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MULTIPLE BERNOULLI SERIES, AN

EULER-MACLAURIN FORMULA, AND WALL

CROSSINGS

ARZU BOYSAL AND MICHÈLE VERGNE

Abstract. Using multiple Bernoulli series, we give a formula in
the spirit of Euler-MacLaurin formula. We also give a wall crossing
formula and a decomposition formula for multiple Bernoulli series.
The study of these series is motivated by formulae of E. Witten for
volumes of moduli spaces of flat bundles over a surface.
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1. Introduction

Consider a sequence of vectors Φ lying in a lattice Λ of a real vector
space V . We denote the dual lattice of Λ by Γ. Let Γreg(Φ) = {γ ∈
Γ| 〈φ, γ〉 6= 0, for all φ ∈ Φ} be the set of regular elements in Γ.
Let Z be the fundamental domain in V for Λ and dv the Lebesgue
measure giving measure 1 to Z. Here in introduction we freely identify
distributions and generalized functions via this choice of dv.
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In this paper we study the distribution B(Φ,Λ) on the torus V/Λ
defined via its Fourier coefficients as:

∫

Z

B(Φ,Λ)(v)e−〈2iπv,γ〉dv =

{

1∏
φ∈Φ 〈2iπφ,γ〉

if γ ∈ Γreg(Φ),

0 otherwise.

We have

B(Φ,Λ)(v) =
∑

γ∈Γreg(Φ)

e〈2iπv,γ〉
∏

φ∈Φ 〈2iπφ, γ〉
.

This sum, if not absolutely convergent, has meaning as a distribution.

We call B(Φ,Λ) the multiple Bernoulli series associated to Φ and
Λ. They are natural generalizations of Bernoulli series: for Λ = Zω
and Φk = [ω, ω, . . . , ω], where ω is repeated k times with k > 0, the
distribution

B(Φk,Λ)(tω) =
∑

n 6=0

e2iπnt

(2iπn)k

is equal to − 1
k!
B(k, t − [t]) where B(k, t) denotes the kth Bernoulli

polynomial in variable t.

Multiple Bernoulli series appeared in the work of E. Witten in the
special case where the sequence Φ is comprised of positive coroots of a
compact connected Lie group G with multiplicity 2g − 1 and Λ is the
coroot lattice of G. Witten shows that ([17], §3) for the above instance
of Φ and Λ and for a regular element v ∈ Z, the value of B(Φ,Λ)(v)
is (upto a scalar depending on G and g) the symplectic volume of the
moduli space M(G, g, v) of flat G-connections on Riemann surface of
genus g with one boundary component, around which the holonomy is
determined by v.
For example, consider G = SU(3), denote its simple roots by {α1, α2}

and associated coroots by {Hα1, Hα2}. Then on a Riemann surface of
genus g = 2, the symplectic volume of the moduli space of flat SU(3)-
connections with one boundary component marked by v = a1Hα1 +
a2Hα2 (lying in the fundamental alcove) is given by the following sum

∑

n1∈Z, n2∈Z
n1 6=0, n2 6=0, n1+n2 6=0

e2iπ(n1a1+n2a2)

(2iπn1)3(2iπn2)3(2iπ(n1 + n2))3

up to a scalar multiple.
These series have been extensively studied by A. Szenes ([12],[13]),

who gave multidimensional residue formulae for them.
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If f is a function on the real line, smooth and sufficiently decreasing,
also with sufficiently decreasing derivatives, then the Euler-MacLaurin
formula gives

∑

n∈Z

f(n) =

∫

R

f(t)dt+ (−1)k−1 1

k!

∫

R

B(k, t− [t])f [k](t)dt

where f [k] denotes the kth derivative of f .
We give a natural generalization of this formula involving B(Φ,Λ) in

Theorem 6.1. The difference between the discrete sum
∑

λ∈Λ f(λ) and
the integral of f over V will only involve derivatives (

∏

φ∈Y ∂φ)f over
‘long subsets’ Y of Φ, that is, subsets Y such that their complement in
Φ do not span the vector space V .

We start with giving some properties of the distribution B(Φ,Λ) that
are pertinent for what follows.

The distribution B(Φ,Λ) is periodic with respect to Λ. Moreover, it
satisfies a certain recurrence relation which we outline next.

We will call a set with multiplicities a list. Suppose Φ contains φ with
multiplicity m, then we denote the list that contains φ with multiplicity
m− 1 by Φ−{φ}; whereas we denote the list where all copies of φ are
removed by Φ \ {φ}. More generally, for a subset B of V , by Φ \B we
mean the list of elements of Φ not lying in B. By Φ ∩ B we mean the
list of elements of Φ lying in B.
For an element φ in Φ, we associate two lists of vectors as follows:

First, we consider the list Φ−{φ} in V , and respectively the distribution
B(Φ − {φ},Λ) on V . Let V0 := V/Rφ and let Λ0 denote the image of
the lattice Λ in V0. Secondly, we consider the list Φ0 of elements of
V0 consisting of the images of the elements in Φ− {φ}. Then we may
consider B(Φ0,Λ0) as a distribution on V ‘constant in the direction
of φ’. Observe that if Φ contains more than one copy of φ then Φ0

contains the zero vector and consequently B(Φ0,Λ0) is identically zero.
It is clear that the distribution B(Φ,Λ) satisfies the following recur-

rence relation

(1.0.1) ∂φB(Φ,Λ) = B(Φ− {φ},Λ)− B(Φ0,Λ0).

Assuming that Φ = [φ1, φ2, . . . , φN ] spans a pointed cone, we may
define the tempered distribution T (Φ) defined on test functions f by:

(1.0.2) 〈T (Φ) | f〉 =

∫ ∞

0

· · ·

∫ ∞

0

f(

N
∑

i=1

tiφi)dt1 · · · dtN .
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τ1

τ2

e2

e1

Figure 1. T ([e1, e2, e1 + e2],Ze1 ⊕ Ze2)

In other words, T ([φ]) is the Heaviside distribution 〈H(φ), f〉 =
∫∞

0
f(tφ)dt

and T (Φ) is the convolution product

H(φ1) ∗H(φ2) ∗ · · · ∗H(φN)

of the Heaviside distributions H(φk).
If Φ generates V , T (Φ) is a positive measure on V given by integra-

tion against a piecewise polynomial function called a multispline. For
any φ ∈ Φ,

(1.0.3) ∂φT (Φ) = T (Φ− {φ}).

We remark the similarity between the recurrence relations (1.0.1) and
(1.0.3). In fact we will express B(Φ,Λ) in terms of superposition of
multispline functions in Theorem 9.3.

If Φ generates V , then the periodic function B(Φ,Λ) is piecewise
polynomial ; this we reprove in Section 5.

In the rest of the introduction, for simplicity, we assume that Φ
generates V . We call a connected component of the complement of
affine walls (that is, hyperplanes that are generated by some elements
of Φ and their translates with respect to the lattice Λ) in V a tope.
For example, Figure 1 depicts topes associated to the system Φ =
[e1, e2, e1 + e2] and Λ = Ze1 ⊕ Ze2.
Given a tope τ associated to the system (Φ,Λ), we denote by Ber(Φ,Λ, τ)

the polynomial function on V such that the restriction of B(Φ,Λ) to τ
coincides with the restriction of Ber(Φ,Λ, τ)(v) to τ .

Let W be an hyperplane in V spanned by some elements of Φ, and
let E ∈ Γ be an equation of this hyperplane. We reverse the directions
of ‘half of’ the φi in Φ \W in order that they all lie in the strict half
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space determined by E, and define

T (Φ \W,E) :=
∏

〈φi,E〉<0

−H(−φi) ∗
∏

〈φi,E〉>0

H(φi).

T (Φ \ W,E) is a distribution supported on E ≥ 0. We similarly
define T (Φ \W,−E).
Now we compare the polynomials Ber(Φ,Λ, τ) associated to two ad-

jacent topes separated by an hyperplane W (cf. Section 7). The jump
can be expressed in terms of a lower dimensional multiple Bernoulli se-
ries and a multispline function. More explicitly, we have the following
wall crossing formula:

Theorem 1.1. Let τ1 and τ2 be two adjacent topes separated by the
hyperplane W defined by E with 〈v, E〉 > 0 for any v ∈ τ1. Denote by
τ12 the tope with respect to the system (Φ∩W,Λ∩W ) containing τ1∩τ2
in its closure. Let Berτ12 := Ber(Φ∩W,Λ∩W, τ12)dh be the polynomial
density on W determined by τ12. Then,

(Ber(Φ,Λ, τ1)−Ber(Φ,Λ, τ2))dv = Berτ12 ∗T (Φ\W,E)−Berτ12 ∗T (Φ\W,−E).

The left hand side of the above equation is a polynomial density; it
is easily proven that the right hand side is also a polynomial density.
The wall crossing formula given in the above theorem is analogous

to the formula in Boysal-Vergne [1]. This formula is also similar to wall
crossing formulae in Hamiltonian geometry for the push-forward of the
Liouville measure; indeed, when crossing a wall, this piecewise poly-
nomial measure changes according to the same scheme [9], [7]. Our
wall crossing formula in Theorem 1.1 is thus in accordance with the
fact that for special cases B(Φ,Λ) computes the volume of the moduli
spaces M(G, g, v). These spaces can be described as symplectic reduc-
tion at v of the Jeffrey-Kirwan extended moduli spaceM(G, g), so that
their volume at v is given by the push-forward of the Liouville measure
on M(G, g), a piecewise polynomial function periodic with respect to
a lattice Λ. Recall that Jeffrey-Kirwan ([8]) proved wall crossing for-
mulae for integrals on moduli spaces M(G, g, v), and used them in a
fundamental way to compute intersection pairings on M(G, g, v) when
G = SU(n). However, in the general situation that we are considering
here, we do not have such a geometric interpretation of the multiple
Bernoulli series.

In Section 8 we generalize the above results to the case of affine
arrangements.

