CIMPA - MAR DEL PLATA - CLUSTER CHARACTERS - EXERCISES 2

For the next exercises, C is a Hom-finite, Krull-Schmidt, 2-Calabi-Yau triangulated category, with basic cluster-tilting object $T = T_1 \oplus \ldots \oplus T_n$.

Exercise 1. Show that for any two objects X and Y of C, $\operatorname{ind}_T(X \oplus Y) = \operatorname{ind}_T(X) + \operatorname{ind}_T(Y)$.

Exercise 2. Let $f: T^X \to X$ be a right add (T)-approximation of X, that is, T^X is in add (T), and if R is in add (T) and $g: R \to X$ is a morphism, then there exists a morphism $h: R \to T^X$ such that $f \circ h = g$.

Complete f into a triangle $S \to T^X \xrightarrow{f} X \to S[1]$ in \mathcal{C} . Show that S is in add (T). (Hint: apply the functor $\operatorname{Hom}_{\mathcal{C}}(T,-)$ to the triangle, and use the induced exact sequence to show that $\operatorname{Hom}_{\mathcal{C}}(T,S[1])$ is zero).

Exercise 3. Let R be in add (T), and let $R \xrightarrow{f} R \to X \to R[1]$ be a triangle. Assume that f is not an isomorphism. Show that X is not rigid. (Hint: apply the functor $\operatorname{Hom}_{\mathcal{C}}(-,X[1])$ to the triangle, and prove that the map induced by f[1] is not injective, which in this case implies that it is not surjective. Deduce that $\operatorname{Hom}_{\mathcal{C}}(X,X[1])$ is non-zero).

For the next exercises, we take \mathcal{C} to be the cluster category in Dynkin type A_3 . We put $T = T_1 \oplus T_2 \oplus T_3$, where the T_i 's are as pictured in the Auslander-Reiten quiver of \mathcal{C} below.

Exercise 4. Show that T is a cluster-tilting object of C, and that its endomorphism algebra $\operatorname{End}_{\mathcal{C}}(T)$ is isomorphic to the path algebra of the quiver

with relations ba = cb = ac = 0. (It is a cluster-tilted algebra).

Date: March 17, 2016.

1

Exercise 5. Let X be as in the picture of the Auslander-Reiten quiver of \mathcal{C} . Show that the $\operatorname{End}_{\mathcal{C}}(T)$ -module $\operatorname{Hom}_{\mathcal{C}}(T,X[1])$ is given by the representation

Show that $\operatorname{ind}_T(X) = (0, -1, 0)$, and compute CC(X), the value of the cluster character applied to X.

Exercise 6. (1) Mutate T at T_2 .

(2) Find a sequence of mutations relating T and T[1].