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Introduction

These notes are an expanded version of a mini-course that will be given in the CIMPA School
"Homological methods, representation theory and cluster algebras”, due to be held from the 7th
to the 18th of March 2016 in Mar del Plata (Argentina). The aim of the course is to introduce the
participants to the study of cluster tilted algebras, and their applications in the representation
theory of algebras.

Cluster tilted algebras were defined in [40] and also, independently, in [45] for type A. This
class of finite dimensional algebras appeared as a byproduct of the now extensive theory of cluster
algebras of Fomin and Zelevinsky [49]. They are the endomorphism algebras of tilting objects
in the cluster category of [38]. Since their introduction, they have been the subject of several
investigations, which we survey in this course.

For reasons of space, it was not possible to be encyclopedic. Thus, we have chosen to concentrate
on the representation theoretical aspects and to ignore other aspects of the theory like, for instance,
the relations between cluster tilted algebras and cluster algebras arising from surfaces, or the
combinatorics of cluster variables. In keeping with the nature of the course, we tried to make these
notes as self-contained as we could, providing examples for most results and proofs whenever
possible.

The notes are divided into the following sections.
1. Tilting in the cluster category.
2. Cluster tilted algebras.

The module category of a cluster tilted algebra.

oW

Particular modules over cluster tilted algebras.

5. Hochschild cohomology of cluster tilted algebras.






1
Tilting in the cluster category

1.1 Notation

Throughout these notes, k denotes an algebraically closed field and algebras are, unless otherwise
specified, basic and connected finite dimensional k-algebras. For such an algebra A, we denote
by mod A the category of finitely generated right A-modules, and by ind A a full subcategory
containing exactly one representative from each isoclass (=isomorphism class) of indecomposable
A-modules. When we speak about an A-module or an indecomposable A-module, we always
mean implicitly that it belongs to mod A or to ind A, respectively. Given a module M, we denote
by pd M and id M its projective and injective dimension, respectively. The global dimension of A
is denoted by gl. dim. A. Given an additive category ‘€, we sometimes write M € ‘6 to express
that M is an object in 6. We denote by add M the full additive subcategory of 6 consisting of
the finite direct sums of indecomposable summands of M.

We recall that any algebra A can be written in the form A = kQ 4 /I where kQ 4 is the path
algebra of the quiver Q4 of A, and [ is an ideal generated by finitely many relations. A relation
is a linear combination p = Y_/" ; A;w; where the A; are nonzero scalars and the w; are paths of
length at least two all having the same source and the same target. It is a zero-relation if it is a path,
and a commutativity relation if it is of the form p = w; — w,. Following [33], we sometimes
consider equivalently an algebra A as a k-category, in which the object class Ag is a complete set
of primitive orthogonal idempotents { ey, ..., e, } in A and the set of morphisms A(7, j) from
e; to ¢; is the vector space e¢;Ae;. We denote by P, [; and S; respectively the indecomposable
projective, the indecomposable injective and the simple A-module corresponding to e;.

For unexplained notions and results of representation theory, we refer the reader to [18, 21].
For tilting theory, we refer to [18, 10].

1.2 The derived category of a hereditary algebra

Once an exotic mathematical object, the derived category is now an indispensable tool of homo-
logical algebra. For its definition and properties, we refer the reader to [69, 37, 52]. Here we are
only interested in derived categories of hereditary algebras.

Let Q be a finite, connected and acyclic quiver. Its path algebra kQ is hereditary, see [18, 21].
Let 9 = %%(mod kQ) denote the bounded derived category of mod kQ, that is, the derived
category of the category of bounded complexes of finitely generated kQ-modules. It is well-known
that 9 is a triangulated category with almost split triangles, see [53]. We denote by [1]g the
shift of % and by T, its Auslander-Reiten translation, or simply by [1] and T, respectively, if no
ambiguity may arise. Both are automorphisms of %.

Because 9 is a Krull-Schmidt category, every object in 9 decomposes as a finite direct sum of
objects having local endomorphisms rings. Let ind % denote a full subcategory of 9 consisting
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of exactly one representative from each isoclass of indecomposable objects in 9. Because kQ is
hereditary, these indecomposable objects have a particularly simple form: they are of the form
M]i], that is, stalk complexes with M an indecomposable kQ-module concentrated in degree i, for
i € Z, see [53], p-49. Morphisms between indecomposable objects in 9 are computed according
to the rule:

Homyo(M,N) ifj=i
Homg, (M[i], N[j]) = { Extyo(M,N)  ifj=i+1

0 otherwise.

As is usual when dealing with triangulated categories, we write Ext,, (M, N) = Homg, (M, N[i]).
Denoting by D = Homy (—, k) the usual vector space duality, the shift and the Auslander-Reiten
translation of Pare related by the following bifunctorial isomorphism, known as Serre duality

Homg, (M, N[1]) = DHomg, (N, TM)

which is the analogue inside 9 of the celebrated Auslander-Reiten formula in a module category,
see [18], p. 118.

We now describe the Auslander-Reiten quiver I'(% ) of 9. Let I'(mod kQ) denote the Auslander-
Reiten quiver of kQ. For each i € Z, denote by I'; a copy of I'(mod kQ). Then I'(%) is the
translation quiver obtained from the disjoint union | ;. I'; by adding, for each i € Z and each
arrow x — y in Q, an arrow from I, in T; to Py in T'; ;1 and by setting TPx[1] = I, for each
x € Q, see [53], p. 52. Identifying I'; with ind kQ([i], one can then think of ind & as being formed
by copies of ind kQ joined together by extra arrows.

: ind kQ[—1]
2 1

EXAMPLES.(a) Let Q be the quiver 6—»o— o ..

—_—

ind kQ[0] ’::

ind kQ[1] ’::

ind kQ[2] ’—’

Denoting the indecomposable kQ-modules by their Loewy series, the Auslander-Reiten quiver

of 9 (mod kQ) is

2(~1] -1, 30 ] 2(1] 301) |
SN SN NN SN SN

S 300] 3 TR
NSNS NN SN
By i) 2(0] ORI PR

Distinct copies of I'(mod kQ) are indicated by dotted lines.

03

2,

(b) Let Q be the quiver 10«——o0 .
\

o4

The Auslander-Reiten quiver of 9 (mod kQ) is
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-1 o) 10 30— 3 401
"/;///6\ / b 34 /34 \ //’j::\\/‘ / h 34 /34

(110) — 2[0] > 200] > (0] = ¥ [0] > §00] 5 1[1] > 2[1] > 201] > H[1) ~ H ]
e N ~ SN .7 N
A1) 3 10 0] 3] 301

where again, distinct copies of I'(mod kQ) are indicated by dotted lines.

/ \
(c) Let Q be the quiver 1° 04,

Then kQ is tame hereditary, T'(mod kQ) consists of an infinite postprojective component, an
infinite preinjective component, two exceptional tubes of rank two and an infinite family of
tubes of rank one. Thus the Auslander-Reiten quiver of 9 (mod kQ) is

T0[0], Too [0] T5[0] Fo[1], Too [1] TA[1]

where one identifies along the horizontal dotted lines.

This is the general shape: if Q is Dynkin, then ['(?? (mod kQ)) has a unique component of
the form ZQ while, if Q is euclidean or wild, it has infinitely many such components, separated by
tubes, or by components of type ZA, respectively. The components of the form ZQ are called

transjective, and the others are called regular.

1.3 The cluster category

Let Q be a finite, connected and acyclic quiver and 9 = 9’(mod kQ) its derived category.
Because each of the shift [1] and the Auslander-Reiten translation T is an automorphism of 9, so
is the composition F = T71[1]. One may thus define the orbit category % /F. Its objects are the
F-orbits of the objects in 9. For each X € %, we denote by X = (F!X);cy its F-orbit. Then, for
two objects X, Y in% /F, we define

Homg, /¢(X,Y) = @) Homg, (X, F'Y).
i€Z
One shows easily that this vector space does not depend on the choices of the objects X and
Y in their respective orbits and thus, the Hom-spaces of 9 / F are well-defined. We recall that,
because kQ is hereditary, then, for each pair of indecomposable objects X, Y in 9, the space
Homg, (X, F'Y) is nonzero for at most one value of i € Z.
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DErFINITION. [38] The cluster category of the quiver Q is the orbit category 9 /F. It is denoted
by ‘6, or simply 6, if no ambiguity may arise.

It follows directly from the definition that € is a k-linear category and that there exists a
canonical projection functor 77 : 9 — € which sends each X € % to its F-orbit X in 6 and acts
in the obvious way on morphisms.

The next theorem summarises the elementary properties of € and 7.

THEOREM 1. [38, 59] With the above notations
(a) “6 is a Krull-Schmidt category and 7t : 9 — € preserves indecomposabiliy,
(b) € is a triangulated category and 11 : 9 — € is a triangle functor,
(c) “€ has almost split triangles and 7t : 9 — € preserves almost split triangles. O

We derive some consequences. Because of (b)(c) above, the shift [1]¢ of 6 and its Auslander-
Reiten translation T, are induced by [1]g and T, respectively. Thus, for each X € %y, we
have

~ ~ —

X1¢ =X[l]lg and T X =1,X.

As a direct consequence, we have, for each X e 6o,

Indeed, we have X = FX = 75, X[1] = 1, 1X[1], which establishes our claim.

Again, we denote briefly [1]<¢ = T, by [1], or by 7, if no ambiguity may arise.

Another easy consequence is that, if Q, Q' are quivers such that there is a triangle equivalence
9?(mod kQ) = 9”(mod kQ'), then this equivalence induces another triangle equivalence 6 =
6. This is expressed by saying that ‘€ is invariant under derived equivalence.

Denoting Ext; (X,Y) = Hom (X, Y[1]), we get the following formula.

LEMMA . [38](1.4) Let X, Y e 6, then we have a bifunctorial isomorphism
Exty (X,Y) = DExtL (Y, X).
Proof.