In Section 9, we give a decomposition formula for B(Φ,Λ), describ-
ing it as a superposition of ‘basic pieces’ made of convolution products
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0−1−2−3 1 2 3

0−1−2−3 1 2 3

(a) (b)

Figure 2. The decomposition of B(Φ2,Λ)(tω).

of lower dimensional Bernoulli series and multisplines. More precisely,
we say that s is an admissible subspace of V if s is spanned by some
elements of Φ, and we say that a is affine admissible, if a is a translate
by Λ of an admissible subspace. Given a tope τ , we express the dif-
ference between the piecewise polynomial density B(Φ,Λ) and the
polynomial density Ber(Φ,Λ, τ) as a sum of distributionsA(Φ,Λ, a, β)
associated to proper affine admissible subspaces a and the choice of an
element β ∈ τ . The supports of these distributions do not intersect
τ and are convolution products of polynomial distributions supported
on a with multisplines distributions directed towards the exterior of
τ . Our construction is inspired by the stratification of a Hamiltonian
manifold M using the square of the moment map as Morse function,
and we will use a scalar product on V . Our decomposition formula is
very similar to Paradan’s decomposition of the equivariant index of a
twisted Dirac operator on M [11]. In [15], Paradan’s decomposition
was proved by combinatorial methods, and used to give a proof that
quantization commutes with reduction for compact Hamiltonian mani-
folds. We follow here very closely the line of approach of [15]. However
our superposition is an infinite (but locally finite) superposition. This
is in accordance with the fact that for some special cases, our distri-
butions are related to Liouville measures of noncompact Hamiltonian
manifolds such as M(G, g) with infinite number of critical components
for the square of the moment map.
For example, the periodic polynomial −B(2, t− [t])/2 in Figure 2(a)

is decomposed in Figure 2(b) as a superposition of a polynomial density
with an infinite number of spline functions.
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List of Notations

VQ r-dimensional vector space over Q.
V the r-dimensional real vector space VQ

⊗

Q R; v ∈ V .
U the dual of V ; x ∈ U .
〈 , 〉 the pairing between U and V .
Γ a lattice in U ; γ ∈ Γ.
Λ := Γ∗ dual lattice in V ; 〈Γ,Λ〉 ⊂ Z, λ ∈ Λ.
Φ a sequence of vectors in VQ; φ ∈ Φ.
B(Φ,Λ) multiple Bernoulli series associated to Φ and Λ (equation 2.0.3).
B(k, t) kth Bernoulli polynomial.
T (Φ,Λ) the set of topes associated to the system (Φ,Λ); τ a tope.
T (X) multivariate spline distribution defined for a set of vectors X in V .
R set of Φ-admissible subspaces of V .
W Φ-admissible hyperplane.
Hφ hyperplane in U comprising of vectors u satisfying 〈u, φ〉 = 0.
H = H(Φ) hyperplane arrangement associated to Φ.
RH ring of rational functions on U with poles along H.
GH a subspace of RH defined in 5.3.

2. Multiple Bernoulli series and hyperplane

arrangements

Let VQ be an r-dimensional vector space over Q, and let V be the
real vector space VQ

⊗

QR. Let U denote the dual vector space to V .
Let Λ be a lattice in V contained in VQ and Γ ⊂ U be the dual lattice
to Λ so that 〈Γ,Λ〉 ⊂ Z. For a subset S of V , we denote by < S > the
subspace of V generated by S.

Let Z denote the fundamental domain in V for Λ. Let dΛv be the
Lebesgue measure on V giving measure 1 to Z. Our main object of
study is certain piecewise polynomial densities on V . For our purposes
it will be convenient to use the language of distributions. If f is a
locally L1 function on V , or more generally a generalized function,
then f(v)dΛv is a distribution on V . We use the notation f(v)dΛv,
although the value of f at the point v ∈ V has usually no meaning.

For v0 ∈ V , the translation t(v0) acts on distributions on V . If
D = f(v)dΛv, then t(v0)D = f(v + v0)dΛv. We identify a distribution
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D on V periodic with respect to Λ (that is t(λ)D = D for any λ ∈ Λ)
to a distribution D on the torus V/Λ.

We will say that a locally L1 function f is piecewise polynomial, if
there exists a decomposition of V in a union of polyhedral pieces Ci
such that the restriction of f to Ci is given by a polynomial formula.
We then say that the distribution f(v)dΛv is piecewise polynomial.
If v ∈ V , we denote by δv the δ distribution at v: 〈δv, f〉 = f(v).

The Poisson formula reads as the following equality of distributions

(2.0.1)
∑

λ∈Λ

δλ =
∑

γ∈Γ

e2iπ〈γ,v〉dΛv.

We now introduce the main object of study of this article.

Let Φ be a sequence of vectors in VQ. Let

Ureg(Φ) = {u ∈ U | 〈φ, u〉 6= 0, for all φ ∈ Φ}.

We will denote Γ ∩ Ureg(Φ) by Γreg(Φ). Consider the distribution
B(Φ,Λ) on V/Λ defined via its Fourier coefficients:

(2.0.2)

∫

Z

B(Φ,Λ)(v)e−〈2iπv,γ〉 =

{

1∏
φ∈Φ 〈2iπφ,γ〉

if γ ∈ Γreg(Φ),

0 otherwise.

We then have

(2.0.3) B(Φ,Λ) =
∑

γ∈Γreg(Φ)

e〈2iπv,γ〉
∏

φ∈Φ 〈2iπφ, γ〉
dΛv.

The above sum, if not absolutely convergent, is defined as a distri-
bution. We call B(Φ,Λ) the multiple Bernoulli series associated to Φ
and Λ. Clearly, it does not depend on the order of the elements φ in
the sequence Φ (it only depends on Φ as a multiset).

Remark 2.1. The formula (2.0.2) for the Fourier coefficients of B(Φ,Λ)
is very similar to the formula for the Fourier transform of the multi-
spline distribution T (Φ) (defined in (1.0.2)) on V : if Φ spans a pointed
cone, then the Fourier transform of T (Φ) is a generalized function on
U satisfying

∫

V

T (Φ)(v)e−〈2iπv,x〉 =
1

∏

φ∈Φ 〈2iπφ, x〉

on the open set of U given by
∏

φ∈Φ 〈φ, x〉 6= 0.
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We now list some properties of the distribution B(Φ,Λ):
• If Φ is the empty set, then

B(Φ,Λ) =
∑

γ∈Γ

e2iπ〈γ,v〉dΛv =
∑

λ∈Λ

δλ

is the δ-distribution of the lattice Λ.
• If Φ contains the zero vector, then B(Φ,Λ) is identically equal to

zero.
• B(Φ,Λ) is periodic with respect to Λ.
• Let Λ1 ⊂ Λ2. Then B(Φ,Λ2) is obtained from B(Φ,Λ1) by averag-

ing over Λ2/Λ1:

(2.1.1) B(Φ,Λ2) =
∑

λ2∈Λ2/Λ1

t(λ2)B(Φ,Λ1).

The above relation follows from the fact that, if γ ∈ Γ1 \ Γ2, then
∑

λ2∈Λ2/Λ1
e2iπ〈γ,λ2〉 = 0.

• The distribution B(Φ,Λ) is supported on < Φ > +Λ.
Indeed, it is immediate to verify that (1 − e〈2iπv,ν〉)B(Φ,Λ) = 0 for

all ν ∈ Γ∩ < Φ >⊥.
• If Φ generates V , then B(Φ,Λ) is piecewise polynomial. We will

give a proof of this property in Section 5.

When the lattice Λ is fixed, we often use the measure dΛv to identify
distributions and generalized functions.

Example 2.2. Let Λ = Zω, and let Φk = [ω, ω, . . . , ω] where ω is
repeated k times. If k = 0, then B(Φk,Λ)(tω) =

∑

n∈Z e
2iπntdt is the

δ-distribution of the lattice Λ by Poisson formula. If k > 0, then

B(Φk,Λ)(tω) =
∑

n 6=0

e2iπnt

(2iπn)k
dt = −

1

k!
B(k, t− [t])dt,

where B(k, t) denotes the kth Bernoulli polynomial in variable t and [t]
is the integer part of t. (Our normalization for the Bernoulli polynomial
is that of Maple). In particular, for k = 1, we have B(Φ1,Λ)(tω)dt =
(1
2
− t+ [t])dt (see Figure 3).
If k > 1, the above series is absolutely convergent and B(Φk,Λ)(tω)

is given by integration against a continuous function on R.

Example 2.3. Let V = Re1 ⊕ Re2 with lattice Λ = Ze1 ⊕ Ze2. Let
Φ = [e1, e2, e1 + e2]. We write v ∈ V as v = v1e1 + v2e2.
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1/2

−1/2

−1−2−3 1 2 3

Figure 3. Graph of the function B(Φ1,Λ)(tω) = (1
2
− t + [t])

τ1

τ2

e2

e1

Figure 4. T ([e1, e2, e1 + e2],Ze1 ⊕ Ze2)

We compute the series B(Φ,Λ) = B(v1, v2)dv1dv2 where

B(v1, v2) =
∑

n1∈Z, n2∈Z
n1 6=0, n2 6=0, n1+n2 6=0

e2iπ(n1v1+n2v2)

(2iπn1)(2iπn2)(2iπ(n1 + n2))
.

The distribution B(Φ,Λ) is piecewise polynomial and periodic with
respect to Λ = Ze1 + Ze2. It is thus sufficient to write the formulae of
B(v1, v2) for 0 < v1 < 1 and 0 < v2 < 1 (see Figure 4).

B(v1, v2) =

{

−1
6
(1 + v1 − 2v2)(v1 − 1 + v2)(2v1 − v2), if v1 < v2

−1
6
(v1 − 2v2)(v1 − 1 + v2)(2v1 − 1− v2), if v1 > v2.

We remark that 3B(v1, v2) is the symplectic volume of the moduli
space of flat SU(3)-connections on a topological torus with one marked
point v = v1Hα1 +v2Hα2 where Hα1 and Hα2 denote coroots associated
to simple roots {α1, α2} of SU(3).

Example 2.4. Let V = Re1 ⊕ Re2 with lattice Λ = Ze1 ⊕ Ze2. Let
Φ = [e1, e2, e1 + e2, e1 − e2]. We write v ∈ V as v = v1e1 + v2e2. We
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compute the series B(Φ,Λ) = B(v1, v2)dv1dv2 where

B(v1, v2) =
∑

n1∈Z, n2∈Z
n1 6=0, n2 6=0, n1+n2 6=0, n1−n2 6=0

e2iπ(n1v1+n2v2)

(2iπn1)(2iπn2)(2iπ(n1 + n2))(2iπ(n1 − n2))
.

