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Introduction

These notes are an expanded version of a mini-course that will be given in the CIMPA School

"Homological methods, representation theory and cluster algebras", due to be held from the 7th

to the 18th of March 2016 in Mar del Plata (Argentina). The aim of the course is to introduce the

participants to the study of cluster tilted algebras, and their applications in the representation

theory of algebras.

Cluster tilted algebras were de�ned in [40] and also, independently, in [45] for typeA. This

class of �nite dimensional algebras appeared as a byproduct of the now extensive theory of cluster

algebras of Fomin and Zelevinsky [49]. They are the endomorphism algebras of tilting objects

in the cluster category of [38]. Since their introduction, they have been the subject of several

investigations, which we survey in this course.

For reasons of space, it was not possible to be encyclopedic. Thus, we have chosen to concentrate

on the representation theoretical aspects and to ignore other aspects of the theory like, for instance,

the relations between cluster tilted algebras and cluster algebras arising from surfaces, or the

combinatorics of cluster variables. In keeping with the nature of the course, we tried to make these

notes as self-contained as we could, providing examples for most results and proofs whenever

possible.

The notes are divided into the following sections.

1. Tilting in the cluster category.

2. Cluster tilted algebras.

3. The module category of a cluster tilted algebra.

4. Particular modules over cluster tilted algebras.

5. Hochschild cohomology of cluster tilted algebras.





1
Tilting in the cluster category

1.1 Notation

Throughout these notes, k denotes an algebraically closed �eld and algebras are, unless otherwise

speci�ed, basic and connected �nite dimensional k-algebras. For such an algebra A, we denote

by mod A the category of �nitely generated right A-modules, and by ind A a full subcategory

containing exactly one representative from each isoclass (=isomorphism class) of indecomposable

A-modules. When we speak about an A-module or an indecomposable A-module, we always

mean implicitly that it belongs to mod A or to ind A, respectively. Given a module M, we denote

by pd M and id M its projective and injective dimension, respectively. The global dimension of A
is denoted by gl. dim. A. Given an additive category C, we sometimes write M ∈ C0 to express

that M is an object in C. We denote by add M the full additive subcategory of C consisting of

the �nite direct sums of indecomposable summands of M.

We recall that any algebra A can be written in the form A ∼= kQA/I where kQA is the path

algebra of the quiver QA of A, and I is an ideal generated by �nitely many relations. A relation
is a linear combination ρ = ∑m

i=1 λiwi where the λi are nonzero scalars and the wi are paths of

length at least two all having the same source and the same target. It is a zero-relation if it is a path,

and a commutativity relation if it is of the form ρ = w1 − w2. Following [33], we sometimes

consider equivalently an algebra A as a k-category, in which the object class A0 is a complete set

of primitive orthogonal idempotents { e1, . . . , en } in A and the set of morphisms A(i, j) from

ei to ej is the vector space ei Aej. We denote by Pi, Ii and Si respectively the indecomposable

projective, the indecomposable injective and the simple A-module corresponding to ei.

For unexplained notions and results of representation theory, we refer the reader to [18, 21].

For tilting theory, we refer to [18, 10].

1.2 The derived category of a hereditary algebra

Once an exotic mathematical object, the derived category is now an indispensable tool of homo-

logical algebra. For its de�nition and properties, we refer the reader to [69, 37, 52]. Here we are

only interested in derived categories of hereditary algebras.

Let Q be a �nite, connected and acyclic quiver. Its path algebra kQ is hereditary, see [18, 21].

Let D = Db(mod kQ) denote the bounded derived category of mod kQ, that is, the derived

category of the category of bounded complexes of �nitely generated kQ-modules. It is well-known

that D is a triangulated category with almost split triangles, see [53]. We denote by [1]D the

shift of D and by τD its Auslander-Reiten translation, or simply by [1] and τ, respectively, if no

ambiguity may arise. Both are automorphisms of D.

Because D is a Krull-Schmidt category, every object in D decomposes as a �nite direct sum of

objects having local endomorphisms rings. Let ind D denote a full subcategory of D consisting



8 tilting in the cluster category

of exactly one representative from each isoclass of indecomposable objects in D. Because kQ is

hereditary, these indecomposable objects have a particularly simple form: they are of the form

M[i], that is, stalk complexes with M an indecomposable kQ-module concentrated in degree i, for

i ∈ Z, see [53], p. 49. Morphisms between indecomposable objects in D are computed according

to the rule:

HomD(M[i], N[j]) =





HomkQ(M, N) if j = i

Ext1
kQ(M, N) if j = i + 1

0 otherwise.

As is usual when dealing with triangulated categories, we write Exti
D(M, N) = HomD(M, N[i]).

Denoting by D = Homk(−, k) the usual vector space duality, the shift and the Auslander-Reiten

translation of Dare related by the following bifunctorial isomorphism, known as Serre duality

HomD(M, N[1]) ∼= D HomD(N, τM)

which is the analogue inside D of the celebrated Auslander-Reiten formula in a module category,

see [18], p. 118.

We now describe the Auslander-Reiten quiver Γ(D) of D. Let Γ(mod kQ) denote the Auslander-

Reiten quiver of kQ. For each i ∈ Z, denote by Γi a copy of Γ(mod kQ). Then Γ(D) is the

translation quiver obtained from the disjoint union äi∈Z Γi by adding, for each i ∈ Z and each

arrow x y in Q, an arrow from Ix in Γi to Py in Γi+1 and by setting τPx[1] = Ix for each

x ∈ Q, see [53], p. 52. Identifying Γi with ind kQ[i], one can then think of ind D as being formed

by copies of ind kQ joined together by extra arrows.

ind kQ[0]ind kQ[−1] ind kQ[1] ind kQ[2]· · · · · ·

EXAMPLES.(a) Let Q be the quiver

123
.

Denoting the indecomposable kQ-modules by their Loewy series, the Auslander-Reiten quiver

of Db(mod kQ) is

3
2
1
[−1]

2[−1]

3
2 [−1]

3[−1]

1[0]

2
1 [0]

2[0]

3
2
1
[0]

3
2 [0]

3[0]

1[1]

2
1 [1]

3
2
1
[1]

2[1]

3
2 [1]

3[1]

1[2]

1[−1]

2
1 [−1] 2

1 [2]

Distinct copies of Γ(mod kQ) are indicated by dotted lines.

(b) Let Q be the quiver 1
2

3

4

.

The Auslander-Reiten quiver of Db(mod kQ) is
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4[−1]

1[0]

3[−1]

2
1 [0]

4
2
1
[0]

2[0]

3
2
1
[0]

34
22
1
[0]

3
2 [0]

34
2
1
[0]

4
2 [0]

34
2 [0]

4[0]

1[1]

3[0]

2
1 [1]

4
2
1
[1]

2[1]

3
2
1
[1]

34
22
1
[1]

3
2 [1]

34
2
1
[1]

4
2 [1]

where again, distinct copies of Γ(mod kQ) are indicated by dotted lines.

(c) Let Q be the quiver 1

2

3

4 .

Then kQ is tame hereditary, Γ(mod kQ) consists of an in�nite postprojective component, an

in�nite preinjective component, two exceptional tubes of rank two and an in�nite family of

tubes of rank one. Thus the Auslander-Reiten quiver of Db(mod kQ) is

I2[−1]

I4[−1]

P1[0]

I3[−1]

I4[−1]

P2[0]

P4[0]

P3[0]

P4[0]

τ−1P1[0]

· · ·

· · ·

T0[0],T∞[0] Tλ[0]

· · · I2[−1]

I4[−1]

P1[0]

· · · I3[−1]

I4[−1]

P2[0]

P4[0]

P3[0]

P4[0]

τ−1P1[0]

· · ·

· · ·

T0[1],T∞[1] Tλ[1]

where one identi�es along the horizontal dotted lines.

This is the general shape: if Q is Dynkin, then Γ(Db(mod kQ)) has a unique component of

the form ZQ while, if Q is euclidean or wild, it has in�nitely many such components, separated by

tubes, or by components of type ZA∞, respectively. The components of the form ZQ are called

transjective, and the others are called regular .

1.3 The cluster category

Let Q be a �nite, connected and acyclic quiver and D = Db(mod kQ) its derived category.

Because each of the shift [1] and the Auslander-Reiten translation τ is an automorphism of D, so

is the composition F = τ−1[1]. One may thus de�ne the orbit category D/F. Its objects are the

F-orbits of the objects in D. For each X ∈ D0, we denote by X̃ = (FiX)i∈Z its F-orbit. Then, for

two objects X̃, Ỹ in D/F, we de�ne

HomD/F(X̃, Ỹ) =
⊕

i∈Z
HomD(X, FiY).

One shows easily that this vector space does not depend on the choices of the objects X and

Y in their respective orbits and thus, the Hom-spaces of D/F are well-de�ned. We recall that,

because kQ is hereditary, then, for each pair of indecomposable objects X, Y in D, the space

HomD(X, FiY) is nonzero for at most one value of i ∈ Z.
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Definition. [38] The cluster category of the quiver Q is the orbit category D/F. It is denoted

by CQ, or simply C, if no ambiguity may arise.

It follows directly from the de�nition that C is a k-linear category and that there exists a

canonical projection functor π : D C which sends each X ∈ D0 to its F-orbit X̃ in C and acts

in the obvious way on morphisms.

The next theorem summarises the elementary properties of C and π.

Theorem 1 . [38, 59] With the above notations

(a) C is a Krull-Schmidt category and π : D C preserves indecomposabiliy,

(b) C is a triangulated category and π : D C is a triangle functor,

(c) C has almost split triangles and π : D C preserves almost split triangles.

We derive some consequences. Because of (b)(c) above, the shift [1]C of C and its Auslander-

Reiten translation τC are induced by [1]D and τD, respectively. Thus, for each X ∈ D0, we

have

X̃[1]C = X̃[1]D and τCX̃ = τ̃DX.

As a direct consequence, we have, for each X̃ ∈ C0,

τCX̃ = X̃[1]C.

Indeed, we have X̃ = F̃X = ˜τ−1
D X[1] = τ−1

C X̃[1], which establishes our claim.

Again, we denote brie�y [1]C = τC by [1], or by τ, if no ambiguity may arise.

Another easy consequence is that, if Q, Q′ are quivers such that there is a triangle equivalence

Db(mod kQ) ∼= Db(mod kQ′), then this equivalence induces another triangle equivalence CQ ∼=
CQ′ . This is expressed by saying that CQ is invariant under derived equivalence.

Denoting Ext1
C(X, Y) = Hom C(X, Y[1]), we get the following formula.

Lemma . [38] (1.4) Let X̃, Ỹ ∈ C0, then we have a bifunctorial isomorphism

Ext1
C(X̃, Ỹ) ∼= D Ext1

C(Ỹ, X̃).

Proof.

Ext1
C(X̃, Ỹ) =

⊕

i∈Z
HomD

(
X, Fi[1]D

) ∼=
⊕

i∈Z
D HomD

(
FiY, τDX

)

∼=
⊕

i∈Z
D HomD

(
FiY, F−1X[1]D

)

∼=
⊕

i∈Z
D HomD

(
FiY, X[1]D

) ∼= D Ext1
C(Ỹ, X̃).

The previous formula says that C is what is called a 2-Calabi Yau category. Reading the

formula as Ext1
C

(
X̃, Ỹ

) ∼= D Hom C

(
Ỹ, τX̃

)
, we see that it can be interpreted as the Auslander-

Reiten formula in C.

