition, this function can be expressed as a linear
combination of the simple fractionsφσ . The main property of the map Res� is that
it vanishes on derivatives, so that forv ∈ V , f,g ∈ R�,

Res�
((
∂(v)f

)
g
)= −Res�

(
f
(
∂(v)g

))
.(2)
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If oσ ∈ O�(�) is an ordered basis, an important functional Resoσ can be defined
on R�: the iterated residuewith respect to the ordered basisoσ . If we write an
elementz ∈ V on the basisoσ = (α1,α2, . . . ,αr) asz = (z1, . . . ,zr ), then

Resoσ (f ) = Resz1=0
(
Resz2=0 · · ·(Reszr=0f (z1,z2, . . . ,zr )

) · · ·).
The map Resoσ depends on the orderoσ chosen onσ and not only on the basisσ
underlyingoσ . The restriction of the functional Resoσ to S� is calledroσ . We have

Resoσ = roσ Res� .(3)

Indeed, we have only to check that Resoσ vanishes on derivatives. Ifoσ = (α1,α2, . . . ,

αr) andz = (z1, . . . ,zr ), the iterated residue Resoσ vanishes at the step Reszj=0 on
∂R�/∂zj .
Recall the following definition from A. Szenes (see [3, Definition 3.3]).

Definition 4. A diagonal basisis a subsetOB of O�(�) such that the following
are true.
(1) The set of underlying (unordered) bases forms a basisB of �(�).
(2) The dual basis to the basis (φσ ,oσ ∈ OB) is the set of linear forms (roσ ,

oσ ∈OB):
roτ (φσ ) = δτσ .

In [3, Proposition 3.4], it is proved that a total order on� gives rise to a diagonal
basis. (This is proved again in more detail in [1, Proposition 14].)
In the 1-dimensional case,S� = Cz−1, and the spaceG =∑

k≤−1Czk of negative
Laurent series is the space obtained from the function 1/z by successive derivations.
In the case of several variables, we can also characterize the space generated by simple
fractions under differentiation.
Let κ be a sequence of (not necessarily distinct) elements of�. The sequenceκ is

calledgeneratingif the α ∈ κ generate the vector spaceV ∗.
We denote byG� the subspace ofR� spanned by the

φκ := 1∏
α∈κ α

,

whereκ is a generating sequence. Finally, we denote byS(V ) the ring of differential
operators onV , with constant coefficients. This ring acts onS(V ∗) and onR�.

Proposition 5 [1, Theorem 1]. The spaceG� is theS(V )-submodule ofR� gen-
erated byS�.

For example, if� = {z1,z2,z1+z2}, we have
1

z1z2(z1+z2)
= − ∂

∂z1

(
1

z1z2

)
+
(

∂

∂z1
− ∂

∂z2

)(
1

z1(z1+z2)

)
.
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In particular, every element ofG� can be expressed as a linear combination of
elements

1∏
α∈σ αnα

,

whereσ is a basis and thenα are positive integers.
For example, the above equality is equivalent to

1

z1z2(z1+z2)
= 1

z21z2
− 1

z21(z1+z2)
.

The ring S(V ∗) operates by multiplication onR�. It is also useful to consider
the action of the ring�(V ) of differential operators with polynomial coefficients,
generated byS(V ) andS(V ∗). The following lemma is an obvious corollary of the
description ofG�.

Lemma 6. The spaceR� is generated byG� as anS(V ∗)-module. It is generated
by S� as a�(V )-module.

Consider now the space� of holomorphic functions onV defined in a neighborhood
of zero. Let�� = �−1� be the space of meromorphic functions in a neighborhood of
zero, with products of elements of� as denominators. The space�� is a module for
the action of differential operators with constant coefficients. Via the Taylor series at
the origin of elements of�, the residue Res�f (z) still has a meaning iff (z) ∈ ��;
indeed, Res�f (z) = 0 if f ∈ R� is homogeneous of degree not equal to−r.
If y ∈ V is sufficiently near zero andf ∈ ��, the function(

�(y)f
)
(z) := f (z−y)

is still an element of��. Moreover, ify is regular, thenf (z−y) is defined forz = 0
and thus is an element of�.
If f ∈ R�, we denote bym(f ) the operator of multiplication byf :(

m(f )φ
)
(z) := f (z)φ(z).

It operates on��. Finally, we denote byC the operator

(Cf )(z) := f (−z)

on��.

Theorem 7 (Kernel theorem). LetA : R� → �� be an operator commuting with
the action of differential operators with constant coefficients. Fory ∈ V regular,
sufficiently near zero, and forf ∈ G�, we have the formula

(Af )(y) = TrS�
(
Res�m(f )C�(y)ARes�

)
.
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More explicitly, choose a basisB of �(�), and let (φσ ,σ ∈ B) be the basis ofS∗
�

dual to the basis (φσ ,σ ∈ B) of S�. Then we have the kernel formula

(Af )(y) =
∑
σ∈B

〈
φσ ,Res�

(
f (z)Aσ (y−z)

)〉
,

whereAσ (z) = A(φσ )(z).