Extly (X,Y) = @ Homg, (X, Fi[1]g) = @ DHomg, (F'Y, 15 X)
icZ icZ
~ (P DHomg, (F'Y,F'X[1]g)
icZ
~ (P DHomg, (F'Y, X[1]g) = DExty (Y, X). O
icZ

The previous formula says that 6 is what is called a 2-Calabi Yau category. Reading the
formula as Ext3€ (}?, 17) = DHomeg (17, TX) we see that it can be interpreted as the Auslander-
Reiten formula in 6.

We now show how to compute the Auslander-Reiten quiver I'(€) of 6.

EXAMPLES.(a) Let Q be as in example 1.2(a). The cluster category is constructed from the derived
category by identifying the objects which lie in the same F-orbit, hence each X with the
corresponding FX = 7~ 1X[1]. Thus I'(6) is obtained by identifying the dotted sections in
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the figure below, so that T'(‘€) lies on a Mdbius strip.

3 FT=T
/\/\/\\
NN

~

From now on, in examples, we drop the ~ denoting the orbit of an object.

(b) Let Q be as in example 1.2(b). Applying the same recipe, we get that T'(‘€) lies on the cylinder
obtained by identifying the dotted sections.

’
/
(SN
no
=~
=N
=
/
/
/
I —=ro

(c) This procedure is general: in order to construct I'(‘6), we must, in I'(2”(mod kQ)) identify
the sections corresponding to kQy(, that is, the indecomposable projective kQ-modules, and
to T~ 'kQ[1]. So, if Q is as in example 1.2(c), then T'(6) is of the form

Al

kQ[1] ]| |kQ

Thus, the Auslander-Reiten quiver of the cluster category always admits a transjective compo-
nent, which is the whole quiver if Q is Dynkin, and is of the form ZQ otherwise. In this latter
case, F(‘éQ) also admits tubes if Q is euclidean, or components of the form Z A if Q is wild.

1.4 Tilting objects

The tilting objects in the cluster category are the analogues of the tilting modules over a hereditary
algebra, see [18], Chapter VI. Let Q be a finite, connected and acyclic quiver and ‘€ = (GQ the

corresponding cluster category.
DEFINITION. [38] (3.3) An object T in 6 is called rigid if Extly (T, T) = 0. It is called tilting if it
is rigid and has a maximal number of isoclasses of indecomposable direct summands.

Actually, the maximality in the definition may be replaced by the following condition, easier
to verify.

PROPOSITION 1. [38](3.3) Let T be a rigid object in 6. Then T is tilting if and only if it has | Q|
isoclasses of indecomposable direct summands. O
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EXAMPLES.(a) Let T be a tilting kQ-module. Denoting by

i:modkQ —— 9 = P’(mod kQ)
the canonical embedding X +— X[0], then the image of T under the composition of functors
modkQ — > 9 —To> 6o =6

is rigid. It has obviously as many isoclasses of indecomposable summands as T has in mod kQ.
Therefore, it is a tilting object in 6. Such an object is said to be induced from the tilting module
T.
For instance, in example 1.3(a), the tilting kQ-module T = 1 @ % @ 3 induces a tilting object in
€.

Of course, there exist tilting objects which are not induced from tilting modules. For instance,
in the algebra of example 1.3(b), the object

T=20303 011

is not induced. We check that it is a tilting object. Because it has obviously 4 = |Qy| isoclasses of
indecomposable summands, we just have to check its rigidity. As an example, we check here that
Ext, (4,1[1]) = 0. Because of Lemma (1.3.2), it is equivalent to prove that Exty (1[1], 3) = 0.
Now

Extlg (1[1], 3) = Homeg (1[1], $[1])

However, one can look at this example from another point of view. Indeed kQ is derived

equivalent to kQ’ where Q' is the quiver

and, under this triangle equivalence, T corresponds to the tilting kQ'-module T = 1 ¢ 312 &)
314 @ 2 that is, T may be considered as induced from a tilting kQ’-module.
This change of quiver is actually always possible.

PROPOSITION 2. [38](3.3) Let T be a tilting object in ‘6. Then there exists a quiver Q' such that
kQ and kQ’ are derived equivalent, and T is induced from a tilting kQ'-module. O

In one important aspect, tilting objects behave better than tilting modules. Indeed, let A be

a hereditary algebra, a rigid A-module T is called an almost complete tilting module if it has

|Qo| — 1 isoclasses of indecomposable summands. Because of Bongartz’ lemma, [18] p.196, there

always exists an indecomposable module M such that T @& M is a tilting module. Such an M is

called a complement of T. It is known that an almost complete tilting module has at most two

nonisomorphic complements and it has two if and only if it is sincere, see [57]. We now look at

the corresponding result inside the cluster category.
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DEFINITION. Let ‘€ be a Krull-Schmidt category, and X € 6. For U € 6y, a morphism
fX : UX — U

with Uy € add X is called a right X-approximation for U if, for every X’ € add X and
morphism f’ : X’ — U, there exists g : X’ — U such that f' = fxg

uxf%‘u
q 7

X/

Such a right approximation fy is called right minimal if, for a morphism h : Ux — Uy, the
relation fxh = fx implies that / is an automorphism

One defines dually left X-approximations and left minimal X-approximations.

Let now T be a rigid object in the cluster category 6. In analogy with the situation for modules,
T is called an almost complete tilting object if it has |Qp| — 1 isoclasses of indecomposable
summands. Again, because of Bongartz’ lemma and Proposition 2 above, there exists at least one
indecomposable object M in ‘€ such that T @& M is a tilting object. Then M is called a complement
toT.

THEOREM 3 . [38](6.8) An almost complete tilting object T in ‘€ has exactly two isoclasses of
indecomposable complements My, My and moreover there exist triangles

81 A

M, T M, M;[1]

and

M, $2 T, f2

M My [1]

where f1, fo are right minimal T-approximations and g1, g» are left minimal T-approximations. [

EXAMPLE. In the cluster category of example 1.3(b), the object T = 5 @ 3 @ 1[1] is almost
complete.It has exactly two (isoclasses of) complements, namely M, = 2 and My = 3? We also

have triangles

3 1] 2 S0

where the morphisms are minimal approximations.






2
Cluster tilted algebras

2.1 The definition and examples

In classical tilting theory, the endomorphism algebra of a tilting module over a hereditary algebra
is called a tilted algebra. Due to its proximity with hereditary algebras, this class of algebras was
heavily investigated and is by now considered to be well-understood. Moreover, it turned out to
play an important réle in representation theory, see [18, 10]. The corresponding notion in the
cluster category is that of cluster tilted algebras.

DEFINITION. [40] Let Q be a finite, connected and acyclic quiver. An algebra B is called cluster
tilted of type Q if there exists a tilting object T in the cluster category € such that B = End<¢ Q T.

Because, from the representation theoretic point of view, we may restrict ourselves to basic
algebras, we assume, from now on and without loss of generality, that the indecomposable
summands of a tilting object are pairwise nonisomorphic. This ensures that the endomorphism
algebra is basic. Such a tilting object is then called basic.

Any hereditary algebra A is cluster tilted: let indeed A = kQ and consider the tilting object in
“6g induced by T = A 4, its endomorphism algebra in € is A.

Actually, as we see in 3.2 below, a cluster tilted algebra is either hereditary of it has infinite
global dimension.

EXAMPLES.(a) Let Q be as in example 1.3(a) and T be the tilting object in € induced by the

3
tilting module 1 ® % @ 3. Its endomorphism algebra is given by the quiver

bound by a = 0, By = 0 and ya = 0.

(b) Let Q be as in example 1.3(b),and T =2 & % @ % @ 1[1]. Its endomorphism algebra is given
by the quiver

bound by af = v, en = 0,ey =0, fe =0, be = 0.

(c) For the same Q of example 1.3(b),and T =2® 5 ® 1[1] @ % [1], the endomorphism algebra is
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given by the quiver

bound by afy =0, fyd =0, yoa = 0, daff = 0.

(d) Let Q be as in example 1.3(c),and T =1 & ;é &) % @ 213 [1]. Here, ['(6() is as follows

A LA

fffffff oo NN NN R
N B A R N N
<1\ AN | | | | \ /2\ /1 ~,
3 ° 2’3 4 %?[1]
. \O/ O/ N, / \5 [1]/ o
N/ N7 N
../%‘%\O élg\lm/%:am

where we have only drawn the tubes of rank two. One has to identify along the horizontal
dotted lines to get the transjective component and along the vertical dotted lines to get the
tubes. The direct summands of T are indicated by squares. The endomorphism algebra of T is

given by the quiver

2
o
P
A
10 04
H
) Y
o
3
bound by af =0, A =0,Aa = 0,96 =0,6u =0, py = 0.

2.2 Relation with mutations

Mutation of quivers is an essential tool in the construction of cluster algebras. Let Q be a quiver
having neither loops ( © 7> ) nor 2-cycles (0 —— o ) and x be a point in Q. The mutation
Jiy at the point x transforms Q into another quiver Q" = 1, Q constructed as follows

(a) The points of Q’ are the same as those of Q.

(b) If, in Q, there are rij paths of length two of the form | — x — j , then we add Tij aITOWs
fromitojin Q'

(c) We reverse the direction of all arrows incident to x.

(d) All other arrows remain the same.

(e) We successively delete all pairs of 2-cycles thus obtained until Q' has no more 2-cycles.

It is well-known and easy to prove that mutation is an involutive process, that is, 2 is the

identity transformation on Q.
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EXAMPLE.(a) Let Q be the Dynkin quiver

2
]

O «— 0 4
then Q" = y1Q is the quiver

5

3

which is the quiver of the cluster tilted algebra of example 2.1(b). Repeating, and mutating this
time at 2, we get Q" = pou1Q which is the quiver

1 2

O —> 0O
O «<— O

_—
4 D E— 3

of example 2.1(c).

Now, recall from Theorem (1.4.3) that any almost complete tilting object Ty of the cluster
category € has exactly two nonisomorphic complements M; and My, giving rise to two tilting
objects Ty = Ty ® M and T; = Ty & M. To these correspond in turn two cluster tilted algebras
B = End Ty and B, = End< T with respective quivers Qp, and Qp,. It turns out that one

can pass from one to the other using mutation.

