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Abstract

We show that the TeichmuK ller space of the ideal triangle group in the automorphism group of complex
hyperbolic space contains a real four-dimensional ball. This implies the existence of a four-dimensional
family of spherical CR structures on the trivial circle bundle over the sphere minus three points. The proof is
an explicit construction of fundamental domains whose boundaries are special hypersurfaces foliated by
complex geodesics. ( 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The discrete embedding of the ideal triangle group in the automorphism group of the complex
disc is essentially unique, that is, the TeichmuK ller space of the ideal triangle group in the
automorphism group of the complex disc is a point. In this paper we study its embedding in the
automorphism group of the two-dimensional ball, that is Isom(H2C)"P;(2Y , 1) (see Section 2 for
de"nitions). We will start with an embedding "xing a complex disc in H2C. Rigidity occurs when the
action, restricted to that disc, has a compact fundamental domain [7], in the sense that all nearby
deformations preserve a complex disc. Here we consider actions with "nite volume and we might
expect some local rigidity.
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Let C be the free product of three involutions ι
i
(ι2
i
"1). We consider discrete embeddings in the

space of homomorphisms of C into P;(2Y , 1) denoted by Hom(C, P;(2Y , 1)). An embedding of ι
i
can

be holomorphic or anti-holomorphic. We deal here with anti-holomorphic embeddings, that is, the
subspace Hom

p
(C, P; (2Y , 1))LHom(C, P;(2Y , 1)) of homomorphisms with ι

i
anti-holomorphic and

ι
i
" ι

j
parabolic. We call ideal deformation space the quotient space of Hom

p
(C, P;(2Y , 1)) by P;(2Y , 1)

acting by conjugation. It is a real four-dimensional space with singularities.
We show the following theorem.

Theorem 1.1. There exists a neighborhood of the standard embedding in the ideal deformation space
containing only discrete embeddings.

The standard embedding is a certain embedding "xing a complex geodesic (see De"nition 5.1). It
is associated to a con"guration of three R-circles (real two-dimensional geodesics, see Section 2).
The involutions are re#ections on each of the R-circles.

This is the opposite phenomenon of local rigidity of a discrete embedding that we call local
yexibility.

In [11], a one parameter family of discrete deformations in Hom
p
(C, P;(2Y , 1)) is constructed. In

our paper we construct fundamental domains using C-spheres (de"nition in Section 2.3, see also
[6] where C-spheres are used to formulate a general PoincareH 's polyhedron theorem and in
particular to construct Seifert manifolds) instead of bisectors. The #exibility of C-spheres allows
one to prove discreteness for all four parameters of the ideal deformation space.

It is interesting to compare this result to the local rigidity theorem of embeddings of cocompact
surface groups in the automorphisms group of the complex hyperbolic space which "x a complex
geodesic ([7] see also [9,14]). In particular for triangle groups obtained as embeddings "xing
a complex geodesic and whose angles in the vertices are non zero there is local rigidity. In our case,
as in [11], the initial embedding is not cocompact but of "nite volume. Observe that for each
embedding the subgroup of holomorphic transformations is an index two free discrete group. It is
isomorphic to the fundamental group of the sphere minus three points. The quotient of H2C by this
family of groups gives rise to a four-dimensional family of complex structures on a trivial disc
bundle over the sphere minus three points.

In [10] the embeddings of the involutions are all holomorphic and the natural embedding "xing
a complex geodesic is locally rigid, that is, all nearby deformations are non discrete. Moreover, the
con"guration space has real dimension 1. Their deformations correspond to a di!erent topological
component of Hom(C, P;(2Y , 1)).

It would clearly be interesting to obtain a complete description of the TeichmuK ller space.

2. The complex hyperbolic space and its boundary

Let Cn`2 denote the complex vector space equipped with the Hermitian form

b(z, w)"!z6
1
w

1
#z6

2
w

2
#2#z6

n`2
w

n`2
.
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Consider the following subspaces in Cn`2:

<
0
"Mz3Cn`2 : b(z, z)"0N,

<"Mz3Cn`2 : b(z, z)(0N.