We now show how to compute the Auslander-Reiten quiver Γ(C) of C.

EXAMPLES.(a) Let Q be as in example 1.2(a). The cluster category is constructed from the derived

category by identifying the objects which lie in the same F-orbit, hence each X with the

corresponding FX = τ−1X[1]. Thus Γ(C) is obtained by identifying the dotted sections in
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the �gure below, so that Γ(C) lies on a Möbius strip.

2̃
1

1̃

3̃
2
1

2̃

3̃
2

1̃[1]

3̃

2̃
1 [1]

F 1̃ = 1̃

3̃
2
1

F 2̃
1 = 2̃

1

F
3̃
2
1
=

3̃
2
1

From now on, in examples, we drop the ∼ denoting the orbit of an object.

(b) Let Q be as in example 1.2(b). Applying the same recipe, we get that Γ(C) lies on the cylinder

obtained by identifying the dotted sections.

1 2
1

4
2
1

2

3
2
1

34
22
1

3
2

34
2
1

4
2

34
2

4

1[1]

3

2
1 [1]

4
2
1
[1]

1

3
2
1
[1]

2
1

4
2
1

3
2
1

(c) This procedure is general: in order to construct Γ(CQ), we must, in Γ(Db(mod kQ)) identify

the sections corresponding to kQkQ, that is, the indecomposable projective kQ-modules, and

to τ−1kQ[1]. So, if Q is as in example 1.2(c), then Γ(CQ) is of the form

kQkQ[1]

.

.

.

.

.

.

Thus, the Auslander-Reiten quiver of the cluster category always admits a transjective compo-

nent, which is the whole quiver if Q is Dynkin, and is of the form ZQ otherwise. In this latter

case, Γ(CQ) also admits tubes if Q is euclidean, or components of the form ZA∞ if Q is wild.

1.4 Tilting objects

The tilting objects in the cluster category are the analogues of the tilting modules over a hereditary

algebra, see [18], Chapter VI. Let Q be a �nite, connected and acyclic quiver and C = CQ the

corresponding cluster category.

Definition. [38] (3.3) An object T in C is called rigid if Ext1
C(T, T) = 0. It is called tilting if it

is rigid and has a maximal number of isoclasses of indecomposable direct summands.

Actually, the maximality in the de�nition may be replaced by the following condition, easier

to verify.

Proposition 1 . [38] (3.3) Let T be a rigid object in CQ. Then T is tilting if and only if it has |Q0|
isoclasses of indecomposable direct summands.
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EXAMPLES.(a) Let T be a tilting kQ-module. Denoting by

i : mod kQ D = Db(mod kQ)

the canonical embedding X 7→ X[0], then the image of T under the composition of functors

mod kQ D CQ = Ci π

is rigid. It has obviously as many isoclasses of indecomposable summands as T has in mod kQ.

Therefore, it is a tilting object in C. Such an object is said to be induced from the tilting module

T.

For instance, in example 1.3(a), the tilting kQ-module T = 1⊕ 3
2
1
⊕ 3 induces a tilting object in

C.

(b) Of course, there exist tilting objects which are not induced from tilting modules. For instance,

in the algebra of example 1.3(b), the object

T = 2⊕ 4
2 ⊕ 3

2 ⊕ 1[1]

is not induced. We check that it is a tilting object. Because it has obviously 4 = |Q0| isoclasses of

indecomposable summands, we just have to check its rigidity. As an example, we check here that

Ext1
C(

4
2 , 1[1]) = 0. Because of Lemma (1.3.2), it is equivalent to prove that Ext1

C(1[1],
4
2 ) = 0.

Now

Ext1
C(1[1],

4
2 ) = Hom C(1[1], 4

2 [1])

= Hom C(1, 4
2 )

= HomD(1, 4
2 )⊕HomD(1, τ−1 4

2 [1])

= HomkQ(1, 4
2 )⊕ Ext1

kQ(1, 3)

= 0.

However, one can look at this example from another point of view. Indeed kQ is derived

equivalent to kQ′ where Q′ is the quiver

◦1 ◦ 2

◦ 3

◦ 4

and, under this triangle equivalence, T corresponds to the tilting kQ′-module T′ = 1⊕ 32
1 ⊕

34
1 ⊕ 2 that is, T may be considered as induced from a tilting kQ′-module.

This change of quiver is actually always possible.

Proposition 2 . [38] (3.3) Let T be a tilting object in CQ. Then there exists a quiver Q′ such that
kQ and kQ′ are derived equivalent, and T is induced from a tilting kQ′-module.

In one important aspect, tilting objects behave better than tilting modules. Indeed, let A be

a hereditary algebra, a rigid A-module T is called an almost complete tilting module if it has

|Q0| − 1 isoclasses of indecomposable summands. Because of Bongartz’ lemma, [18] p.196, there

always exists an indecomposable module M such that T ⊕M is a tilting module. Such an M is

called a complement of T. It is known that an almost complete tilting module has at most two

nonisomorphic complements and it has two if and only if it is sincere, see [57]. We now look at

the corresponding result inside the cluster category.
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Definition. Let C be a Krull-Schmidt category, and X ∈ C0. For U ∈ C0, a morphism

fX : UX U

with UX ∈ add X is called a right X-approximation for U if, for every X′ ∈ add X and

morphism f ′ : X′ U, there exists g : X′ U such that f ′ = fX g

UX U

X′

fX

g
f ′

.

Such a right approximation fX is called right minimal if, for a morphism h : UX UX , the

relation fXh = fX implies that h is an automorphism

UX U

UX U

h

fX

fX .

One de�nes dually left X-approximations and left minimal X-approximations.

Let now T be a rigid object in the cluster category C. In analogy with the situation for modules,

T is called an almost complete tilting object if it has |Q0| − 1 isoclasses of indecomposable

summands. Again, because of Bongartz’ lemma and Proposition 2 above, there exists at least one

indecomposable object M in C such that T⊕M is a tilting object. Then M is called a complement
to T.

Theorem 3 . [38] (6.8) An almost complete tilting object T in C has exactly two isoclasses of
indecomposable complements M1, M2 and moreover there exist triangles

M2 T1 M1 M2[1]
g1 f1

and

M1 T2 M2 M1[1]
g2 f2

where f1, f2 are right minimal T-approximations and g1, g2 are left minimal T-approximations.

EXAMPLE. In the cluster category of example 1.3(b), the object T = 4
2 ⊕ 3

2 ⊕ 1[1] is almost

complete.It has exactly two (isoclasses of) complements, namely M1 = 2 and M2 = 34
2 . We also

have triangles

2 4
2 ⊕ 3

2
34
2 2[1]

34
2 1[1] 2 34

2 [1]

where the morphisms are minimal approximations.





2
Cluster tilted algebras

2.1 The de�nition and examples

In classical tilting theory, the endomorphism algebra of a tilting module over a hereditary algebra

is called a tilted algebra. Due to its proximity with hereditary algebras, this class of algebras was

heavily investigated and is by now considered to be well-understood. Moreover, it turned out to

play an important rôle in representation theory, see [18, 10]. The corresponding notion in the

cluster category is that of cluster tilted algebras.

Definition. [40] Let Q be a �nite, connected and acyclic quiver. An algebra B is called cluster
tilted of type Q if there exists a tilting object T in the cluster category CQ such that B = End CQ T.

Because, from the representation theoretic point of view, we may restrict ourselves to basic

algebras, we assume, from now on and without loss of generality, that the indecomposable

summands of a tilting object are pairwise nonisomorphic. This ensures that the endomorphism

algebra is basic. Such a tilting object is then called basic.

Any hereditary algebra A is cluster tilted: let indeed A = kQ and consider the tilting object in

CQ induced by T = AA, its endomorphism algebra in CQ is A.

Actually, as we see in 3.2 below, a cluster tilted algebra is either hereditary of it has in�nite

global dimension.

EXAMPLES.(a) Let Q be as in example 1.3(a) and T be the tilting object in CQ induced by the

tilting module 1⊕ 3
2
1
⊕ 3. Its endomorphism algebra is given by the quiver

◦
1

◦2

◦
3γ

αβ

bound by αβ = 0, βγ = 0 and γα = 0.

(b) Let Q be as in example 1.3(b), and T = 2⊕ 4
2 ⊕ 3

2 ⊕ 1[1]. Its endomorphism algebra is given

by the quiver

◦1

◦2

◦
3

◦ 4

δ

β

ε
α

γ

bound by αβ = γδ, εα = 0, εγ = 0, βε = 0, δε = 0.

(c) For the same Q of example 1.3(b), and T = 2⊕ 3
2 ⊕ 1[1]⊕ 4

2
1
[1], the endomorphism algebra is
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given by the quiver

◦1 ◦ 2

◦4 ◦ 3

α

β
γ

δ

bound by αβγ = 0, βγδ = 0, γδα = 0, δαβ = 0.

(d) Let Q be as in example 1.3(c), and T = 1⊕ 4
2
1
⊕ 4

3
1
⊕ 23

1 [1]. Here, Γ(CQ) is as follows

· · ·

1

· · ·

2
1

3
1

4
2 3
1 1

2 3
1

4
2 3
1 1

◦

◦

◦

◦

◦

4
2
1

3
4
2
1

4
3
1

2
4
3
1

◦

◦

4 4
2 3
1

4
2 3

4 4
2 3
1

4
2

4
3

1[1]

4

1[1]

2
1 [1]

3
1 [1]

2 3
1 [1]

4
2 3
1 1

[1]

2 3
1 [1]

· · ·

· · ·

where we have only drawn the tubes of rank two. One has to identify along the horizontal

dotted lines to get the transjective component and along the vertical dotted lines to get the

tubes. The direct summands of T are indicated by squares. The endomorphism algebra of T is

given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β

λ

µ

α

γ

bound by αβ = 0, βλ = 0, λα = 0, γδ = 0, δµ = 0, µγ = 0.

2.2 Relation with mutations

Mutation of quivers is an essential tool in the construction of cluster algebras. Let Q be a quiver

having neither loops ( ◦ ) nor 2-cycles ( ◦ ◦ ) and x be a point in Q. The mutation
µx at the point x transforms Q into another quiver Q′ = µxQ constructed as follows

(a) The points of Q′ are the same as those of Q.

(b) If, in Q, there are rij paths of length two of the form i x j , then we add rij arrows

from i to j in Q′.

(c) We reverse the direction of all arrows incident to x.

(d) All other arrows remain the same.

(e) We successively delete all pairs of 2-cycles thus obtained until Q′ has no more 2-cycles.

It is well-known and easy to prove that mutation is an involutive process, that is, µ2
x is the

identity transformation on Q.
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EXAMPLE.(a) Let Q be the Dynkin quiver

◦
1

◦2

◦
3

◦ 4

then Q′ = µ1Q is the quiver

◦1

◦2

◦
3

◦ 4

which is the quiver of the cluster tilted algebra of example 2.1(b). Repeating, and mutating this

time at 2, we get Q′′ = µ2µ1Q which is the quiver

◦1 ◦ 2

◦4 ◦ 3

of example 2.1(c).