In the region v1 − v2 < 1, v2 < 0, v1 + v2 > 0, we get

B(v1, v2) =
1

8
v2(2v1 − 1)(v1 − 1− v2)(v1 + v2).

In the region v1 > v2, v2 > 0, v1 + v2 < 1, we get

B(v1, v2) =
1

8
v2(2v1 − 1)(v1 − 1 + v2)(v1 − v2).

Similar computation in the region v1 > v2, v2 > 0, v1 + v2 < 1 gives

B(v1, v2) =
1

8
v1(2v2 − 1)(v1 − 1 + v2)(v1 − v2).

3. Recurrence relations

For an element φ in Φ, we associate two lists of vectors as follows:

•We consider the list Φ−{φ} in V and the corresponding distribution
B(Φ− {φ},Λ) on V .
• Consider the vector space V0 := V/ < φ >, let p denote the

projection V → V0. We denote the image under p of the lattice Λ in V0
by Λ0. The dual space U0 of the vector space V0 is the hyperplane Hφ.
The dual lattice to Λ0 is the lattice Γ0 = {γ ∈ Γ | 〈γ, φ〉 = 0}. Consider
the list Φ0 of elements of V0 consisting of the images of the elements
in Φ − {φ}. Observe that if Φ contains φ with multiplicity greater
than 1, then Φ0 contains the zero vector and consequently B(Φ0,Λ0) is
identically zero.
If D is a distribution on V0, we denote by p∗D the distribution on

V “constant in the direction φ”: if D = b(v0)dΛ0v0, then we define
p∗D = b(p(v))dΛv. Thus p

∗B(Φ0,Λ0) is a distribution on V . We remark
that, for any φ ∈ Φ, we have the following equality of sets

(3.0.1) Γreg(Φ− {φ}) = (Γreg(Φ− {φ}) ∩ {φ = 0}) ∪ Γreg(Φ)

where the union is disjoint.

The main remark of this section is the following recurrence relation
for the distribution B(Φ,Λ).

Proposition 3.1. Let φ ∈ Φ. Then we have

(3.1.1) ∂φB(Φ,Λ) = B(Φ− {φ},Λ)− p∗B(Φ0,Λ0).
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Proof. We fix the measures dΛv and dΛ0v and we identify B(Φ,Λ) and
B(Φ0,Λ0) to generalized functions. Differentiating B(Φ,Λ) in the sense
of generalized functions, we get

∂φB(Φ,Λ)(v) =
∑

γ∈Γreg(Φ)

e〈2iπv,γ〉
∏

φ′∈Φ−{φ} 〈2iπφ
′, γ〉

=
∑

γ∈Γreg(Φ−{φ})

e〈2iπv,γ〉
∏

φ′∈Φ−{φ} 〈2iπφ
′, γ〉

−
∑

γ∈Γreg(Φ−{φ}),〈γ,φ〉=0

e〈2iπv,γ〉
∏

φ′∈Φ−{φ} 〈2iπφ
′, γ〉

.

The last term is constant on the line v + Rφ and identifies with
p∗B(Φ0,Λ0). �

4. Hyperplane arrangements and generalized series

We generalize the setting of Bernoulli series.
Here we assume that the list Φ in VQ does not contain the zero vector.

Then each φ in Φ determines an hyperplane Hφ = {u ∈ U : 〈u, φ〉 = 0}
in U . Let

H(Φ) = {Hφ, φ ∈ Φ}

be the set of hyperplanes determined by Φ. We denote the closed subset
∪φ∈ΦHφ of U by the same notation H(Φ). When Φ is fixed, we denote
H(Φ) simply by H, and its complement in U by UH.
We denote by S(V ) the symmetric algebra of V and identify it with

the ring of polynomial functions on U . We denote by RH the ring of
rational functions on U regular on UH, that is, the ring generated by
the ring S(V ) of polynomial functions on U together with inverses of
linear forms φ ∈ Φ.
The set Γreg(Φ) depends only on H, thus, we shall also denote it by

Γreg(H). A function g ∈ RH is well defined at γ ∈ Γreg(H).

Definition 4.1. If g ∈ RH, we define the distribution B(H,Λ, g) on V
by

B(H,Λ, g) =
∑

γ∈Γreg(H)

g(γ)e2iπ〈v,γ〉dΛv.

It is easy to see that the above series converges in the space of dis-
tributions on V . The Bernoulli series B(Λ,Φ) is the special case of
B(H,Λ, g) with g = 1∏

φ∈Φ φ
.

Example 4.2. Let Λ = Zω, let H = {0}, and g = 1. Then

B(H,Λ, g) =
∑

n 6=0

e2iπnt = −1 + δΛ
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Observe that if Λ1 ⊂ Λ2, then B(H,Λ2, g) is obtained from B(H,Λ1, g)
by averaging over Λ2/Λ1:

(4.2.1) B(H,Λ2, g) =
∑

λ2∈Λ2/Λ1

t(λ2)B(H,Λ1, g).

Let φ ∈ Φ, then we can associate to φ the following two arrange-
ments:
• H′ = H \Hφ.
• H0 = {H ∩Hφ, H ∈ H′}, the trace of the arrangement H′ on Hφ.

Clearly a function g in RH′ restricts to the hyperplane Hφ in a ra-
tional function g0 lying in RH0 . Thus B(H0,Λ0, g0) is a distribution on
H∗
φ = V/Rφ.
We have the following recurrence relation for the distribution B(H,Λ, g)

associated to an element g ∈ RH′ .

Proposition 4.3. If g ∈ RH′, then

B(H,Λ, g) = B(H′,Λ, g)− p∗B(H0,Λ0, g0).

Proof. From the equality (3.0.1), we see that the elements of Γreg(H
′)

that are not in Γreg(H) can be identified with the elements of Γreg(H0).
�

5. Piecewise polynomial behavior

For completeness we reprove here that the distribution B(Φ,Λ) is
piecewise polynomial when Φ generates V . In fact, we prove the piece-
wise polynomial behavior of the series B(H,Λ, g) when g belongs to a
particular subset GH of RH which we will shortly describe.
Suppose Φ generates V . A subspace of V generated by a subset of

elements of Φ is called Φ-admissible. A Φ-admissible hyperplane will
also be called a wall. LetHaff(Φ) be the set of Φ-admissible hyperplanes
in V together with their translates with respect to Λ. An element
W ∈ Haff(Φ) will also be called a (affine) wall. An element v ∈ V is
said to be regular if v is not on any affine wall. We denote by Vreg,aff
the open subset of V consisting of regular elements. We denote by
T (Φ,Λ) the set of connected components of Vreg,aff . An element τ of
T (Φ,Λ) is called a tope. By definition, topes only depend on Λ and
the arrangement H(Φ), and not on Φ itself; thus we will denote the set
of topes indifferently by T (Φ,Λ) or T (H,Λ).
Suppose Λ1 ⊂ Λ2. Then, topes corresponding to the system (Φ,Λ2)

are obtained by translating topes corresponding to (Φ,Λ1) by elements
of Λ2 and taking their nonempty intersections.
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e2

e1

Figure 5. T (Φ,Ze1 ⊕ Ze2) versus T (Φ,Ze1 ⊕ Z
(e1+e2)

2
)

Example 5.1. Let V = Re1⊕Re2, Φ = [e1, e2] and Λ = Ze1⊕Z
(e1+e2)

2
.

Let Φ = [e1, e2]. Then, the topes in T (Φ,Ze1 ⊕ Ze2) gives a paving
of V by squares (complement of bold black lines in Figure 5), and the
topes in T (Φ,Λ) are obtained by subdividing the squares into 4 equal
squares.

Definition 5.2. A function f on Vreg,aff is called piecewise polynomial
with respect to Haff(Φ) and Λ if f coincide with a polynomial function
f τ on each tope τ in T (Φ,Λ).

A distribution D is called piecewise polynomial with respect to H(Φ)
and Λ (in short (H,Λ), or equivalently (Φ,Λ)) if it is given by integra-
tion on Vreg,aff by a piecewise polynomial function. The space of piece-
wise polynomial distributions with respect to (H,Λ) is invariant under
translation by Λ. More generally, if Λ1 ⊂ Λ2, and D is piecewise poly-
nomial with respect to (H,Λ1), then t(λ2)D is piecewise polynomial
with respect to (H,Λ2) for any λ2 ∈ Λ2.
The condition for a distribution b to be piecewise polynomial is

stronger than the condition that the restriction of b to any tope is a
polynomial density. For example the δ function of the lattice Λ restricts
to 0 on any tope τ , but is not a piecewise polynomial distribution.

Let φ ∈ Φ, and consider the two arrangements H′ and H0 associated
to φ as in the previous section. If f is piecewise polynomial for (H′,Λ),
then f is piecewise polynomial for (H,Λ). If f0 is piecewise polynomial
for (H0,Λ0), then p

∗f is piecewise polynomial for (H,Λ).

We now prove that B(H,Λ, g) is piecewise polynomial with respect
to (H,Λ) when Φ generates V and g is in some subspace of RH that
we describe now.
We may assume that all equations φ = 0 of the hyperplanes Hφ in H

lie in Λ, we can always achieve this by taking an appropriate multiple
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of φ. Thus, for what follows, we may assume that elements of Φ are in
fact in Λ.
We denote by B(Φ) the set of subsets of r linearly independent

elements of Φ. In other words, an element of B(Φ) is a basis of V
extracted from Φ.
Suppose L is a sequence of elements of Φ (possibly with multiplici-

ties) generating V . Define

θ(L)(x) =
1

∏

α∈L〈α, x〉
,

a function in RH.
Since θ(L) will change by a scalar multiple when elements of L are

scaled, we may define the following space which depends only on H.

Definition 5.3. Let GH be the subspace of RH generated by all ratio-
nal functions of the form θ(L).

We recall the following description of GH.

Lemma 5.4. Any θ(L) may be written as a linear combination of el-
ements θ(σ,n) = 1

α
n1
i1

···αnr
ir

where σ := [αi1 , . . . , αir ] ∈ B(Φ) is a basis

extracted from Φ and n = [n1, n2, . . . , nr] is a sequence of positive in-
tegers.

