
1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

Integrating the Wigner Distribution
on subsets of the phase space

Nicolas Lerner
Sorbonne Université
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1. Introduction

The Wigner distribution

Let u, v ∈ L2(Rn). We define the Wigner distribution of u, v as

W(u, v)(x , ξ) =

∫
Rn

e−2iπz·ξu(x +
z

2
)v̄(x − z

2
)dz .

We note that W(u, v) is the partial Fourier transform (wrt to z) of

Rn × Rn 3 (z , x) 7→ u(x +
z

2
)v̄(x − z

2
) = Ω(u, v)(x , z),

so that

‖W(u, v)‖L2(R2n) = ‖Ω(u, v)‖L2(R2n) = ‖u‖L2(Rn)‖v‖L2(Rn).

Moreover, W(u, v) belongs to S (R2n) when u, v belong to S (Rn).
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The Wigner function of u is

W(u, u)(x , ξ) =

∫
Rn

e−2iπz·ξu(x +
z

2
)ū(x −

z

2
)dz (1)

is real-valued and such that∫∫
W(u, u)(x , ξ)dxdξ = ‖u‖2

L2(Rn)
,

but may take negative values: choosing for instance u1(x) = xe−πx
2

on the real line,
we get

W(u1, u1)(x , ξ) = 21/2e−2π(x2+ξ2)
(
x2 + ξ2 −

1

4π

)
.

In fact the real-valued function W(u, u) will take negative values unless u is a
Gaussian function, thanks to a theorem due to E. Lieb. As a matter of fact, this
range of W(u, u) intersecting R− for most “pulses” u in L2(Rn) makes rather weird
the qualification of W(u, u) as a “quasi-probability” (anyhow the emphasis must be
on quasi, not on probability).

3 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

The Wigner distribution
Weyl quantization
Integrals of the Wigner distribution

The Wigner function of u is

W(u, u)(x , ξ) =

∫
Rn

e−2iπz·ξu(x +
z

2
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We have also by Fourier inversion formula

([) u(x +
z

2
)ū(x − z

2
) = Ω(x , z) =

∫
W(u, u)(x , ξ)e2iπz·ξdξ,

so that, with z = 2x = y , we get the Reconstruction Formula,

u(y)ū(0) =

∫
W(u, u)(

y

2
, ξ)e2iπy·ξdξ (2)

Your radar device is in principle providing you with the knowledge of W(u, u)
and using (2), you want to reconstruct the unknown pulse u (assumed to be
in L2(Rn)). A typical difficulty: the integral above is in general converging
slowly and in particular you should not expect that W (u, u)( y

2
, ·) belongs to

L1(Rn).

There are many other properties of the Wigner distribution and it turns out
that most of these properties are closely linked to Weyl quantization, named
after the German mathematician Hermann Weyl (1885–1955).

4 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

The Wigner distribution
Weyl quantization
Integrals of the Wigner distribution

We have also by Fourier inversion formula

([) u(x +
z

2
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)ū(x − z

2
) = Ω(x , z) =

∫
W(u, u)(x , ξ)e2iπz·ξdξ,

so that, with z = 2x = y , we get the Reconstruction Formula,

u(y)ū(0) =
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)ū(x − z

2
) = Ω(x , z) =

∫
W(u, u)(x , ξ)e2iπz·ξdξ,

so that, with z = 2x = y , we get the Reconstruction Formula,

u(y)ū(0) =
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Weyl quantization

Let a(x , ξ) be a Hamiltonian defined on Rn × Rn. We want to associate an operator
to that function.

For instance in one dimension, we have with the standard
quantization formulas,

ξ  Dx =
1

i

d

dx
,

x  multiplication by x

xξ  xDx .

The latter formula is not quite satisfactory, since we would like to quantize real
Hamiltonians into formally self-adjoint operators, and we prefer

xξ  
1

2
(xDx + Dxx) . . . (indeed selfadjoint).