Now, recall from Theorem (1.4.3) that any almost complete tilting object T0 of the cluster

category C has exactly two nonisomorphic complements M1 and M2, giving rise to two tilting

objects T1 = T0 ⊕M1 and T2 = T0 ⊕M2. To these correspond in turn two cluster tilted algebras

B1 = End C T1 and B2 = End C T2 with respective quivers QB1 and QB2 . It turns out that one

can pass from one to the other using mutation.

Theorem1 . [41]With the previous notation, let x be the point in QB1 corresponding to the summand
M1 of T1, then QB2 = µxQB1 .

EXAMPLE.(b) As seen in example 1.4(c), the almost complete tilting object T0 = 4
2 ⊕ 3

2 ⊕ 1[1] in

the cluster category of example 1.3(c) has exactly two complements, M1 = 2 and M2 = 34
2 ,

The endomorphism algebra of T2 = T0 ⊕M1 is the algebra of example 2.1(b), while that of

T2 = T0 ⊕M2 is that of example 2.1(c). We have just seen in example (a) that mutating the

quiver of End T1 gives the quiver of End T2.

Because mutation creates neither loops nor 2-cycles, we deduce the following corollary.

Corollary 2 . The quiver of a cluster tilted algebra contains neither loops nor 2-cycles.

Moreover, we can obtain all the quivers of cluster tilted algebras of type Q by repeatedly

mutating the quiver Q itself. This indeed follows from the fact that, if T, T′ are two tilting objects

in CQ, then there exists a sequence T = T0, T1, . . . , Tn = T′ such that, for each i with 0 6 i < n,

we have that Ti and Ti+1 are as in Theorem (1.4.3), that is, they have all but one indecomposable

summand in common. This is sometimes expressed by saying that the exchange graph is connected,

see [38](3.5).

Corollary 3 . Let Q be a �nite, connected and acyclic quiver. The class of quivers obtained from
Q by successive mutations coincides with the class of quivers of cluster tilted algebras of type Q.

2.3 Relation extensions algebras

So far, in order to know whether a given algebra is cluster tilted or not, we need to identify a

tilting object in some cluster category and verify whether the given algebra is its endomorphism

algebra or not. This is clearly a di�cult process in general (however, in the representation-�nite
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case, we refer the reader to [30]). It is thus reasonable to ask for an intrinsic characterisation of

cluster tilted algebras.

In order to motivate the next de�nition, let us consider the cluster tilted algebra B of example

2.1(a). It is given by the quiver

◦
1

◦2

◦
3γ

αβ

bound by αβ = 0, βγ = 0 and γα = 0. Deleting the arrow γ, we get the quiver

◦1 ◦2 ◦3αβ

bound by αβ = 0: this is the bound quiver of a tilted algebra, which we call C. The two-sided ideal

E = BγB has a natural structure of C-C-bimodule and C = B/E. As a k-vector space, B = C⊕ E.

This is actually a classical construction.

Definition. Let C be an algebra, and E a C-C-bimodule. The trivial extension B = C n E is

the k-vector space

B = C⊕ E = { (c, e) | c ∈ C, e ∈ E }

with the multiplication induced from the bimodule structure of E, that is

(c, e)(c′, e′) = (cc′, ce′ + ec′)

for c, c′ ∈ C and e, e′ ∈ E.

Equivalently, we may describe B as being the algebra of 2× 2-matrices

B =

{(
c 0
e c

)
| c ∈ C, e ∈ E

}

with the usual matrix addition and the multiplication induced from the bimodule structure of E.

If B = C n E, then there exists a short exact sequence of C-C-bimodules

0 E B C 0i p

where i : e 7→ (0, e) (for e ∈ E) is the canonical inclusion and the projection p : (c, e) 7→ c (for

(c, e) ∈ B) is an algebra morphism with section q : c 7→ (c, 0) (for c ∈ C). Thus, this sequence

splits as a sequence of C-C-bimodules. Moreover, E2 = 0, so that E ⊆ rad B. This implies

that rad B = rad C⊕ E, as vector spaces. We now show how to compute the quiver of a trivial

extension.

Lemma 1 . [3] Let C be an algebra, and E a C-C-bimodule. The quiver QB of B = C n E is
constructed as follows:

(a) (QB)0 = (QC)0,

(b) for x, y ∈ (QC)0, the set of arrows in QB from x to y equals the set of arrows in QC from x to y
plus

dimk
exEey

ex(rad C)Eey + exE(rad C)ey

additional arrows.

Proof. (a) This follows from the fact that E ⊆ rad B.
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(b) The arrows in QB from x to y are in bijection with a basis of ex

(
rad B
rad2 B

)
ey. Now rad B =

rad C⊕ E and E2 = 0 imply that

rad2 B = rad2 C⊕
(
(rad C)E + E(rad C)

)
.

The statement follows from the facts that rad2 C ⊆ rad C and (rad C)E + E(rad C) ⊆ E.

Recall that an algebra whose quiver is acyclic is called triangular .

Definition. [3] Let C be a triangular algebra of global dimension at most two. Its relation
extension is the algebra C̃ = C n E, where E = Ext2

C(D C, C) is considered as a C-C-bimodule

with the natural actions.

If C is hereditary, then E = 0 and C̃ = C is its own relation extension. On the other

hand, if gl. dim. C = 2, then there exist simple C-modules S, S′ such that Ext2
C(S, S′) 6= 0.

Let I be the injective envelope of S and P′ the projective cover of S′, then the short exact se-

quences 0 rad P′ P′ S′ 0 and 0 S I I/S 0 induce an epimorphism

Ext2
C(I, P′) Ext2

C(S, S′). Therefore Ext2
C(D C, C) 6= 0.

Following [34], we de�ne a system of relations for an algebra C = kQC/I to be a subset R
of

⋃

x,y∈(QC)0

ex Iey such that R, but no proper subset of R, generates I as a two-sided ideal.

Theorem 2 . [3] (2.6) Let C = kQC/I be a triangular algebra of global dimension at most two,and
R be a system of relations for C. The quiver of the relation extension C̃ is constructed as follows

(a)
(
QC̃

)
0 = (QC)0

(b) For x, y ∈ (QC)0, the set of arrows in QC̃ from x to y equals the set of arrows in QC from x to y
plus |R ∩ (ey Iex)| additional arrows.

"Proof". Let S be the direct sum of a complete set of representatives of the isoclasses of simple C-

modules. Because C is basic, we have S = top CC = soc(D C)C . Because of [34](1.2), the relations

in R correspond to a k-basis of Ext2
C(S, S). Because of [3](2.4), Ext2

C(S, S) ∼= top Ext2
C(D C, C).

Lemma 1 implies that the number of additional arrows is dimk ex Ext2
C(S, S)ey = dimk Ext2

C(Sy, Sx),

hence the result.

In view of the theorem, we sometimes refer to the arrows of QC as the "old" arrows in QC̃ , the

remaining being called the "new" arrows

Note that the quiver of a nonhereditary relation extension always has oriented cycles. We still

have to describe the relations occurring in the quiver of a relation extension algebra. This is done

in the next subsection. For the time being we establish the relation between cluster tilted algebras

and relation extensions.

Theorem 3 . [3] (3.4) An algebra B is cluster tilted of type Q if and only if there exists a tilted
algebra C of type Q such that B = C̃.

Proof. Assume that B is cluster tilted of type Q. Then there exists a tilting object T in the cluster

category CQ such that B = End CQ T. Because of Proposition (1.4.2), we may assume that T is

induced from a tilting kQ-module. Let D = Db(mod kQ). We have

B = End CQ T =
⊕

i∈Z
HomD(T, FiT)

as k-spaces. Because T is a kQ-module, HomD(T, FiT) = 0 for i > 2. Moreover C = End TkQ

is tilted and, as k-vector spaces

B ∼= End TkQ ⊕HomD(T, FT) = C⊕HomD(T, FT).
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Because of Happel’s theorem, see [53] p.109, D is triangle equivalent to D′ = Db(mod C). Setting

F′ = τ−1[1] in D′, we have

HomD(T, FT) ∼= HomD′(C, F′C)
∼= HomD′(τC[1], C[2])
∼= HomD′(D C, C[2])
∼= Ext2

C(D C, C).

We leave to the reader the veri�cation that the multiplicative structure of B is the same as that of

C̃. This proves the necessity. The su�ciency is proved in the same way.

Thus, there exists a surjective map from the class of tilted algebras to the class of cluster tilted

algebras, given by C 7→ C̃. However, this map is not injective as we shall see in example (a) below.

It is therefore an interesting question to �nd all the tilted algebras which lie in the �bre of a given

cluster tilted algebra. We return to this question in 3.4 below.

EXAMPLES.(a) Let C be the algebra given by the quiver

◦
1

◦ 2

◦ 3

◦4

β

δ

α

bound by βε = 0, δε = 0. It is tilted of typeD4. Because of Theorem 2, the quiver of its relation

extension is

◦1

◦2

◦
3

◦ 4

δ

β
ε

α

γ

with α, γ new arrows. In order to compute a system of relations, we use the following ob-

servation. Let Px, P̃x denote respectively the indecomposable projective C and C̃-modules

corresponding to x. The short exact sequence 0 E B C 0 induces another exact

sequence

0 Ext2
C(D C, Px) P̃x Px 0

px

where px is a projective cover. Now, in this example, it is easily seen that Ext2
C(I2, P4) ∼=

Ext2
C(I3, P4) ∼= Ext2

C(I1, P4) ∼= k and all other Ext2
C(Ii, Pj) = 0. Thus

C̃C̃ = 1
4 ⊕ 2

1 ⊕ 3
1 ⊕

4
2 3
1

and so the quiver above is bound by αβ = γδ, βε = 0, εγ = 0, εδ = 0, αε = 0. This is the

bound quiver of example 2.1(b)

Now let C′ be the tilted algebra of typeD4 given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = γδ, then a similar calculation yields C̃′ ∼= C̃. This shows that the mapping

C 7→ C̃ is not injective.

(b) Let C be the triangular algebra of global dimension 2 given by

◦
1

◦2

◦
3

γ
αβ
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bound by αβ = 0. Here, C is not tilted. Applying Theorem 2 and a similar calculation as that of

example (a) above show that C̃ is given by

◦
1

◦2

◦
3

γ

δ

αβ

bound by αβ = 0, βδ = 0, δα = 0, δγδ = 0. We see that C̃ is not cluster-tilted because its

quiver contains a 2-cycle, contrary to Corollary (2.2.2)

2.4 The relations on a cluster tilted algebra

Starting from a tilted algebra C, Theorem (2.3.2) allows to construct easily the quiver of its relation

extension C̃ which is cluster tilted, thanks to Theorem (2.3.3). Now we show how to compute as

easily a system of relations for C̃.

Let C = kQC/I be a triangular algebra of global dimension at most 2, and R = { ρ1, . . . , ρt }
be a system of relations for C. To the relation ρi from xi to yi, say, there corresponds in C̃ a new

arrow αi : yi xi, as in Theorem (2.3.2). The Keller potential on C̃ is the element

w =
t

∑
i=1

ρiαi

of kQC̃ . This element is considered up to cyclic equivalence: two potentials are called cyclically
equivalent if their di�erence is a linear combination of elements of the form γ1γ2 . . . γm −
γmγ1 . . . γm−1, where γ1γ2 . . . γm is a cycle in the quiver. For a given arrow γ, the cyclic partial
derivative of this cycle with respect to γ is de�ned to be

∂γ(γ1 . . . γm) = ∑
γi=γ

γi+1 . . . γmγ1 . . . γi−1.