THEOREM 1. [41] With the previous notation, let x be the point in Qp, corresponding to the summand

Ml Ole, then QBZ = ‘Z’IXQBl' O
EXAMPLE.(b) As seen in example 1.4(c), the almost complete tilting object Ty = % &) % @ 1[1] in
_ 34

the cluster category of example 1.3(c) has exactly two complements, M; = 2 and M >
The endomorphism algebra of T, = Tp & Mj is the algebra of example 2.1(b), while that of
T, = Ty @& M; is that of example 2.1(c). We have just seen in example (a) that mutating the
quiver of End Tj gives the quiver of End T5.

Because mutation creates neither loops nor 2-cycles, we deduce the following corollary.

COROLLARY 2. The quiver of a cluster tilted algebra contains neither loops nor 2-cycles. O

Moreover, we can obtain all the quivers of cluster tilted algebras of type Q by repeatedly
mutating the quiver Q itself. This indeed follows from the fact that, if T, T’ are two tilting objects
in ‘6, then there exists a sequence T = Ty, T1,..., Ty = T’ such that, for each i with 0 < i < n,
we have that T; and T, are as in Theorem (1.4.3), that is, they have all but one indecomposable
summand in common. This is sometimes expressed by saying that the exchange graph is connected,
see [38](3.5).

COROLLARY 3. Let Q be a finite, connected and acyclic quiver. The class of quivers obtained from
Q by successive mutations coincides with the class of quivers of cluster tilted algebras of type Q. [

2.3 Relation extensions algebras

So far, in order to know whether a given algebra is cluster tilted or not, we need to identify a
tilting object in some cluster category and verify whether the given algebra is its endomorphism
algebra or not. This is clearly a difficult process in general (however, in the representation-finite



18 CLUSTER TILTED ALGEBRAS

case, we refer the reader to [30]). It is thus reasonable to ask for an intrinsic characterisation of
cluster tilted algebras.

In order to motivate the next definition, let us consider the cluster tilted algebra B of example
2.1(a). It is given by the quiver

1 0% 3

bound by a8 = 0, By = 0 and ya = 0. Deleting the arrow <y, we get the quiver

1 ,B 2 V4 3
O<«——0<«——0

bound by a8 = 0: this is the bound quiver of a tilted algebra, which we call C. The two-sided ideal
E = BB has a natural structure of C-C-bimodule and C = B/E. As a k-vector space, B = C & E.
This is actually a classical construction.

DErFINITION. Let C be an algebra, and E a C-C-bimodule. The trivial extension B = C X E is
the k-vector space
B=C@E={(ce)|ceCecE}

with the multiplication induced from the bimodule structure of E, that is
(ce)(c,e') = (cc,ce’ +ec)

forc,c’ € Cande, e’ € E.

Equivalently, we may describe B as being the algebra of 2 X 2-matrices

B:{<c 0) cGC,eEE}
e ¢

with the usual matrix addition and the multiplication induced from the bimodule structure of E.
If B = C X E, then there exists a short exact sequence of C-C-bimodules

0>ELBACc 0

where i : e — (0,e) (for e € E) is the canonical inclusion and the projection p : (c,e) — ¢ (for
(c,e) € B) is an algebra morphism with section g : ¢ — (c,0) (for ¢ € C). Thus, this sequence
splits as a sequence of C-C-bimodules. Moreover, E> = 0, so that E C rad B. This implies
that rad B = rad C & E, as vector spaces. We now show how to compute the quiver of a trivial

extension.

LemMmA 1. [3] Let C be an algebra, and E a C-C-bimodule. The quiver Qg of B = C X E is
constructed as follows:

(@) (Qp)o = (Qc)o

(b) forx,y € (Qc)o, the set of arrows in Qp from X toy equals the set of arrows in Q¢ from x toy

plus
eery

ex(rad C)Eey + exE(rad C)ey

dimk
additional arrows.

Proof.(a) This follows from the fact that E C rad B.



2.3. RELATION EXTENSIONS ALGEBRAS 19

(b) The arrows in Qp from x to y are in bijection with a basis of ey (rl;a;z%) ey. Now rad B =
rad C @ E and E? = 0 imply that

rad® B = rad? C @ ((rad C)E + E(rad C)).

The statement follows from the facts that rad? C C rad C and (rad C)E + E(rad C) C E. O
Recall that an algebra whose quiver is acyclic is called triangular.

DErFINITION. [3] Let C be a triangular algebra of global dimension at most two. Its relation
extension is the algebra C = C x E, where E = Ext2(D C,C) is considered as a C-C-bimodule

with the natural actions.

If C is hereditary, then E = 0 and C = C is its own relation extension. On the other
hand, if gl. dim.C = 2, then there exist simple C-modules S, S’ such that Ext%(S, S/) # 0.
Let I be the injective envelope of S and P’ the projective cover of S, then the short exact se-
quences 0 —rad P’ — P’ — S’ —0and 0 — S — [ — [/S — 0 induce an epimorphism
Ext% (I, P') — Ext%(S,S'). Therefore Ext% (D C, C) # 0.

Following [34], we define a system of relations for an algebra C = kQ¢/I to be a subset R
of U exley such that R, but no proper subset of R, generates [ as a two-sided ideal.

xy€(Qc)o
THEOREM 2 . [3](2.6) Let C = kQc /I be a triangular algebra of global dimension at most two,and
R be a system of relations for C. The quiver of the relation extension C is constructed as follows

@ (Qg)y = (Qc)o
(b) Forx,y € (Qc)o, the set of arrows in Qg from x toy equals the set of arrows in Q¢ from x toy
plus |[RN (eylex)| additional arrows.

"Proof”. Let S be the direct sum of a complete set of representatives of the isoclasses of simple C-
modules. Because C is basic, we have S = top Cc = soc(D C)¢. Because of [34](1.2), the relations
in R correspond to a k-basis of Ext% (S, S). Because of [3](2.4), Ext% (S, S) = top Ext% (D C, C).
Lemma 1 implies that the number of additional arrows is dimy ex Ext% (S, S)e, = dimy Ext% (Sy, Sx),
hence the result. O

In view of the theorem, we sometimes refer to the arrows of Q¢ as the "old" arrows in Q, the
remaining being called the "new" arrows

Note that the quiver of a nonhereditary relation extension always has oriented cycles. We still
have to describe the relations occurring in the quiver of a relation extension algebra. This is done
in the next subsection. For the time being we establish the relation between cluster tilted algebras

and relation extensions.
THEOREM 3 . [3](3.4) An algebra B is cluster tilted of type Q if and only if there exists a tilted
algebra C of type Q such that B = C.

Proof. Assume that B is cluster tilted of type Q. Then there exists a tilting object T in the cluster
category ‘6 such that B = End o T. Because of Proposition (1.4.2), we may assume that T is
induced from a tilting kQ-module. Let 9 = 9?(mod kQ). We have

B = End, T = @@ Homg (T, F'T)
i€Z

as k-spaces. Because T is a kQ-module, Homg, (T, F'T) = 0 for i > 2. Moreover C = End Ty
is tilted and, as k-vector spaces

B = End Tyg ® Homg, (T, FT) = C & Homg, (T, FT).
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Because of Happel’s theorem, see [53] p.109, 9 is triangle equivalent to @’ = @? (mod C). Setting
F' = 171[1] in %', we have

Homg, (T, FT) = Homg, (C, F'C)
= Homg, (tC[1],C[2])
= Homgy (DC,C[2])
>~ Ext2(DC,C).

We leave to the reader the verification that the multiplicative structure of B is the same as that of
C. This proves the necessity. The sufficiency is proved in the same way. O

Thus, there exists a surjective map from the class of tilted algebras to the class of cluster tilted
algebras, given by C — C. However, this map is not injective as we shall see in example (a) below.
It is therefore an interesting question to find all the tilted algebras which lie in the fibre of a given
cluster tilted algebra. We return to this question in 3.4 below.

EXAMPLES.(a) Let C be the algebra given by the quiver

C1>4,3/02
—

) 03

4 O

bound by Be = 0, de = 0. It is tilted of type ID4. Because of Theorem 2, the quiver of its relation

extension is

with «, ¢ new arrows. In order to compute a system of relations, we use the following ob-
servation. Let Py, P, denote respectively the indecomposable projective C and C-modules
corresponding to x. The short exact sequence 0 — E — B — C — 0 induces another exact
sequence

0 — Ext2(DC,P,) — P, 5 P, —0

~

where py is a projective cover. Now, in this example, it is easily seen that Extzc(lz, Py) =

Extg (I3, P4) = Ext (I, Py) = k and all other Extz(1;, P;) = 0. Thus
Cr=10l0iers

and so the quiver above is bound by a = 4, e = 0, ey = 0, &6 = 0, ae = 0. This is the

bound quiver of example 2.1(b)

Now let C’ be the tilted algebra of type D4 given by the quiver

2
10‘[3/0‘“\04
Yé\OA{

bound by a8 = J, then a similar calculation yields C' = C. This shows that the mapping
C — Cis not injective.

(b) Let C be the triangular algebra of global dimension 2 given by
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bound by a8 = 0. Here, C is not tilted. Applying Theorem 2 and a similar calculation as that of
example (a) above show that C is given by

)

1 3

bound by a8 = 0, 6 = 0, ba = 0, 6yd = 0. We see that C is not cluster-tilted because its
quiver contains a 2-cycle, contrary to Corollary (2.2.2)

2.4 The relations on a cluster tilted algebra

Starting from a tilted algebra C, Theorem (2.3.2) allows to construct easily the quiver of its relation
extension C which is cluster tilted, thanks to Theorem (2.3.3). Now we show how to compute as
easily a system of relations for C.