Concretely, this formula has the following meaning. Letf be homogeneous of
degreed. We fix y regular and small. The functionz 
→ Aσ (y − z) is defined near
z = 0. The Jeffrey-Kirwan residue Res� of the functionz 
→ f (z)Aσ (y − z) is a
function of z belonging to the spaceS�. We pair it with the linear formφσ on S�,
and we obtain a certain complex number depending ony. More precisely, consider
the Taylor expansion

Aσ (y−z) = Aσ (y)+
∞∑
j=1

Aj
σ (y,z),

whereAj
σ (y,z) is the part of the Taylor expansion at zero of the holomorphic function

z 
→ Aσ (y−z), which is homogeneous of degreej in z. We have

Aj
σ (y,z) = (−1)j

∑
(k),|(k)|=j

A(k)
σ (y)

z(k)

(k)! ,

where(k) = (k1, . . . ,kr ) is a multi-index, andA
(k)
σ (y) = ((∂/∂y)(k)Aσ )(y). Then, as

the Jeffrey-Kirwan residue vanishes on homogeneous terms of degree not equal to
−r, we obtain

Res�
(
f (z)Aσ (y−z)

)= Res�
(
f (z)A−d−r

σ (y,z)
)

= (−1)d+r
∑

(k),|(k)|=−d−r

A(k)
σ (y)Res�

(
f (z)

z(k)

(k)!
)
.

Thus,〈φσ ,Res�(f (z)Aσ (y−z))〉 is equal to

(−1)d+r
∑

(k),|(k)|=−d−r

A(k)
σ (y)

〈
φσ ,Res�

(
f (z)

z(k)

(k)!
)〉

.

Setc(k)σ (f ) = 〈φσ ,Res�(f (z)(z(k)/(k)!))〉. LetPf
σ (∂/∂y) be the differential operator

with constant coefficients defined by

Pf
σ

(
∂

∂y

)
= (−1)d+r

∑
(k),|(k)|=−d−r

c(k)σ (f )

(
∂

∂y

)(k)

.
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ThenPf
σ depends linearly onf , and

〈
φσ ,Res�

(
f (z)Aσ (y−z)

)〉= (
Pf
σ

(
∂

∂y

)
Aσ

)
(y).

The claim of the theorem is that

(Af )(y) =
∑
σ∈B

P f
σ

(
∂

∂y

)
·Aσ (y).

We now prove this theorem.

Proof. Define an operatorA′ : R� → �� by

(A′f )(y) =
∑
σ∈B

〈
φσ ,Res�

(
f (z)Aσ (y−z)

)〉
.

We first check thatA′ commutes with the action of differential operators with constant
coefficients. Using the equation(

∂y(v)φ
)
(y−z) = −(∂z(v)φ)(y−z)

and the main property (2) of Res�, we obtain

∂y(v) ·
〈
φσ , Res�

(
f (z)Aσ (y−z)

)〉= 〈
φσ ,Res�

(
f (z)

(
∂y(v) ·Aσ (y−z)

))〉
= −〈φσ ,Res�

(
f (z)

(
∂z(v) ·Aσ (y−z)

))〉
= 〈

φσ ,Res�
((
∂z(v) ·f

)
Aσ (y−z)

)〉
.

It remains to see thatA andA′ coincide onS�. For this, we use the following
formula. IfP is a polynomial andφ a simple fraction, then

Res�(Pφ) = P(0)φ.(4)

To see this, recall that the functionφ is homogeneous of degree−r. As P ∈ S(V ∗),
P −P(0) is a sum of homogeneous terms of positive degree. Thus, for homogeneity
reasons, Res�((P −P(0))φ) = 0.
Let y be regular, and letσ,τ ∈ B. As the functionz → Aσ (y−z) is an element of

�, by formula (4) we obtain

Res�
(
φτ (z)Aσ (y−z)

)= Aσ (y)φτ (z).

Thus,

A′(φτ )(y) =
∑
σ∈B

〈
φσ ,Res�

(
φτ (z)Aσ (y−z)

)〉

=
∑
σ∈B

〈φσ ,φτ 〉Aσ (y) =
∑
σ∈B

δτσAσ (y) = Aτ (y) = A(φτ )(y).

Choosing a diagonal basisOBand using equation (3), we obtain an iterated residue
formula for(Af )(y).
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Corollary 8. For any diagonal basis OB of�(�), we have, forf ∈ G�,

(Af )(y) =
∑

oσ∈OB
Resoσ

(
f (z)Aσ (y−z)

)
,

whereAσ (z) = A(φσ )(z).

Corollary 8 applies to the identity operatorA : R� → R�. If f ∈ G�, we obtain
f (y) = ∑

oσ∈OBResoσ (f (z)φσ (y − z)). But if f ∈ NG�, then clearly Resoσ (f (z)

φσ (y − z)) = 0, as the Taylor series off (z)φσ (y − z) at z = 0 is also inNG�. As
a consequence, we obtain a formula for the Jeffrey-Kirwan residue as a function of
iterated residues.

Lemma 9. For anyf ∈ R�, we have

(Res�f )(y) =
∑

oσ∈OB
Resoσ (f )φσ (y).

Similarly, if Z : R� → � is an operator commuting with the action of differential
operators with constant coefficients, the formula

Z(f )(y) = TrS�
(
Res�m(f )C�(y)ZRes�

)
is valid forall elementsy ∈ V sufficiently near zero and for allf ∈ G�. In particular,
we have the following proposition.

Proposition 10. Let Z : R� → � be an operator commuting with the action of
differential operators with constant coefficients. Then we have, forf ∈ G�,

Z(f )(0) = TrS�
(
Res�m(f )CZRes�

)
,

where(CZ)(φ)(z) = Z(φ)(−z).