We want to use

(aWeylu)(x) =

∫∫
e2iπ(x−y)·ξa(

x + y

2
, ξ)u(y)dydξ,

instead of the standard

(Op(a)u)(x) =

∫∫
e2iπ(x−y)·ξa(x , ξ)u(y)dydξ =

∫
e2iπx·ξa(x , ξ)û(ξ)dξ.
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5 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

The Wigner distribution
Weyl quantization
Integrals of the Wigner distribution

Weyl quantization

Let a(x , ξ) be a Hamiltonian defined on Rn × Rn. We want to associate an operator
to that function. For instance in one dimension, we have with the standard
quantization formulas,

ξ  Dx =
1

i

d

dx
,

x  multiplication by x

xξ  xDx .

The latter formula is not quite satisfactory, since we would like to quantize real
Hamiltonians into formally self-adjoint operators, and we prefer

xξ  
1

2
(xDx + Dxx) . . . (indeed selfadjoint).

We want to use

(aWeylu)(x) =

∫∫
e2iπ(x−y)·ξa(

x + y

2
, ξ)u(y)dydξ,

instead of the standard

(Op(a)u)(x) =

∫∫
e2iπ(x−y)·ξa(x , ξ)u(y)dydξ =

∫
e2iπx·ξa(x , ξ)û(ξ)dξ.
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Let a be a tempered distribution on Rn × Rn; we would like to give a meaning to the
integral

(aWeylu)(x) =

∫∫
e2iπ(x−y)·ξa(

x + y

2
, ξ)u(y)dydξ,

where aWeyl stands for the Weyl quantization of the Hamiltonian “function” a(x , ξ).
Assuming that u, v ∈ S (Rn), and for a minute that a ∈ S (R2n), we get

〈aWeylu, v〉L2(Rn) =

∫∫∫
e2iπ

−z︷ ︸︸ ︷
(x − y) ·ξa(

x′︷ ︸︸ ︷
x + y

2
, ξ)u(y)v̄(x)dydξdx

=

∫∫
a(x ′, ξ)

[∫
e−2iπzξu(x ′ +

z

2
)v̄(x ′ −

z

2
)dz

]
dx ′dξ

= 〈a, W(u, v)

This is the Wigner distribution

〉S ′(R2n),S (R2n),

providing a meaning for aWeyl for a ∈ S ′(R2n) as an operator from S (Rn) to
S ′(Rn), with

〈aWeylu, v̄〉S ′(Rn),S (Rn) = 〈a,W(u, v)〉S ′(R2n),S (R2n).
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3. More results and comments

The Wigner distribution
Weyl quantization
Integrals of the Wigner distribution

Here is a sufficient condition for L2(Rn) boundedness of aWeyl: Let a be a tempered
distribution on R2n. Then we have

‖aWeyl‖B(L2(Rn)) ≤ min
(
2n‖a‖L1(R2n), ‖â‖L1(R2n)

)
. (3)

In fact for u, v ∈ S (Rn),

〈aWeylu, v〉L2(Rn) =

∫∫∫
a(x , ξ)u(2x − y)v̄(y)e−4iπ(x−y)·ξ2ndydxdξ,

so that defining for (x , ξ) ∈ R2n the operator σx,ξ by

(σx,ξu)(y) = u(2x − y)e−4iπ(x−y)·ξ,

we see that σx,ξ (phase symmetry) is unitary and self-adjoint and

aWeyl = 2n
∫∫

a(x , ξ)σx,ξdxdξ =

∫∫
â(η, y)e2iπ(η·x+y·Dx )dydη, (4)

proving the estimates of (3). As a consequence, we obtain that(
aWeyl

)∗
= (a)Weyl , so that for a real-valued, (aWeyl)∗ = aWeyl.
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â(η, y)e2iπ(η·x+y·Dx )dydη, (4)

proving the estimates of (3). As a consequence, we obtain that(
aWeyl

)∗
= (a)Weyl , so that for a real-valued, (aWeyl)∗ = aWeyl.

7 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

The Wigner distribution
Weyl quantization
Integrals of the Wigner distribution

Here is a sufficient condition for L2(Rn) boundedness of aWeyl: Let a be a tempered
distribution on R2n. Then we have

‖aWeyl‖B(L2(Rn)) ≤ min
(
2n‖a‖L1(R2n), ‖â‖L1(R2n)
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3. More results and comments

The Wigner distribution
Weyl quantization
Integrals of the Wigner distribution

Another important property of the Weyl quantization is its symplectic covariance.