In particular, the cyclic partial derivative is invariant under cyclic permutations. The Jacobian
algebraJ(QC̃, w) is the quotient of kQC̃ by the ideal generated by all cyclic partial derivatives

∂γw of the Keller potential w with respect to all the arrows γ in QC̃ , see [60].

Proposition 1 . [15] (5.2) Let C be a triangular algebra of global dimension at mots two, and w be
the Keller potential on C̃. Then

C̃ ∼=J(QC̃, w)/J

where J is the square of the ideal generated by the new arrows.

"Proof". It was shown in [60](6.12a) thatJ(QC̃, w) is isomorphic to the endomorphism algebra of

the tilting object C in Amiot’s generalised cluster category associated with C. Because of [1](1.7),

this endomorphism algebra is isomorphic to the tensor algebra of the bimodule CEC and its quiver

is isomorphic to QC̃, which is also the quiver ofJ(QC̃, w). Taking the quotient of the tensor

algebra by the ideal J generated by all tensor powers E⊗C i
with i > 2, we get exactly C̃. But now

J is the square of the ideal generated by the new arrows.

The next result is proven, for instance, in [23](4.22) or [2] p.17.

Proposition 2 . Let C be a tilted algebra, and w be the Keller potential on C̃, then C̃ =J(QC, w).

That is, if C is tilted, then the square J of the ideal generated by the new arrows is contained

in the ideal generated by all cyclic partial derivatives of the Keller potential. This gives a system of

relations on a cluster tilted algebra.
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EXAMPLES.(a) Let C be the tilted algebra of example (2.3)(a), given by the quiver

◦
1

◦ 2

◦ 3

◦4

β

δ

ε

bound by βε = 0, δε = 0. Applying Theorem (2.3.2) yields the quiver

◦
1

◦ 2

◦ 3

◦4

β

δ
ε

γ

α

with new arrows α, γ. The Keller potential is then w = βεα + δεγ. We compute its cyclic

partial derivatives.

∂α(w) = βε, ∂β(w) = εα, ∂γ(w) = δε, ∂δ(w) = εγ, ∂ε(w) = αβ + γδ.

Thus, besides the "old" relations βε = 0, δε = 0, we also have "new" relations εα = εγ = 0 and

αβ + γδ = 0. Moreover J = 〈α, γ〉2 = 0 so that we get the cluster tilted algebra of example

(2.1)(b).

(b) Let C be the (non tilted) triangular algebra of global dimension two given by the quiver

◦
1

◦2

◦
3

γ
αβ

bound by αβ = 0. Here, C̃ is given by the quiver

◦
1

◦2

◦
3

γ

δ

αβ

and w = αβδ. Thus, the Jacobian algebraJ(QC̃, w) is given by the previous quiver bound

by αβ = 0, βδ = 0, δα = 0. Here, J = 〈δ〉2 = 〈δγδ〉 is nonzero. Therefore C̃ is given by the

above quiver bound by αβ = 0, βδ = 0, δα = 0, δγδ = 0.

The set of relations given by the cyclic partial derivatives of the Keller potential is generally not

a system of minimal relations. Following [39], we say that a relation ρ is minimal if, whenever

ρ = ∑i βiρiγi, where ρi is a relation for each i, then there is an index i such that both βi and

γi are scalars, that is, a minimal relation in a bound quiver (Q, I) is any element of I not lying

in (kQ+)I + I(kQ+), where kQ+
denotes the two-sided ideal generated by all the arrows of Q.

There is however one particular case in which we have minimal relations. We need the following

de�nitions.

Definition. Let Q be a quiver with neither loops nor 2-cycles.

(a) [24] A full subquiver of Q is a chordless cycle if it is induced by a set of points

{
x1, x2, . . . , xp

}

which is topologically a cycle, that is, the edges on it are precisely the edges xi xi+1

(where we set xp+1 = x1).

(b) [25] The quiver Q is called cyclically oriented of each chordless cycle is an oriented cycle.
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For instance, any tree is trivially cyclically oriented. The easiest nontrivial cyclically oriented

quiver is a single oriented cycle. Note that the de�nition of cyclically oriented excludes the

existence of multiple arrows. It is also easy to see that the quiver of a cluster tilted algebra of

Dynkin type is cyclically oriented.

Theorem 3 . [25] Let B be cluster tilted with a cyclically oriented quiver. Then:

(a) The arrows in QB which occur in some chordless cycle are in bijection with the minimal relations
in any presentation of B.

(b) Let ζ ∈ (QB)1 occur in a chordless cycle, and γ1 . . . γt be all the shortest paths antiparallel to ζ.
Then the minimal relation corresponding to ζ is of the form ∑t

i=1 λiγi, where the λi are nonzero
scalars. Also, the quiver restricted to the γi is of the form

γ1

γt

ζ

...

In particular, the γi only share their endpoints.

In particular, let B be a representation-�nite cluster tilted algebra. As we see in (3.1) below,

B is of Dynkin type, therefore its quiver is cyclically oriented and the previous theorem yields a

system of minimal relations for B. Actually, in this case, for any arrow ζ, the number t of shortest

antiparallel paths is 1 or 2. If there is one shortest path γ, we choose γ as a generator and, if there

are 2, γ1 and γ2, we choose γ1 − γ2 as a generator. Then the ideal generated by these relations is

a system of minimal relations [39].

If QB is not cyclically oriented, then the assertion of the theorem does not necessarily hold

true, as we now see.

EXAMPLE. (c) [25] Let A be the path algebra of the quiver

1 α1

α2

γ

2 β1

β2

3

Mutating at 2 yields the quiver

1 α′1

α′2

2 3β′1

β′2
γ1

γ5

All four paths from 3 to 1, namely the β′iα
′
j are zero. Hence there are 4 relations from 3 to 1,

but there are 5 arrows antiparallel to them.

Besides representation-�nite cluster tilted algebras, minimal relations are only known for

cluster tilted algebras of type Ã, see (2.5) below. We may formulate the following problem.

Problem. Give systems of minimal relations for any cluster tilted algebra.
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2.5 Gentle cluster tilted algebras

There were several attempts to classify classes of cluster tilted algebras, see, for instance, [45,

63, 22, 36, 51], or to classify algebras derived equivalent to certain cluster tilted algebras, see, for

instance [42, 32, 26, 27, 28]. We refrain from quoting all these results and concentrate rather on

gentle algebras, introduced in [19].

Definition. An algebra B is gentle if there exists a presentation B ∼= kQ/I such that

(a) every point of Q is the source, or the target, of at most two arrows;

(b) I is generated by paths of length 2;

(c) for every α ∈ Q1, there is at most one β ∈ Q1 such that αβ /∈ I and at most one γ ∈ Q1 such

that γα /∈ I;

(d) for every α ∈ Q1, there is at most one ξ ∈ Q1 such that αξ ∈ I and at most one ζ ∈ Q1 such

that ζα ∈ I.

Gentle algebras are string algebras [44], so we can describe all their indecomposable modules

and all their almost split sequences. Gentle algebras are also tame and this class is stable under

tilting [66]. We characterise gentle cluster tilted algebras.

Theorem 1 . [4] Let C be a tilted algebra, the following conditions are equivalent

(a) C is gentle

(b) C̃ is gentle

(c) C is of Dynkin typeA or of euclidean type Ã.

Moreover, the set of relations induced from the Keller potential is a system of minimal relations

in these two cases.

Cluster tilted algebras of typeA are particularly easy to describe. Their quiver are full connected

subquivers of the following in�nite quiver

α

γ

α

γ

α

γ

α

γ

α

β γ β

α

β γ β

α

β γ β

β

bound by all possible relations of the forms αβ = 0, βγ = 0, γα = 0.

EXAMPLES. Clearly, the algebra of example (2.1)(a) is gentle of type A3. We give two more

examples.

(a) Let C be the tilted algebra of typeA5 given by the quiver

◦
3

◦1

◦2

◦ 4

◦ 5

αβ

δ γ
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bound by αβ = 0, γδ = 0. Its relation extension C̃ is given by the quiver

◦
3

◦1

◦2

◦ 4

◦ 5

λ

αβ

δ
µ

γ

bound by αβ = 0, βλ = 0, λα = 0, γδ = 0, δµ = 0 and µγ = 0.

(b) The cluster tilted algebra of example (2.1)(d) is gentle and is the relation extension of the tilted

algebra C of type Ã5 given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = 0, γδ = 0, which is also gentle. Note that, while C is representation-�nite, C̃ is

representation-in�nite.





3
The module category of a cluster tilted algebra

3.1 Recovering the module category from the cluster category

Let T be a tilting object in a cluster category C and B = End C T be the corresponding cluster

tilted algebra. Then there is an obvious functor

Hom C(T,−) : C mod B

which projectivises T, that is, which induces an equivalence between add T and the full subcategory

of mod B consisting of the projective B-modules, see [21] p. 32. We claim that Hom C(T,−) is

full and dense.

Indeed, let M be a B-module, and take a minimal projective presentation

P1 P0 M 0
f

in mod B. Because P0, P1 are projective, there exist T0, T1 in add T and a morphism g : T1 T0

such that Hom C(T, Ti) ∼= Pi for i = 0, 1 and Hom C(T, g) = f . Then there exists a triangle

T1 T0 X T1[1]
g

in C. Applying Hom C(T,−) yields an exact sequence

Hom C(T, T1) Hom C(T, T0) Hom C(T, X) 0
Hom C(T,g)

because Hom C(T, T1[1]) = Ext1
C(T, T1) = 0. Therefore M ∼= Hom C(T, X) and our functor is

dense. One proves its fullness in exactly the same way.

On the other hand, it is certainly not faithful, because

Hom C(T, τT) = Ext1
C(T, T) = 0

and hence the image of any object in add τT is zero.

Let C/〈add τT〉 denote the quotient of C by the ideal 〈add τT〉 consisting of all the mor-

phisms which factor through an object in add τT. The objects in this quotient category are the

same as those of C and the set of morphisms from X to Y, say, equals Hom C(X, Y) modulo

the subspace consisting of those lying in 〈add τT〉. In C/〈add τT〉, the objects of add τT are

isomorphic to zero.

Because Hom C(T,−) : C mod B is a full and dense functor which vanishes on 〈add τT〉,
it induces a full and dense functor from C/〈add τT〉 to mod B. It turns out that this induced

functor is also faithful.

Theorem 1 . [40](2.2) The functor Hom C(T,−) : C mod B induces an equivalence between
C/〈add τT〉 and mod B.
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An immediate consequence is the shape of the Auslander-Reiten quiver of B. Indeed, starting

from Γ(C), the theorem says that one gets Γ(mod B) by setting equal to zero all the indecom-

posable summands of τT, thus by deleting the corresponding points from Γ(C). In particular,

Γ(mod B) has the same type of components as Γ(C), that is, transjective and regular, from which

are deleted each time �nitely many points.

EXAMPLES.(a) If B is as in example (2.1)(a), then Γ(mod B) is

1

2
1

2

3
2

3

1
3

1

where we identify along the vertical dotted lines. If we add the indecomposable summands of

τT, denoted by , we get exactly Γ(C).

(b) Let B be as in example (2.1)(b), then Γ(mod B) is

1

2
1

3
1

23
1

3

4
2 3
1

2

4
2 3

4
3

4
2

4 1
4 1

where we identify along the vertical dotted lines. Adding the points denoted by , we get

again Γ(C).