Proof. By induction on the number of elements of L, we need to prove
that the assertion holds for rational fractions of the form θ(σ,n) 1

αN

with σ = [α1, . . . , αr] is a basis of V . We write α =
∑r

i=1 ciαi. Using
the relation,

θ(σ,n)
1

αN
=

α

αn1
1 · · ·αnr

r

1

αN+1
=
∑

i,ci 6=0

ci
1

αn1
1 · · ·αni−1

i · · ·αnr
r

1

αN+1
,

we decrease the number |n| = n1 + · · · + nr. When one of the ni in
the sum becomes 0, the corresponding term is of the required form
associated to the basis σi = σ ∪ {α} \ {αi}. �

Proposition 5.5. If g ∈ GH, the distribution

B(H,Λ, g)(v) =
∑

γ∈Γreg(H)

g(γ)e2iπ〈γ,v〉

is a piecewise polynomial distribution (with respect to the system (H,Λ)).

Proof. We prove the proposition by induction on the number of ele-
ments in H. Using Lemma 5.4, it suffices to prove the proposition for
g of the form g = θ(σ,n) for σ ∈ B(Φ) and n a sequence of positive
integers.
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We first assume that Φ consists of independent elements α1, α2, . . . , αr
possibly with multiplicities. Consider an element g = θ(L) of GH for

L = [α1, . . . , α1, α2, . . . , α2, . . . , αr, . . . , αr]

where αi appears with multiplicity ki in Φ.
Let Λ′ = Zα1 ⊕ Zα2 ⊕ · · · ⊕ Zαr; clearly Λ′ is a sublattice of Λ. We

choose coordinates t =
∑

i tiαi. Then B(H,Λ′, g) = B(t) with

(5.5.1) B(t) = (−1)r
r
∏

i=1

1

ki!
B(ki, ti − [ti]).

The function B(t) is a polynomial function on each parallelogram trans-
lated from the parallelogram

∑r
i=1[0, 1]αi. By equation (7.5.1), the

distribution B(H,Λ, g) is obtained by averaging B(H,Λ′, g) over Λ/Λ′.
Thus B(H,Λ, g) is piecewise polynomial with respect to (H,Λ).
We now consider the general case, where the cardinality of H is

greater than r. In this case there exists φ ∈ Φ with the property that,
for the hyperplane arrangements H′ and H0 associated to φ, we have
g ∈ GH′ and g0 (the restriction of g to φ = 0) is in GH0 . Then, using
Proposition 4.3, which states

B(H,Λ, g) = B(H′,Λ, g)− p∗B(H0,Λ0, g0),

we conclude by induction that B(H,Λ, g) is piecewise polynomial with
respect to (H,Λ). �

The Bernoulli series B(Φ,Λ) is equal to B(H,Λ, g) with g = 1∏
φ∈Φ φ

;

it is an element of GH for we assumed that Φ spans V . Thus, by
Proposition 5.5, we immediately obtain that B(Φ,Λ) is a piecewise
polynomial density.

Corollary 5.6. For any f ∈ RH, the distribution B(H,Λ, f)(v) re-
stricts to a tope τ as a polynomial density.

Proof. Let f ∈ RH. We can write f as Pg where P is a polynomial and
g ∈ GH. Then the distribution B(H,Λ, f)(v) is obtained by applying
the differential operator P (∂v) to the distribution B(H,Λ, g)(v).
This differentiation is in the distribution sense so that it may produce

distributions supported on admissible hyperplanes, but on an open tope
τ , we obtain a polynomial density. �

Definition 5.7. Given a tope τ in T (Φ,Λ), we denote by Ber(Φ,Λ, τ)
the polynomial function on V such that the restriction of B(Φ,Λ) to τ
coincides with the restriction of Ber(Φ,Λ, τ)(v)dΛv on τ .
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By the above proof, we see that the polynomial Ber(Φ,Λ, τ) is of
degree equal to the number of elements in Φ.

The fact that B(Φ,Λ)(v) is a periodic distribution on V implies im-
mediately the following periodicity formula. For any λ ∈ Λ and v ∈ V ,

(5.7.1) Ber(Φ,Λ, τ + λ)(v + λ) = Ber(Φ,Λ, τ)(v).

If ν is a connected subset of V contained in the open set of regu-
lar elements, we denote by Ber(Φ,Λ, ν) the polynomial Ber(Φ,Λ, τ(ν))
where τ(ν) is the unique tope containing ν.
Let τ ∈ T (Φ,Λ) and φ ∈ Φ. If v0 ∈ V0 = V/ < φ > is the projection

of v ∈ τ , then v0 is not on any affine wall in V0. Indeed the reciproc
image of an affine wall in V0 is an affine wall in V . We denote by τ0
the unique tope in V0 containing the projection of τ .

Equation (3.1.1) implies the following relations.

If Φ− {φ} generates V , then

(5.7.2) ∂φ Ber(Φ,Λ, τ) = Ber(Φ− {φ},Λ, τ)− Ber(Φ0,Λ0, τ0).

If Φ generates V , but Φ− {φ} does not generate V , then

(5.7.3) ∂φ Ber(Φ,Λ, τ) = −Ber(Φ0,Λ0, τ0).

Remark 5.8. By using reduction to independent variables and the
explicit formula (5.5.1), we obtain also a way to compute Ber(Φ,Λ, τ).
This can be applied not too painfully when the number of elements in Φ
is small. However, the residue formula due to A. Szenes [12] to compute
Ber(Φ,Λ, τ) is very efficient when Φ is large, provided the dimension of
V is relatively small. We will give examples of computations of volumes
of moduli spaces using Szenes formula in a next article.

6. An Euler-MacLaurin formula

This section is independent of the rest of the article.
Assume that Φ generates V . Using the Lebesgue measure associ-

ated to the lattice Λ, we identify B(Φ,Λ)(v) to a piecewise polynomial
function on V .
Let us denote by R the set of Φ-admissible subspaces of V . Then

s = V and s = {0} are the maximum and minimum elements of the
partially ordered set R. If s is a Φ-admissible subspace of V , we denote
by Φ \ s the sequence of elements in Φ not lying in the space s.
The projection of the list Φ \ s on V/s will be denoted by Φ/s.

The image of the lattice Λ in V/s is a lattice in V/s. If Φ generates
V , Φ/s generates V/s. Using the projection V → V/s, we identify
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the piecewise polynomial function B(Φ/s,Λ/s) on V/s to a piecewise
polynomial function on V constant along the affine spaces v+s. Then,

Γreg(Φ/s) := Γ ∩ Ureg(Φ/s)

is the set of elements γ ∈ Γ satisfying 〈γ, s〉 = 0 for all s ∈ s and
〈γ, φ〉 6= 0 for all φ ∈ Φ \ s.
We lift functions on V/s to functions on V by the canonical pro-

jection. Thus B(Φ/s,Λ/s) is the function on V given by the series
(convergent in the sense of generalized functions)

∑

γ∈Γreg(Φ/s)

e2iπ〈v,γ〉
∏

φ∈Φ\s 2iπ〈φ, γ〉
.

This function is periodic with respect to the lattice Λ, piecewise poly-
nomial on V (relative to (Φ,Λ)) and constant along v + s. We denote
it simply by B(Φ/s) leaving its dependence on the lattice Λ implicit.
If s = V , the function B(Φ/s) is identically equal to 1; if s = {0}, then
we obtain the multiple Bernoulli series B(Φ,Λ).

Theorem 6.1. Let f be a smooth function on V , rapidly decreasing
with rapidly decreasing derivatives. Then,

∑

λ∈Λ

f(λ) =
∑

s∈R

(−1)|Φ\s|

∫

V

B(Φ/s)(v)(
∏

φ∈Φ\s

∂φ)f(v)dv.

Remark 6.2. The term corresponding to s = V in the above sum
gives the term

∫

V
f(v)dv. Thus we may also write the formula as

∑

λ∈Λ

f(λ)−

∫

V

f(v)dv =
∑

s6=V

(−1)|Φ\s|

∫

V

B(Φ/s)(v)(
∏

φ∈Φ\s

∂φ)f(v)dv.

All the sets Φ \ s entering in this formula are ‘long’, that is, their
complement in Φ do not generate V . In particular they contain a
‘cocircuit’. This formula has been used in [16] to obtain a formula for
the semi-discrete convolution with the Box Spline.

Proof. Let

f̂(y) =

∫

V

e2iπ〈y,x〉f(x)dx.

By Poisson formula
∑

λ∈Λ

f(λ) =
∑

γ∈Γ

f̂(γ).

We group together the terms in Γ belonging to s⊥ for s ∈ R. More
precisely, the lattice Γ is a disjoint union over the s ∈ R of the sets

Γreg(Φ/s) = {γ ∈ s
⊥ ∩ Γ|〈φ, γ〉 6= 0 for all φ ∈ Φ \ s}.
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Now in the generalized sense
∑

γ∈Γreg(Φ/s)

f̂(γ) =

∫

V

∑

γ∈Γreg(Φ/s)

e2iπ〈v,γ〉f(v)dv

=

∫

V

∂Φ\sB(Φ/s)(v)f(v)

and we obtain the statement in the theorem. �

7. Wall crossing

In this section we again assume that Φ generates V . Under this
assumption, we compare the polynomials Ber(Φ,Λ, τ) associated to
two adjacent topes of T (Φ,Λ) separated by an hyperplane W . We
remark that due to the periodicity property of B(Φ,Λ) it suffices to
consider jumps over an hyperplane W passing through the origin.
If D1 and D2 are two distributions on V with supports S1 and S2

with the property that for any v ∈ V the intersection of v− S1 and S2

lies in a compact set, then the convolution D1 ∗D2 is well defined.
We recall the definition of multispline. Let X = [v1, v2, . . . , vm] be

a sequence of non-zero vectors in V . We will first consider the case
where X spans a pointed cone. The multivariate spline T (X) is the
tempered distribution defined on test functions f by:

(7.0.1) 〈T (X) | f〉 =

∫ ∞

0

· · ·

∫ ∞

0

f(

m
∑

i=1

tivi)dt1 · · · dtm.

IfX spans V , we may interpret T (X) as a function on V supported in
the cone C(X) generated by X . This function is piecewise polynomial.
If v ∈ X , then ∂vT (X) = T (X − {v}). When X is the empty set,
T (X) = δ0.
We now consider the case where the elements of X do not necessarily

lie in a half-space. We introduce a polarization of X given by a vector
u in U . Let u ∈ U be a vector that is nonzero on all elements of X .
We will then say that the vector u is polarizing for X . Divide the list
X into two lists A and B, the lists of positive and negative vectors on
u respectively. We then define

T (X, u) = (−1)|B|T ([A,−B]).