The symplectic group Sp(n,R) is the subgroup of S ∈ Sl(2n,R) such that

∀X ,Y ∈ R2n, [SX , SY ] = [X ,Y ], i.e. S∗σS = σ,

with

σ =

(
0 In
−In 0

)
.

Now for S ∈ Sp(n,R), the operator

(a ◦ S)Weyl =M∗aWeylM,

where M belongs to the metaplectic group, which is a group of unitary
transformations of L2(Rn). This translates for the Wigner distribution as

W (Mu,Mv) =W(u, v) ◦ S−1. (5)

For instance, for T ∈ Gl(n,R), we have with A,C , n × n real matrices,(
a(T−1x ,tTξ)

)Weyl
=M∗T a

WeylMT , with (MTu)(x) = (detT )1/2u(Tx),(
a(ξ,−x)

)Weyl
= F∗aWeylF , where F is the Fourier transformation,(

a(x , ξ + Ax)
)Weyl

= L∗A aWeylLA, where (LAv)(x) = e iπ〈Ax,x〉v(x), tA = A,(
a(x − Cξ, ξ)

)Weyl
= R∗C aWeylRC , where (RC v)(x) =

(
e iπ〈CD,D〉v

)
(x), tC = C .
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Integrals of the Wigner distribution

• Let E be a measurable subset with finite Lebesgue measure of the phase space

Rn × Rn and let 1E be the indicator function of the set E . Then the operator with

Weyl symbol 1E is bounded (see (3)) self-adjoint (see (4)) on L2(Rn) and for any

u ∈ L2(Rn), we have

〈1Weyl
E u, u〉L2(Rn) =

∫∫
E

W(u, u)(x , ξ)dxdξ. (6)

• The above formula provides the following equivalence:{
∀u ∈ L2(Rn),

∫∫
E

W(u, u)(x , ξ)dxdξ ≤ λ‖u‖2
L2(Rn)

}
⇐⇒ 1Weyl

E ≤ λ.

• Our main question: is it possible to determine

λ+(E) = sup{spectrum 1Weyl
E }

for a given set E or for a class of subsets enjoying specific properties? We
could raise the same question for

λ−(E) = inf{spectrum 1Weyl
E }
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2. Positive results, Examples and Counterexamples

Positive results

A trivial example.

If E is equal to a half-space E = {(x , ξ)∈ R2n, L(x , ξ) ≥ 0},
where L is a linear form, we can find (if L 6= 0) a unitary operator M on
L2(Rn) such that, with H = 1R+ ,

1Weyl
E =

(
H(L)

)Weyl
=M∗H1M,

where H1 is the operator of multiplication by H(y1), which is an orthogonal
projection (thus has norm 1): this is a consequence of the symplectic covariance
properties of the Wigner distribution given above (see (5)). We have here

1E
Weyl ≤ 1 and in fact λ+(E) = sup{spectrum 1Weyl

E } = 1.
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Two highly non-trivial examples.

The above inequality is true for two-dimensional
Euclidean disks and follows from a precise study of P. Flandrin: for a ∈ R+, defining

Da = {(x , ξ) ∈ R2n, |x |2 + |ξ|2 ≤
a

2π
},

we have for n = 1, ∫∫
Da

W (u, u)(x , ξ)dxdξ ≤ (1− e−a)‖u‖2
L2(R)

, (7)

for any u ∈ L2(R). We have

1Weyl
Da

≤ 1− e−a and even λ+(Da) = 1− e−a.

The results for the disk in two dimensions are readily extendable to polydisks by
tensorisation.
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A non-trivial matter was to extend this study to 2n-dimensional Euclidean balls, a task
performed by E. Lieb and Y. Ostrover, who provided the case where E is chosen as
an Euclidean ball.

As for the 1D argument, a subtle inequality on Laguerre
polynomials provides a proof of the estimate for n ≥ 1,∫∫

Da

W (u, u)(x , ξ)dxdξ ≤
(

1−
1

(n − 1)!