Let C = kQc /I be a triangular algebra of global dimension at most 2,and R = { p1, ..., p; }
be a system of relations for C. To the relation p; from x; to y;, say, there corresponds in C anew

arrow &; : iy — X;, as in Theorem (2.3.2). The Keller potential on C is the element

t
w = Zpiﬂéi
i=1

of kQgz. This element is considered up to cyclic equivalence: two potentials are called cyclically
equivalent if their difference is a linear combination of elements of the form y17y;...vm —
YmY1 - - - Ym—1, Where y172 . .. ¥ is a cycle in the quiver. For a given arrow 7, the cyclic partial
derivative of this cycle with respect to 7y is defined to be

OV Ym) = Y Vit Ym Y1+ Vi1
Vi=Y

In particular, the cyclic partial derivative is invariant under cyclic permutations. The Jacobian
algebra ¥ ( Qe w) is the quotient of kQg by the ideal generated by all cyclic partial derivatives
dyw of the Keller potential w with respect to all the arrows 7y in Q, see [60].

ProPOSITION 1. [15](5.2) Let C be a triangular algebra of global dimension at mots two, and w be
the Keller potential on C. Then

C= 9(Qzw)/]

where | is the square of the ideal generated by the new arrows.

"Proof”. It was shown in [60](6.12a) that ¢ (QE' w) is isomorphic to the endomorphism algebra of
the tilting object C in Amiot’s generalised cluster category associated with C. Because of [1](1.7),
this endomorphism algebra is isomorphic to the tensor algebra of the bimodule ¢ E¢ and its quiver
is isomorphic to Qz, which is also the quiver of ¢ (Qé,w). Taking the quotient of the tensor
algebra by the ideal | generated by all tensor powers E®C? with i > 2, we get exactly C. But now
| is the square of the ideal generated by the new arrows. O

The next result is proven, for instance, in [23](4.22) or [2] p.17.

PROPOSITION 2. Let C be a tilted algebra, and w be the Keller potential on C, then C = ¢ (Qc, w).
O

That is, if C is tilted, then the square | of the ideal generated by the new arrows is contained
in the ideal generated by all cyclic partial derivatives of the Keller potential. This gives a system of
relations on a cluster tilted algebra.
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EXAMPLES.(a) Let C be the tilted algebra of example (2.3)(a), given by the quiver

o2
4 O «<— O

o3

/\

bound by Be = 0, de = 0. Applying Theorem (2.3.2) yields the quiver

o2

™
—_ R
=

A

4 O «<— O
\—/03
Y

with new arrows &, . The Keller potential is then w = Bex + dey. We compute its cyclic
partial derivatives.

du(w) = Pe, dp(w) = ew, do(w) = Je, ds(w) = e, de(w) = af + 0.

Thus, besides the "old" relations Be = 0, de = 0, we also have "new" relations ex = £y = 0 and
aB + v6 = 0. Moreover | = («, 'y>2 = 0 so that we get the cluster tilted algebra of example
(2.1)(b).

(b) Let C be the (non tilted) triangular algebra of global dimension two given by the quiver
2
p ° o
e
o o
1 3
bound by a8 = 0. Here, C is given by the quiver

2
O
OAﬁ/,YXO
1 5 3

and w = afBd. Thus, the Jacobian algebra ¥ (Qz, w) is given by the previous quiver bound

by aB = 0, B6 = 0, ba = 0. Here, | = (6)* = (675) is nonzero. Therefore C is given by the

above quiver bound by af = 0, 6 = 0, éa = 0, yé = 0.

The set of relations given by the cyclic partial derivatives of the Keller potential is generally not
a system of minimal relations. Following [39], we say that a relation p is minimal if, whenever
0 = Y. Bipi7i, where p; is a relation for each i, then there is an index i such that both j; and
<y; are scalars, that is, a minimal relation in a bound quiver (Q, I) is any element of I not lying
in (kQT)I + I(kQ™"), where kQ" denotes the two-sided ideal generated by all the arrows of Q.
There is however one particular case in which we have minimal relations. We need the following

definitions.

DEerINITION. Let Q be a quiver with neither loops nor 2-cycles.

(a) [24] A full subquiver of Q is a chordless cycle if it is induced by a set of points { X1,X2, .-, Xp }
which is topologically a cycle, that is, the edges on it are precisely the edges x; — x;11
(where we set X117 = X1).

(b) [25] The quiver Q is called cyclically oriented of each chordless cycle is an oriented cycle.
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For instance, any tree is trivially cyclically oriented. The easiest nontrivial cyclically oriented
quiver is a single oriented cycle. Note that the definition of cyclically oriented excludes the
existence of multiple arrows. It is also easy to see that the quiver of a cluster tilted algebra of
Dynkin type is cyclically oriented.

THEOREM 3. [25] Let B be cluster tilted with a cyclically oriented quiver. Then:

(a) The arrows in Qg which occur in some chordless cycle are in bijection with the minimal relations
in any presentation of B.

(b) Let{ € (Qp)1 occur in a chordless cycle, and 7y1 . . . 7y; be all the shortest paths antiparallel io (.
Then the minimal relation corresponding to { is of the form Zle Aiyi, where the A; are nonzero
scalars. Also, the quiver restricted to the y; is of the form

m
O———>0——>0 +en-- 0O—>0—>0
O——>0——>0 +++o=- O——>0——>0
Tt
o o
4
In particular, the 7y; only share their endpoints. O

In particular, let B be a representation-finite cluster tilted algebra. As we see in (3.1) below,
B is of Dynkin type, therefore its quiver is cyclically oriented and the previous theorem yields a
system of minimal relations for B. Actually, in this case, for any arrow {, the number ¢ of shortest
antiparallel paths is 1 or 2. If there is one shortest path 7, we choose v as a generator and, if there
are 2, y1 and 7y, we choose y1 — v as a generator. Then the ideal generated by these relations is
a system of minimal relations [39].

If Qp is not cyclically oriented, then the assertion of the theorem does not necessarily hold
true, as we now see.
EXAMPLE.(c) [25] Let A be the path algebra of the quiver

1 m 2 B3
0O—3F0——-30
%] ‘52
v
Mutating at 2 yields the quiver
1N 2 B 3
O O O
L) B
T
s

All four paths from 3 to 1, namely the ‘B:-tx;- are zero. Hence there are 4 relations from 3 to 1,

but there are 5 arrows antiparallel to them.

Besides representation-finite cluster tilted algebras, minimal relations are only known for
cluster tilted algebras of type A, see (2.5) below. We may formulate the following problem.

Problem. Give systems of minimal relations for any cluster tilted algebra.
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2.5 Gentle cluster tilted algebras

There were several attempts to classify classes of cluster tilted algebras, see, for instance, [45,
63, 22, 36, 51], or to classify algebras derived equivalent to certain cluster tilted algebras, see, for
instance [42, 32, 26, 27, 28]. We refrain from quoting all these results and concentrate rather on
gentle algebras, introduced in [19].

DEFINITION. An algebra B is gentle if there exists a presentation B =2 kQ/ I such that
(a) every point of Q is the source, or the target, of at most two arrows;
(b) I is generated by paths of length 2;

(c) for every a € Qq, there is at most one f € Q1 such that «3 ¢ I and at most one y € Q1 such
that ya & I;

(d) for every & € 1, there is at most one ¢ € Q1 such that a¢ € [ and at most one { € Q1 such
that o € I.

Gentle algebras are string algebras [44], so we can describe all their indecomposable modules
and all their almost split sequences. Gentle algebras are also tame and this class is stable under
tilting [66]. We characterise gentle cluster tilted algebras.

THEOREM 1. [4] Let C be a tilted algebra, the following conditions are equivalent

(a) C is gentle

(b) Cis gentle

(¢c) C is of Dynkin type A or of euclidean type AA. O

Moreover, the set of relations induced from the Keller potential is a system of minimal relations
in these two cases.

Cluster tilted algebras of type A are particularly easy to describe. Their quiver are full connected
subquivers of the following infinite quiver

\/ \/ﬁ \/ \/ﬁ

bound by all possible relations of the forms af =0, By = 0, ya = 0.
EXAMPLES. Clearly, the algebra of example (2.1)(a) is gentle of type Az. We give two more

examples.

(a) Let C be the tilted algebra of type A5 given by the quiver

S
T T
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bound by a8 = 0, yé = 0. Its relation extension C is given by the quiver

bound by «f =0, BA = 0, Aa = 0,y = 0,0y = 0 and py = 0.

(b) The cluster tilted algebra of example (2.1)(d) is gentle and is the relation extension of the tilted
algebra C of type As given by the quiver

bound by a8 = 0, vé = 0, which is also gentle. Note that, while C is representation-finite, Cis

representation-infinite.






3
The module category of a cluster tilted algebra

3.1 Recovering the module category from the cluster category

Let T be a tilting object in a cluster category € and B = End<¢ T be the corresponding cluster
tilted algebra. Then there is an obvious functor

Home (T, —) : 6 — mod B

which projectivises T, that is, which induces an equivalence between add T and the full subcategory
of mod B consisting of the projective B-modules, see [21] p. 32. We claim that Home (T, —) is
full and dense.

Indeed, let M be a B-module, and take a minimal projective presentation

f

Py Py M 0

in mod B. Because Py, P; are projective, there exist Ty, T7 in add T and a morphism g : T1 — Tj
such that Home (T, T;) = P; for i = 0,1 and Hom (T, g) = f. Then there exists a triangle

8

T To X Ty [1]

in 6. Applying Home (T, —) yields an exact sequence

Homeg (T,g)
- =5

Home (T, T1) Home (T, Ty) —— Home (T, X) —— 0

because Homeg (T, Ty [1]) = Extl (T, T;) = 0. Therefore M = Home (T, X) and our functor is
dense. One proves its fullness in exactly the same way.
On the other hand, it is certainly not faithful, because

Home (T, TT) = Extl (T, T) =0

and hence the image of any object in add TT is zero.

Let 6/(add tT) denote the quotient of € by the ideal (add TT) consisting of all the mor-
phisms which factor through an object in add 7T. The objects in this quotient category are the
same as those of 6 and the set of morphisms from X to Y, say, equals Home (X, Y) modulo
the subspace consisting of those lying in (add 7T). In 6/ (add T T), the objects of add TT are
isomorphic to zero.