(c) Let B be as in example (2.1)(c), then Γ(mod B) is

2
1

2

3
2
1

3
2

3

4
3
2

4
3

4

1
4
3

1
4

1

2
1
4

2
1

where we identify along the vertical dotted lines.

Corollary 2 . [40](2.4) A cluster tilted algebra B of type Q is representation-�nite if and only
if Q is a Dynkin quiver. In this case, the numbers of isoclasses of indecomposable B-modules and
kQ-modules are equal.

Proof. The �rst statement follows easily from Theorem 1. Let n = |Q0| and m be the number of

isoclasses of indecomposable kQ-modules. The cluster category CQ has exactly n+m isoclasses of

indecomposable objects. To get the number of isoclasses of indecomposable B-modules, we subtract

the number n of indecomposable summands of τT, getting (n + m)− n = m, as required.

The examples also show that the Auslander-Reiten translation is preserved by the equivalence

of Theorem 1.

Proposition 3 . [40](3.2) The almost split sequences in mod B are induced from the almost split
triangles of C.
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3.2 Global dimension

As an easy application of Theorem (3.1.1), we compute the global dimension of a cluster tilted

algebra. Let B be cluster tilted of type Q and T a tilting object in C = CQ such that B = End C T.

For x ∈ (QB)0 we denote by P̃x , Ĩx respectively the corresponding indecomposable projective and

injective B-modules. It follows easily from [21] p.33 that P̃x = Hom C(T, Tx), where Tx is the

summand of T corresponding to x. We now compute Ĩx .

Lemma 1 . With this notation, Ĩx = Hom C(T, τ2Tx).

Proof. Because of [21] p.33, we have Ĩx = D Hom C(Tx, T). Setting D = Db(mod kQ) we have

functorial isomorphisms

Ĩx = D HomD(Tx, T)⊕D HomD(Tx, τ−1T[1])

= Ext1
D(T, τTx)⊕D Ext1

D(Tx, τ−1T)
∼= HomD(T, τTx[1])⊕HomD(T, τ2Tx)

∼= Hom C(T, τ2Tx).

Recall from [20] that an algebra B is Gorenstein if both id BB < ∞ and pd (D B))B < ∞.

Actually, if both dimensions are �nite then they are equal. Letting d = id BB = pd (D B)B, we

then say that B is d-Gorenstein.

Theorem 2 . [61] Any cluster tilted algebra B is 1-Gorenstein. In particular gl. dim. B ∈ { 1, ∞ }.

Proof. Let, as above, B = End C T, with T a tilting object in the cluster category C. In order to

prove that pd (D B)B < ∞, we must show that, for any injective B-module Ĩ, we have

HomB(D B, τB Ĩ) = 0.

Because of Lemma 1 above, we have Ĩ = Hom C(T, τ2T0), for some T0 in add T. Because

HomB(−, ?) is a quotient of Hom C(−, ?), it su�ces to prove that Hom C(τ
2T, τ3T0) = 0.

But this follows from Hom C(τ
2T, τ3T0) ∼= Hom C(T, τT0) ∼= Ext1

C(T, T0) = 0. Thus,

pd (D B)B < ∞. Similarly, id BB < ∞.

We now prove that, for any B-module M, the �niteness of id M implies pd M 6 1. Indeed, if

id M = m < ∞, then we have a minimal injective coresolution

0 M I0 I1 I2 · · · Im−1 Im 0

L0 L1 Lm−2

0 0 0 0 0

The short exact sequence 0 Lm−2 Im−1 Im 0 and the argument above yield

pd Lm−2 6 1. An easy induction gives pd M 6 1.

Thus, if gl. dim. B > 1, then there exists a module M such that pd M > 1. But then id M = ∞
and so gl. dim. B = ∞. This proves the second statement.
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3.3 The cluster repetitive algebra

Let C be an algebra and E a C-C-bimodule. We construct a Galois covering of the trivial extension

C n E. Consider the following locally �nite dimensional algebra without identity

Č =




.
.
.

.
.
. C−1

0

E0 C0

E1 C1
0 .

.
.

.
.
.




where matrices have only �nitely many nonzero coe�cients, Ci = C are all terms on the main

diagonal, Ei = E are all terms below it, for all i ∈ Z, and all the remaining coe�cients are

zero. Addition is the usual matrix addition, while multiplication is induced from the bimodule

structure of E and the map E⊗C E 0. The identity maps Ci Ci−1, Ei Ei−1, induce an

automorphism ϕ of Č. The orbit category Č/〈ϕ〉 inherits from Č an algebra structure, which is

easily seen to be isomorphic to that of C n E. The projection functor G : Č C n E induces a

Galois covering with the in�nite cyclic group generated by ϕ, see [50]. In view of Theorem (2.3.3),

we are mostly interested in the case where C is tilted and E = Ext2
C(D C, C) so that Cn E = C̃. In

this case, Č is called the cluster repetitive algebra. Its quiver follows easily from Theorem (2.3.2)

Lemma 1 . [6](1.3) Let C = kQC/I be a tilted algebra and R a system of relations for I. The quiver
of Č is constructed as follows.

(a)
(
QČ
)

0 = (QC)0 ×Z = { (x, i) | x ∈ (QC)0, i ∈ Z }

(b) for (x, i), (y, j) ∈
(
QČ
)

0, the set of arrows in
(
QČ
)

0 from (x, i) to (y, j) equals:

i) the set of arrows from x to y if i = j, or

ii)
∣∣R ∩ ey Iex

∣∣ new arrows if i = j + 1

and is empty otherwise.

Because the relations are just lifted from those of C̃, this allows to compute without di�culty

the bound quiver of Č.

EXAMPLES.(a) Let B be the cluster tilted algebra of example (2.1)(b), that is, let C be given by the

quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = γδ. Then B = C̃ is given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β

ε

α

γ

bound by αβ = γδ, βε = 0, εα = 0, εγ = 0, δε = 0. The quiver of the cluster repetitive
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algebra Č is the in�nite quiver

(1, 0)

(2, 0)

(3, 0)

(4, 0) (1, 1)

(2, 1)

(3, 1)

(4, 1) (1, 2)· · · (4,−1)
(ε, 0)

(δ, 0)

(β, 0)
(ε, 1)

(α, 0)

(γ, 0) (δ, 1)

(β, 1)
(ε, 2)

(α, 1)

(γ, 1) (δ, 2)

(β, 2)

bound by all the lifted relations: (α, i)(β, i) = (γ, i)(δ, i), (β, i)(ε, i) = 0, (δ, i)(ε, i) = 0,

(ε, i + 1)(α, i) = 0, (ε, i + 1)(γ, i) = 0 for all i ∈ Z.

In practice, one drops the index i ∈ Z so that the quiver of Č looks as follows

1

2

3

4 1

2

3

4 1· · · ε

δ

β

ε

α

γ δ

β

ε

α

γ δ

β

and the relations read exactly as those of C̃.

(b) Let B be the cluster tilted algebra of example (2.1)(c), that is, let C be given by the quiver

◦
1

◦
2

◦
3

◦
4δ γ β

bound by βγδ = 0. Then B = C̃ is given by the quiver

◦1 ◦ 4

◦2 ◦ 3

α

β
γ

δ

bound by αβγ = 0, βγδ = 0, γδα = 0, δαβ = 0. Then Č is given by the quiver

· · · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·δ γ β α δ γ β α δ

bound by all possible relations of the forms αβγ = 0, βγδ = 0, γδα = 0, δαβ = 0.

Assume that C is a tilted algebra of type Q and that T is a tilting object in CQ such that

C̃ = End CQ T. Because of Proposition (1.3.2), we may assume without loss of generality that T is

a tilting kQ-module so that C = End TkQ.

Theorem 2 . [6](1.2)(2.1) Let T be a tilting kQ-module and C = End TkQ. Then we have

(a) Č = EndDb(mod kQ)

(⊕
i∈Z FiT

)

(b) HomDb(mod kQ)

(⊕
i∈Z FiT,−

)
: Db(mod kQ) mod Č induces an equivalenceDb(mod kQ)/

〈
add

(⊕
i∈Z τFi(T)

)〉 ∼=
mod Č.

Proof. (a) Set D = Db(mod kQ). As k-vector spaces, we have

EndD

(
⊕

i∈Z
FiT

)
∼=
⊕

i,j
HomD

(
FiT, FjT

)
.

Because T is a kQ-module, all the summands on the right hand side vanish except when j ∈
{ i, i + 1 }. If j = i, then the corresponding summand is HomD(T, T) = HomkQ(T, T) ∼= C,

while, if j = i + 1, it is HomD(T, FT) ∼= Ext2
C(D C, C) as seen in the proof of Theorem (2.3.3).
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Associated to the Galois covering G : Č C̃, there is a pushdown functor Gλ : mod Č mod C̃
de�ned on the objects by

Gλ M̌(a) =
⊕

x∈G−1(a)

M̌(x)

where M̌ is a Č-module and a ∈
(
QC̃

)
0, see [50]. We now state the main result of this subsection

Theorem 3 . [6](2.4) There is a commutative diagram of dense functors

Db(mod kQ) mod Č

CQ mod C̃

Hom
Db(mod kQ)

(⊕
i∈Z

FiT,−
)

π Gλ

Hom CQ
(πT,−)

.

As an immediate consequence of the density of Gλ and [50](3.6), we have the following

corollary.

Corollary 4 . [6](2.5)

(a) The pushdown of an almost split sequence in mod Č is an almost split sequence in mod C̃.

(b) The pushdown functor Gλ induces an isomorphism between the orbit quiver Γ(mod Č)/Z of
Γ(mod Č) under the action of Z ∼= 〈ϕ〉, and Γ(mod C̃).

Thus, in order to construct Γ(mod C̃), it su�ces to compute Γ(mod Č) and then do the

identi�cations required by passing to the orbit quiver.

EXAMPLES. (c) Let C, C̃, Č be as in example (a) above, then Γ(mod Č) is

1· · ·

2
1

3
1

2 3
1

3

4
2 3
1

2

4
2 3

4
2

4
3

4 1
4 11

2
1

3
1

2 3
1

3

4
2 3
1

2

4
2 3 · · ·

In order to get Γ(mod C̃), it su�ces to identify the two encircled copies of 1.

(d) Let C, C̃, Č be as in example (b) above, then Γ(mod Č) is

4
1

1

4
1
2

· · ·

3
4
1

4

3
4

3

2
3
4

2
3

1
2
3

2

1
2

4
1
2

1

4
1

3
4
1

4

3
4· · ·

In order to get Γ(mod C̃), it su�ces to identify the two encircled copies of
4
1 .

3.4 Cluster tilted algebras and slices

We recall that the map C 7→ C̃ from tilted algebras to cluster tilted is surjective, but generally not

injective. We then ask, given a cluster tilted algebra B, how to �nd all the tilted algebras C such

that B = C̃. We answer this question by means of slices. Indeed, tilted algebras are characterised

by the existence of complete slices, see, for instance [18] p.320. The corresponding notion in our

situation is the following.

Definition. Let B be an algebra. A local slice in Γ(mod B) is a full connected subquiver Σ of a

component Γ of Γ(mod B) such that:
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(a) Σ is a presection, that is, if X Y is an arrow in Γ, then

(i) X ∈ Σ0 implies either Y ∈ Σ0 or τY ∈ Σ0,

(ii) Y ∈ Σ0 implies either X ∈ Σ0 or τ−1X ∈ Σ0.

