CIMPA - MAR DEL PLATA - CLUSTER CHARACTERS -EXERCISES 1

Exercise 1. Let Q be the quiver $1 \rightarrow 2$, and consider the representations

 $V = \mathbb{C} \xrightarrow{1} \mathbb{C}, \quad W = \mathbb{C} \to 0, \quad X = 0 \to \mathbb{C}, \quad Y = V \oplus W \oplus X = \mathbb{C}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} \mathbb{C}^2.$ Compute the *F*-polynomials of the *C*

Compute the *F*-polynomials of these four representations, and check that $F_Y = F_V F_W F_X$. (Recall that $F_M = \sum_{\mathbf{e} \in \mathbb{N}^{Q_0}} \chi(\operatorname{Gr}_{\mathbf{e}}(M)) x^{\mathbf{e}}$.)

Exercise 2. Let Q be the Kronecker quiver $1 \xrightarrow{\rightarrow} 2$, having two vertices and two arrows in the same direction. Find an infinite family of non-isomorphic representations of Q that all have the same F-polynomial.

Exercise 3. Let Q be the quiver having only one vertex and one loop ℓ at this vertex, subject to the relation $\ell^2 = 0$.

- (1) Show that, up to isomorphism, there are only two indecomposable representations of Q satisfying the relation. (This can be done, for instance, by looking at the Jordan normal form of some matrices). One of them, V_1 , is one-dimensional, while the other, V_2 , is two-dimensional.
- (2) Show that there is an almost-split sequence $0 \to V_1 \to V_2 \to V_1 \to 0$.
- (3) Check that $F_{V_1}^2 = F_{V_2} + x$.

Exercise 4. The aim of this exercise is to give a meaning to the remark saying that submodule Grassmannians can be as complicated as possible. We will prove the following statement: Any complex projective variety can be realized as a submodule Grassmannian. We follow very closely the proof given by M. Reineke in [2].

Let X be a projective variety in \mathbb{P}^n , given by the vanishing of homogeneous polynomials $p_1, \ldots, p_k \in \mathbb{C}[x_0, x_1, \ldots, x_n]$.

- (1) Show that we can assume that the p_i 's all have the same degree. (Note that we don't require the p_i 's to be irreducible polynomials.)
- (2) We now assume that the p_i 's all have degree d. We will need the d-uple embedding of projective spaces, defined thus: let M be the set of (n + 1)-tuples (m_0, \ldots, m_n) such that $\sum_{i=0}^n m_i = d$. Define the embedding by

$$D: \mathbb{P}^n \longrightarrow \mathbb{P}^{|M|-1}$$
$$(x_0:\ldots:x_n) \longmapsto (\mathbf{x}^{\mathbf{m}})_{\mathbf{m}\in M}.$$

We will use that D induces an isomorphism of \mathbb{P}^n onto its image (see, for instance, [1, Exercises I.2.12 and I.3.4]). Show that a point $(\mathbf{x}_{\mathbf{m}})_{\mathbf{m}\in M}$ of $\mathbb{P}^{|M|-1}$ is in the image of D if and only if it satisfies the relations $\mathbf{x}_{\mathbf{m}_1}\mathbf{x}_{\mathbf{m}_2} = \mathbf{x}_{\mathbf{m}_3}\mathbf{x}_{\mathbf{m}_4}$ whenever $\mathbf{m}_1 + \mathbf{m}_2 = \mathbf{m}_3 + \mathbf{m}_4$.

Date: March 14, 2016.

- (3) Show that D(X) is defined in $D(\mathbb{P}^n)$ by imposing the vanishing of homogeneous polynomials $\varphi_1, \ldots, \varphi_k$, all of degree 1. (See what the p_i 's become.)
- (4) Show that in step (2), it is sufficient to ask that $\mathbf{x}_{\mathbf{m}+\mathbf{e}_i}\mathbf{x}_{\mathbf{m}'+\mathbf{e}_j} = \mathbf{x}_{\mathbf{m}+\mathbf{e}_j}\mathbf{x}_{\mathbf{m}'+\mathbf{e}_i}$ for all \mathbf{m}, \mathbf{m}' whose entries sum to d-1 (call N the set of such vectors), and for all $i, j \in \{0, \ldots, n\}$, where \mathbf{e}_i is the vector having 1 in entry i and zero elsewhere. Define a matrix $A(\mathbf{x})$ whose entries are these $\mathbf{x}_{\mathbf{m}+\mathbf{e}_i}$ and such that the above equations are equivalent to saying that $A(\mathbf{x})$ has rank 1.
- (5) Let Q be the quiver $1 \stackrel{k}{\leftarrow} 2 \stackrel{n+1}{\rightarrow} 3$, where the numbers above the arrows is the number of arrows. Let V be the representation of Q given as follows: $V_1 = \mathbb{C}, V_2$ has basis $(v_{\mathbf{m}})_{\mathbf{m}\in M}$ and V_3 has basis $(v_{\mathbf{n}})_{\mathbf{n}\in N}$; moreover, the maps associated to the k arrows from 2 to 1 are the linear forms φ_i , and the map associated to the *i*-th arrow from 2 to 3 is the map f_i sending $v_{\mathbf{m}}$ to $v_{\mathbf{m}-\mathbf{e}_i}$ if $m_i > 0$, and to 0 otherwise.

Now let $\mathbf{e} = (0, 1, 1)$. Show that points in $\operatorname{Gr}_{\mathbf{e}}(V)$ are in bijection with lines in V_2 which are sent to 0 by all the φ_i 's and whose sum of images by the f_i 's is one-dimensional.

(6) Finally, show that the lines described in step (5) are in bijection with the points in \mathbb{P}^n annihilated by the φ_i 's and such that the matrix $A(\mathbf{x})$ of step (4) is of rank 1. Conclude that $\operatorname{Gr}_{\mathbf{e}}(V)$ is isomorphic to X.

References

- [1] Robin Hartshorne, Algebraic geometry, Springer, GTM 52, 1977.
- [2] Markus Reineke, Every projective variety is a quiver Grassmannian, Algebras and Representation Theory, October 2013, Volume 16, Issue 5, pp 1313-1314, arXiv:1204.5730v1 [math.RT].

 $\mathbf{2}$