CIMPA - MAR DEL PLATA - CLUSTER CHARACTERS EXERCISES 1

Exercise 1. Let Q be the quiver $1 \rightarrow 2$, and consider the representations

$$
V=\mathbb{C} \xrightarrow{1} \mathbb{C}, \quad W=\mathbb{C} \rightarrow 0, \quad X=0 \rightarrow \mathbb{C}, \quad Y=V \oplus W \oplus X=\mathbb{C}^{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)} \mathbb{C}^{2} .
$$

Compute the F-polynomials of these four representations, and check that $F_{Y}=$ $F_{V} F_{W} F_{X} .\left(\right.$ Recall that $\left.F_{M}=\sum_{\mathbf{e} \in \mathbb{N}_{0}} \chi\left(\operatorname{Gr}_{\mathbf{e}}(M)\right) x^{\mathbf{e}}.\right)$

Exercise 2. Let Q be the Kronecker quiver $1 \rightarrow 2$, having two vertices and two arrows in the same direction. Find an infinite family of non-isomorphic representations of Q that all have the same F-polynomial.

Exercise 3. Let Q be the quiver having only one vertex and one loop ℓ at this vertex, subject to the relation $\ell^{2}=0$.
(1) Show that, up to isomorphism, there are only two indecomposable representations of Q satisfying the relation. (This can be done, for instance, by looking at the Jordan normal form of some matrices). One of them, V_{1}, is one-dimensional, while the other, V_{2}, is two-dimensional.
(2) Show that there is an almost-split sequence $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{1} \rightarrow 0$.
(3) Check that $F_{V_{1}}^{2}=F_{V_{2}}+x$.

Exercise 4. The aim of this exercise is to give a meaning to the remark saying that submodule Grassmannians can be as complicated as possible. We will prove the following statement: Any complex projective variety can be realized as a submodule Grassmannian. We follow very closely the proof given by M. Reineke in [2].

Let X be a projective variety in \mathbb{P}^{n}, given by the vanishing of homogeneous polynomials $p_{1}, \ldots, p_{k} \in \mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
(1) Show that we can assume that the p_{i} 's all have the same degree. (Note that we don't require the p_{i} 's to be irreducible polynomials.)
(2) We now assume that the p_{i} 's all have degree d. We will need the d-uple embedding of projective spaces, defined thus: let M be the set of $(n+1)$ tuples $\left(m_{0}, \ldots, m_{n}\right)$ such that $\sum_{i=0}^{n} m_{i}=d$. Define the embedding by

$$
\begin{aligned}
D: \mathbb{P}^{n} & \longrightarrow \mathbb{P}^{|M|-1} \\
\left(x_{0}: \ldots: x_{n}\right) & \longmapsto\left(\mathbf{x}^{\mathbf{m}}\right)_{\mathbf{m} \in M} .
\end{aligned}
$$

We will use that D induces an isomorphism of \mathbb{P}^{n} onto its image (see, for instance, [1, Exercises I.2.12 and I.3.4]). Show that a point $\left(\mathbf{x}_{\mathbf{m}}\right)_{\mathbf{m} \in M}$ of $\mathbb{P}^{|M|-1}$ is in the image of D if and only if it satisfies the relations $\mathbf{x}_{\mathbf{m}_{1}} \mathbf{x}_{\mathbf{m}_{2}}=$ $\mathbf{x}_{\mathbf{m}_{3}} \mathbf{x}_{\mathbf{m}_{4}}$ whenever $\mathbf{m}_{1}+\mathbf{m}_{2}=\mathbf{m}_{3}+\mathbf{m}_{4}$.
(3) Show that $D(X)$ is defined in $D\left(\mathbb{P}^{n}\right)$ by imposing the vanishing of homogeneous polynomials $\varphi_{1}, \ldots, \varphi_{k}$, all of degree 1 . (See what the p_{i} 's become.)
(4) Show that in step (2), it is sufficient to ask that $\mathbf{x}_{\mathbf{m}+\mathbf{e}_{i}} \mathbf{x}_{\mathbf{m}^{\prime}+\mathbf{e}_{j}}=\mathbf{x}_{\mathbf{m}+\mathbf{e}_{j}} \mathbf{x}_{\mathbf{m}^{\prime}+\mathbf{e}_{i}}$ for all $\mathbf{m}, \mathbf{m}^{\prime}$ whose entries sum to $d-1$ (call N the set of such vectors), and for all $i, j \in\{0, \ldots, n\}$, where \mathbf{e}_{i} is the vector having 1 in entry i and zero elsewhere. Define a matrix $A(\mathbf{x})$ whose entries are these $\mathbf{x}_{\mathbf{m}+\mathbf{e}_{i}}$ and such that the above equations are equivalent to saying that $A(\mathbf{x})$ has rank 1.
(5) Let Q be the quiver $1 \stackrel{k}{\leftarrow} 2 \xrightarrow{n+1} 3$, where the numbers above the arrows is the number of arrows. Let V be the representation of Q given as follows: $V_{1}=$ \mathbb{C}, V_{2} has basis $\left(v_{\mathbf{m}}\right)_{\mathbf{m} \in M}$ and V_{3} has basis $\left(v_{\mathbf{n}}\right)_{\mathbf{n} \in N}$; moreover, the maps associated to the k arrows from 2 to 1 are the linear forms φ_{i}, and the map associated to the i-th arrow from 2 to 3 is the map f_{i} sending $v_{\mathbf{m}}$ to $v_{\mathbf{m}-\mathbf{e}_{i}}$ if $m_{i}>0$, and to 0 otherwise.

Now let $\mathbf{e}=(0,1,1)$. Show that points in $\operatorname{Gr}_{\mathbf{e}}(V)$ are in bijection with lines in V_{2} which are sent to 0 by all the φ_{i} 's and whose sum of images by the f_{i} 's is one-dimensional.
(6) Finally, show that the lines described in step (5) are in bijection with the points in \mathbb{P}^{n} annihilated by the φ_{i} 's and such that the matrix $A(\mathbf{x})$ of step (4) is of rank 1 . Conclude that $\operatorname{Gr}_{\mathbf{e}}(V)$ is isomorphic to X.

References

[1] Robin Hartshorne, Algebraic geometry, Springer, GTM 52, 1977.
[2] Markus Reineke, Every projective variety is a quiver Grassmannian, Algebras and Representation Theory, October 2013, Volume 16, Issue 5, pp 1313-1314, arXiv:1204.5730v1 [math.RT].