Choosing a diagonal basis ofO�(�), we can express the preceding formula as a
residue formula in several variables:

Z(f )(0) =
∑

oσ∈OB
Resoσ

(
f (z)Zσ (−z)

)
,

with Zσ (z) = Z(φσ )(z).
For later use, we prove a vanishing property of the linear form Resoσ . Let oσ

be an ordered basis. We writeoσ = (α1,α2, . . . ,αr) and z = (z1,z2, . . . ,zr ). Set
oσ ′ = (α2, . . . ,αr) and z′ = (z2, . . . ,zr ); then z = (z1,z

′). Let ψ(z′) in ��′ be a
meromorphic function with a product of linear formsα(z′), whereα ∈ � is not a
multiple ofα1, as a denominator.

Lemma 11. For anyf ∈ G� and for anyψ ∈ ��′ ,

Resoσ
(
1

z1
f (z1,z

′)ψ(z′)
)

= 0.
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Proof. We have

Resoσ
(
1

z1
f (z1,z

′)ψ(z′)
)

= Resz1=0
(
1

z1
Resoσ

′ (
f (z1,z

′)ψ(z′)
))

.

In computing Resoσ
′
(f (z1,z

′)ψ(z′)), the variablez1 is fixed to a nonzero value. The
result Resoσ

′
(f (z1,z

′)ψ(z′)) is a meromorphic function ofz1. It is thus sufficient to
prove that Resoσ

′
(f (z1,z

′)ψ(z′)) belongs to the spaceG =∑
k≤−1Czk1.

We check this forf = φκ , where

φκ(z) = 1∏
α∈κ〈α,z〉

andκ is a generating sequence. Let

κ1 := {
α ∈ κ, 〈α,(z1,0)〉 �= 0

}
and

κ ′ = {
α ∈ κ, 〈α,(z1,0)〉 = 0

}
.

As κ is generating, the setκ1 is nonempty. We fixz1 �= 0. We have

φκ(z1,z
′)ψ(z′) = φκ1(z1,z

′)φκ ′(z′)ψ(z′)
andφκ ′ ∈ ��′ . For α ∈ κ1, we set〈α,(z1,z′)〉 = cαz1+ 〈β,z′〉, with cα �= 0. We
consider the Taylor expansion atz′ = 0 of the holomorphic function ofz′:

1

〈α,(z1,z′)〉 = 1

cαz1+〈β,z′〉 = 1

cαz1
(
1+〈β,z′〉/(cαz1)

) .
This is of the form ∞∑

k=1
z−k
1 Pk−1(z′),

wherePk−1(z′) is homogeneous of degreek−1 in z′. Let n = |κ1|; thenn ≥ 1. We
see that the function

z′ 
−→ φκ1(z1,z
′) = 1∏

α∈κ1〈α,(z1,z′)〉
has a Taylor expansion of the form∑

k≥n

z−k
1 Qk−1(z′),

whereQk−1(z′) is homogeneous of degreek−1 in z′. Thus

Resoσ
′ (
φκ1(z1,z

′)φκ ′(z′)ψ(z′)
)=

∑
k≥n

z−k
1 Resoσ

′ (
Qk−1(z′)φκ ′(z′)ψ(z′)

)
.

Via the Taylor series atz′ = 0, the functionφκ ′(z′)ψ(z′) can be expressed as an
infinite sum of homogeneous elements with finitely many negative degrees.As the
iterated residue Resoσ

′
vanishes on elements ofdegree not equal to−(r −1) and as
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Qk−1(z′) is homogeneous of degreek − 1, we see that the sum is finite and that
Resoσ

′
(φκ1(z1,z

′)φκ ′(z′)ψ(z′)) is in the spaceG as claimed.

3. Eisenstein series.Results of Section 2 are used for a complex vector space that
is the complexification of a real vector space. Thus, we slightly change the notation
in this section.
LetV be areal vector space of dimensionr equipped with a latticeN . The complex

vector spaceVC is the space to which we apply the results of Section 2.
We consider the dual latticeM = N∗ to N . We consider the compact torusT =

iV /(2iπN) and its complexificationTC = VC/(2iπN). The projection mapVC →
TC is denoted by the exponential notationv → ev. If {e1,e2, . . . ,er} is aZ-basis of
N , we write an element ofVC asz = z1e

1+ z2e
2+·· ·+ zre

r with zj ∈ C. We can
identify TC with C∗ ×C∗ ×· · ·×C∗ by z 
→ (ez1,ez2, . . . ,ezr ).
If m ∈ M, we denote byem the character ofT defined by〈em,ev〉 = e〈m,v〉.

We extendem to a holomorphic character of the complex torusTC. The ring of
holomorphic functions onTC generated by the functionsem is denoted byR(T ). A
quotient of two elements ofR(T ) is called arational functionon the complex torus
TC. Via the exponential mapVC → TC, a function onTC is sometimes identified with
a function onVC, invariant under translation by the lattice 2iπN . If {e1,e2, . . . ,er}
is aZ-basis ofN , a rational function onTC written in exponential coordinates is a
rational function ofez1,ez2, . . . ,ezr . We briefly say that it is a rational function ofez.
Let us consider a finite set� of nontrivial characters ofT . We identify� with a

subset ofM; for α ∈ �, we denote byeα the corresponding character ofTC.

Definition 12. We denote byR(T )� the subring of rational functions onT gener-
ated byR(T ) and the inverses of the functions 1−e−α with α ∈ �.