(b) Σ is sectionally convex, that is, if X = X0 X1 · · · Xt = Y is a sectional path of

irreducible morphisms between indecomposable modules, then X, Y ∈ Σ0 implies that Xi ∈ Σ0

for all i.

(c) |Σ0| = rk K0(C) (that is, equals the number of isoclasses of simple C-modules).

For instance, if C is a tilted algebra, then it is easily seen that any complete slice in Γ(mod C)
is a local slice. For cluster tilted algebras, in examples (3.1)(a), (b) and (c), the sets

{
2
1 , 2, 3

2
}

,{
2
1 , 2 3

1 ,
4

2 3
1

, 2
}

and

{
2,

3
2
1

, 3
2 ,

4
3
2

}
are local slices respectively. We shall now see that cluster tilted

algebras always have (a lot of) local slices. Assume that C is a tilted algebra, and Σ a complete slice in

Γ(mod C). Then there exist a hereditary algebra A and a tilting module TA such that C = End TA

and Σ = add HomA(T, D A), see [18] p.320. On the other hand C̃ = C n Ext2
C(D C, C) is

cluster tilted, and the surjective algebra morphism p : C̃ C of (2.3) induces an embedding

mod C mod C̃ .

Proposition 1 . [5] With the above notation, Σ embeds in Γ(mod C̃) as a local slice in the
transjective component. Moreover, every local slice in Γ(mod C̃) occurs in this way.

The above embedding turns out to preserve the Auslander-Reiten translates.

Lemma 2 . [5] With the above notation, if M ∈ Σ0 then

(a) τC M ∼= τC̃ M and

(b) τ−1
C M ∼= τ−1

C̃
M.

Consider Σ as embedded in Γ(mod C̃). Its annihilator AnnC̃ Σ, namely, the intersection of

all the annihilators

⋂
M∈Σ0

AnnC̃ M of the modules M ∈ Σ0, is equal to Ext2
C(D C, C). This is

the main step in the proof of the main theorem of this subsection, which answers the question

asked at its beginning.

Theorem 3 . [5] Let B be a cluster tilted algebra. Then there exists a tilted algebra C such that
B = C̃ if and only if there exists a local slice Σ in Γ(mod B) such that C = B/ AnnB Σ.

Cluster tilted algebras have usually a lot of local slices.

Proposition 4 . [5] Let B be cluster tilted of tree type and M be an indecomposable B-module
lying in its transjective component.Then there exists a local slice Σ such that M ∈ Σ0.

In particular, if B is representation-�nite, then any indecomposable B-module lies on some

local slice.

The following remark, which is an immediate consequence of [13](1.3), is particularly useful

in calculations.

Proposition 5 . [5] Let B be a cluster tilted algebra, and Σ be a local slice in Γ(mod B). Then
AnnB Σ is generated, as a two-sided ideal, by arrows in the quiver of B.

For another approach to �nd all tilted algebras whose relation extension is a given cluster tilted

algebra, we refer the reader to [31].

EXAMPLES.(a) Let B be the cluster tilted algebra of example (2.1)(b). We illustrate a local slice Σ
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in Γ(mod B) by a dotted line.

1

2
1

3
1

2 3
1

3

4
2 3
1

2

4
2 3

4
2

4
3

4 1
4 1

where we identify the two copies of 1. Here, AnnB Σ = 〈β, γ〉 so that C is the quiver containing

the remaining arrows

◦
4

◦3

◦2

◦ 1

α

γ

ε

bound by εα = 0, εγ = 0. There are only two other algebras which arise in this way from local

slices. Namely, the algebra C1 given by the quiver

◦
1

◦ 2

◦ 3

◦4

β

γ

ε

bound by βε = 0, γε = 0, and C2 given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = γδ. Thus, we have C̃ = C̃1 = C̃2.

(b) In contrast to tilted algebras, local slices do not characterise cluster tilted algebras. We give an

example of an algebra which is not cluster tilted but has a local slice. Let A be given by the

quiver

◦
3

◦1

◦2

◦ 4

◦ 5

αβ

δ

ε

γ

bound by αβ = 0, γδ = 0, δε = 0, εγ = 0. We show a local slice in Γ(mod A)

1

2

3
2 1

3
2

3
1

4
3
2

3

5
3
1

4
3

5
3

4 5
3

5

4

2
5

2

where we identify the two copies of 2.

In view of example (b), we may formulate the following problem.

Problem. Identify the class of algebras having local slices.

A partial solution is presented in [8].
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3.5 Smaller and larger cluster tilted algebras

It is known that any full subcategory of a tilted algebra is itself tilted. That is, if C is tilted and

e ∈ C is an idempotent, then eCe is tilted, see [53] p.146. This is not the case for cluster tilted

algebras. On the other hand, factoring out the two-sided ideal generated by an idempotent, we

obtain a smaller cluster tilted algebra.

Theorem 1 . [41] Let B be a cluster tilted algebra, and e ∈ B an idempotent. Then B/BeB is cluster
tilted.

If B is given as a bound quiver algebra and e is the sum of primitive idempotents corresponding

to points in the quiver, then the bound quiver of B/BeB is obtained from that of B by deleting the

points appearing in e, and all arrows incident to these points, with the inherited relations.

EXAMPLES.(a) If B is as in example (2.1)(b), thus given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β

ε

α

γ

bound by αβ = γδ, εα = 0, εγ = 0, δε = 0, βε = 0, and e2 is the primitive idempotent

corresponding to the point 2, then B/Be2B is given by the quiver

◦1

◦
3

◦ 4

δ

ε

γ

bound by εγ = 0, δε = 0 and also γδ = 0 (because in B, we have γδ = αβ and both α, β are

set equal to zero when passing to the quotient B/Be2B). This is the algebra in example (2.1)(a).

We also give an example of a full subcategory of a cluster tilted algebra which is not cluster

tilted. In the previous example, let e = e1 + e4, then eBe is given by the quiver

◦1 ◦ 4
λ

ε

bound by ελ = 0, λε = 0. This is not a cluster tilted algebra because its quiver contains a

2-cycle, see Corollary (2.2.2).

(b) If B is as in example (2.1)(c), given by the quiver

◦1 ◦ 4

◦2 ◦ 3

α

β
γ

δ

bound by αβγ = 0, βγδ = 0, γδα = 0, δαβ = 0, then B/Be4B is hereditary with quiver

◦
2

◦3 ◦ 1
αβ

.

We may ask whether the above procedure can be reversed, that is, given a cluster tilted algebra

B, whether there exists a (larger) cluster tilted algebra B′ and an idempotent e′ ∈ B′ such that

B ∼= B′/B′e′B′.
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Let B be cluster tilted, and Σ be a local slice in Γ(mod B). Let C = B/ AnnB Σ. Then Σ
embeds in Γ(mod C) as a complete slice, because of Proposition (3.4.1). Let M be a, not necessarily

indecomposable, B-module all of whose indecomposable summands lie on Σ. In particular, M is a

C-module. It is then known, and easy to prove, that the one-point extension C′ = C[M] is tilted.

Let B′ = C′ n Ext2
C′(D C′, C′) be the relation extension of C′. We have the following theorem.

Theorem 2 . [62] With the above notation, B′ is cluster tilted and, if e′ is the primitive idempotent
corresponding to the extension point, then

B′/B′e′B′ ∼= B.

EXAMPLES. (c) Let B be as in example (a), with C given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = γδ. Let M = 2⊕ 3. Then both summands of M lie on a complete slice and

C′ = C[M] is the tilted algebra given by the quiver

◦1

◦2

◦
3

◦ 4 ◦ 5

δ

β α

γ

σ

ρ

bound by αβ = γδ, ρβ = 0, σδ = 0. It is of wild type

◦

◦

◦

◦ ◦ .

The relation extension B′ of C′ is given by the quiver

◦1

◦2

◦
3

◦ 4 ◦ 5

δ

β α

γ

σ

ρ

µ

λ

bound by αβ = γδ, εα = 0, εγ = 0, βε = 0, δε = 0, λρ = 0, ρβ = 0, βλ = 0, µσ = 0,

σδ = 0, δµ = 0.

According to Theorem 2, B′ is cluster tilted and moreover B′/B′e5B′ = B.
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Particular modules over cluster tilted algebras

4.1 The left part of a cluster tilted algebra

Because tilting theory lies at the heart of the study of cluster tilted algebras, it is natural to ask

what are the tilting modules over these algebras. We �rst see that they correspond to tilting objects

in the cluster category

Theorem 1 . [68] Let Q be a �nite acyclic quiver, CQ be the corresponding cluster category, T be a
tilting object in CQ and B = End CQ T. Then:

(a) any partial tilting B-module lifts to a rigid object in CQ;

(b) any tilting B-module lifts to a tilting object in CQ.

An immediate consequence of this theorem and Theorem (3.1.1) is that, if U is a tilting B-module

with lift U, then EndB U is a quotient of End CQ U.

Recall that, for an algebra A, the le� part LA of mod A is the full subcategory of ind A
consisting of all the M such that, for any L in ind A such that there exists a path of nonzero

morphisms between indecomposables L = L0 L1 · · · Lt = M we have

pd L 6 1. The right part RA is de�ned dually, see [56]. We want to study the left and right parts

of a cluster tilted algebra. We need one lemma.

Lemma 2 . [68](5.1) Let B be a nonhereditary cluster tilted algebra. Then any connected component
of Γ(mod B) either contains no projectives and no injectives, or it contains both projectives and
injectives.

Proof. Let P be an indecomposable projective lying in a component Γ of Γ(mod B). Let Σ be

the maximal full, connected convex subquiver of Γ containing only indecomposable projectives,

including P. Because B is not hereditary, the number of points of Σ is strictly less than the number

of τ-orbits in Γ. Therefore there exist P′ ∈ Σ0 and M /∈ Σ0 such that there is an irreducible

morphism M P′: indeed, if this is not the case, then there is an irreducible morphism P′ N
with N /∈ Σ0 and N projective, a contradiction. Let T′ be the indecomposable summand of the

tilting object T in CQ corresponding to P′. Because M is nonprojective, there is in CQ an arrow

τ2T′ M, where M denotes the lift of M. This corresponds in Γ to an irreducible morphism

from an indecomposable injective B-module to τM. Hence Γ contains at least one injective. Dually,

if Γ contains an injective, then it also contains a projective.

Proposition 3 . [68](5.2) Let B be a nonhereditary cluster tilted algebra.Then LB and RB are
�nite.

Proof. Assume LB 6= ∅. Because LB is closed under predecessors in ind B, it contains at least

one indecomposable projective B-module P. Because of [47](1.1) and Lemma 2 above, there exists

m > 0 such that τ−mP is a successor of an injective module. We may assume m to be minimal
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for this property. Because of [11](1.6), we have τ−mP /∈ LB and so τ−mP is Ext-injective in LB.

Because this holds for any indecomposable projective in LB, it follows from [12](5.4) that LB is

�nite. Dually, RB is �nite.

As easy consequences, any cluster tilted algebra is left and right supported in the sense of [12],

and it is laura [11] if and only if it is hereditary or representation-�nite.