∫ +∞

a
e−t tn−1dt

)
‖u‖2

L2(Rn)
, (8)

for any u ∈ L2(Rn) and we have

sup
(
spectrum 1Weyl

Da

)
= λ+(Da) = 1−

Γ(n, a)

Γ(n)
= 1−

1

Γ(n)

∫ +∞

a
e−t tn−1dt

We have with ψk standing for the Hermite function at level k in one dimension

W(ψk , ψk )(x, ξ) = (−1)k2e−2π(x2+ξ2)Lk
(

4π(x2 + ξ
2)
)
, Lk is the Laguerre polynomial.

The Laguerre polynomials {Lk}k∈N are defined by

Lk (x) = ex
1

k!

(
d

dx

)k {
xk e−x} =

(
d

dx
− 1

)k { xk

k!

}
.

A result due to E. Feldheim in 1940 states that

∀k ∈ N, ∀x ≥ 0,
∑

0≤l≤k

(−1)lLl(x) ≥ 0.
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Convex subsets. The previous examples were (very particular) convex subsets of the
phase space (half-spaces, discs, Euclidean balls).

It is rather natural to try an
investigation of more general convex subsets. Let C be a convex bounded subset of
R2n and 1C be the indicator function of C . We have

∀u ∈ L2(Rn),

∫∫
C
W(u, u)(x , ξ)dxdξ ≤ λ+(C)‖u‖2

L2(Rn)
.

On page 2178 of his 1988 article, Maximum signal energy concentration in a
time-frequency domain (Proc. IEEE), P. Flandrin writes “it is conjectured that the
inequality

λ+(C) ≤ 1 is true for any convex domain C”, (9)

a quite mild commitment for the validity of (9), although that statement was referred
to later on as Flandrin’s conjecture in the literature.
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If Flandrin’s conjecture were true, we would have for C convex subset of R2n

(not necessarily bounded or with finite measure) and for all u ∈ S (Rn),∫∫
C

W(u, u)(x , ξ)dxdξ ≤ ‖u‖2
L2(Rn). (10)

Indeed, when C is convex with infinite Lebesgue measure, we find that for
u ∈ S (Rn) (implying W(u, u) ∈ S (R2n)), thanks to the Lebesgue Dominated
Convergence Theorem, we have∫∫

C

W (u, u)(x , ξ)dxdξ = lim
λ→+∞

∫∫
C∩{(x,ξ),max(|x|,|ξ|)≤λ}

W (u, u)(x , ξ)dxdξ,

↑
convex

and assuming Flandrin’s conjecture, we get
∫∫

C
W (u, u)(x , ξ)dxdξ ≤ ‖u‖2

L2(Rn).
Conversely, you may also apply (10) to C convex bounded and recover
Flandrin’s conjecture for C via the boundedness of 1Weyl

C .
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The quarter-plane

We choose now to focus our attention on a simple-looking case, when C is the
“quarter-plane” C0 = {(x , ξ) ∈ R2, x ≥ 0, ξ ≥ 0}.

We shall study the operator

A0 =
(
H(x)H(ξ)

)Weyl
=
(
1C0

)Weyl

where H = 1R+ , that is the Weyl quantization of the indicator function of the first
quarter of the plane.

Theorem

Let A0 be the operator with Weyl symbol H(x)H(ξ), where H is the Heaviside
function. Then A0 is a bounded self-adjoint operator on L2(R) such that

inf
(
spectrum(A0)

)
< 0 < 1 < sup

(
spectrum(A0)

)
. (11)

This theorem was proven in the paper entitled On integrals over a convex set of the
Wigner distribution, by B. Delourme, T. Duyckaerts and N.L., published by the
Journal of Fourier Analysis and Applications, volume 26, February 2020.
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Corollary (A counterexample to Flandrin’s conjecture)

There exists a function φ0 ∈ S (R), with L2(R) norm equal to 1 such that∫∫
x≥0,ξ≥0

W(φ0, φ0)(x , ξ)dxdξ > 1. (12)

There exists a > 0 such that
∫∫

0≤x≤a,0≤ξ≤a
W(φ0, φ0)(x , ξ)dxdξ > 1.