Observe thatR� is left unchanged when each element of� is replaced by a nonzero
scalar multiple, but thatR(T )� strictly increases when (say) eachα ∈ � is replaced
by 2α. We assume from now on that all elements of� are indivisible in the latticeM.
Via the exponential map, we consider elements ofR(T )� as periodic meromorphic

functions onVC. OnVC, the function

〈α,z〉
1−e−〈α,z〉

is defined atz = 0, so it is an element of�. Writing

1

1−e−〈α,z〉 = 1

〈α,z〉
〈α,z〉

1−e−〈α,z〉 ,

we see thatR(T )� is contained in��. We see furthermore from the formula

d

dz

1

1−e−z
= 1

(1−ez)(1−e−z)
= −e−z

(1−e−z)2

thatR(T )� ⊂ �� is stable under differentiation.
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Our aim is to find a natural map fromR� to R(T )� commuting with the action
of differential operators with constant coefficients. In particular, we want to force
a rational function ofz ∈ VC to become periodic, so that it is natural to define the
Eisenstein series

E(f )(z) =
∑
n∈N

f (z+2iπn).

We need to be more careful, as the sum is usually not convergent for an arbitrary
f ∈ R�. We introduce an oscillating factore〈t,2iπn〉 with t ∈ V ∗ in front of each term
of this infinite sum.
Let

U� = {
z ∈ VC, 〈α,z+2iπn〉 �= 0 for all n ∈ N and for allα ∈ �

}
.

ThenR(T )� consists of periodic holomorphic functions onU�.
Let f ∈ R�; thenf (z+2iπn) is defined for eachn ∈ N if z ∈ U�. For z ∈ U�,

we consider the function onV ∗ defined by

t 
−→
∑
n∈N

e〈t,z+2iπn〉f (z+2iπn).

If n 
→ f (z + 2iπn) is sufficiently decreasing at infinity, the series is absolutely
convergent and sums up to a continuous function oft with value att = 0 equal to∑

n∈N
f (z+2iπn).

In any case, it is easy to see that this series of functions oft converges to a generalized
function of t .

Proposition 13. For eachf ∈ R� andz ∈ U�, the function onV ∗ defined by

t 
−→
∑
n∈N

e〈t,z+2iπn〉f (z+2iπn)

is well defined as a generalized function oft , which depends holomorphically onz
for z in the open setU�.

Proof. Indeed, ifs(t) is a smooth function onV ∗ with compact support, consider
the series∑

n∈N
f (z+2iπn)

∫
V ∗

e〈t,z+2iπn〉s(t)dt =
∑
n∈N

c(z,n)f (z+2iπn).

The coefficient

c(z,n) =
∫
V ∗

e2iπ〈t,n〉e〈t,z〉s(t)dt

is rapidly decreasing inn, as the functiont 
→ e〈t,z〉s(t) is smooth and compactly
supported. Thus,c(z,n)f (z + 2iπn) is also a rapidly decreasing function ofn.
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Furthermore,c(z,n)f (z + 2iπn) depends holomorphically onz ∈ U�. So the re-
sult of the summation ∑

n∈N
c(z,n)f (z+2iπn)

exists and is a holomorphic function ofz.

We write
E(f )(t,z) =

∑
n∈N

e〈t,z+2iπn〉f (z+2iπn)

for this generalized function oft depending holomorphically onz. We analyze this
function of(t,z), t ∈ V ∗, z ∈ U�.
We first summarize some of the obvious properties ofE(f )(t,z).

Proposition 14. The following equations are satisfied.
(1) For everyP ∈ S(V ∗) andf ∈ R�,

E(Pf )(t,z) = P(∂t )E(f )(t,z).

(2) For everyv ∈ V andf ∈ R�,

E
(
∂(v)f

)
(t,z) = ∂z(v)E(f )(t,z)−〈t,v〉E(f )(t,z).

(3) For everym ∈ M andz ∈ U�,

E(f )(t +m,z) = e〈m,z〉E(f )(t,z).

As R� is generated byS� under the action ofS(V ) andS(V ∗), we see that the
operatorE is completely determined by the functionsE(φσ )(t,z) (σ ∈ �(�)).
A wall of � is a hyperplane ofV ∗ generated byr−1 linearly independent vectors

of �. We consider the system of affine hyperplanes generated by the walls of�

together with their translates byM (the dual lattice ofN ). We denote byV ∗
�,areg

the complement of the union of these affine hyperplanes. A connected component of
V ∗
�,areg is called analcoveand is denoted bya.

Proposition 15. The functionE(f )(t,z) is smooth whent varies onV ∗
�,aregand

whenz ∈ U�. More precisely, leta be an alcove. Assume thatf is homogeneous of
degreed. Then, on the open seta×U�, the functionE(f )(t,z) is a polynomial int
of degree at most−d−r, with coefficients inR(T )�.

Proof. Consider first the one-variable case. The setV ∗
�,areg is R−Z. Let [t] be

the integral part oft . Fix z ∈ C−2iπZ. Consider the locally constant function of
t ∈R−Z defined by

t 
−→ e[t]z

1−e−z
.

We extend this function as a locallyL1-function onR (defined except on the setZ of
measure zero).
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Lemma 16. We have the equality of generalized functions oft :

∑
n∈Z

et(z+2iπn)

z+2iπn
= e[t]z

1−e−z
.

Proof. We compute the derivative int of the left-hand side. It is equal to∑
n∈Z

et(z+2iπn) = etzδZ(t),

whereδZ is the delta function of the set of integers.
We compute the derivative int of the right-hand side. This function oft is constant

on each interval(n,n+1). The jump at the integern is

enz

1−e−z
− e(n−1)z

1−e−z
= enz.

It follows that the derivative int of the right-hand side is also equal toetzδZ(t). Thus,

∑
n∈Z

et(z+2iπn)

z+2iπn
= c(z)+ e[t]z

1−e−z
,

wherec(z) is a constant. We verify thatc(z) is equal to zero by using periodicity
properties int . It is clear that

e−tz
∑
n∈Z

et(z+2iπn)

z+2iπn
=
∑
n∈Z

e2iπnt

z+2iπn

is a periodic function oft as is

e−tz e[t]z

1−e−z
= e([t]−t)z

1−e−z
.