Let P : Cn`2CM0NPCPn`1 be the canonical projection onto the complex projective space. Then
Hn`1C "P(<) equipped with the Bergman metric is the complex hyperbolic space. The orientation
preserving isometry group of Hn`1C is generated by P;(n#1, 1) acting by linear projective

transformations and the anti-holomorphic transformations. We denote it by P;(n#1, 1Y ). Also,
P;(n#1, 1) is the group of biholomorphic transformations of Hn`1C .

Let S2n`1"P(<
0
). Then S2n`1 is the boundary of Hn`1C . We may consider Hn`1C and S2n`1 as

the unit ball and the unit sphere in Cn`1.
The complex structure in CPn`1 de"nes a special distribution on S2n`1, that is, D"

J(¹S2n`1)W(¹S2n`1). The complex operator J is well de"ned on D. S2n`1 with the special distri-
bution and the operator J on D is a CR-manifold.

The group of CR-automorphisms of S2n`1 is AutCR(S2n`1)"P;(n#1, 1).
One-dimensional complex manifolds are also two-dimensional real conformal manifolds. In the

same way we can see three-dimensional CR-manifolds as manifolds with a conformal structure
restricted to the distribution. The group of automorphisms of the conformal structure includes
P;(n#1, 1), but it also contains the anti-holomorphic transformations.

2.1. The stereographic projection and the Heisenberg group

The mapping

C : (z
1
, z

2
)C Ai

w
1

1#w
2

, i
1!w

2
1#w

2
B

is usually referred to as the Cayley transform. It maps the unit ball

B"Mw3C2 : Dw
1
D2#Dw

2
D2(1N

biholomorphically onto

<"Mz3C2 : Im(z
2
)'Dz

1
D2N.

The Cayley transform leads to a generalized form of the stereographic projection. This mapping
n : S3CM!e

2
NPR3, where S3"LB and e

2
"(1, 0)3C2, is de"ned as the composition of the Cayley

transform restricted to S3CM!e
2
N followed by the projection

(z
1
, z

2
)C (z

1
, Re(z

2
)).

The stereographic projection n can be extended to a mapping from S3 onto the one-point
compacti"cation R1 3 of R3.

The Heisenberg group H is the set of pairs (z, t)3C]R with the product

(z, t) ) (z@, t@)"(z#z@, t#t@ #2Im(zz6 @)).
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Using the stereographic projection, we can identify S3CM!e
2
N with H and S3 with the one-point

compacti"cation HM of H. The inverse function of the stereographic projection is given by

n~1(z, t)"A
!2iz

1#DzD2!it
,
1!DzD2#it
1#DzD2!itB.

Observe that the x-axis in the Heisenberg group corresponds to the intersection of S3 with the
real plane Re(w

1
)"0, Im(w

2
)"0. Also, the y-axis corresponds to the intersection of S3 with

the real plane Im(w
1
)"0, Im(w

2
)"0.

The Heisenberg group acts on itself by left translations. Heisenberg translations by [0, t] for t3R
are called vertical translations.

Positive scalars j3R
`

act on H by Heisenberg dilations

dj : (z, t)C (jz, j2t).

If m3;(1), then m acts on H by

m : (z, t)C (mz, t),

where m is called a Heisenberg rotation.
The Heisenberg complex inversion of H is de"ned on HCMoriginN by

h : (z, t)C A
!z

DzD2!it
, !

t
DzD4#t2B.

Note that h"n " j " n~1, where j is the involution

j : (w
1
, w

2
) < (!w

1
, !w

2
).

The map m( de"ned by

m( : (z, t)C (z6 , !t)

corresponds to

n~1 " m( " n(w
1
, w

2
)"(!w6

1
, w6

2
).

All these actions extend trivially to the compacti"cation HM of H. It is well known that the group
G of transformations of HM generated by all Heisenberg translations, dilations, rotations, and
h coincides with n~1 " P;(2, 1) " n, and the group GK "SG, m( T is the group of all conformal
transformations of HM (see [2,12]).