As a consequence, there exists a > 0 such that

λ+

(
[0, a]× [0, a]

)
> 1,

invalidating Flandrin’s conjecture.
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3. More results and comments

Rethinking the whole business

We have seen a simple example where E was a half-space

E = {(x , ξ) ∈ Rn × Rn, L(x , ξ) ≥ α}, where L is a linear form, α ∈ R,

In that case (assuming L 6= 0), we may find affine symplectic coordinates (y , η) on R2n

such that L(x , ξ)− α = y1, implying with the symplectic covariance of the Weyl
calculus that 1Weyl

E is unitarily equivalent to the orthogonal projection

u 7→ u(y)H(y1).

The simplicity of that first case is misleading
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In many cases, including some rather explicit ones, the Weyl quantization of the rough
Hamiltonian 1E (x , ξ) could be far from a projection and may have a rather
complicated spectrum

with a supremum which could be strictly larger than 1 and an
infimum which could be negative.

In some sense, although we have the trivial identity for functions

1E (x , ξ)2 = 1E (x , ξ),

we shall see that the quantization process by the Weyl formula is destroying that
property. The Wigner distribution is not a probability density: although it takes real
values and its integral is 1 (for a normalized L2 function), it can take negative values
so that ∫∫

1E (x , ξ)W(u, u)(x , ξ)dxdξ does not necessarily belongs to [0, 1].

The terminology “quasi-probability” is awfully misleading.

Understand integrals of the Wigner distribution on subsets of the phase space forces
us to consider the Weyl quantization of the function 1E (x , ξ). The Heisenberg
Uncertainty Principle shows that non-commutation properties are governing operators
whose symbols actually depend on conjugate variables (say x1, ξ1) and these properties
are of course distorting the classical identities satisfied by classical Hamiltonians.
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We must point out as well that we do not have here at our disposal a semi-classical
version of our quantization which could ensure some bridge between classical
properties and operator-theoretic results as it is the case for the quantization of nice
smooth semi-classical symbols depending on a small parameter h.

In particular for a symbol a such that a(x , ξ, h) = a1(x , hξ), a1 ∈ C∞b (R2n), we have
the following result: if for all (x , ξ, h) ∈ Rn × Rn × (0, 1] we have a(x , ξ, h) ≤ 1, then
there exists a semi-norm C of the symbol a such that

Id−aWeyl + Ch2 ≥ 0 i.e. aWeyl ≤ Id +Ch2, (13)

an inequality following from the Fefferman-Phong Inequality which implies as well the
following lemma.

19 N. Lerner Integrating the Wigner Distribution
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Lemma

Let a be a semi-classical symbol of order 0, e.g. a(x , ξ, h) = a1(x , hξ),
a1 ∈ C∞b (R2n), such that for all (x , ξ, h) ∈ Rn × Rn × (0, 1] we have

0 ≤ a(x , ξ, h) ≤ 1.

Then there exists a semi-norm C of the symbol a such that

−Ch2 ≤ aWeyl ≤ Id +Ch2.
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Managing the quarter-plane. We want an explicit spectral decomposition for
the operator

A0 =
(
H(x)H(ξ)

)Weyl
.

The kernel of A0 is

k0(x , y) = H(x + y)Ĥ(y − x) = H(x + y)
1

2

(
δ0(y − x) +

1

iπ
pv

1

y − x

)
.

First tool: use logarithmic coordinates on each half-line: The mapping Ψ
defined by

Ψ : L2(R) −→ L2(R;C2)

u 7→
(
φ1(t) = u(et)et/2, φ2(t) = u(−et)et/2

)
is an isometric isomorphism of Hilbert spaces.
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Let us use rather formally the following identities for an operator K with kernel
k(x , y): we get

〈KHu,Hv〉L2(R) =

∫∫
k(x , y)H(y)u(y)H(x)v̄(x)dydx

=

∫∫
k(es , et)u(et)v̄(es)es+tdsdt

=

∫∫
k(es , et)e

s+t
2︸ ︷︷ ︸

k̃(s,t)

u(et)e
t
2

φ1(t)

v̄(es)e
s
2

ψ1(s)

dsdt,

so that the new kernel for the operator HKH in logarithmic coordinates is
k̃(s, t).
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We check first the “diagonal” terms

H(x)H(y)H(x + y)
1

2

(
δ0(y − x) +

1

iπ
pv

1

y − x

)
= H(x)H(y)