It follows thate−tzc(z) is also a periodic function oft . This impliesc(z) = 0.

Consider now, fork ∈ Z,
Ek(t,z) =

∑
n∈Z

et(z+2iπn)(z+2iπn)k.

We just saw that

E−1(t,z) = e[t]z

1−e−z
.

To determineEk(t,z) for k ≤ −1, we use the differential equation inz,
∂zEk(t,z) = tEk(t,z)+kEk−1(t,z).
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Using decreasing induction overk, we see thatEk(t,z) is anL1-function of t , equal
to a polynomial function oft of degree−k−1 on each interval(n,n+1) and with
rational functions ofez as coefficients. For example, we obtain the value of the
convergent series

∑
n

et(z+2iπn)

(z+2iπn)2
= (t −[t]) e[t]z

1−e−z
− e[t]z

(1−e−z)(1−ez)
.

Whenk ≥ 0, we use the differential equation

∂tEk(t,z) = Ek+1(t,z)

so that, as we have already used,

E0(t,z) =
∑
n∈Z

et(z+2iπn) = etzδZ(t).

More generally,Ek(t,z) = (∂t )
k(etzδZ(t)) is supported onZ; in particular, it is iden-

tically zero onR−Z.
We return to the proof of Proposition 15. For a simple fractionφ, consider the

function
t 
−→ E(φ)(t,z).

We first prove that it is a locallyL1-function, which is constant whent varies in
an alcove.
Let σ = {α1,α2, . . . ,αr} be a basis of�. Let t ∈ V ∗. If t =∑

j tjαj is the decom-
position oft on the basisσ , set[t]σ =∑

j [tj ]αj . The functiont 
→ [t]σ is constant
whent varies in an alcove. Consider the sublattice

Mσ =
⊕
α∈σ

Zα ⊆ M.

We say thatσ is aZ-basis ifMσ = M. In general, the quotientM/Mσ is a finite set;
let � be a set of representatives of this quotient. We can choose� in the following
standard way. We consider the box

Qσ =
⊕
α∈σ

[0,1)α = {
u ∈ V ∗, [u]σ = 0

}
.

Then we can take
� = Qσ ∩M = {

u ∈ M, [u]σ = 0
}
.

Define
�(t,σ ) = (t −Qσ)∩M = {

u ∈ M, [t −u]σ = 0
}
.

The set�(t,σ ) is also a set of representatives ofM/Mσ . If σ is aZ-basis ofM, this
set is reduced to the single element[t]σ . Remark that the set�(t,σ ) is constant when
t varies in an alcovea. We denote it by�(a,σ ).
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Definition 17. If a is an alcove and ifσ is a basis of�, we set

Fa
σ =

∣∣∣∣ MMσ

∣∣∣∣
−1 ∑

m∈�(a,σ ) e
m∏

α∈σ (1−e−α)
.

Thus, an alcovea together with a basisσ ∈ �(�) produces a particular element
Fa
σ of R(T )�.
Consider on the setV ∗

�,aregthe locally constant function oft defined byFσ (t,z) =
Fa
σ (z) whent is in the alcovea. This defines a locallyL

1-function of t , still denoted
by Fσ (t,z), defined except on the setV ∗ − V ∗

�,areg of measure zero. This locally

L1-function of t defines a generalized function oft which depends holomorphically
on z.

Lemma 18. We have the equality of generalized functions oft ∈ V ∗:

E(φσ )(t,z) = Fσ (t,z).

Proof. If σ is aZ-basis ofM, this follows from the formula in dimension 1. In
general, we considerMσ ⊆ M and the dual latticeNσ = M∗

σ . ThenN ⊆ Nσ . We set

Eσ (φσ )(t,z) :=
∑
7∈Nσ

e〈t,z+2iπ7〉φσ (z+2iπ7).

For any set of representatives� of M/Mσ , we have
∑

u∈� e−〈u,2iπ7〉 = 0 if 7 ∈ Nσ

is not inN , while this sum equals|M/Mσ | if n ∈ N . Thus,

E(φσ )(t,z) =
∑
n∈N

φσ (z+2iπn)e〈t,z+2iπn〉

=
∑
7∈Nσ

φσ (z+2iπ7)e〈t,z+2iπ7〉
(∣∣∣∣ MMσ

∣∣∣∣
−1∑

u∈�

e−〈u,2iπ7〉
)

=
∣∣∣∣ MMσ

∣∣∣∣
−1∑

u∈�

∑
7∈Nσ

φσ (z+2iπ7)e〈t−u,z+2iπ7〉e〈u,z〉

=
∣∣∣∣ MMσ

∣∣∣∣
−1∑

u∈�

e〈u,z〉Eσ (φσ )(t −u,z).

This holds as an equality of generalized functions oft . Further, we have the following,
by the 1-dimensional case:

Eσ (φσ )(t,z) = e〈[t]σ ,z〉∏
α∈σ

(
1−e−〈α,z〉) .
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It follows thatE(φσ )(t,z) is a locallyL1-function of t , as isEσ (φσ ). It remains to
determine the value of this function whent is in an alcove. Form ∈ Mσ , we have

Eσ (φσ )(t +m,z) = e〈m,z〉Eσ (φσ )(t,z),

so that the sum
∑

u∈� e〈u,z〉Eσ (φσ )(t − u,z) is independent of the choice of the
system of representatives� of M/Mσ . We choose� = �(t,σ ). Then

E(φσ )(t,z) =
∣∣∣∣ MMσ

∣∣∣∣
−1 ∑

u∈�(t,σ ) e
〈u,z〉∏

α∈σ
(
1−e−〈α,z〉)

because[t −u]σ = 0 for all u ∈ �(t,σ ).