2.2. R-circles and C-circles

There are two kinds of totally geodesic submanifolds of real dimension 2 in H2C: complex
geodesics (represented by H1CLH2C) and totally real geodesic 2-planes (represented by H2RLH2C).
Each of these totally geodesic submanifold is a model of the hyperbolic plane.
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Proposition 2.1. (Cartan [3], Chen and Greenberg [4]). Let M be a totally geodesic submanifold in
H2C and let I(M) be the stabilizer of M in P;(2, 1). Then we have the following.

(i) If M"H1C then I(M) is isomorphic to P(;(1)];(1, 1))
(ii) If M"H2R then I(M) is isomorphic to PSO(2, 1).

Consider the complex hyperbolic space H2C and its boundary LH2C"S3. We will call C-circles the
intersections of S3 with the boundaries of totally geodesic complex submanifolds H1C in H2C.
Analogously, we call R-circles the intersections of S3 with the boundaries of totally geodesic totally
real submanifolds H2R in H2C. The R-circles are always tangent to the special distribution, that
implies that the angle between them is well de"ned at a point of intersection.

Proposition 2.2. (see Goldman [8]) In the Heisenberg model, C-circles are either vertical lines or
ellipses, whose projection on the z-plane is a circle, determined by a center and a radius.

Let C
1

and C
2

be two circles of centers (a
1
, b

1
, c

1
), (a

2
, b

2
, c

2
) and radii R

1
and R

2
. Let d, h and

S be

d"J(a
1
!a

2
)2#(b

1
!b

2
)2, h"c

2
!c

1
, S"1/2(a

1
b
2
!a

2
b
1
).

Proposition 2.3. (Linking of C-circles) The C-circles C
1

and C
2

are linked if and only if

(d2!(R
1
#R

2
)2)(d2!(R

1
!R

2
)2)#(h#4S)2

"(d2!(R2
2
!R2

1
))2#(h#4S)2!4d2R2

1
(0.

Proof. Suppose that projections of C
1

and C
2

intersect in two points. They are projections of two
points N and M of C

2
. C

1
and C

2
are linked if these points are not in the same side of the plane

de"ning C
1
, that is the announced result. h

Observe that C
1

and C
2

are not linked if their projections are not, that is

(d2!(R
1
#R

2
)2)(d2!(R

1
!R

2
)2)'0

or if

4d2R2
1
((h#4S)2

that is, C
1

does not intersect the plane de"ning C
2
.

De5nition 2.1. An inversion on an R-circle R is a non-trivial conformal transformation which "xes
pointwise R.

Observe that an inversion has invariant R-circles. One of them is pointwise "xed. Moreover, an
R-circle de"nes a unique inversion. For instance the transformation m( (z, t)"(z6 , !t) on the
Heisenberg group is the inversion that "xes pointwise the R-circle Im(z)"0.
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2.3. C-spheres

In the following de"nition we allow a point to be a (degenerate) C-circle.

De5nition 2.2. A C-sphere around an R-circle is a disjoint union of invariant C-circles under the
inversion on the R-circle, which is homeomorphic to a sphere. We call axis of the C-sphere the set of
centers of these invariant C-circles.

In particular a C-sphere contains two degenerate C-circles and its axis has starting point and end
point in the R-circle. See also [6].

De5nition 2.3. The surface of centers of an R-circle is the set of centers of invariant C-circles under
the inversion on the R-circle. Such C-circles have two points in common with the R-circle. Observe
that for "nite R-circles this is a two dimensional surface but for an in"nite R-circle this coincides
with the R-circle.

De5nition 2.4. An axis of a "nite R-circle is a simple curve in the surface of centers with starting and
end points in the R-circle.

Observe that for an in"nite R-circle a center does not determine a C-circle and that a radius
should also be speci"ed. On the other hand for a "nite R-circle the center completely determines
the C-circle (Proposition 2.4).