1

2
δ0(y − x) +

1

2iπ
pv

H(x)H(y)

y − x

=
1

2
δ0(t − s) +

1

2iπ
pv

et/2es/2

et − es

=
1

2
δ0(t − s) +

1

2iπ
pv

1

e
t−s

2 − e
s−t

2

(this is a convolution in logarithmic coordinates)

=
1

2
δ0(t − s) +

1

2iπ
pv

1

2 sinh( t−s
2

)
(pretty explicit stuff)
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The off-diagonal terms, now: we get with Ȟ(t) = H(−t),

(
H(x)Ȟ(y) + Ȟ(x)H(y)

)
H(x + y)

1

2

(
δ0(y − x) +

1

iπ
pv

1

y − x

)
=

1

2iπ
pv

H(x)Ȟ(y)H(x + y)

y − x
+

1

2iπ
pv

H(y)Ȟ(x)H(x + y)

y − x

=
1

2iπ
pv

et/2es/2H(s − t)

−et − es
+

1

2iπ
pv

et/2es/2H(t − s)

et + es

=
1

2iπ
pv

e
t+s

2 sign(t − s)

et + es
=

1

2iπ
pv

sign(t − s)

2 cosh( t−s
2

)
,

which is another convolution.
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H(x)Ȟ(y)H(x + y)

y − x
+

1

2iπ
pv

H(y)Ȟ(x)H(x + y)

y − x

=
1

2iπ
pv

et/2es/2H(s − t)

−et − es
+

1

2iπ
pv

et/2es/2H(t − s)

et + es

=
1

2iπ
pv

e
t+s

2 sign(t − s)

et + es
=

1

2iπ
pv

sign(t − s)

2 cosh( t−s
2

)
,

which is another convolution.

24 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

Rethinking the whole business
Managing the quarter-plane
Final comments and questions

The off-diagonal terms, now: we get with Ȟ(t) = H(−t),
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Next step: study the explicit 2× 2 matrix multiplier. We work indeed on L2(Rt ;C2)
one space dimension (the t variable) but acting on vectors of C2. We have

N (τ) =

(
a11(τ) a12(τ)

a12(τ) 0

)
.

The eigenvalues λ− ≤ λ+ of N (τ) are such that

λ−(τ) < 0 < 1 < λ+(τ), (14)

if and only if
a12(τ) 6= 0 and |a12(τ)|2 > 1− a11(τ). (15)

It is possible to translate the sought spectral property in terms of singularities of
functions: the function g0 (involved in the symbol) defined by

g0(t) = H(t) sech t

has a singularity at t = 0 so that its Fourier transform a12(τ) cannot go to 0 rapidly
when τ → +∞. On the other hand 1− a11(τ) belongs to the Schwartz space and
decays rapidly when τ → +∞.

25 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

Rethinking the whole business
Managing the quarter-plane
Final comments and questions

Next step: study the explicit 2× 2 matrix multiplier. We work indeed on L2(Rt ;C2)
one space dimension (the t variable) but acting on vectors of C2. We have

N (τ) =

(
a11(τ) a12(τ)

a12(τ) 0

)
.

The eigenvalues λ− ≤ λ+ of N (τ) are such that

λ−(τ) < 0 < 1 < λ+(τ), (14)

if and only if
a12(τ) 6= 0 and |a12(τ)|2 > 1− a11(τ). (15)

It is possible to translate the sought spectral property in terms of singularities of
functions: the function g0 (involved in the symbol) defined by

g0(t) = H(t) sech t

has a singularity at t = 0 so that its Fourier transform a12(τ) cannot go to 0 rapidly
when τ → +∞. On the other hand 1− a11(τ) belongs to the Schwartz space and
decays rapidly when τ → +∞.

25 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

Rethinking the whole business
Managing the quarter-plane
Final comments and questions

Next step: study the explicit 2× 2 matrix multiplier. We work indeed on L2(Rt ;C2)
one space dimension (the t variable) but acting on vectors of C2. We have

N (τ) =

(
a11(τ) a12(τ)

a12(τ) 0

)
.