Given an algebra A, its le� support Aλ is the endomorphism algebra of the direct sum of all

indecomposable projective A-modules lying in LA. The dual notion is the right support algebra

Aρ. It is shown in [12](2.3) that Aλ, Aρ are always products of quasi-tilted algebras. We show

that it is, for cluster tilted algebras, a product of hereditary algebras.

Proposition 4 . [68](5.4) Let B be 1-Gorenstein, then Bλ, Bρ are direct products of hereditary
algebras.

Proof. Because LB ⊆ ind Bλ, see [12], it su�ces to prove that, if P is a projective indecomposable

B-module lying in LB and M P is an irreducible morphism with M indecomposable, then M
is projective. Assume not, then τM 6= 0 and HomB(τ

−1(τM), P) 6= 0 implies id (τM)B > 1,

because of [18] p.115. Because B is 1-Gorenstein, we infer that pd (τM) > 1, contradicting the

fact that τM ∈ LB. Therefore M is projective. This shows that Bλ is a direct product of hereditary

algebras. Dually, Bρ is also a direct product of hereditary algebras.

Actually, one can show, see [68](5.5), that LB contains no indecomposable injective B-module.

Therefore LB can be characterised as the set of those indecomposable modules which are not

successors of an injective (by a sequence of nonzero morphisms between indecomposable modules).

Dually, RB consists of those indecomposable which are not predecessors of a projective.

We also refer the reader to [29] for modules of projective dimension one over cluster tilted

algebras.

4.2 Modules determined by their composition factors

It is a standard question in representation theory to identify those indecomposable modules over

a given algebra which are uniquely determined by their composition factors or, equivalently, by

their dimension vectors. We have seen in (3.1) that the Auslander-Reiten quiver of a cluster tilted

algebra contains a unique transjective component, and this is the only component containing local

slices, see (3.4). If the cluster tilted algebra is of Dynkin type, then the transjective component is

the whole Auslander-Reiten quiver. We have the following theorem.

Theorem 1 . [14] Let B be a cluster tilted algebra and M, N be indecomposable B-modules lying
in the transjective component.Then M ∼= N if and only if M and N have the same composition
factors.

As a consequence, over a representation-�nite cluster tilted algebra, all indecomposables are

uniquely determined by their composition factors.

EXAMPLE. The statement of the theorem does not hold true if M, N are not transjective. Let

indeed C be the tilted algebra of type Ã2 given by the quiver

◦1 ◦
2

◦ 3
α

δ

β
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bound by αβ = 0. Its relation extension B = C̃ is given by the quiver

◦1

◦
3

◦ 2

γ α

δ

β

bound by αβ = 0, βγ = 0, γα = 0. Then Γ(mod B) contains exactly one tube of rank 2, all

others being of rank 1. This tube is of the form

2
1

3
2
1

3
2
1
3

3
2 2
1 1
3

.

.

.

2
1
3

.

.

.

2
1

3
2
1
3

where we identify along the vertical dotted lines. Clearly the modules rad P3 =
2
1
3

and P3/ soc P3 =

3
2
1

are nonisomorphic but have the same composition factors.

The situation is slightly better for cluster concealed algebras of euclidean type, see [64]: these

are the relation extensions of concealed algebras, that is, of tilted algebras which are endomorphism

algebras of a postprojective (or a preinjective) tilting module over a hereditary algebra.

Proposition 2 . [14] Let B be a cluster concealed algebra of euclidean type, and M, N be two
rigid indecomposable modules. Then M ∼= N if and only if M and N have the same composition
factors.

If B is cluster concealed of wild type and M, N are not only rigid but also lift to rigid objects

in the cluster category, then the statement holds true: M ∼= N if and only if M and N have the

same composition factors.

4.3 Induced and coinduced modules

Another successful approach for studying modules over cluster tilted algebras is by considering

them as induced or coinduced from modules over an underlying tilted algebra. A similar approach

is used extensively in the representation theory of �nite groups. Indeed, let C be tilted, E =

Ext2
C(D C, C) and B = C n E be its relation extension. There are two change of rings functors

allowing to pass from mod C to mod B, these are:

i) the induction functor −⊗C BC : mod C mod B, and

ii) the coinduction functor HomB(BBC,−) : mod C mod B.

A B-module is said to be induced (or coinduced) if it lies in the image of the induction functor

(or the coinduction functor, respectively).

Lemma 1 . [65](4.2) Let M be a C-module, then

(a) id MC 6 1 if and only if M⊗C B ∼= M,

(b) pd MC 6 1 if and only if HomC(B, M) ∼= M.
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Proof. We only prove (a), the proof of (b) is similar. Recall that, as left C-modules, we have

CB ∼= CC ⊕ CE. Therefore M ⊗C B ∼= M ⊕ (M ⊗C E). Thus, M ⊗C B ∼= M if and only if

M⊗C E = 0. Now we have

E = Ext2
C(D C, C) ∼= Ext1

C(Ω D C, C) ∼= D HomC(C, τΩ D C) ∼= D(τΩ D C)

where we used that pd (Ω D C) 6 1 because gl. dim. C 6 2. Therefore

M⊗C E ∼= M⊗C D(τΩ D C) ∼= D HomC(M, τΩ D C)
∼= Ext1

C(Ω D C, M) ∼= Ext2
C(D C, M)

∼= Ext1
C(D C, Ω−1M) ∼= D HomC(τ

−1Ω−1M, D C)
∼= τ−1Ω−1M

where we used that pd (Ω D C) 6 1 and also that id (Ω−1M) 6 1. Now, τ−1Ω−1M vanishes if

and only if Ω−1M is injective, that is, if and only if id MC 6 1.

We recall some notation associated with the tilting theorem, see [18] p.205. Let kQ be the path

algebra of a quiver Q, TkQ be a tilting module and C = End TkQ. Then every indecomposable

C-module belongs to one of the classes

X(T) = {M | M⊗C T = 0 }

and

Y(T) =
{

M | TorC
1 (M, T) = 0

}
.

Let CQ denote the cluster category.

Lemma 2 . [65](6.2)(6.4) Let M be an indecomposable C-module, then

(a) M⊗C B ∼=





Hom CQ(T, M⊗C T) if M ∈ Y(T)

M if M ∈X(T),

(b) HomC(B, M) ∼=





Ext1
CQ

(T, TorC
1 (M, T)) if M ∈X(T)

M if M ∈ Y(T).

Proof. We only sketch the proof of (a). We know that M either lies in X(T) or in Y(T). If

M ∈X(T), then id MC 6 1 (see [18](VIII.3)). Because of Lemma 1, we have M⊗C B ∼= M. If, on

the other hand, M ∈ Y(T), then, because of the tilting theorem, we have M ∼= HomkQ(T, M⊗C

T). One can then prove that M⊗C B ∼= HomkQ(T, M⊗C T)⊗C B ∼= Hom CQ(T, M⊗C T),
see [65](6.1).

We can now state the main result of this subsection.

Theorem 3 . [65](7.2)(7.4)(7.5) Let B be a cluster tilted algebra.

(a) If B is representation-�nite and M is an indecomposable B-module, then there exists a tilted algebra
C such that M is both induced and coinduced from a C-module.

(b) If B is arbitrary, and M is an indecomposable B -module lying in the transjective component, then
there exists a tilted algebra C such that B = C̃ and M is a C-module. In particular, M is induced
or coinduced from a C-module.

(c) If B is cluster concealed, and M is an indecomposable B-module, then there exists a tilted algebra C
such that B ∼= C̃ and M is a C-module. In particular, M is induced or coinduced from a C-module.
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Proof of (a). Because B is representation-�nite, C is of tree type. Because of Proposition (3.4.4),

there exists a local slice Σ in Γ(mod B) on which M lies. Let C = B/ AnnB Σ. Then B is the

relation extension of the tilted algebra C and M lies on the complete slice Σ in Γ(mod C). But

then id MC 6 1 and pd MC 6 1. Because of Lemmata 1 and 2 above, we have both M ∼= M⊗C B
and M ∼= HomC(B, M). This completes the proof.

It is important to observe that the tilted algebra C depends essentially on the choice of M.

EXAMPLE. Let B be given by the bound quiver of example (2.1)(b).Choosing M =
4

2 3
1

, we get

that C is given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = γδ. Then M ∼= M⊗C B ∼= HomC(B, M), so is induced and coinduced. On the

other hand, if we choose M′ = 1
4 , we get that C is given by one of the quivers

◦
1

◦ 2

◦ 3

◦4

β

δ

ε
or ◦

4
◦3

◦2

◦ 1

α

γ

ε

bound respectively by βε = 0, δε = 0 and εα = 0, εγ = 0. This indeed depends on the chosen

local slice containing M′. In each case, M′ is again both induced and coinduced.
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Hochschild cohomology of cluster tilted algebras

5.1 The Hochschild projection morphism

The Hochschild cohomology groups were introduced by G. Hochschild in 1945, see [46]. Let C be

an algebra and CEC a bimodule. Denoting by C⊗ki
the ith tensor power of C over k, we have a

complex

0 E Homk(C, E) · · · Homk(C⊗ki, E) Homk(C⊗ki+1, E) · · ·b1 bi+1

where b1 : E Homk(C, E) is de�ned for x ∈ E, c ∈ C by

b1(x)(c) = cx− xc

while bi+1 : Homk(C⊗ki, E) Homk(C⊗ki+1, E)maps f : C⊗ki E to bi+1( f ) : C⊗ki+1 E
de�ned on the generators by

bi+1( f )(c1 ⊗ · · · ⊗ ci+1) = c1 f (c2 ⊗ · · · ⊗ ci+1)

+
i

∑
j=1

(−1)j f (c1 ⊗ · · · ⊗ cjcj+1 ⊗ · · · ⊗ ci+1)

+ (−1)i+1 f (c1 ⊗ · · · ci)ci+1

where all cj ∈ C.

The ith Hochschild cohomology group is the ith cohomology group of this complex

Hi(C, E) =
Ker bi+1

Im bi .

If E = CCC , then we write

Hi(C, C) = H Hi(C).

The lower index groups have concrete interpretations. For instance,

H0(C, E) = { c ∈ C | cx = xc for all x ∈ E }.

In particular, H H0(C) is the centre of the algebra C. For the �rst group H1(C, E), let Der(C, E)
denote the subspace of Homk(C, E) consisting of all d : C E such that

d(cc′) = d(c) c′ + c d(c′)

for all c, c′ ∈ C. Such maps are called derivations. For instance, to each x ∈ E corresponds

a derivation dx de�ned by dx(c) = cx − xc (for c ∈ C). The dx are called inner (or interior)
derivations, and we denote their set by IDer(C, E). Then, clearly

H1(C, E) =
Der(C, E)
IDer(C, E)

.
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The Hochschild groups are not only invariants of the algebra, they are also derived invariants,

that is, if Db(mod C) ∼= Db(mod C′) is a triangle equivalence, then H Hi(C) ∼= H Hi(C′) for

all i, see [54, 58].

Moreover H H∗(C) =
⊕

i>0 H Hi(C) carries a natural ring structure with the so-called cup

product if ξ = [ f ] ∈ H Hi(C) and ζ = [g] ∈ H Hj(C), then we de�ne f × g : C⊗ki ⊗k C⊗k j C
by

( f × g)(c1 ⊗ · · · ⊗ ci ⊗ ci+1 ⊗ · · · ⊗ cj) = f (c1 ⊗ · · · ⊗ ci)g(ci+1 ⊗ · · · ⊗ cj)

where all ck ∈ C. One veri�es that this de�nes unambiguously a product. We set ξ ∪ ζ = [ f × g]
and call it the cup product of ξ and ζ. With this product H H∗(C) is a graded commutative ring,

that is, if ξ, ζ are as above, then

ξ ∪ ζ = (−1)ijζ ∪ ξ.