An axis determines a surface containing the R-circle obtained by constructing the union of all
C-circles de"ned by the centers. But that surface might have self-intersections.

We call a good axis an axis whose associated surface is homeomorphic to the two-dimensional
sphere.

2.4. Standard R-circle

Consider the following transformation on the Heisenberg group:

I"m( " h : (z, t)C A
!z6

DzD2#it
,

t
DzD4#t2B.

which corresponds to

n~1 " I " n(w
1
, w

2
)"n~1 " m( " h " n(w

1
, w

2
)"(w6

1
,!w6

2
).

I is the inversion that leaves invariant the circles DzD2"J1!t2. It leaves also invariant their
union, the C-sphere S

0
"MDzD4#t2"1N and I(int S

0
)"ext S

0
. We call its axis vertical axis, that is,

the segment [(0, 0, !1), (0, 0, 1)].
I leaves pointwise "xed the standard R-circle R

0
(see [8] for details)

r2#it"!e~2*h,
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where z"re*h. In cylindrical coordinates R
0

is given by

r"J!cos(2h), z"sin(2h).

Using the change of coordinate tan(h)"(1#t2)/2t (see [7,8]) we obtain

r2"
(1!t2)2

(1#t2)2#4t2
, x"!2

(t2!1)t
6t2#t4#1

, y"!

(t2!1)(t2#1)
6t2#t4#1

, z"4
(t2#1)t

6t2#t4#1
.

It is well known that two points M
1

and M
2

determine a C-circle passing by them. If the two
points M(t

1
), M(t

2
) lie on the standard R-circle we obtain the C-circle of center

X"!

(p!1)s
(p#1)2#s2

, >"!

(p!1)(p#1)
(p#1)2#s2

, Z"2
s(p#1)

(p#1)2#s2
.

and radius R2"(s2!4p)/((p#1)2#s2). Here we put s"t
1
#t

2
, p"t

1
t
2
. Observe that the

C-circle is de"ned for 0O(1#p)2#s2, that is, if the parameters are not 1 and !1. In that case
the C-circle is the vertical line.

From this parameterization we then obtain

Proposition 2.4. The surface of centers of the standard R-circle is given, in cylindrical coordinates, by
(r, h, sin(2h)) with r2#cos(2h)*0. The radius of a C-circle with coordinates r, h is Jr2#cos(2h).

Proof. From the above parameterization we see that the surface of centers satis"es the equation

Z"2
X>

X2#>2

which can be parameterized as

X"r cos(h), >"r sin(h), Z"sin(2h).

The radius of the C-circle is then R2"r2#cos(2h). We obtain the standard R-circle for R"0.
Conversely, for given r and h, one obtains

s"2
cos(h)

r#sin(h)
, p"

sin(h)!r
sin(h)#r

.

We can solve, then, for distinct t
1

and t
2

if the condition s2!4p'0 is veri"ed. This is simply
r2#cos(2h)'0. h

Observe that the surface of centers is foliated by horizontal in"nite segments emanating from the
R-circle or from the vertical axis. It projects into the exterior of the region delimited by the
lemniscate. Parker also noticed that it is an embedding of the MoK bius strip on the compacti"cation
of the Heisenberg group.
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3. PoincareH 's polyhedron theorem

To prove discreteness of a subgroup we will use a simple version of PoincareH 's polyhedron
theorem.

A general version was proved in [6] but, there, parabolic points were not considered for the sake
of simplicity. Here we state a simpli"ed version which is su$cient for our purposes.

Theorem 3.1. (PoincareH polyhedron). Let MR
i
N be a xnite collection of xnite R-circles and MS

i
N be

a collection of C-spheres around each of them. Suppose that, pairwise, the R-circles intersect at most at
one point, and then the corresponding C-spheres intersect tangentially. Suppose furthermore that the
closure of the unbounded component of the complement of each sphere contains all others. Then the
group generated by inversions on each R-circle is discrete and a fundamental domain is the unbounded
component of the complement of the union of all C-spheres.