Because Hom« (T, —) : 6 — mod B is a full and dense functor which vanishes on (add 7T),
it induces a full and dense functor from € /(add TT) to mod B. It turns out that this induced
functor is also faithful.

THEOREM 1. [40](2.2) The functor Home (T, —) : 6 — mod B induces an equivalence between
6/ (add tT) and mod B. O
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An immediate consequence is the shape of the Auslander-Reiten quiver of B. Indeed, starting
from T'(6€), the theorem says that one gets I'(mod B) by setting equal to zero all the indecom-
posable summands of TT, thus by deleting the corresponding points from I'(‘6). In particular,
I'(mod B) has the same type of components as I'(6 ), that is, transjective and regular, from which
are deleted each time finitely many points.

EXAMPLES.(a) If B is as in example (2.1)(a), then I'(mod B) is

1

/\ \/\
g \/ b

where we identify along the vertical dotted lines. If we add the indecomposable summands of
TT, denoted by Q, we get exactly I'(6).

(b) Let B be as in example (2.1)(b), then I'(mod B) is

/\/\/\

1——— - > *»23*> ——»4% *»1

\/\/ \/ @l'

where we identify along the vertical dotted lines. Adding the points denoted by Q we get
again T'(6).
(c) Let B be as in example (2.1)(c), then I'(mod B) is

/\4> N 4>_
\/ 2 \/

where we identify along the vertical dotted lines.

1.

COROLLARY 2 . [40](2.4) A cluster tilted algebra B of type Q is representation-finite if and only
if Q is a Dynkin quiver. In this case, the numbers of isoclasses of indecomposable B-modules and

kQ-modules are equal.

Proof. The first statement follows easily from Theorem 1. Let n = |Qg| and m be the number of
isoclasses of indecomposable kQ-modules. The cluster category ‘6 g has exactly n + m isoclasses of
indecomposable objects. To get the number of isoclasses of indecomposable B-modules, we subtract
the number # of indecomposable summands of TT, getting (n + m) — n = m, as required. [

The examples also show that the Auslander-Reiten translation is preserved by the equivalence
of Theorem 1.

PROPOSITION 3 . [40](3.2) The almost split sequences in mod B are induced from the almost split
triangles of 6. O
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3.2 Global dimension

As an easy application of Theorem (3.1.1), we compute the global dimension of a cluster tilted
algebra. Let B be cluster tilted of type Q and T a tilting object in ‘6 = € such that B = End¢ T.
For x € (Qp)g we denote by Py, I respectively the corresponding indecomposable projective and
injective B-modules. It follows easily from [21] p.33 that ﬁx = Home (T, Ty), where Ty is the

summand of T corresponding to x. We now compute I,.

LEMMA 1. With this notation, I, = Home (T, T2 Ty).

Proof. Because of [21] p.33, we have I, = DHome (Ty, T). Setting @ = 9°(mod kQ) we have

functorial isomorphisms

I, = DHomg, (Ty, T) © DHomg, (Ty, T~ T[1])
= Ext}, (T, tTy) © DExt}, (Ty, T 1T)
>~ Homg, (T, tTy[1]) @ Homg, (T, T%Ty)
=~ Homeg (T, 72Ty ). O

Recall from [20] that an algebra B is Gorenstein if both id By < co and pd (DB))p < oo.
Actually, if both dimensions are finite then they are equal. Letting d = id Bg = pd (D B)p, we
then say that B is d-Gorenstein.

THEOREM 2 . [61] Any cluster tilted algebra B is 1-Gorenstein. In particular gl. dim. B € { 1,00 }.

Proof. Let, as above, B = End T, with T a tilting object in the cluster category 6. In order to
prove that pd (D B) 3 < oo, we must show that, for any injective B-module I, we have

HomB(D B, TBI) =0.

Because of Lemma 1 above, we have I = Home (T, T2To), for some T in add T. Because
Homgp(—,?) is a quotient of Home (—,?), it suffices to prove that Home (2T, 3Tp) = 0.
But this follows from Home (72T, 73Ty) = Home (T, 7Ty) = Extl(T,Tp) = 0. Thus,
pd (DB)p < oc. Similarly, id Bp < co.

We now prove that, for any B-module M, the finiteness of id M implies pd M < 1. Indeed, if
id M = m < oo, then we have a minimal injective coresolution

0—-M-—1° It ... —— >l _ 5
N 0\ i ~ e
1.0 L1 Lm=2
S
0 0 0 0 T2

The short exact sequence 0 — L2 — ["~1 — [ — () and the argument above yield
pd L"~2 < 1. An easy induction gives pd M < 1.

Thus, if gl. dim. B > 1, then there exists a module M such that pd M > 1. But thenid M = oo
and so gl. dim. B = oo. This proves the second statement. O
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3.3 The cluster repetitive algebra

Let C be an algebra and E a C-C-bimodule. We construct a Galois covering of the trivial extension
C X E. Consider the following locally finite dimensional algebra without identity

0

C
Ey G
Er G

(@
Il

0

where matrices have only finitely many nonzero coefficients, C; = C are all terms on the main
diagonal, E; = E are all terms below it, for all i € 7Z, and all the remaining coefficients are
zero. Addition is the usual matrix addition, while multiplication is induced from the bimodule
structure of E and the map E ®c E — 0. The identity maps C; — C;_1, E; — E;_1, induce an
automorphism ¢ of C. The orbit category C/ (@) inherits from C an algebra structure, which is
easily seen to be isomorphic to that of C x E. The projection functor G : C — C x E induces a
Galois covering with the infinite cyclic group generated by ¢, see [50]. In view of Theorem (2.3.3),
we are mostly interested in the case where C is tilted and E = ExtA(D C, C) so that C x E = C.In
this case, C is called the cluster repetitive algebra. Its quiver follows easily from Theorem (2.3.2)

LEmMA 1. [6](1.3) Let C = kQc /I be a tilted algebra and R a system of relations for I. The quiver
of C is constructed as follows.

@ (Q¢)y=(Qc)yxZ={(x,i) | x € (Qclo,i € Z}
(b) for (x,i), (y,]) € (Qg) s the set of arrows in (Qg), from (x,i) to (y, ) equals:
i) the set of arrows from x toy ifi = j, or
i) |RNeyley| newarrows ifi = j+1
and is empty otherwise. O

Because the relations are just lifted from those of C, this allows to compute without difficulty
the bound quiver of C.
EXAMPLES.(a) Let B be the cluster tilted algebra of example (2.1)(b), that is, let C be given by the
quiver

bound by af = 4, Be = 0, ea = 0, &y = 0, de = 0. The quiver of the cluster repetitive
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algebra C is the infinite quiver

(2,0) (2,1)
(B,0) (2,0) (1) (a,1) (B,2)
(,0) )/ Y( (e,1) )/ Y( (e,2) ~

o (4,—1) <—= (1,0 4,0) «— (1,1 4,1) —— (1,2)

GO » o) GO - o) G2

bound by all the lifted relations: (a,i)(B,i) = (v,1)(4,i), (B,i)(e,i) = 0, (J,i)(e,i) = 0,
(e,i+1)(a,i) =0, (g,i+1)(y,i) =0foralli € Z.

In practice, one drops the index i € 7 so that the quiver of C looks as follows

€ 3 s

LN
SN N S\

and the relations read exactly as those of C.

(b) Let B be the cluster tilted algebra of example (2.1)(c), that is, let C be given by the quiver

s 2 oy 3 B4
O «<—— O

1
[¢] [¢]

bound by fyd = 0. Then B = C is given by the quiver

14

10 ——> 04
Y

20 <«————— 03

bound by aBy =0, Byé = 0, yda = 0, a3 = 0. Then C is given by the quiver

s vy B« 5 v B & &

c — O €«— O «— 0O «— 0O «— O «— 0O «— O «—— O =— =+ - -

bound by all possible relations of the forms a3y = 0, Byd = 0, yéa = 0, daf = 0.

Assume that C is a tilted algebra of type Q and that T is a tilting object in ‘65 such that
C = End o I Because of Proposition (1.3.2), we may assume without loss of generality that T'is
a tilting kQ-module so that C = End Tq.

THEOREM 2. [6](1.2)(2.1) Let T be a tilting kQ-module and C = End Ty.q. Then we have
(@) C=Endg(modkq) (Biez F'T)
(b) Homgb (1mod k) (Bicz F'T, —) : @b (mod kQ) — mod C induces an equivalence?® (mod kQ) / (add (®;cz TF(T)))
mod C.

Proof.(a) Set % = 9(mod kQ). As k-vector spaces, we have

Endg <@ FiT> =~ (P Homy, (F'T, P'T).
iez ij

Because T is a kQ-module, all the summands on the right hand side vanish except when j €
{i,i4+1}.1f j = i, then the corresponding summand is Homg, (T, T) = Hoka(T, T)=C,
while, if j = i+ 1, itis Homg, (T, FT) = Ext% (DC, C) as seen in the proof of Theorem (2.3.3).
O
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Associated to the Galois covering G : € — C, thereis a pushdown functor G, : mod € — mod c
defined on the objects by

G\M@a)= P M(x)

x€G~1(a)
where M is a C-module and a € (Q@) o° See [50]. We now state the main result of this subsection

THEOREM 3. [6](2.4) There is a commutative diagram of dense functors

Homgp 0 ko) (@FT ) .
P (mod kQ) mod C

lﬂ ;
HOmagQ(TET,f) _
60 modC . [

As an immediate consequence of the density of G, and [50](3.6), we have the following

corollary.

COROLLARY 4. [6](2.5)
(a) The pushdown of an almost split sequence in mod C is an almost split sequence in mod C.

(b) The pushdown functor G, induces an isomorphism between the orbit quiver T (mod C) /7 of
T'(mod C) under the action of Z. = (@), and T (mod C). O

Thus, in order to construct I'(mod C), it suffices to compute I'(mod C) and then do the
identifications required by passing to the orbit quiver.
EXAMPLES.(c) Let C, C, C be as in example (a) above, then T'(mod C) is

2
3
1
AN \ NN
23»23»4 1 23 b 4
1 23 4 1 23

SN \4/ NS

In order to get T'(mod C), it suffices to identify the two encircled copies of 1.
(d) Let C, C, C be as in example (b) above, then I'(mod C) is

1

/27\/? /

In order to get I'(mod 6) it suffices to identify the two encircled copies of ‘1*.