Every functionf ∈ R�, homogeneous of degreed, is obtained from an element of
S� by the action of a differential operator with polynomial coefficients. This operator
is of degreed+r, if multiplication byzj is given degree 1, while derivation∂/∂zj is
given degree−1. Using Proposition 14, we see that Proposition 15 follows from the
fact that the functiont 
→ E(φσ )(t,z) is constant on each alcove.

From Proposition 15, we see that there exist functionsφa
(k)(z) ∈ R(T )� such that

we have the equality fort in the alcovea:

E(f )(t,z) =
∑
n∈N

e〈t,z+2iπn〉f (z+2iπn) =
∑
(k)

t (k)φa
(k)(z),

where the sum is over a finite number of multi-indices(k). This defines an operator

Et : R� −→ R(T )�, f 
−→ E(f )(t,z)

obtained by fixing the regular valuet .
The operatorEt satisfies the following relation, which is just relation(2) in Propo-

sition 14: Forv ∈ V andf ∈ R�,

Et
(
∂(v)f

)
(z) = ∂z(v)E

t (f )(z)−〈t,v〉Et(f )(z).

Let B be a basis of�(�). Let (φσ , σ ∈ B) be the corresponding basis ofS�, and
let (φσ , σ ∈ B) be the dual basis ofS∗

�. For σ ∈ B and an alcovea, consider the
elementFa

σ of R(T )� ⊂ �� associated toσ,a. We obtain a kernel formula for the
operatorEt .

Theorem 19. Let f ∈ G�. For y ∈ U� and t ∈ a, we have

Et(f )(y) = TrS�
(
Res�m

(
e〈t,·〉f

)
C�(y)Et Res�

)
=
∑
σ∈B

〈
φσ ,Res�

(
e〈t,z〉f (z)Fa

σ (y−z)
)〉
,
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whereFa
σ is given by Definition 17. Moreover, ifB is the underlying basis of a

diagonal basis OB, then

Et(f )(y) =
∑

oσ∈OB
Resoσ

(
e〈t,z〉f (z)Fa

σ (y−z)
)
.

Proof. By a method entirely similar to the proof of Theorem 1, we see that the
operator

At(f )(y) =
∑
σ∈B

〈
φσ ,Res�

(
e〈t,z〉f (z)Fa

σ (y−z)
)〉

satisfies the relation

At
(
∂(v)f

)
(z) = ∂z(v)A

t (f )(z)−〈t,v〉At(f )(z)

for v ∈ V , f ∈ R�. Thus, to prove thatEt = At onG�, it is sufficient to prove that
they coincide forf = φτ . In this case, we obtain

At(φτ )(y) =
∑
σ∈B

〈
φσ ,φτ (z)

〉
Fa
σ (y) = Fa

τ (y) = Et(φτ )(y).

In view of the kernel formula for the Eisenstein seriesEt , it is natural to introduce
the following definition.

Definition 20. The constant termof the Eisenstein seriesEt is the linear form
f → CT(f )(t) defined forf ∈ R� andt in the alcovea by

CT(f )(t) = TrS�
(
Res�m

(
e〈t,·〉f

)
CEt Res�

)
.

More explicitly, if OB is a diagonal basis of�(�), then

CT(f )(t) =
∑

oσ∈OB
Resoσ

(
e〈t,z〉f (z)Fa

σ (−z)
)
.

4. Partial Eisenstein series. Let Nreg= N ∩Vreg be the set of regular elements
of N . The aim of this section is to prove that the function

ENreg(f )(t,z) =
∑

n∈Nreg

e〈t,z+2iπn〉f (z+2iπn)

is analytic in(t,z) when t is in an alcove andz ∈ VC is close to zero. In the next
section we prove the Szenes residue formula for

ENreg(f )(t,0) =
∑

n∈Nreg

e〈t,2iπn〉f (2iπn).

Let 8 be a subset ofN . We can define, forf ∈ R�, the generalized function oft ,

E8(f )(t,z) =
∑
n∈8

e〈t,z+2iπn〉f (z+2iπn).
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Introduce the set

U�,8 = {
z ∈ VC, 〈α,z+2iπn〉 �= 0 for all α ∈ � andn ∈ 8

}
.

The generalized functionE8(f )(t,z) depends holomorphically onz, whenz ∈ U�,8.
Let W be a rational subspace ofV . ThenN ∩W is a lattice inW . Consider, for

f ∈ R�,
EN∩W(f )(t,z) =

∑
n∈N∩W

e〈t,z+2iπn〉f (z+2iπn).

Weanalyze the singularities in(t,z) ofEN∩W(f )(t,z). If W is zero, thenE{0}(f )(t,z)

= e〈t,z〉f (z) is analytic in(t,z) whenz is regular inVC. Assume thatW is nonzero
and consider the subspaceW⊥ of V ∗. Notice that ifu ∈ M+W⊥, we have the relation

EN∩W(f )(t +u,z) = e〈u,z〉EN∩W(f )(t,z).

It is clear that the singular set ofEN∩W(f )(t,z) is stable by translation byM+W⊥.
Define a(W,�)-wall in V ∗ as a hyperplane generated byW⊥ together with dimW−1
vectors of�. We introduce the set�∗

W,�,M consisting of the union of all(W,�)-walls
and of their translates by elements ofM. We defineV ∗

W,�,aregas the complement of

�∗
W,�,M in V ∗. This setV ∗

W,�,areg is invariant by translation byM+W⊥.