For simplicity, we do not take into account the possibility of more complicated side pairings and
cycles. Observe that in our formulation the condition on the intersection of R-circles implies that
the composition of two inversions on two intersecting R-circles is automatically parabolic. The fact
that the C-surfaces are unions of C-circles implies that one can extend those surfaces canonically as
hypersurfaces in the complex hyperbolic space where they de"ne a `polyhedrona. The proof of the
theorem then goes along as the classical PoincareH 's theorem. See, for instance, [1,5,13].

The originality of this formulation is due to the #exibility of C-spheres. They allow more liberty
than other formulations of PoincareH 's theorem, essentially based on Mostow's bisectors. See [6],
where fundamental domains for Seifert manifolds are constructed using C-spheres.

4. Groups generated by three inversions

An inversion "xes pointwise a unique R-circle. Hom(C,P;(2Y , 1)) is described by all triples of
R-circles. The quotient of that space by equivalence under conjugation under P;(2Y , 1) has
dimension 7. We consider the subspace of R-circles intersecting pairwise at only one point.

Proposition 4.1. The space of conxgurations up to conjugation under P;(2Y , 1) of three R-circles with
pairwise at least one point of intersection is diweomorphic to a quotient of S1]S1]S1][0, n/2].

Proof. The three points of contact are parameterized by the absolute value of Cartan's invariant
which has values in the interval [0, n/2]. Moreover each R-circle is de"ned by two points and
a tangent vector at one of the points. Observe that if the three points are contained in a R-circle,
that is, Cartan's invariant is 0, there are degenerate con"gurations corresponding to two of the
R-circles or the three coinciding. On the other hand given two special angles the two R-circles
determined by them will touch elsewhere on a fourth point. Those con"gurations correspond to
diagonals in the parameters. Finally, permuting the three points will make more identi"cations on
the con"guration space. h
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Another description of the con"guration space goes as follows. We start with three R-circles
touching pairwise at one point. We chose one of the points to be R. We have now two
in"nite R-circles and a "nite one. Using conjugation on P;(2Y , 1) we can suppose that the
"nite R-circle is the standard one. We still are allowed to impose that one of the points of
intersection has angle parameters between n/4 and n/2. This is done using re#ections on the x-axis
or y-axis. At each intersection point the in"nite R-circle is determined by an angle. But observe
that, as long as the contact points are not aligned vertically, for each angle chosen at one point
there will be an angle at the other contact point such that the two in"nite R-circles intersect (if the
contact points are aligned horizontally there is a further degeneracy which will not concern us
here). Also there are angles such that the R-circles intersect twice the "nite R-circle. We obtain
S1]S1]S1][n/4, n/2]!S1]S1]D, where D"M(x, x), x3[n/4, n/2]N. As the three points of
contact can be permuted one can obtain the con"guration space as a quotient by the permutation
group of the space described (when the R-circles intersect at more than one point there is a further
degeneracy).

Observe that the permutation group "xes the three points if they are aligned vertically or
horizontally. Those con"gurations will be singular points in the con"guration space.

We are interested in a neighborhood of the standard conxguration. We will understand it to be
the con"guration of three vertically aligned contact points. One in"nite R-circle touching the north
pole of the standard R-circle at an angle of !n/4 and the other in"nite R-circle touching the south
pole at an angle of n/4.

It is interesting to interpret the case of the three R-circles coinciding at only one point as a limit
case of the space of con"gurations. This case corresponds to crystallographic groups in the
Heisenberg group.

5. Proof of the theorem

Consider the following con"guration, composed of two in"nite R-circles R
1

and R
2

touching the
standard R-circle R

0
at the points p

1
and p

2
, respectively. R

1
is determined by the angle from the

x-axis to the projection of the line, we call it a
1
. Analogously, R

2
is determined by the angle a

2
.

We will prove that for p
1

near (0, 0, 1), p
2

near (0, 0, !1), a
1
#n/4 and a

2
!n/4 small enough,

the group generated by the inversions in all three R-circles is discrete.