We now let C be triangular of global dimension two and E = Ext2
C(D C, C). Denoting by

B = C n E the relation extension of C, we have a short exact sequence

0 E B C 0i p

q

as in (2.3). Let [ f ] ∈ H Hi(B), then we have a diagram

B⊗ki B

C⊗ki C.

f

p

p f q⊗i

q⊗i

We set ϕi[ f ] = [p f q⊗i]. It is easily checked that this gives rise to a well-de�ned k-linear map

ϕi : H Hi(B) H Hi(C), which we call the ith Hochschild projectionmorphism, see [15](2.2).

Theorem 1 . [15](2.3) Considering H H∗(B) and H H∗(C) as associative algebras with the cup
product, the ϕi induce an algebra morphism

ϕ∗ : H H∗(B) H H∗(C).

Note that ϕ∗ is only a morphism of associative algebras: the Hochschild cohomology ring also

carries a natural Lie algebra structure, but ϕ∗ is not in general a morphism of Lie algebras. For a

counterexample, see [15](2.5).

Consider the short exact sequence of B-B-bimodules

0 E B C 0

and apply to it the functor HomB−B(B,−) (we denote by HomB−B the morphisms of B-B-

bimodules). We get a long exact cohomology sequence

0 H0(B, E) H H0(B) H0(B, C) H1(B, E) H H1(B) H(B, C) · · ·δ0 δ1

where δi
denotes the ith connecting morphism.

It is easy to prove that H0(B, C) ∼= H H0(C), see, for instance [15](2.7), and thus the com-

position of this isomorphism with the map H H0(B) H0(B, C) of the previous long exact

sequence is just ϕ0 : H H0(B) H H0(C). Now C is triangular, and H H0(C) is its centre,

hence H H0(C) = k. On the other hand ϕ0 6= 0 because it maps the identity of B to that of C.

Therefore, we have a short exact sequence

0 H0(B, E) H H0(B) H H0(C) 0
ϕ0

.
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Theorem 2 . [15](5.7) Let C be triangular of global dimension at most two, and B be its relation
extension. Then we have a short exact sequence

0 H1(B, E) H H1(B) H H1(C) 0
ϕ1

.

If, in particular, C is tilted so that B is cluster tilted, then ϕ1
is surjective.

In actual computations, one uses the fact that, for C triangular of global dimension two, one

can prove that

H1(B, E) ∼= H1(C, E)⊕ EndC−C E

see [15](5.9).

EXAMPLE. Let B be the algebra of example (2.3)(b), given by the quiver

◦
1

◦2

◦
3

γ

δ

αβ

bound by αβ = 0, βδ = 0, δα = 0, δγδ = 0. This is the relation extension of the (non tilted)

algebra C = B/BδB. Then one can prove that H1(C, E) = 0 while EndC−C E = k (indeed, E
has simple top generated by the arrow δ). Because H H1(C) = k, we get that H H1(B) = k2

.

In this example, the higher ϕi
are not surjective: indeed, one can prove that ϕ2 = 0, while

H H2(C) 6= 0, see [15](5.12).

Corollary 3 . [15](5.8) Let B be cluster tilted and C be tilted such that B = C̃, then there is a
short exact sequence

0 H0(B, E)⊕H1(B, E) H H∗(B) H H∗(C) 0
ϕ∗

.

Proof. Because C is tilted, it follows from [55] that H Hi(C) = 0 for all i > 2.

5.2 The tame and representation-�nite cases

Now we consider cluster tilted algebras of Dynkin or euclidean type. Let C be tilted and B = C̃.

We need to de�ne an invariant nB,C depending on the choice of C.

Let ρ = ∑m
i=1 λiwi be a relation in a bound quiver (Q, I), where each wi is a path of length at

least two from x to y, say, and each λi is a nonzero scalar. Then ρ is called strongly minimal if,

for every nonempty proper subset J of { 1, 2, . . . , m } and every family (µj)j∈J of nonzero scalars,

we have ∑j∈J µjwj /∈ I. It is proved in [17](2.2) that, if B is cluster tilted, then it has a presentation

consisting of strongly minimal relations.

Let now C = kQ/I be a tilted algebra and B = C̃ = kQ̃/ Ĩ be its relation extension, where Ĩ
is generated by the partial derivatives of the Keller potential, see (2.4). Let ρ = ∑m

i=1 λiwi be a

strongly minimal relation in Ĩ, then either ρ is a relation in I, or there exist exactly m new arrows

α1, . . . , αm such that wi = uiαivi, with ui, vi paths consisting entirely of old arrows [17](3.1).

Moreover, each new arrow αi must appear in this way.

We de�ne a relation ∼ on the set Q̃1 \ Q1 of new arrows. For every α ∈ Q̃1 \ Q1, we set

α ∼ α. If ρ = ∑m
i=1 λiwi is a strongly minimal relation in Ĩ and the αi are as above, then we set

αi ∼ αj for all i, j such that 1 6 i, j 6 m.

One can show that ∼ is unambiguously de�ned. It is clearly re�exive and symmetric. We let

≈ be the least equivalence relation on Q̃1 \Q1 such that α ∼ β implies α ≈ β (that is, ≈ is the

transitive closure of ∼).

We de�ne the relation invariant of B, relative to C, to be the number nB,C of equivalence

classes of new arrows under the relation ≈.
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This equivalence is related to the direct sum decomposition of the C-C-bimodule E =

Ext2
C(D C, C). Indeed, E is generated, as C-C-bimodule, by the new arrows. If two new ar-

rows occur in a strongly minimal relation, this means that they are somehow yoked together in E.

It is shown in [9](4.3) that E decomposes, as C-C-bimodule, into the direct sum of nB,C summands.

Theorem 1 . [17](5.3) Let B = C n E be a cluster tilted algebra. If B is of Dynkin or of euclidean
type, then H H1(B) = H H1(C)⊕ knB,C .

EXAMPLE. Let C be the (representation-�nite) tilted algebra of euclidean type Ã3 given by the

quiver

◦1

◦2

◦
3

◦ 4

δ

β α

γ

bound by αβ = 0, γδ = 0. Its relation extension B is as in example (2.1)(d), that is, given by the

quiver

◦1

◦2

◦
3

◦ 4

δ

β

λ

µ

α

γ

bound by αβ = 0, βλ = 0, λα = 0, γδ = 0, δµ = 0, µγ = 0. There are two equivalence classes

of new arrows, namely { λ } and { µ }. Therefore nB,C = 2. Because of the theorem, we have

H H1(B) ∼= H H1(C)⊕ k2 ∼= k3
.

There is a better result in the representation-�nite case. If B is representation-�nite, then C is

tilted of Dynkin type. Because Dynkin quivers are trees, and the Hochschild groups are invariant

under tilting (see (5.1) above), we have H H1(C) = 0. Therefore H H1(B) = knB,C and so the

invariant nB,C doesn not depend on the choice of C. We therefore denote it by n and give an easy

way to compute it. We recall that we have de�ned chordless cycles in (2.4). An arrow in the quiver

of a cluster tilted algebra is called inner if it belongs to two chordless cycles.

Theorem 2 . [17](6.4) If B is a representation-�nite cluster tilted algebra, then the dimension n of
H H1(B) equals the number of chordless cycles minus the number of inner arrows in the quiver of
B.

EXAMPLE. Let B be as in example (2.1)(b) given by the quiver

◦1

◦2

◦
3

◦ 4

δ

β

ε
α

γ

bound by αβ = γδ, εα = 0, βε = 0, εγ = 0, δε = 0. There are two chordless cycles and just one

inner arrow so n = 2− 1 = 1 and H H1(B) = k.

We get a characterisation of the fundamental group of B.

Corollary 3 . [16](4.1) If B = kQ̃/ Ĩ is a representation-�nite cluster tilted algebra, then π1(Q̃, Ĩ)
is free on n generators.
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For instance, in the above example, π1(Q̃, Ĩ) ∼= Z. This is a particular case of the following

problem.

Problem. Let B = kQ̃/ Ĩ be a cluster tilted algebra, with the presentation induced from the

Keller potential. Prove that π1(Q̃, Ĩ) is free.

Finally, we refer the reader to [43] for the study of the Hochschild groups as derived invariants

of (an overclass of) cluster tilted algebras of typeA.

5.3 Simply connected cluster tilted algebras

In [67], Skowroński asked for which algebras the vanishing of the �rst Hochschild cohomology

group is equivalent to simple connectedness. We prove that this is the case for cluster tilted

algebras.

Theorem 1 . [17](5.11) Let B be cluster tilted. The following conditions are equivalent:

(a) H H1(B) = 0

(b) B is simply connected

(c) B is hereditary and its quiver is a tree.

Proof. (b) implies (c). If B is simply connected, then it is triangular and hence it is hereditary.

Moreover its quiver must be a tree.

(c) implies (a). This is trivial, see [54].

(a) implies (c). If B is not hereditary, and C is tilted such that B = C̃, then because of Lemma (3.3.1),

we have a connected Galois covering Č C̃ = B with group Z. The universal property of

Galois coverings yields a group epimorphism π1(Q̃, Ĩ) Z where B = kQ̃/ Ĩ. This epi-

morphism induces a monomorphism of abelian groups Hom(Z, k+) Hom
(
π1(Q̃, Ĩ), k+

)
.

Because of a well-known result of [48], we have a monomorphism

Hom
(
π1(Q̃, Ĩ), k+

)
H H1(B).

Therefore the composed monomorphism Hom(Z, k+) H H1(B) gives H H1(B) 6= 0. Thus

H H1(B) = 0 implies that B is hereditary. Applying [54] we get that Q̃ is a tree.

Acknowledgements. The author gratefully acknowledges partial support from the NSERC

of Canada, the FRQ-NT of Québec and the Université de Sherbrooke.
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ith Hochschild projection morphism,
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2-Calabi Yau, 11

almost complete tilting module, 13

almost complete tilting object, 13

annihilator, 33

basic, 15

chordless cycle, 23

cluster category, 10

cluster repetitive algebra, 30

cluster tilted of type Q, 15

coinduced, 41

coinduction functor, 41

commutativity relation, 7

complement, 13

cup product, 46

cyclic partial derivative, 21

cyclically equivalent, 21

cyclically oriented, 23

derivations, 46

gentle, 24

Gorenstein, 29

Hochschild cohomology group, 45

induced, 12, 41

induction functor, 41

inner, 48

inner (or interior) derivations, 46

Jacobian algebra, 21

Keller potential, 21

left part, 39

left support, 40

local slice, 33

minimal, 23

mutation, 16

orbit category, 9

regular, 9

relation, 7

relation extension, 19

relation invariant, 48

right X-approximation, 13

right minimal, 13

right part, 39

right support, 40

rigid, 12

strongly minimal, 47

system of relations, 19

tilted algebra, 15

tilting, 12

transjective, 9

triangular, 19

trivial extension, 18

zero-relation, 7
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[26] Bastian, J., Mutation classes of Ãn-quivers and derived equivalence classi�cation of cluster tilted
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