Lemma 21. For f ∈ R�, the functionEN∩W(f )(t,z) is analytic in(t,z) whent
varies onV ∗

W,�,areg and z ∈ U�,N∩W . Furthermore, ift ∈ V ∗
W,�,areg and z is near

zero, the functionz 
→ EN∩W(f )(t,z) defines an element of��.

Proof. Let σ be a basis of�. Although we are not able to give a nice formula for
the functionEN∩W(φσ )(t,z), we can still obtain an inductive expression that suffices
to give some information on it. Consider the setV ∗

W,σ,areg, that is, the complement of
the union of(W,σ)-walls together with their translates byM. LetUσ,N∩W be the set
of all z ∈ VC such that〈α,z+2iπn〉 �= 0 for allα ∈ σ andn ∈ N∩W . The intersection
of this set with a small neighborhood of zero is contained in the complement of the
union of the complex hyperplanes{z ∈ VC, 〈α,z〉 = 0}, for α ∈ σ .

Lemma 22. The functionEN∩W(φσ )(t,z) is analytic in t ∈ V ∗
W,σ,areg and z ∈

Uσ,N∩W . Furthermore, whent ∈ V ∗
W,σ,areg, the function

z 
−→
(∏
α∈σ

〈α,z〉
)
EN∩W(φσ )(t,z)

is holomorphic atz = 0.

We prove this by induction on the codimension ofW . If W = V , this follows from
the explicit formula forE(φσ )(t,z). Let α be an indivisible element ofM such that
W is contained in the real hyperplane

Hα = {
y ∈ V, 〈α,y〉 = 0

}
.
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We assume first thatα is an element ofσ . We number it the first vectorα1 of the
basisσ . We setσ ′ = (α2, . . . ,αr), z′ = (z2, . . . ,zr ), and so on; thenz = (z1,z

′). Our
subspaceW is contained inV ′ = V ∩{z1 = 0}. Thus, we have

EN∩W(φσ )(t,z) =
∑

n∈N∩W

e〈t,z+2iπn〉φσ (z+2iπn) = et1z1

z1
EN ′∩W(φσ ′)(t ′,z′).

By induction,EN ′∩W(φσ ′)(t ′,z′) is analytic in(t ′,z′) for z′ ∈ Uσ ′,N ′ , except if there
existm′ ∈ M ′ such thatt ′ +m′ is in a hyperplane generated byW⊥′

(the orthogonal
of W in V ′) and some vectors ofσ ′. AsW⊥ = W⊥′ ⊕Rα1, we see that the singular
set ofEN∩W(φσ )(t,z) is contained in�∗

W,σ,M . Furthermore, the function

z1z2 · · ·zrEN∩W(φσ )(t,z) = et1z1z2 · · ·zrEN ′∩W(φσ ′)(t ′,z′)
is holomorphic inz nearz = 0.
Assume now thatα is not an element ofσ . We add it to the system� if α is not an

element of�. Writing α = ∑
j cjαj , we obtain one of the Orlik-Solomon relations

of the system�∪{α},
φσ =

∑
j

cjφσj ,

whereσ j = σ ∪{α}−{αj }. A (W,σ j )-wall is a hyperplane ofV ∗ generated byW⊥
and dimW −1 vectors ofσ j ; then these vectors are distinct fromα, becauseα ∈ W⊥.
Thus, allW -walls for the basisσ j are alsoW -walls for the basisσ . By our first
calculation, it follows thatEN∩W(φσj )(t,z) is analytic whent is not on a translate
of a (W,σ)-wall. Moreover, we have

EN∩W(φσ )(t,z) =
∑
j

cjEN∩W(φσj )(t,z),

so that the function

z 
−→ 〈α,z〉

 r∏

j=1
〈αj ,z〉


EN∩W(φσ )(t,z)

is holomorphic inz in a neighborhood of zero.
By the induction hypothesis applied toW ⊆ V ′ = {α = 0}, the functionz 
→

EN∩W(φσ )(t,z) is holomorphic on a nonempty open subset ofV ′
C. So this function,

considered as a function ofz ∈ VC, has no pole alongα = 0. This proves Lemma
22 and, hence, Lemma 21 whenf is a simple fraction. The operatorEN∩W satisfies
also the commutation relation of Proposition 14. Thus, using differential operators
with polynomial coefficients, we obtain the statement of Lemma 21 whenf is any
element inR�.

Let I be a subset of�, and letWI = ∩i∈IHαi
. This is a rational subspace ofV ,

and the(WI ,�)-walls are some of the walls of�. Then it follows from Lemma 21
thatEN∩WI

(f )(t,z) is a fortiori analytic whent ∈ V ∗
aregandz ∈ U�.
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Definition 23. A subset8 of N is admissibleif the characteristic function of8 is
a linear combination of characteristic functions of setsN ∩WI , whereI ranges over
subsets of�.

Then we have the following by Lemma 21.

Lemma 24. If 8 is an admissible subset ofN , the function(t,z) 
→ E8(f )(t,z)

is analytic whent ∈ V ∗
�,areg and z ∈ U�,8. Furthermore, whenz is near zero and

t ∈ V ∗
�,areg, the functionz 
→ E8(f )(t,z) defines an element of��.

If 8 is an admissible subset ofN , we can take the value att of the generalized
function

E8(f )(t,z) =
∑
n∈8

e〈t,z+2iπn〉f (z+2iπn)

provided thatt is in an alcovea. Thus, fort ∈ a, we can define the operatorEt
8 :

R� → ��,f 
→ E8(f )(t,z). Now the argument of Theorem 19 proves the following
proposition.