De5nition 5.1. (Standard conxguration) We call standard con"guration the case where
p
1
"(0, 0, 1), p

2
"(0, 0, !1), a

1
"!n/4, a

2
"n/4.

In this case a fundamental domain is bounded by the two horizontal planes containing p
1

and
p
2

respectively, and the Heisenberg sphere S
0
"MDzD4#t2"1N. See Fig. 4.

In order to prove discreteness we need to "nd three surfaces invariant by each corresponding
inversion which touch each other precisely at the unique point of intersection.

Locally, at each intersection point, this is always possible. We "nd in this way 6 surfaces which
are disjoint, two at each of the three intersection points. The problem is to interpolate between
these surfaces using nonintersecting invariant surfaces.
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5.1. Strategy for the axes

Let q
1
3R

1
and q

2
3R

2
whose projections are the intersection of projections of R

1
and R

2
on the

z-plane. For R
1

we will take centers in the segment [p
1
, q

1
] with appropriate radii. Then we will

complete the surface by a union of C-circles of centers q
1
. We proceed analogously with R

2
.

The invariant surface for R
0

will be given by its axis r(h) (see Fig. 2). The upper side S
1

and the
lower side S

2
of the C-sphere of R

0
are separated by the z-plane. Using Proposition 2.3, this is

obtained when the axis satis"es r2(h))sin2(h). Observe that in this case R2(h))1.
At the beginning, we follow the projection of R

1
on the surface of centers of R

0
down to n/6. Then

we will take r(h)"ah from n/6 down to 0. We thus obtain S
1

and analogously S
2
.

5.2. Technical steps

In polar coordinates p
1

is determined by an angle h
1
, that is p

1
"(J!cos(2h

1
), h

1
, sin(2h

1
)).

Analogously, p
2

is determined by an angle h
2

and R
2

is determined by an angle a
2
.

The C-sphere S
1

around p
1

will be the union of C-circles determined by the curve on the surface
of centers de"ned by the projection of R

1
. It is

r
1
(h)"r

1
sin (h

1
!a

1
)/sin(h!a

1
), r

1
"J!cos(2h

1
).

Projections of the C-circles will not have intersections if their radii grow faster than the distance
to p

1
. That will insure that the C-circles themselves are not linked.

Lemma 5.1. The family of C-circles dexned by the segment r
1
(h) from h

1
to h has neither self-

intersections nor linking if

sin(2h)!cos(2h
1
) sin(h

1
!a

1
) cos (h

1
!a

1
)

1
sin2(h!a

1
)
'0

Proof. A su$cient condition for no self intersection nor linking is that the function R!d, where
R is the radius of a C-circle and d is the distance of its center to p

1
be increasing as we go from r

1
(h

1
)

to r
1
(h). In that case the projection of the C-circles are disjoint. We compute the derivative of

R2!d2 with respect to h. As h is decreasing as we go along r
1
(h), observe that the derivative

should be negative so that R!d be increasing. Now R2"(r
1
(h))2#cos(2h) and d2"r2

1
#

(r
1
(h))2!2r

1
r
1
(h)cos(h

1
!h). So R2!d2"cos(2h)!r2

1
#2r

1
r
1
(h) cos(h

1
!h). Di!erentiating the

expression above we obtain

d(R2!d2)
dh

"!2 sin(2h)#2 cos(2h
1
) sin(h

1
!a

1
) cos(h

1
!a

1
)

1
sin2(h!a

1
)
.

There are neither self-intersections nor linking if this derivative is negative and that proves the
lemma. h
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Corollary 5.1. If h
1
!n/4*0 and a

1
#n/4 are suzciently small, the family of C-circles dexned by

the segment r
1
(h) from h

1
down to n/6 has neither self intersections nor linking and does not intersect

the z-plane.