3.4  Cluster tilted algebras and slices

We recall that the map C — C from tilted algebras to cluster tilted is surjective, but generally not
injective. We then ask, given a cluster tilted algebra B, how to find all the tilted algebras C such
that B = C. We answer this question by means of slices. Indeed, tilted algebras are characterised
by the existence of complete slices, see, for instance [18] p.320. The corresponding notion in our

situation is the following.

DEFINITION. Let B be an algebra. A local slice in ' (mod B) is a full connected subquiver X of a
component I of I'(mod B) such that:
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(a) X isa presection, that is, if X — Y is an arrow in I’, then

(i) X € Xy implies either Y € g or 7Y € X,

(i) Y € o implies either X € Lo or 771X € X.

(b) X is sectionally convex, that is,if X = Xy — X; — --- — X; =Y is a sectional path of
irreducible morphisms between indecomposable modules, then X, Y € X implies that X; € ¥
for all i.

(c) |Xo| = rk Ko(C) (that is, equals the number of isoclasses of simple C-modules).
For instance, if C is a tilted algebra, then it is easily seen that any complete slice in I'(mod C)
is a local slice. For cluster tilted algebras, in examples (3.1)(a), (b) and (c), the sets { %,2, % },

4 3 4
{ %, 213 , 213 ,2 } and { 2, %, g, g } are local slices respectively. We shall now see that cluster tilted

algebras always have (a lot of) local slices. Assume that C is a tilted algebra, and X a complete slice in
I'(mod C). Then there exist a hereditary algebra A and a tilting module T4 such that C = End Ty
and £ = add Homy (T, D A), see [18] p.320. On the other hand C = C x Ext2(DC,C) is
cluster tilted, and the surjective algebra morphism p : C—Cof (2.3) induces an embedding

mod C ——> mod C .
PrROPOSITION 1 . [5] With the above notation, . embeds in T'(mod é) as a local slice in the
transjective component. Moreover, every local slice in T (mod é) occurs in this way. O

The above embedding turns out to preserve the Auslander-Reiten translates.

LeEmMmA 2. [5] With the above notation, if M € X then
(@) ©cM = 1zM and
-1 ~ —1
(b) e M= = M. O

Consider ¥ as embedded in T'(mod 6) Its annihilator Anné Y, namely, the intersection of
all the annihilators {1y, Annz M of the modules M € X, is equal to Ext% (DC,C). This is
the main step in the proof of the main theorem of this subsection, which answers the question

asked at its beginning.

THEOREM 3 . [5] Let B be a cluster tilted algebra. Then there exists a tilted algebra C such that
B = C if and only if there exists a local slice ¥. in T (mod B) such that C = B/ Anng X. O

Cluster tilted algebras have usually a lot of local slices.

PROPOSITION 4 . [5] Let B be cluster tilted of tree type and M be an indecomposable B-module
lying in its transjective component.Then there exists a local slice 2 such that M € X. O

In particular, if B is representation-finite, then any indecomposable B-module lies on some
local slice.

The following remark, which is an immediate consequence of [13](1.3), is particularly useful
in calculations.

PROPOSITION 5 . [5] Let B be a cluster tilted algebra, and . be a local slice in T(mod B). Then
Anng X is generated, as a two-sided ideal, by arrows in the quiver of B. O

For another approach to find all tilted algebras whose relation extension is a given cluster tilted
algebra, we refer the reader to [31].
EXAMPLES.(a) Let B be the cluster tilted algebra of example (2.1)(b). We illustrate a local slice £
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in I'(mod B) by a dotted line.

; 3 1T
) N N N
1 — 25 — 5 E 4*’}1/7—’1
\3/ \2/ \4/
1 v 3 P

where we identify the two copies of 1. Here, Anng X = (f, 7) so that C is the quiver containing
the remaining arrows

bound by ea = 0, ey = 0. There are only two other algebras which arise in this way from local
slices. Namely, the algebra C; given by the quiver

bound by a8 = 4. Thus, we have C= 61 = 62.

(b) In contrast to tilted algebras, local slices do not characterise cluster tilted algebras. We give an

example of an algebra which is not cluster tilted but has a local slice. Let A be given by the

quiver
10 04
‘,B\ /
3
o
/ \
20 £ 05

S TR 2
. s TR Y
™y 7 \3)(7\, ™y
:2/21\3/ G //\4
| I Rt

\\1////

where we identify the two copies of 2.

In view of example (b), we may formulate the following problem.
Problem. Identify the class of algebras having local slices.

A partial solution is presented in [8].
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3.5 Smaller and larger cluster tilted algebras

It is known that any full subcategory of a tilted algebra is itself tilted. That is, if C is tilted and
e € C is an idempotent, then eCe is tilted, see [53] p.146. This is not the case for cluster tilted
algebras. On the other hand, factoring out the two-sided ideal generated by an idempotent, we

obtain a smaller cluster tilted algebra.

THEOREM 1. [41] Let B be a cluster tilted algebra, and e € B an idempotent. Then B/ BeB is cluster
tilted. O

If B is given as a bound quiver algebra and e is the sum of primitive idempotents corresponding
to points in the quiver, then the bound quiver of B/ BeB is obtained from that of B by deleting the
points appearing in e, and all arrows incident to these points, with the inherited relations.
EXAMPLES.(a) If B is as in example (2.1)(b), thus given by the quiver

bound by af = 6, ex = 0,ey = 0, e = 0, Be = 0, and ey is the primitive idempotent
corresponding to the point 2, then B/ Be; B is given by the quiver

bound by ey = 0, de = 0 and also yd = 0 (because in B, we have yé = a5 and both «, 8 are
set equal to zero when passing to the quotient B/ Be; B). This is the algebra in example (2.1)(a).

We also give an example of a full subcategory of a cluster tilted algebra which is not cluster

tilted. In the previous example, let e = e; + ¢4, then eBe is given by the quiver

€

A

bound by eA = 0, Ae = 0. This is not a cluster tilted algebra because its quiver contains a

2-cycle, see Corollary (2.2.2).
(b) If B is as in example (2.1)(c), given by the quiver

44

10 ——> 04
v

20 «<— 0 3

bound by aBy =0, fyd = 0, yda = 0, daf = 0, then B/ BeyB is hereditary with quiver

p 2 x

30 o] o1 -

We may ask whether the above procedure can be reversed, that is, given a cluster tilted algebra
B, whether there exists a (larger) cluster tilted algebra B’ and an idempotent ¢’ € B’ such that
B2 B'/B'¢'B'.
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Let B be cluster tilted, and X be a local slice in I'(mod B). Let C = B/ AnngX. Then X
embeds in T'(mod C) as a complete slice, because of Proposition (3.4.1). Let M be a, not necessarily
indecomposable, B-module all of whose indecomposable summands lie on X. In particular, M is a
C-module. It is then known, and easy to prove, that the one-point extension C' = C[M] is tilted.

Let B’ = C’' x Ext%,(DC’,C’) be the relation extension of C’. We have the following theorem.

THEOREM 2 . [62] With the above notation, B’ is cluster tilted and, if ¢’ is the primitive idempotent

corresponding to the extension point, then
B'/B'¢’B' =~ B.

EXAMPLES.(c) Let B be as in example (a), with C given by the quiver

\/

/
\

bound by a = 4. Let M = 2 @ 3. Then both summands of M lie on a complete slice and

C’ = C[M] is the tilted algebra given by the quiver

-
(e]

Al

o
'y
o
a1

bound by « = 6, pp = 0,06 = 0. It is of wild type

e}

/N
\/

o

The relation extension B’ of C’ is given by the quiver

—
o
on

7\

[¢]

e8]

bound by af = y6,ex = 0,ey = 0,8e = 0,6e =0, Ap = 0,08 =0, A = 0, po = 0,

c6=0,6u=0.

According to Theorem 2, B’ is cluster tilted and moreover B’ /B’esB’ =

B.
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Particular modules over cluster tilted algebras

4.1 The left part of a cluster tilted algebra

Because tilting theory lies at the heart of the study of cluster tilted algebras, it is natural to ask
what are the tilting modules over these algebras. We first see that they correspond to tilting objects

in the cluster category
THEOREM 1. [68] Let Q be a finite acyclic quiver, ‘€ be the corresponding cluster category, T be a
tilting object in 6 and B = End<¢, T. Then:
(a) any partial tilting B-module lifis to a rigid object in “6;
(b) any tilting B-module lifts to a tilting object in €. O
An immediate consequence of this theorem and Theorem (3.1.1) is that, if U is a tilting B-module
with lift U, then Endg U is a quotient of End< o u.

Recall that, for an algebra A, the left part £ 4 of mod A is the full subcategory of ind A
consisting of all the M such that, for any L in ind A such that there exists a path of nonzero

morphisms between indecomposables L = L Ly e Ly =M we have
pd L < 1. The right part % 4 is defined dually, see [56]. We want to study the left and right parts
of a cluster tilted algebra. We need one lemma.

LeEmMA 2. [68](5.1) Let B be a nonhereditary cluster tilted algebra. Then any connected component
of T(mod B) either contains no projectives and no injectives, or it contains both projectives and

injectives.

Proof. Let P be an indecomposable projective lying in a component I' of I'(mod B). Let ¥ be
the maximal full, connected convex subquiver of I' containing only indecomposable projectives,
including P. Because B is not hereditary, the number of points of X is strictly less than the number
of T-orbits in I'. Therefore there exist P’ € Xy and M ¢ X such that there is an irreducible
morphism M — P’: indeed, if this is not the case, then there is an irreducible morphism Pl — N
with N € ¥ and N projective, a contradiction. Let T’ be the indecomposable summand of the
tilting object T in 6 corresponding to P’. Because M is nonprojective, there is in € an arrow
72T’ — M, where M denotes the lift of M. This corresponds in T to an irreducible morphism
from an indecomposable injective B-module to TM. Hence I contains at least one injective. Dually,

if I contains an injective, then it also contains a projective. O

PROPOSITION 3 . [68](5.2) Let B be a nonhereditary cluster tilted algebra.Then £ and Rg are

finite.