Example 7.1. With the notation of Example 2.2,

T (Φk, ω
∗) =

{

tk−1

(k−1)!
if t > 0,

0 if t < 0
and T (Φk,−ω

∗) =

{

0 if t > 0,

− tk−1

(k−1)!
if t < 0.
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We return to our set up. Let Φ be a sequence of nonzero vectors in
V , spanning V . Let W be a Φ-admissible hyperplane. Let E ∈ Γ be
an equation of this hyperplane, where E is a primitive vector in Γ; this
fixes E up to sign. The lattice Λ is fixed, and we write simply dv instead
of dΛv. Similarly we denote by dh the density determined by Λ∩W . As
E does not vanish on any element of Φ\W , we may define T (Φ\W,E)
as above; it is a distribution supported on E ≥ 0. Let p be a polynomial
density onW . Then, the convolution p∗T (Φ\W,E) is well defined and
it is supported on E ≥ 0. Similarly, p ∗ T (Φ \W,−E) is supported on
E ≤ 0. It is easily proven (see [1]) that p∗T (Φ\W,E)−p∗T (Φ\W,−E)
is given by integration against a polynomial density. We thus define the
polynomial Pol(p,Φ \W,E) by the equation

Pol(p,Φ \W,E)(v)dv = p ∗ T (Φ \W,E)− p ∗ T (Φ \W,−E).

The following properties of Pol(p,Φ \W,E) follow directly from the
above equation.

Lemma 7.2. Let Ψ = Φ \W .
(a)Let ψ ∈ Ψ. Then,

∂ψPol(p,Ψ, E) = Pol(p,Ψ− {ψ}, E).

(b) If Ψ = [ψ], then for h ∈ W and t ∈ R,

Pol(p, {ψ}, E)(h+ tψ) =
f(h)

〈ψ,E〉

if p(h) = f(h)dh.
(c) If |Ψ| > 1, then the restriction of Pol(p,Ψ, E) to W vanishes of

order |Ψ| − 1.

The following one dimensional residue formula for Pol(p,Φ \W,E)
is given in [1]. It is useful in computing the convolutions. We write
p(h) = f(h)dh where f is a polynomial function on the hyperplane W .

Lemma 7.3. Let P be a polynomial function on V extending f . Then,
for v ∈ V ,

Pol(p,Φ \W,E)(v) = Resz=0

((

P (∂x) ·
e〈v,x+zE〉

∏

φ∈Φ\W 〈φ, x+ zE〉

)

x=0

)

.

Theorem 7.4. Let τ1 and τ2 be two adjacent topes in T (Φ,Λ) separated
by the hyperplane W defined by E with 〈v, E〉 > 0 for any v ∈ τ1.
Denote by τ12 the tope in T (Φ ∩W,Λ ∩ W ) containing τ1 ∩ τ2 in its
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closure. Let Berτ12 := Ber(Φ ∩ W,Λ ∩ W, τ12)dh be the polynomial
density on W determined by τ12. Then,
(7.4.1)
(Ber(Φ,Λ, τ1)−Ber(Φ,Λ, τ2))dv = Berτ12 ∗T (Φ\W,E)−Berτ12 ∗T (Φ\W,−E).

Remark 7.5. Formula (7.4.1) is very similar to jump formulae for vol-
ume of reduced spaces in Hamiltonian geometry. Indeed if µ :M → t∗

is a proper moment map associated to an Hamiltonian action of a torus
T , then the set of regular values of µ is the complement of a certain
number of affine hyperplanes. On each connected component, vol-
umes of reduced spaces Mred(v) := µ−1(v)/T are given by polynomial
functions of v. When crossing a wall, the variation of these polyno-
mials follow the same jump scheme as in equation (7.4.1): they are
determined by a polynomial volume function associated to a smaller
Hamiltonian manifold M0 and weights of the normal bundle of M0 in
M ([9]). In particular, when the sequence Φ is comprised of positive
coroots of a compact connected Lie group G with multiplicity 2g − 1
and Λ is the coroot lattice of G, the polynomials Ber(Φ,Λ, τ) describe
(up to some normalization) the symplectic volume of the moduli space
of flat G-connections on Riemann surface of genus g with one bound-
ary component, around which the holonomy is determined by v. These
moduli spaces are reduced spaces Mred(v) of an Hamiltonian action.

Proof. We will first verify the claim for the case where there is only one
vector φ in Φ that is not contained in W .
Let Λ0 = Λ ∩W . We consider the lattice Λb = Λ0 ⊕ Zφ. By formula

(2.1.1),

(7.5.1) B(Φ,Λ)(v) =
∑

λj∈Λ/Λb

B(Φ,Λb)(v + λj).

For t in a small neighborhood of zero, let τ1 (respectively τ2) denote
the tope containing the open set of v = h + tφ for h ∈ W lying in a
relatively compact open subset of τ12 and t > 0 (respectively t < 0).
We may express a representative of a non-zero λj ∈ Λ/Λb as λj =

hj+ tjφ for hj ∈ Λ0 and tj /∈ Z. As the lattice Λb is product of lattices,
we have

B(Φ,Λb)(h+ tφ) = B(Φ ∩W,Λ0)(h)(−t + [t] +
1

2
)dt.

Observe that the jump in the function B(Φ,Λb)(v+λj) = B(Φ,Λb)(h+
hj + (t + tj)φ) as t changes sign in a small neighborhood of zero is
precisely zero for the nontrivial representative λj since tj is not integral.
Thus the only contribution to the jump comes from the trivial λj in
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the sum of equation (7.5.1). We get

Ber(Φ,Λ, τ1)(v)− Ber(Φ,Λ, τ2)(v) =

1

〈E, φ〉
Ber(Φ ∩W,Λ0)(h)((−t +

1

2
− (−t−

1

2
)).

The convolution product in this case is just the product in coordi-
nates so that

Ber(Φ ∩W,Λ0, τ12) ∗ T ({φ}, E)− Ber(Φ ∩W,Λ0, τ12)(h) ∗ T ({φ},−E)

is equal at the point (h, t) to Ber(Φ∩W,Λ0, τ12)(h) and hence we obtain
the claimed formula.
Now consider the case where there are several elements of Φ that do

not lie in W . Let φ be a vector in Φ \W . Let Φ′ = Φ − {φ}; Φ′ still
generates V and Φ′∩W = Φ∩W . Equation (3.1.1) implies that in this
case B(Φ,Λ) is continuous onW : indeed the derivative in the direction
φ is a piecewise polynomial function.
Let τ ′1 and τ ′2 be the topes of Φ′ containing τ1 and τ2 respectively.

They are adjacent with respect to W and Berτ12 = Berτ
′
12 . Using equa-

tion (5.7.2), we have

∂φ Ber(Φ,Λ, τ1)− ∂φ Ber(Φ,Λ, τ2) = Ber(Φ′,Λ, τ ′1)− Ber(Φ′,Λ, τ ′2).

Indeed the topes τ1 and τ2 give the same tope τ0 under projection onto
V0 = V/ < φ >.
By Lemma 7.2 part (a),

∂φPol(Ber
τ12 ,Φ \W,E) = Pol(Berτ

′
12 ,Φ′ \W,E).

Denote by Leq(Φ) the left hand side, and by Req(Φ) the right hand side
of equation (7.4.1). By induction, we have ∂φ(Leq(Φ) − Req(Φ)) = 0.
Thus, the polynomial function is constant in the direction of Rφ. The
left hand side vanishes onW by the continuity of B(Φ,Λ) onW . Hence
the claim. �

We now demonstrate the theorem with various examples.

Example 7.6. Recall the data of Example 2.2. Let τ1 and τ2 be two
adjacent topes defined by inequalities 0 < t < 1 and −1 < t < 0
respectively. By Theorem 7.4 and Example 7.1,

Ber(Φ,Λ, τ1)(tω)− Ber(Φ,Λ, τ2)(tω) =
tk−1

(k − 1)!
,

which is indeed equal to − 1
k!
B(k, t) + 1

k!
B(k, t + 1) as it can be seen

from the explicit expression of B(Φk,Λ)(tω) in Example 2.2.
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τ1

τ2

e2

e1 τ1
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τ3

e2
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(a) (b)

Figure 6. T ([e1, e2, e1 + e2],Λ) versus T ([e1, e2, e1 +
e2, e1 − e2],Λ) with Λ = Ze1 ⊕ Ze2

Example 7.7. Recall the data of Example 2.3. Let τ1 and τ2 be the
two adjacent topes separated by the hyperplane W = R(e1 + e2) (see
figure 6(a)). Then E = −e1 + e2.
We express v = v1e1 + v2e2 ∈ V as v = v1(e1 + e2) + (v2 − v1)e2

and x ∈ U as x = x1e
1 + x2(−e

1 + e2). Using Example 2.2, with
Φ ∩W = e1 + e2 and Λ ∩W = Z(e1 + e2) at v1(e1 + e2), we have

Berτ12 = Ber(Φ ∩W,Λ ∩W, τ12)(v1(e1 + e2))
= 1

2
− v1

In the above coordinates of U , the operator Berτ12(∂x) =
1
2
− ∂x1 under

the identification P (∂x)e
〈a,x〉 = P (a)e〈a,x〉. Then,

Pol(Berτ12 ,Φ, E)(v) = Resz=0

((

Berτ12(∂x) ·
e〈v,x+zE〉

∏
φ∈Φ\W 〈φ,x+zE〉

)

x=0

)

= Resz=0

((

(1
2
− ∂x1) ·

ev1x1+(v2−v1)x2+(v2−v1)z

(x1−x2−z)(x2+z)

)

x=0

)

= Resz=0

(

(

(1
2
− ∂x1) ·

ev1x1+(v2−v1)z

(x1−z)z

)

x1=0

)

= 1
2
(1− v1 − v2)(v1 − v2),

which is indeed the jump Ber(Φ,Λ, τ1)(v) − Ber(Φ,Λ, τ2)(v) as it can
be seen from the explicit expression in Example 2.3.

Example 7.8. Recall the data of Example 2.4.
(a) Jump over the wall W = Re1: Then E = e2, Φ ∩W = {e1} and

Λ ∩W = Ze1 (see figure 6(b)).