Proposition 25. For f ∈ G�, t ∈ V ∗
�,areg, andy ∈ U�,8, we have

Et
8(f )(y) = TrS�

(
Res�m

(
e〈t,·〉f

)
C�(y)Et

8Res�
)
.

More explicitly, if we choose a diagonal basis OB, then

Et
8(f )(y) =

∑
oσ∈OB

Resoσ
(
f (z)e〈t,z〉F t

8,σ (y−z)
)
,

whereF t
8,σ (z) = E8(φσ )(t,z).

5. Witten series and the Szenes formula.For f ∈ R�, let us form the series

Z(f )(t,z) =
∑

n∈Nreg

e〈t,z+2iπn〉f (z+2iπn),

whereNreg is the set of regular elements ofN . ThenZ(f )(t,z) is defined as a gen-
eralized function oft . As n varies inNreg, this generalized function oft depends
holomorphically onz whenz varies in a neighborhood of zero. AsNreg is an admis-
sible subset ofN , we obtain the following from Lemma 24.

Proposition 26. For any alcovea, Z(f )(t,z) is an analytic function of(t,z)
whent ∈ a andz is in a neighborhood of zero.

We have
Z(f )(t,0) =

∑
n∈Nreg

e〈t,2iπn〉f (2iπn).
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This is well defined as a generalized function oft when t is in an alcove. Ifn 
→
f (2iπn) is sufficiently decreasing, thenZ(f )(t,0) is a continuous function oft ; it
generalizes the Bernoulli polynomial

Bk(t) =
∑
n�=0

e2iπnt

(2iπn)k
,

where 0< t < 1.
We reformulate the Szenes formula as an equality betweenZ(f )(t,0) and the

constant term of the Eisenstein seriesE(f )(t,z).

Theorem 27. For anyf ∈ R� and t in an alcovea, we have

Z(f )(t,0) = CT(f )(t) = TrS�
(
Res�m

(
e〈t,·〉f

)
CEt Res�

)
.

In particular,Z(f )(t,0) is a polynomial function oft whent varies in an alcovea.

As a consequence, ifOB is a diagonal basis, then we recover the following residue
formula (see [3, Theorem 4.4]):∑

n∈Nreg

e〈t,2iπn〉f (2iπn) =
∑

oσ∈OB
Resoσ

(
e〈t,z〉f (z)Fa

σ (−z)
)
.

Thus, when

f = 1∏k
j=1αj

is sufficiently decreasing, this formula expresses the series

∑
n∈Zr ,〈αj ,n〉�=0

1∏k
j=1〈αj ,2iπn〉

as an explicit rational number.

Proof. From the definitions ofZ(f )(t,z) and CT(f )(t), we obtain, for anyP ∈
S(V ∗),

P(∂t )Z(f )(t,0) = Z(Pf )(t,0), P (∂t )CT(f )(t) = CT(Pf )(t).

Thus, it is enough to prove thatZ(f )(t,0) = CT(f )(t) for f ∈ G�, becauseG�

generatesR� as aS(V ∗)-module by Lemma 6.
For t in an alcovea, we can define the operatorZt : R� → � by

Zt(f )(z) =
∑

n∈Nreg

e〈t,z+2iπn〉f (z+2iπn).
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The kernel formula holds for the operatorZt . In particular, we obtain, forf ∈ G�,

Zt(f )(0) = TrS�
(
Res�m

(
e〈t,·〉f

)
CZt Res�

)
.

We thus need to prove that, forf ∈ G�,

TrS�
(
Res�m

(
e〈t,·〉f

)
C
(
Et −Zt

)
Res�

)= 0.

But Et is given by a sum over the full latticeN , while Zt is only over the regular
elements ofN . Thus, we can write (in many ways)Et −Zt as a linear combination
of operatorsEt

8α
, where each8α is an admissible subset ofN contained in the real

hyperplaneHα. Now the Szenes formula follows from the next proposition.

Proposition 28. Let8 be an admissible subset ofN contained in the real hyper-
planeHα. Then, forf ∈ G�,

TrS�
(
Res�m

(
e〈t,·〉f

)
CEt

8Res�
)= 0.

Proof. It suffices to prove that∑
oσ∈OB

Resoσ
(
e〈t,z〉f (z)Et

8(φσ )(−z)
)= 0

for some diagonal basisOB.
A total order on� provides us with a special diagonal basisOB of O�(�) (see,

for example, [1, Proposition 14]). We choose this order such thatα is minimal. In
this case, every element ofOB is of the formoσ = (α1,α2, . . . ,αr) with α1 = α. We
claim that for eachoσ ∈OB,

Resoσ
(
e〈t,z〉f (z)Et

8(φσ )(−z)
)= 0.

Indeed, we use the notation of Lemma 11 and writeV ′ = Hα. Then our set8 is
contained inV ′. Thus,

Et
8(φσ )(z1,z

′) = et1z1

z1

∑
γ∈8

e〈t ′,z′+2iπγ 〉∏r
j=2

〈
αj ,z′ +2iπγ

〉 .
We see that fort fixed and regular,

e〈t,z〉f (z)Et
8(φσ )(−z) = 1

z1
f (z1,z

′)ψ(z′),

wheref ∈ G� andψ(z′) has poles at most on the complex hyperplanesαj = 0 for
j = 2, . . . , r. Thus the claim follows from Lemma 11. Therefore, both Theorem 27
and Proposition 28 are proved.
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