Proof. Assume £p # @. Because £p is closed under predecessors in ind B, it contains at least
one indecomposable projective B-module P. Because of [47](1.1) and Lemma 2 above, there exists
m = 0 such that TP is a successor of an injective module. We may assume m to be minimal
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for this property. Because of [11](1.6), we have TP ¢ £p and so T~ " P is Ext-injective in £p.
Because this holds for any indecomposable projective in £, it follows from [12](5.4) that £ is
finite. Dually, % 5 is finite. O

As easy consequences, any cluster tilted algebra is left and right supported in the sense of [12],
and it is laura [11] if and only if it is hereditary or representation-finite.

Given an algebra A, its left support A, is the endomorphism algebra of the direct sum of all
indecomposable projective A-modules lying in £ 4. The dual notion is the right support algebra
Ap. It is shown in [12](2.3) that A), A, are always products of quasi-tilted algebras. We show
that it is, for cluster tilted algebras, a product of hereditary algebras.

PROPOSITION 4 . [68](5.4) Let B be 1-Gorenstein, then By, B, are direct products of hereditary
algebras.

Proof. Because £p C ind B, see [12], it suffices to prove that, if P is a projective indecomposable
B-module lying in £ and M — P is an irreducible morphism with M indecomposable, then M
is projective. Assume not, then TM # 0 and Homp (7~ (TM), P) # 0 implies id (tM)p > 1,
because of [18] p.115. Because B is 1-Gorenstein, we infer that pd (TM) > 1, contradicting the
fact that TM € £p. Therefore M is projective. This shows that B) is a direct product of hereditary
algebras. Dually, B, is also a direct product of hereditary algebras. O

Actually, one can show, see [68](5.5), that £ contains no indecomposable injective B-module.
Therefore £ can be characterised as the set of those indecomposable modules which are not
successors of an injective (by a sequence of nonzero morphisms between indecomposable modules).
Dually, % consists of those indecomposable which are not predecessors of a projective.

We also refer the reader to [29] for modules of projective dimension one over cluster tilted
algebras.

4.2 Modules determined by their composition factors

It is a standard question in representation theory to identify those indecomposable modules over
a given algebra which are uniquely determined by their composition factors or, equivalently, by
their dimension vectors. We have seen in (3.1) that the Auslander-Reiten quiver of a cluster tilted
algebra contains a unique transjective component, and this is the only component containing local
slices, see (3.4). If the cluster tilted algebra is of Dynkin type, then the transjective component is
the whole Auslander-Reiten quiver. We have the following theorem.

THEOREM 1. [14] Let B be a cluster tilted algebra and M, N be indecomposable B-modules lying
in the transjective component.Then M = N if and only if M and N have the same composition
factors. O

As a consequence, over a representation-finite cluster tilted algebra, all indecomposables are
uniquely determined by their composition factors.
EXAMPLE. The statement of the theorem does not hold true if M, N are not transjective. Let
indeed C be the tilted algebra of type A, given by the quiver

B,

1OEE O <«<——O0 3

)
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bound by a8 = 0. Its relation extension B = C is given by the quiver

bound by af = 0, By = 0, ya = 0. Then I'(mod B) contains exactly one tube of rank 2, all
others being of rank 1. This tube is of the form

WHRNW
WHRNW

\/\

ENY
I /
\ \

where we identify along the vertical dotted lines. Clearly the modulesrad P; = i and P3/ soc P; =

3
2 are nonisomorphic but have the same composition factors.

The situation is slightly better for cluster concealed algebras of euclidean type, see [64]: these
are the relation extensions of concealed algebras, that is, of tilted algebras which are endomorphism

algebras of a postprojective (or a preinjective) tilting module over a hereditary algebra.

PROPOSITION 2 . [14] Let B be a cluster concealed algebra of euclidean type, and M, N be two
rigid indecomposable modules. Then M = N if and only if M and N have the same composition
factors. O

If B is cluster concealed of wild type and M, N are not only rigid but also lift to rigid objects
in the cluster category, then the statement holds true: M = N if and only if M and N have the

same composition factors.

4.3 Induced and coinduced modules

Another successful approach for studying modules over cluster tilted algebras is by considering
them as induced or coinduced from modules over an underlying tilted algebra. A similar approach
is used extensively in the representation theory of finite groups. Indeed, let C be tilted, E =
Ext% (DC,C) and B = C X E be its relation extension. There are two change of rings functors
allowing to pass from mod C to mod B, these are:

i) the induction functor — ®c B¢ : mod C — mod B, and
ii) the coinduction functor Homgp(gBc, —) : mod C — mod B.

A B-module is said to be induced (or coinduced) if it lies in the image of the induction functor

(or the coinduction functor, respectively).

LEMMA 1. [65](4.2) Let M be a C-module, then
(a) idMc < 1lifandonlyif M®cB = M,
(b) pd Mc < 1 ifandonly if Hom¢(B, M) = M.
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Proof. We only prove (a), the proof of (b) is similar. Recall that, as left C-modules, we have
cB = ¢C @ E. Therefore M @c B 2 M@ (M ®c E). Thus, M ®c B = M if and only if
M ®c E = 0. Now we have

E =Ext2(DC,C) 2 Ext:(QDC,C) 2 DHom¢(C,TQDC) 2 D(tQDC)
where we used that pd (0D C) < 1 because gl. dim. C < 2. Therefore

M®cE=M®®cD(tQDC) = DHome (M, 7QQDC)
>~ Ext-(QDC, M) = Ext2(DC, M)
~ Ext-(DC, Q" 'M) =2 DHom¢(t ' 'M,DC)
~ 7t l0'M
where we used that pd (QD C) < 1 and also that id (Q~'M) < 1. Now, T~ !Q)~! M vanishes if
and only if O TMis injective, that is, if and only if id M < 1. O

We recall some notation associated with the tilting theorem, see [18] p.205. Let kQ be the path
algebra of a quiver Q, Ty be a tilting module and C = End Tyg. Then every indecomposable
C-module belongs to one of the classes

X(T)={M|M@cT=0}

and
Y(T) = {M | Tor$ (M, T) = 0 }

Let € denote the cluster category.
LEMMA 2. [65](6.2)(6.4) Let M be an indecomposable C-module, then

Home, (T, M®cT) ifM € ¥(T)

M B=
(@ Mc ifM € % (T),

(&) Home(B, M) = Ext}%(T, Tor$ (M, T)) if M € %(T)

M ifM e ¥(T).

Proof. We only sketch the proof of (a). We know that M either lies in % (T) or in ¥(T). If
M € %(T), thenid Mc < 1 (see [18](VIIL3)). Because of Lemma 1, we have M ®¢ B = M. If, on
the other hand, M € % (T), then, because of the tilting theorem, we have M 2 Homy (T, M®c
T). One can then prove that M ®c B = Homyq(T,M ®c T) ®c B = Hom%Q(T,M ®cT),
see [65](6.1). O

We can now state the main result of this subsection.
THEOREM 3. [65](7.2)(7.4)(7.5) Let B be a cluster tilted algebra.

(a) IfB is representation-finite and M is an indecomposable B-module, then there exists a tilted algebra
C such that M is both induced and coinduced from a C-module.

(b) If B is arbitrary, and M is an indecomposable B -module lying in the transjective component, then
there exists a tilted algebra C such that B = C and M is a C-module. In particular, M is induced

or coinduced from a C-module.

(c) If B is cluster concealed, and M is an indecomposable B-module, then there exists a tilted algebra C
such that B =2 C and M is a C-module. In particular, M is induced or coinduced from a C-module.
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Proof of (a). Because B is representation-finite, C is of tree type. Because of Proposition (3.4.4),
there exists a local slice 2 in I'(mod B) on which M lies. Let C = B/ Anng X. Then B is the
relation extension of the tilted algebra C and M lies on the complete slice ¥ in I'(mod C). But
thenid M¢c < 1and pd M¢ < 1. Because of Lemmata 1 and 2 above, we have both M = M ®¢ B
and M = Hom¢ (B, M). This completes the proof. O

It is important to observe that the tilted algebra C depends essentially on the choice of M.
4
EXAMPLE. Let B be given by the bound quiver of example (2.1)(b).Choosing M = 213, we get
that C is given by the quiver

Aﬁ/gk
T
3

bound by af = 4. Then M =2 M ®¢ B = Homc (B, M), so is induced and coinduced. On the
other hand, if we choose M’ = |, we get that C is given by one of the quivers

30
or

O<«— 01

bound respectively by Be = 0, e = 0 and ex = 0, &y = 0. This indeed depends on the chosen
local slice containing M’. In each case, M is again both induced and coinduced.






5
Hochschild cohomology of cluster tilted algebras

5.1 The Hochschild projection morphism

The Hochschild cohomology groups were introduced by G. Hochschild in 1945, see [46]. Let C be
an algebra and ¢E¢ a bimodule. Denoting by C® the i tensor power of C over k, we have a

complex
0 — E %> Homy(C,E) — --- — Homy (C®, E) "5 Hom, (C®*+1, E) — ...
where bl : E — Hom, (C, E) is defined for x € E, ¢ € C by
b (x)(c) = cx — xc
while b1 : Hom, (C®, E) — Hom, (C®«*1, E) maps f : C¥ — Etobit1(f) : C¥tl — E
defined on the generators by

V)1 @ ®civn) = cif(a® - ®cipr)

1 .
+ Y (D fle®  @cjejp @ ®ciga)
j=1

(D™ fler® - ci)ein

_|._

where all ¢; € C.
The i Hochschild cohomology group is the i™ cohomology group of this complex

Kerbit1

H(CE =%

If E = ¢Cc, then we write
H'(C,C) =HH'(C).

The lower index groups have concrete interpretations. For instance,
HY(C,E) = {c € C|cx =xc forallx € E}.