Pol(Berτ21 ,Φ, E)(a) = Resz=0

(

Berτ21(∂x) ·
e〈a,x+ze2〉

∏
φ∈Φ\Φ∩W 〈φ,x+zE〉

)

x=0

= resz=0

(

(−∂x1 +
1
2
) · ev1x1+v2x2+v2z

(x2+z)(x1+x2+z)(x1−x2−z)

)

x2=0

= 1
4
v22(2v1 − 1),
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which is indeed the jump Ber(Φ,Λ, τ2)(v) − Ber(Φ,Λ, τ1)(v) as it can
be seen from the explicit expression in Example 2.4.

(b) Jump over the wall W = R(e1 + e2): Then E = −e1 + e2.
We express v = v1e1 + v2e2 ∈ V as v = v1(e1 + e2) + (v2 − v1)e2
and x ∈ U as x = x1e

1 + x2(−e
1 + e2). Using Example 2.2, with

Φ ∩ W = e1 + e2 and Λ ∩ W = Z(e1 + e2) at v1(e1 + e2), we have
Berτ23 = Ber(Φ ∩W,Λ ∩W, τ23)(v1(e1 + e2)) =

1
2
− v1. Then,

Pol(Berτ23 ,Φ, E)(v) = Resz=0

((

(1
2
− ∂x1) ·

ev1x1+(v2−v1)x2+(v2−v1)z

(x1−x2−z)(x2+z)(x1−2x2−2z)

)

x=0

)

= −1
8
(v1 − 1 + v2)(v1 − v2)

2,

which is indeed the jump Ber(Φ,Λ, τ3)(v) − Ber(Φ,Λ, τ2)(v) as it can
be seen from the explicit expression in Example 2.4.

8. The affine case

This section generalizes previous results to the affine case. Results
proven here are not needed for the following section.
Let Φ = [φ1, . . . , φN ] be a list of elements of VQ and let z = [z1, z2, . . . , zN ]

be a list of complex numbers. We consider the augmented list Φ̃ :=
[[φ1, z1], . . . , [φN , zN ]] and define

Γreg(Φ̃) = Γ ∩ Ureg(Φ̃)

where

Ureg(Φ̃) = {u ∈ U | 〈φj, u〉+ zj 6= 0 for all j}.

Definition 8.1. The affine multiple Bernoulli series is the distribution

B(Φ̃,Λ) =
∑

γ∈Γreg(Φ̃)

e2iπ〈v,γ〉
∏N

j=1 2iπ(〈φj, γ〉+ zj)
dΛv.

The distribution B(Φ̃,Λ) has the following properties, similar to its
nonaffine counterpart:
• If Φ is the empty set, then B(Φ̃,Λ) is the δ-distribution of the

lattice Λ.
• If Λ1 ⊂ Λ2. Then B(Φ̃,Λ2) is obtained from B(Φ̃,Λ1) by averaging

over Λ2/Λ1:

(8.1.1) B(Φ̃,Λ2) =
∑

λ2∈Λ2/Λ1

t(λ2)B(Φ̃,Λ1).
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In the special case zj = 〈φj, z〉 for z ∈ UC, it is more natural to
consider the distribution

Eis(Φ,Λ, z)(v) =
∑

γ∈Γ;〈φj ,γ+z〉6=0

e2iπ〈v,γ+z〉
∏N

j=1 2iπ〈φj, γ + z〉
.

Clearly,

Eis(Φ,Λ, z)(v) = e2iπ〈v,z〉B(Φ̃,Λ)(v)

for Φ̃ = [[φ1, 〈φ1, z〉], · · · [φN , 〈φN , z〉]]. If z is regular, that is 〈φ, γ〉+z 6=
0 for all φ ∈ Φ, then Eis(Φ,Λ, z)(v) defines a distribution of v with
coefficients meromorphic functions on TC = UC/Γ which is studied in
[3].

Example 8.2. Let Λ = Zω, and let Φ̃k = [[ω, z], [ω, z], . . . , [ω, z]] where
[ω, z] is repeated k times. If z is integral, we simply have

B(Φ̃k,Λ)(tω) = e−2iπztB(Φk,Λ)(tω).

If z is not integral and k = 1, then, using Lemma 16 of [3],

(8.2.1) B(Φ̃1,Λ)(tω) =
∑

n∈Z

e2iπnt

2iπ(n+ z)
dt =

e([t]−t)2iπz

1− e−2iπz
,

which is an analytic function of t in each tope.
If k > 1, z not integral, and 0 < t < 1, we use the residue theorem

for the integral
∫

|u|=R

e−tu

(2iπz − u)k(1− e−u)
du

which tends to 0 when R tends to infinity. Then,

B(Φ̃k,Λ)(tω) = −Resu=2iπz
e−tu

(2iπz−u)k(1−e−u)
du

= e−2iπztResu=0
etu

uk(1−e−2iπz+u)
du.

Thus, we see that B(Φ̃k,Λ)(tω) is a product of an exponential function
of t and a polynomial in t. In particular, in the interval 0 < t < 1, it is
an analytic function of t. For example, for k = 2 and 0 < t < 1, we get

B(Φ̃2,Λ)(tω) =
e−2iπzt

1− e−2iπz

(

t +
1

e2iπz − 1

)

.

8.1. Recurrence relations. In the affine case the recurrence relation
(3.1.1) is slightly modified.

Let φ̃ = [φ, z] be an element of Φ̃. We consider two cases.
• Suppose there exists γz ∈ Γ such that

(8.2.2) 〈φ, γz〉+ z = 0.
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Then, we may express γ ∈ Γreg(Φ̃ − {φ̃}) satisfying 〈γ, φ〉 + z = 0 as
γ = γ′ + γz. Clearly, 〈γ

′, φ〉 = 0.

We consider the system

Φ̃0 = [[φj, zj + 〈φj, γz〉], φj ∈ Φ− {φ}]

in V0 = V/ < φ >. The sum

∑

γ′∈Γreg(Φ̃−{φ̃}),〈γ′,φ〉=0

e〈2iπv,γ
′〉

∏

φj∈Φ−{φ} 2iπ(〈φj, γ
′〉+ 〈φj, γz〉+ zj)

is constant in the direction of φ and identifies with B(Φ̃0,Λ)(v). Hence,
we get the following recurrence relation.
(8.2.3)

(∂φ + 2iπz)B(Φ̃,Λ)(v) = B(Φ̃− {φ̃},Λ)(v)− e2iπ〈v,γz 〉B(Φ̃0,Λ0)(v).

• If there does not exist γz satisfying the relation (8.2.2), then

Γreg(Φ̃− {φ̃}) = Γreg(Φ̃), and the equation (8.2.3) reduces to

(∂φ + 2iπz)B(Φ̃,Λ)(v) = B(Φ̃− {φ̃},Λ)(v).

8.2. Piecewise exponential polynomial behavior. We consider
φ̃ = [φ, z] ∈ Φ̃ with φ 6= 0. Consider the complex hyperplane Hφ̃ :=
{u ∈ UC : 〈u, φ〉+ z = 0}. Consider the set

H̃ = H(Φ̃) = {Hφ̃, φ̃ ∈ Φ̃}

of hyperplanes in UC. We denote by RH̃ the ring of rational functions

on UC with poles along H̃. That is, if S(VC) denotes the symmetric
algebra of VC, identified with the ring of polynomial functions on UC,
then RH̃ is the ring S(VC) of polynomial functions on UC together with

inverses of forms 〈φ, ·〉+ z for [φ, z] ∈ Φ̃.

For g ∈ RH̃ we define the distribution B(H̃,Λ, g) on V by

B(H̃,Λ, g) =
∑

γ∈Γreg(H̃)

g(γ)e2iπ〈v,γ〉dΛv,

where Γreg(H̃) = Γreg(Φ̃), as regularity does not depend on the multi-

plicity of an element in Φ̃.
We fix φ̃ ∈ Φ̃, and define H̃′ := H̃ \ Hφ̃. For g ∈ RH̃′ , we compare

B(H̃,Λ, g) and B(H̃′,Λ, g).

Similar to the nonaffine case, for a fixed φ̃ ∈ Φ̃, we define H̃′ := H̃\Hφ̃

and H̃0 to be the collection of affine hyperplanes H ∩ Hφ̃ for those

H ∈ H̃ not parallel to Hφ̃, that is, for H ∈ H̃ associated to [φj , zj] ∈ Φ̃
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with φj 6= φ. The collection H̃0 is a collection of affine hyperplanes in
the affine space Hφ̃.

We consider two cases:
• There exists γz ∈ Γ lying in Hφ̃. Thus 〈φ, γz〉+ z = 0. Let H0 be

the real hyperplane with equation φ = 0. If K ∈ H̃0, then K−{γz} is a

complex hyperplane in (H0)C. Let H̃
z
0 be the collection of hyperplanes

K−{γz} with K ∈ H̃0. Then, for g ∈ RH̃′ , we define g0(u) := g(u+γz)
lying in RH̃z

0
. Let V0 = V/Rφ, and Λ0 the image of Λ in V0.

It immediately follows from the set theoretic partition in the proof
of Proposition 4.3 that:

Lemma 8.3. If g ∈ RH̃′, then

B(H̃,Λ, g) = B(H̃′,Λ, g)− e2iπ〈v,γz〉p∗B(H̃z
0,Λ0, g0).

• In the case that there does not exist any γz ∈ Γ lying in Hφ̃ and
satisfying Equation (8.2.2), we have

B(H̃,Λ, g) = B(H̃′,Λ, g).

For a fixed Φ̃ we will denote the list of vectors φ coming from the
first component of the pairs in Φ̃ by Φ. Suppose that the vectors in Φ
associated to Φ̃ span V . Let GH̃ denote the subspace of RH̃ generated
by functions of the form

θ̃(L)(x) =
1

∏

α∈L 〈α, x〉+ zα

where L is a list of vectors coming from Φ generating V .
We call a function that is a sum of products of exponential functions

and polynomial functions an exponential polynomial.
We will say that a locally L1 function f is piecewise exponential poly-

nomial, if there exists a decomposition of V in a union of polyhedral
pieces Ci such that the restriction of f to Ci is given by a exponen-
tial polynomial formula. We then say that the distribution f(v)dΛv is
piecewise exponential polynomial.