The eigenvalues λ− ≤ λ+ of N (τ) are such that

λ−(τ) < 0 < 1 < λ+(τ), (14)

if and only if
a12(τ) 6= 0 and |a12(τ)|2 > 1− a11(τ). (15)

It is possible to translate the sought spectral property in terms of singularities of
functions: the function g0 (involved in the symbol) defined by

g0(t) = H(t) sech t

has a singularity at t = 0 so that its Fourier transform a12(τ) cannot go to 0 rapidly
when τ → +∞. On the other hand 1− a11(τ) belongs to the Schwartz space and
decays rapidly when τ → +∞.

25 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

Rethinking the whole business
Managing the quarter-plane
Final comments and questions

Next step: study the explicit 2× 2 matrix multiplier. We work indeed on L2(Rt ;C2)
one space dimension (the t variable) but acting on vectors of C2. We have

N (τ) =

(
a11(τ) a12(τ)

a12(τ) 0

)
.

The eigenvalues λ− ≤ λ+ of N (τ) are such that

λ−(τ) < 0 < 1 < λ+(τ), (14)

if and only if
a12(τ) 6= 0 and |a12(τ)|2 > 1− a11(τ). (15)

It is possible to translate the sought spectral property in terms of singularities of
functions: the function g0 (involved in the symbol) defined by

g0(t) = H(t) sech t

has a singularity at t = 0 so that its Fourier transform a12(τ) cannot go to 0 rapidly
when τ → +∞. On the other hand 1− a11(τ) belongs to the Schwartz space and
decays rapidly when τ → +∞.

25 N. Lerner Integrating the Wigner Distribution



1. Introduction
2. Positive results, Examples and Counterexamples

3. More results and comments

Rethinking the whole business
Managing the quarter-plane
Final comments and questions

Next step: study the explicit 2× 2 matrix multiplier. We work indeed on L2(Rt ;C2)
one space dimension (the t variable) but acting on vectors of C2. We have

N (τ) =

(
a11(τ) a12(τ)

a12(τ) 0

)
.

The eigenvalues λ− ≤ λ+ of N (τ) are such that

λ−(τ) < 0 < 1 < λ+(τ), (14)

if and only if
a12(τ) 6= 0 and |a12(τ)|2 > 1− a11(τ). (15)

It is possible to translate the sought spectral property in terms of singularities of
functions: the function g0 (involved in the symbol) defined by

g0(t) = H(t) sech t

has a singularity at t = 0 so that its Fourier transform a12(τ) cannot go to 0 rapidly
when τ → +∞. On the other hand 1− a11(τ) belongs to the Schwartz space and
decays rapidly when τ → +∞.
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Final comments and questions

The study of 1Weyl
E for a subset E of the phase space is highly correlated

to some particular set of special functions related to E :

• Hermite functions and Laguerre polynomials for ellipses,
• Airy functions for parabolas,
• Homogeneous distributions for hyperbolas and so on.

It is quite likely that the “shape” of E will determine the type of special
functions to be studied to getting a diagonalization of the operator
1weyl
E .
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A couple of questions:

• For a general convex polygon PN with N vertices, it is possible
to prove that

1Weyl
PN

≤ σN ,

where σN does not depend on the area of the polygon but only on
N. Is it true that supN σN < +∞?

• Does there exist σ > 1 such that for all convex compact subsets
K of the plane 1Weyl

K ≤ σ?
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• In 2n dimensions, defining

E (a1, . . . , an) = {(x , ξ) ∈ Rn × Rn, 2π
∑

1≤j≤n

x2
j + ξ2

j

aj
≤ 1}.

Find
sup spectrum(1E(a1,...,an))Weyl.

Done by E. Lieb & Y. Ostrover for a1 = · · · = an, but in 2n
dimensions with n ≥ 2, ellipsoids are not symplectically equivalent
to the Euclidean ball.
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Maximum signal energy concentration in a time-frequency domain
P. Flandrin,

Proc. IEEE Int. Conf. Acoustics 4 (1988), no. 1.

Bounds on integrals of the Wigner function: the hyperbolic case
J.G. Wood, A.J. Bracken,

Journal of Mathematical Physics, 46, 4, (2005).

On Integrals over a Convex Set of the Wigner Distribution
B. Delourme, T. Duyckaerts, N.L.,

Journal of Fourier Analysis and Applications, 26, (2020), 1.

Integrating the Wigner Distribution on subsets of the phase space, a Survey
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Thank you for your attention

Best wishes to Jorge
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