In particular, HH?(C) is the centre of the algebra C. For the first group H'(C, E), let Der(C, E)
denote the subspace of Homy (C, E) consisting of all d : C — E such that

d(cc’) =d(c) +cd(c)

for all ¢,¢’ € C. Such maps are called derivations. For instance, to each x € E corresponds
a derivation dy defined by dy(c) = cx — xc (for ¢ € C). The d, are called inner (or interior)
derivations, and we denote their set by IDer(C, E). Then, clearly

1 _ Der(C,E)
HAGE) = IDer(C,E)
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The Hochschild groups are not only invariants of the algebra, they are also derived invariants,
that is, if 9 (mod C) = %’ (mod C’) is a triangle equivalence, then HH!(C) = HH!(C’) for
all i, see [54, 58].

Moreover HH*(C) = @0 H H'(C) carries a natural ring structure with the so-called cup
productif & = [f] € HH!(C) and{ = [¢] € HH/(C), then we define f x g : C® @, C®J/ — C
by

(fxgla@-eqeine- g =flae - 0q)gltn®: - ac)
where all ¢, € C. One verifies that this defines unambiguously a product. We set { U { = [f X g]

and call it the cup product of ¢ and . With this product HH*(C) is a graded commutative ring,
that is, if ¢, { are as above, then

gUg=(-1)Tgug.
We now let C be triangular of global dimension two and E = Ext%(D C, C). Denoting by

B = C x E the relation extension of C, we have a short exact sequence

0 FE—‘.B_L.C 0

asin (2.3). Let [f] € HH'(B), then we have a diagram

i L g

qgi{ ‘,,
.

.

We set (pi lf] = [pf q®i]. It is easily checked that this gives rise to a well-defined k-linear map
¢' : HH!(B) — HH/(C), which we call the i Hochschild projection morphism, see [15](2.2).

THEOREM 1. [15](2.3) Considering HH"(B) and HH*(C) as associative algebras with the cup
product, the ¢ induce an algebra morphism

¢* : HH*(B) — HH*(C). O

Note that ¢* is only a morphism of associative algebras: the Hochschild cohomology ring also
carries a natural Lie algebra structure, but ¢* is not in general a morphism of Lie algebras. For a
counterexample, see [15](2.5).

Consider the short exact sequence of B-B-bimodules
0—E—-B—-C—0

and apply to it the functor Homp_g(B, —) (we denote by Homp_p the morphisms of B-B-
bimodules). We get a long exact cohomology sequence

0 — H(B,E) — HH(B) — H(B,C) %> H'(B,E) — HH'(B) — H(B,C) %> .-

where ¢ denotes the i connecting morphism.

It is easy to prove that HY(B,C) = HHO(C), see, for instance [15](2.7), and thus the com-
position of this isomorphism with the map HH’(B) — H?(B, C) of the previous long exact
sequence is just ¢ : HH’(B) — HH’(C). Now C is triangular, and HH’(C) is its centre,
hence HHO(C) = k. On the other hand ¢" # 0 because it maps the identity of B to that of C.
Therefore, we have a short exact sequence

0
0 — H%(B,E) — HH(B) ¥ HH’(C) — 0.
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THEOREM 2 . [15](5.7) Let C be triangular of global dimension at most two, and B be its relation
extension. Then we have a short exact sequence

1
0 — H'(B,E) — HH!(B) &> HH!(C) 0. O

If, in particular, C is tilted so that B is cluster tilted, then cpl is surjective.
In actual computations, one uses the fact that, for C triangular of global dimension two, one

can prove that

HY(B,E) = HY(C,E) ®Endc_c E
see [15](5.9).
EXAMPLE. Let B be the algebra of example (2.3)(b), given by the quiver
5
p &
o / Y \ o

)

bound by a8 = 0, 6 = 0, éa = 0, 5y6 = 0. This is the relation extension of the (non tilted)
algebra C = B/BJB. Then one can prove that H'(C, E) = 0 while Endc_c E = k (indeed, E
has simple top generated by the arrow 8). Because HH!(C) = k, we get that HH'(B) = k2.

In this example, the higher (pi are not surjective: indeed, one can prove that (p2 = 0, while

HH?(C) # 0, see [15](5.12).

COROLLARY 3 . [15](5.8) Let B be cluster tilted and C be tilted such that B = C, then there is a

short exact sequence
0 — H°(B,E) @ H'(B,E) — HH*(B) *> HH*(C) — 0.

Proof. Because C is tilted, it follows from [55] that HH(C) = 0 for all i > 2. O

5.2 The tame and representation-finite cases

Now we consider cluster tilted algebras of Dynkin or euclidean type. Let C be tilted and B = C.
We need to define an invariant 75 ¢ depending on the choice of C.

Let p = Y/" ; Ajw; be a relation in a bound quiver (Q, I), where each wj is a path of length at
least two from x to y, say, and each A; is a nonzero scalar. Then p is called strongly minimal if,
for every nonempty proper subset J of { 1,2, ..., m } and every family (]/t]') jeg of nonzero scalars,
we have Zje ] Hjw; ¢ I. Ttis proved in [17](2.2) that, if B is cluster tilted, then it has a presentation
consisting of strongly minimal relations.

Let now C = kQ/I be a tilted algebra and B = C= k@/fbe its relation extension, where I
is generated by the partial derivatives of the Keller potential, see (2.4). Let p = } 1" ; A;w; be a
strongly minimal relation in I, then either 0 is a relation in I, or there exist exactly m new arrows
a1, ..., &, such that w; = u;na;v;, with u;, v; paths consisting entirely of old arrows [17](3.1).
Moreover, each new arrow «; must appear in this way.

We define a relation ~ on the set Ql \ Q1 of new arrows. For every & € él \ Q1, we set
a~ . Ifp=Y", Ajw; is a strongly minimal relation in I and the «; are as above, then we set
X~ foralli,jsuchthatl <i,j < m.

One can show that ~ is unambiguously defined. It is clearly reflexive and symmetric. We let
~ be the least equivalence relation on Ql \ Qi such that & ~ B implies & ~ B (that is, ~ is the
transitive closure of ~).

We define the relation invariant of B, relative to C, to be the number np ¢ of equivalence

classes of new arrows under the relation ~.
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This equivalence is related to the direct sum decomposition of the C-C-bimodule E =
Exté (DC,C). Indeed, E is generated, as C-C-bimodule, by the new arrows. If two new ar-
rows occur in a strongly minimal relation, this means that they are somehow yoked together in E.
It is shown in [9](4.3) that E decomposes, as C-C-bimodule, into the direct sum of 715 ¢ summands.

THEOREM 1. [17](5.3) Let B = C X E be a cluster tilted algebra. If B is of Dynkin or of euclidean
type, then HH'(B) = HH!(C) @ k"sc. O

EXAMPLE. Let C be the (representation-finite) tilted algebra of euclidean type Aj given by the
quiver

bound by a8 = 0, yd = 0. Its relation extension B is as in example (2.1)(d), that is, given by the
quiver

bound by a8 =0, BA =0, Aa = 0,76 = 0, o = 0, yuy = 0. There are two equivalence classes
of new arrows, namely { A } and { yt }. Therefore ngc = 2. Because of the theorem, we have
HHY(B) @ HH!(C) @ k? = k3.

There is a better result in the representation-finite case. If B is representation-finite, then C is
tilted of Dynkin type. Because Dynkin quivers are trees, and the Hochschild groups are invariant
under tilting (see (5.1) above), we have HH'(C) = 0. Therefore HH'(B) = k8¢ and so the
invariant ng ¢ doesn not depend on the choice of C. We therefore denote it by 7 and give an easy
way to compute it. We recall that we have defined chordless cycles in (2.4). An arrow in the quiver

of a cluster tilted algebra is called inner if it belongs to two chordless cycles.

THEOREM 2. [17](6.4) If B is a representation-finite cluster tilted algebra, then the dimension n of

HH! (B) equals the number of chordless cycles minus the number of inner arrows in the quiver of

B. O
EXAMPLE. Let B be as in example (2.1)(b) given by the quiver

bound by a8 = ¥d, ex = 0, fe = 0, &y = 0, ée = 0. There are two chordless cycles and just one
inner arrow son =2 — 1 =1and HH'(B) = k.
We get a characterisation of the fundamental group of B.

COROLLARY 3. [16](4.1)IfB = k@/T is a representation-finite cluster tilted algebra, then 7111 (Q, T)
is free on n generators. O
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For instance, in the above example, 773 (@, T) = 7. This is a particular case of the following
problem.

Problem. Let B = kQ/1 be a cluster tilted algebra, with the presentation induced from the
Keller potential. Prove that 771 (Q, I) is free.

Finally, we refer the reader to [43] for the study of the Hochschild groups as derived invariants
of (an overclass of) cluster tilted algebras of type A.

5.3 Simply connected cluster tilted algebras

In [67], Skowronski asked for which algebras the vanishing of the first Hochschild cohomology
group is equivalent to simple connectedness. We prove that this is the case for cluster tilted
algebras.
THEOREM 1. [17](5.11) Let B be cluster tilted. The following conditions are equivalent:

(@) HHY(B) =0

(b) B is simply connected

(c) B is hereditary and its quiver is a tree.

Proof. (b) implies (c). If B is simply connected, then it is triangular and hence it is hereditary.
Moreover its quiver must be a tree.

(c) implies (a). This is trivial, see [54].

(a) implies (c). If B is not hereditary, and C is tilted such that B = C, then because of Lemma (3.3.1),
we have a connected Galois covering ¢ — C = B with group Z. The universal property of
Galois coverings yields a group epimorphism 711 (Q, 1) — Z where B = kQ/I. This epi-
morphism induces a monomorphism of abelian groups Hom(Z, k*) — Hom(ﬂl (Q, T), k+).

Because of a well-known result of [48], we have a monomorphism
Hom(m;(Q,I),k*) — HH(B).

Therefore the composed monomorphism Hom (7%, k*) — HH!(B) gives HH!(B) # 0. Thus
HH'(B) = 0 implies that B is hereditary. Applying [54] we get that Q is a tree. O
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