Proposition 8.4. If g ∈ GH̃, then B(H̃,Λ, g) is a piecewise exponential
polynomial distribution.

Proof. We use the same line of argument as in the proof Proposition
5.5. As before, we scale the denominator of g = θ̃(L) such that all
α ∈ L lie in the lattice Λ. In the case that L has independent elements,
B(H̃,Λ, g) can be written as a product of exponential polynomial func-

tions B(Φ̃k,Λ), whose expression changes whether the (scaled) z are
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integral or not. The expression for both cases is given explicitly in
example 8.2 and they are piecewise exponential polynomials. We then
use the averaging formula (8.1.1).
In order to reduce the general case to the case of independent vectors

we use an analogue of Lemma 5.4, and in the case that same α with
distinct z appears in Φ̃, we use the relation

1

(α+ z1)(α + z2)
=

1

z1 − z2

1

(α + z1)
+

1

z2 − z1

1

(α+ z2)
.

We then get the claimed property of B(H̃,Λ, g) by induction using
Lemma 8.3. �

The above proposition for Φ̃ = [[φ1, z1], . . . , [φN , zN ]] and

g(x) =
1

∏N
j=1 2iπ(〈φj, x〉+ zj)

gives:

Corollary 8.5. If Φ associated to Φ̃ generates V , then B(Φ̃,Λ)(v) is
an exponential polynomial function of v on a tope of T (Φ,Λ).

Remark 8.6. Using the same proof as above, we see that Eis(Φ,Λ, z)(v) =

e2iπ〈v,z〉B(Φ̃,Λ)(v) is an exponential polynomial function of v on each
tope τ in T (Φ,Λ). Furthermore, when z is regular, the recurrence
relation simplifies to

(8.6.1) ∂φ Eis(Φ,Λ, z) = Eis(Φ \ {φ},Λ, z).

The system of relations in (8.6.1) are the relations of Dahmen-Miccelli
[4]. In particular, on each tope τ , we obtain that Eis(Φ,Λ, z)(v) =
∑

Ki(v)Fi(z) whereKi(v) are Dahmen-Micchelli polynomials and Fi(z)
meromorphic functions of z.

8.3. Wall crossing. Given a tope τ in T (Φ,Λ), we denote by Ber(Φ̃,Λ, τ)
the polynomial exponential function on V such that the restriction of
B(Φ̃,Λ) to τ coincides with the restriction of Ber(Φ̃,Λ, τ)(v)dv on τ .
Let 〈H(α, z)|f〉 =

∫

t>0
f(tα)e−2iπtzdt.

Given a wall W , assume that we have renumber Φ̃ so that Φ̃ =
[[φ1, z1], . . . , [φp, zp], [φp+1, zp+1], . . . , [φp+q, zp+q]] where the first p ele-
ments φk belongs to W and the last q elements φp+j do not belong to
W . Then, we define the lists

Φ̃ ∩W := [[φ1, z1], . . . , [φp, zp]]

and
Φ̃ \W := [[φp+1, zp+1], . . . , [φp+q, zp+q]].



Multiple Bernoulli series 29

Let E be an equation for the wall W . We define

T (Φ̃ \W,E) :=
∏

〈φi,E〉<0

−H(−φi,−zi) ∗
∏

〈φi,E〉>0

H(φi, zi).

We remark that due to the periodicity property of B(Φ̃,Λ) it suffices
to consider jumps over an hyperplane W passing through the origin.
We have, similar to Theorem 7.4,

Theorem 8.7. Let τ1 and τ2 be two adjacent topes of T (Φ,Λ) separated
by the hyperplane W , with equation E. Assume that 〈v, E〉 > 0 for
v ∈ τ1. Denote by τ12 the tope in T (Φ ∩W,Λ ∩W ) containing τ1 ∩ τ2
in its closure. Let Ber(Φ̃ ∩W,Λ ∩W, τ12)dh be the analytic density on
W determined by τ12. Then,

(Ber(Φ̃,Λ, τ1)− Ber(Φ̃,Λ, τ2))dv

= Ber(Φ̃ ∩W, τ12) ∗ T (Φ̃ \W,E)− Ber(Φ̃ ∩W, τ12) ∗ T (Φ̃ \W,−E).

Proof. The proof follows the same line of argument as in the proof of
Theorem 7.4. For the first inductive step, we are reduced by the same
argument as in Theorem 7.4 to a product situation of W with the line
Rφ. Then we compute explicitly using Formula (8.2.1). �

Example 8.8. Recall the data of Example 8.2. Let τ1 and τ2 be two
adjacent topes defined by inequalities 0 < t < 1 and −1 < t < 0
respectively. By Theorem 8.7,

Ber(Φ̃1,Λ, τ1)(t)− Ber(Φ̃1,Λ, τ2)(t) = e−2iπzt,

which is also seen from the explicit expression of B(Φ̃1,Λ)(tω) in Ex-
ample 8.2.

9. A decomposition formula

Let Λ and Φ be as before. We do not necessarily assume that Φ
generates V .
In this section, we express B(Φ,Λ) as a sum of distributionsA(Φ,Λ, a, β)

associated to affine admissible subspaces a and a generic vector β in
V .
Let us start the construction of the distribution A(Φ,Λ, a, β).

Let s be a Φ-admissible subspace of V . Then Φ ∩ s generate s, and
Λ ∩ s is a lattice in s. Let τ be a tope in T (Φ ∩ s,Λ ∩ s). We can
then consider the distribution B(τ)(s) := Ber(Φ ∩ s,Λ ∩ s, τ)(s)ds. It



30 Arzu Boysal and Michèle Vergne

is a polynomial density on s. We still denote by B(τ) this distribution
considered as a distribution on V :

〈B(τ), test〉 =

∫

s

test(s)B(τ)(s)ds.

Let λ ∈ Λ. Then a := λ+ s is an affine Φ-admissible subspace of V .
We say that a is of direction s. By definition, a tope τ of a is such that
τ − λ is a tope in s. We define B(Φ∩ s, τ) as a distribution supported
on a by the formula

〈B(Φ ∩ s, τ), test〉 =

∫

s

test(s + λ)B(τ − λ)(s).

We remark that the definition of B(Φ ∩ s, τ) above depends only on
τ and not on the choice of λ. Indeed, for another λ′ ∈ Λ such that
a = λ′+ s, λ′ is necessarily of the form λ′ = λ+λ0 for some λ0 ∈ Λ∩ s.
Then,
∫

s

test(s+λ+λ0)B(τ−λ−λ0)(s) =

∫

s

test(s+λ)B(τ−λ−λ0)(s−λ0).

Using relation (5.7.1), we have B(τ − λ − λ0)(s − λ0) = B(τ − λ)(s),
hence the independence of the expression.

For a Φ-admissible subspace s, consider an element u ∈ U vanishing
on s and polarizing for Φ \ s. Then, the multispline distribution T (Φ \
s, u) is well defined.

Definition 9.1. Let a be a Φ-admissible affine subspace of V of direc-
tion s. Let τ be a tope in a, and let u ∈ U be a vector vanishing on s

and polarizing for Φ \ s. Then, we define

A(Φ,Λ, a, τ, u) := B(Φ ∩ s, τ) ∗ T (Φ \ s, u).

The distribution A(Φ,Λ, a, τ, u) is supported on a+ u≥0. It is poly-
nomial in the direction s.

Remark 9.2. Choose a direct sum decomposition V = s ⊕ r and
express v ∈ V as v = s + r for s ∈ s and r ∈ r. If Φ is equal to
Φ∩s⊕Φ∩r, then the function A(Φ,Λ, a, τ, u) is, in product coordinates
(s, r), the product of B(Φ∩ s, τ)(s)ds with T (Φ \ s, u)(r). In general it
is still possible to express A(Φ,Λ, a, τ, u)(s, r) as a linear combination
of product of multispline functions on r and polynomials on s.

Our main theorem is that B(Φ,Λ) can be decomposed as a sum of
distributions A(Φ,Λ, a, τ, u) over all Φ-admissible affine subspaces a

for conveniently chosen τ and u. Thus we think of the distributions
A(Φ,Λ, a, τ, u) as the basic building blocks of the theory.
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Choose a scalar product 〈, 〉 on V . If W is a subspace of V , or a
quotient space of V , then W inherits a scalar product.

Let β ∈ V , and let a be a Φ admissible affine subspace of direction
s. We can then write β = β0−β1 where β0 ∈ a and β1 ∈ s⊥. The point
β0 is the orthogonal projection of β on a. Assume β generic so that
• the point β0 lies in a tope τ(β0) of a.
• the element β1 is polarizing for Φ \ s: 〈φ, β1〉 6= 0 for all φ ∈ Φ and

not in s.
We can then define

A(Φ,Λ, a, β) := A(Φ,Λ, a, τ(β0), β1).

Theorem 9.3. Choose β ∈ V generic. Then, we have

(9.3.1) B(Φ,Λ) =
∑

a

A(Φ,Λ, a, β).

Here the sum is over all admissible affine subspaces a.

The sum above is infinite. But remark that, given a vector v ∈
V by the definition of A(Φ,Λ, a, β), there exists only finitely many
Φ-admissible affine spaces a such that A(Φ,Λ, a, β) gives a non zero
contribution at the element v ∈ V , therefore the above sum is well
defined.
For example, if s = 0, then the affine spaces a of direction s are

reduced to the points λ in Λ and

A(Φ,Λ, {λ}, β) = δλ ∗ T (Φ, λ− β).

We see that A(Φ,Λ, {λ}, β) is supported in an affine space λ+ ξ with
〈ξ, λ− β〉 > 0. Thus the points v in the support satisfy ‖v‖2 ≥ ‖λ‖2 −
‖β‖2. In particular the sum of the distributions

∑

λ∈Λ

A(Φ,Λ, {λ}, β)

is well defined. Similar estimates hold for any admissible subspace s,
when considering the sum over all affine spaces of direction s .

Remark 9.4. If Φ generates V , then V is admissible, and the term
corresponding to V is the polynomial density Ber(Φ,Λ, τ(β)), with τ(β)
the tope containing β. The other distributions A(Φ,Λ, a, β) with a 6= V
are piecewise polynomial densities with support not intersecting τ .

Theorem 9.3 has the following meaning: although the distribution
B(Φ,Λ) is very complicated, it is however obtained by superposing
simpler functions which are products of polynomials and multisplines.
Before giving the proof of this theorem we demonstrate the decom-

position in various examples and state a recurrence relation.
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0−1−2−3 1 2 3

0−1−2−3 1 2 3

(a) (b)

Figure 7. The decomposition of B(Φ2,Λ)(tω).

Example 9.5. Let Φ = ∅. Then, by definition, B(Φ,Λ)(v) =
∑

γ∈Λ∗ e2iπ〈γ,v〉.

We would like to decompose this sum as in equation (9.3.1). Observe
that in this case a consists of points of Λ and any β in V is generic.
Using T (∅, β − λ) = δ0, the decomposition in Theorem 9.3 gives

∑

γ∈Λ∗

e2iπ〈γ,v〉 =
∑

λ∈Λ

δλ(v),

which is the Poisson formula.

Example 9.6. (one dimensional case) Let Λ = Zω, and let Φk =
[ω, ω, . . . , ω], where ω is repeated k times. Then s = 0 or s = V = Rω,
correspondingly a are reduced to points {λ} in Λ or a = V . Choose
any β = rω ∈ V with 0 < r < 1, it is generic. The polynomial
Ber(Φ,Λ, τ(β))(tω) which coincide with B(Φk,Λ)(t) on 0 < t < 1 is
− 1
k!
B(k, t), where B(k, t) is the Bernoulli polynomial. Then, with the

notation of Example 7.1, Theorem 9.3 gives,

B(Φk,Λ)(tω) = − 1
k!
B(k, t)dt+

∑

n∈Z>0

δnω ∗ T (Φk, ω
∗)

+
∑

n∈Z≤0

δnω ∗ T (Φk,−ω
∗).

In Figure 7 we depict the decomposition of B(Φ2,Λ)(tω). In part (a)
we draw the graph of the periodic polynomial −1

2
B(2, t− [t]), the red

graph in part (b) is the graph of the polynomial −1
2
B(2, t) and lines in

black correspond to contribution of splines.

Let us now study the recurrence relations that the distributions
A(Φ,Λ, a, β) satisfy. It will be convenient to define A(Φ,Λ, a, β) for
any affine subspace a, by declaring it to be equal to zero if a is not
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admissible. If a = λ+ s where φ ∈ s, we denote by a/ < φ > the image
of the rational space a in V0 = V/ < φ >.

Lemma 9.7. Let φ ∈ Φ and β ∈ V . We still denote by β the projection
of β on V/ < φ >.
(i) If φ /∈ s, then

∂φA(Φ,Λ, a, β) = A(Φ \ {φ},Λ, a, β).

(ii) If φ ∈ s, then

∂φA(Φ,Λ, a, β) = A(Φ\{φ},Λ, a, β)−A(Φ/ < φ >,Λ/ < φ >, a/ < φ >, β).

In (ii), A(Φ\ {φ},Λ, a, β) is zero when Φ∩ s \ {φ} does not generate
s.

Proof. Part (i) follows from the relation

∂φT (Φ \ s, β1) = T ((Φ \ {φ}) \ s, β1).

For part (ii) we use equation (3.1.1) on τ , which gives

∂φ Ber(Φ∩s,Λ∩s, τ) = Ber((Φ∩s)\{φ},Λ∩s, τ)−Ber(Φ∩s/ < φ >,Λ∩s/ < φ >, τ).

Now suppose q is a polynomial function on s constant in the direction
of φ. Let X := [v1, v2, . . . , vN ] be a sequence of nonzero vectors in V \s
generating a pointed cone. We denote the projection of vi to V/ < φ >
by v̄i. Then,

q ∗ T (X)(v) =

∫ ∞

0

· · ·

∫ ∞

0

q(v −
∑

tivi)dt1 · · · dtN

=

∫ ∞

0

· · ·

∫ ∞

0

q(v −
∑

tiv̄i)dt1 · · · dtN

= q ∗ T (X/ < φ >)(v).

Putting q = Ber(Φ∩ s/ < φ >,Λ∩ s/ < φ >, τ) and X = Φ \ s, we get
part (ii). �

Proof. We now prove Theorem 9.3 by induction on the number of el-
ements in Φ. We assume that the theorem is true for any sublist of
Φ. Denote by Req(Φ) the right hand side and by Leq(Φ) the left hand
side of equation (9.3.1).
Let φ ∈ Φ. Let Φ′ = Φ \ {φ}. We recall equation (3.1.1),

∂φB(Φ,Λ) = B(Φ′,Λ)− B(Φ/ < φ >,Λ/ < φ >).

Let Raff(Φ) be the collection of all Φ-admissible affine subspaces of
V . Let R0 be the subset consisting of the elements a whose direction
s contains φ.
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β

β′

v

e2

e1

e1 + e2

β0

β′

0

Figure 8. Decomposition for various generic points

We now differentiate Req(Φ) with respect to φ. Using relations given
in part (i) and (ii) of Lemma 9.7, we get

∂φReq(Φ) =
∑

a∈Raff (Φ)

A(Φ′,Λ, a, β)−
∑

a∈R0

A(Φ/ < φ >,Λ/ < φ >, a/ < φ >, β).

We observe that the collection of a/ < φ > with a ∈ R0 parametrizes
all affine spaces admissible for Φ/ < φ >. The collection Raff(Φ) may
be larger thanRaff(Φ

′), but, if a is not inRaff(Φ
′), then the contribution

A(Φ′,Λ, a, β) is equal to 0.
Hence, we obtain by induction that ∂φ(Leq(Φ) − Req(Φ)) = 0 for

any φ.
Thus Leq(Φ) − Req(Φ) is constant. But by construction Leq(Φ) −

Req(Φ) is equal to zero on τ , therefore the constant is zero. �

Example 9.8. We will give a decomposition formula for the system in
Example 2.3. We recall the data: Λ = Ze1 ⊕ Ze2, Φ = [e1, e2, e1 + e2].
We will compute B(Φ,Λ)(v) using the decomposition formula for v

in the tope defined by the inequalities 0 < v2 < 1, 1 < v1 < 2 and
v1 − v2 > 1 (see figure 8).

We aim to demonstrate the dependence of the summands in the
decomposition formula in Theorem 9.3 to the chosen generic point in
a tope, though the value of B(Φ,Λ)(v) is clearly independent of this
choice. We will thus decompose B(Φ,Λ)(v) in two different ways, for
two different choices of generic points lying in the same tope.
For the first (resp. second) computation we choose a generic β =

b1e1 + b2e2 (resp. β
′) in the tope defined by 0 < b1 < 1, 0 < b2 < 1 and

b1 > b2, and further satisfying b1 + b2 < 1 (resp. b1 + b2 > 1).
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Figure 8 depicts two such choice of generic elements. We denote the
projection of β and β ′ to −e2 ⊕ R(e1 + e2) by β0 and β ′

0 respectively.
Since these projections lie in different topes for the reduced system
(Φ∩ s,Λ ∩ s) their corresponding contribution to the sum in Theorem
9.3 will be different. In fact, choosing β as the generic point will en-
force a nonzero contribution of the lattice point (1, 0) in evaluating the
distribution at a point v as depicted in Figure 8.

Computation with generic point β:

B(Φ,Λ)(v) = A(Φ,Λ, V, β)(v) +A(Φ,Λ,Re2 + e1, β)(v)
+A(Φ,Λ,R(e1 + e2)− e2, β)(v) +A(Φ,Λ, {(1, 0)}, β)(v).

We now compute each summand using the formula in Lemma 7.3.

A(Φ,Λ,Re2 + e1, β)(v) = Ber(e2, τ(β0)) ∗ T ({e1, e1 + e2}, β1)(v)

= δ(1,0) ∗Resz=0

((

(1/2− ∂x2) ·
e〈v,x+ze1〉

(x1+z)(x1+x2+z)

)

x=0

)

= 1
2
(v1 − 1)(−2v2 + v1)

A(Φ,Λ,R(e1 + e2)− e2, β)(v) = Ber(e1 + e2, τ(β0)) ∗ T ({e1, e2}, β1)(v)

= δ(0,−1) ∗ −Resz=0

((

(1/2− ∂x1) ·
e〈v,x+z(−e1+e2)〉

(x1−x2−z)(x2+z)

)

x=0

)

= −1
2
(−v1 − v2)(v1 − v2 − 1)

A(Φ,Λ, {(1, 0)}, β)(v) = δ(1,0) ∗ −T (e1,−e2, e1 + e2) = −(v1 − 1− v2)

Using the computation in example 2.3 for A(Φ,Λ, V, β)(v), we get

B(Φ,Λ)(v) = −1
6
(v1 − 2v2)(v1 − 1 + v2)(2v1 − 1− v2) +

1
2
(v1 − 1)(−2v2 + v1)

+1
2
(v1 + v2)(v1 − v2 − 1)− (v1 − 1− v2)

= −1
6
(v1 − 1− 2v2)(2v1 − 3− v2)(v1 − 2 + v2)

Computation with generic point β ′:

B(Φ,Λ)(v) = A(Φ,Λ, V, β ′)(v) +A(Φ,Λ,Re2 + e1, β
′)(v)+

A(Φ,Λ,R(e1 + e2) + e1, β
′)(v).

The first two summands in the decomposition above are already com-
puted. The third summand equals:

A(Φ,Λ,R(e1 + e2) + e1, β
′)(v) = −

1

2
(2− v1 − v2)(v1 − 1− v2).

We then have

B(Φ,Λ)(v) = −1
6
(v1 − 2v2)(v1 − 1 + v2)(2v1 − 1− v2) +

1
2
(v1 − 1)(−2v2 + v1)

−1
2
(2− v1 − v2)(v1 − 1− v2)

= −1
6
(v1 − 1− 2v2)(2v1 − 3− v2)(v1 − 2 + v2)

as expected.
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In the affine case, we define

A(Φ̃,Λ, a, τ, u) = Ber(Φ̃ ∩ s, τ) ∗ T (Φ̃ \ s, u).

We have a decomposition formula analogous to Theorem 9.3.

Theorem 9.9. Choose β ∈ V sufficiently generic. Then we have

B(Φ̃,Λ) =
∑

a

A(Φ̃,Λ, a, β).

The proof is precisely in the same line of arguments with that of
Theorem 9.3.
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