Proof. Observe that in the formula of the Lemma 5.1 the second term contains cos(h
1
!a

1
) which

can be made arbitrarily small with our hypothesis. If r
1

is small enough then r
1
(h)(sin(h). h

Observe that we could have instead of n/6 chosen any other angle smaller than h
1
. That angle

serves as a reference for an interpolation with another part of the C-sphere. It is important, though,
that it be smaller than n/4. If h

1
"3n/11 and a

1
"!n/4 the corollary can be applied as a simple

veri"cation of the inequality shows. The corresponding line r
1
(h) is shown in Fig. 1.

In order to verify whether C-circles are linked or not we will need the following:

Proposition 5.1. A suzcient condition for a curve r(h), in the surface of centers, to dexne a union of
disjoint non-linked C-circles is that (dr/dh)2)cos2(2h)/R2!r2, where R is an upper bound to the
radii of the C-circles. In this case for h(h

0
, the family of C-circles dexned by the segment r(h) is below

the plane dexned by r(h
0
).

Proof. From the Proposition 2.3, if one veri"es the inequality 2dR
1
(h))t

1
!t

2
#4S between any

two points, the proposition will be proved. Observe that, as S*0, it is su$cient to prove
2dR

1
(h))t

1
!t

2
. But if we assume that R

1
(h))R for all h this inequality is transitive, so we are

Fig. 1. Con"guration: top view.
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allowed to verify it in"nitesimally. The inequality is obtained making the two points arbitrarily
near each other.

Observe that the curve r(h)"ah)sin(h) from 0 to n/6 satis"es the condition above with R"1 if
a is small enough.

Proposition 5.2. If h
1
!n/4*0 and a

1
#n/4 are suzciently small, the family of C-circles dexned by

the segment r
1
(h) from h

1
to n/6 is above the plane dexned by r

1
(n/6).

Proof. Using the inequality 2dR
1
)t

1
!t

2
#4S, with the second point being r

1
(n/6) we obtain

2dR1)sin (2h)!sin(n/3)#4S. One should "rst observe that if d is small enough and R
1
)1 then

the inequality is true from h
1

to an angle slightly greater than n/4 and smaller than n/3. From that
angle until n/6 we then observe that the su$cient condition of the proposition above holds when
the hypothesis are satis"ed. h

Now we can describe a good axis. It consists of the segment r
1
(h) from h

1
to n/6, the curve

r(h)"ah from n/6 to 0, with a"r
1
(n/6)/n/6. Analogously, we construct the curve starting with the

segment r
2
(h). In that case we have h

2
!7n/4)0 and a

2
!n/4 small or h

2
!3n/4)0 and

a
2
!n/4 small (see Fig. 2). The propositions above guarantee that this is a good axis. The

corresponding C-sphere has projection on the z-plane that is included in a "nite circle centered at
the origin with radius R

0
.

We still have to construct invariant surfaces containing R
1

and R
2
.

Fig. 2. Axis: lateral view (left) and top view (right) with the vertical axis.
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Proposition 5.3. Consider the C-circles whose centers are on R
1

with radii equal to the corresponding
C-circles whose centers are determined by the segment r

1
(h), from h

1
to n/6, in the surface of centers.

Then their union is disjoint and non-linked with the C-sphere determined by the axis dexned above.

Proof. Observe that the projection of the C-circles in the family coincides with the projection of the
C-circles determined by the axis above the segment. The only possible intersection is for coincident
C-circles. But each C-circle with center on the line R

1
is above the one with center in the surface of

centers. Furthermore all these C-circles are above the plane de"ned by r(n/6) which is above all the
C-circles of R

0
, for h from 0 to n/6. h

To complete the construction in R
1
, we consider the concentric family of C-circles centered at the

point above r
1
(n/6) with radii from R

1
(n/6) to R

0
#r

1
(n/6). The projection of this C-circle contains,

in its interior, the projection of the C-sphere S
1
.

Finally the projection of the point q
1

of R
1

is near the origin if h
1
!n/4*0, a

1
#n/4 and

h
2
!3n/4)0, a

2
!n/4 or h

2
!7n/4)0 and a

2
!n/4 are su$ciently small. We can also suppose

that R
0
#r

1
(n/6) (2 and that the C-circle of radius 2 centered at q

1
does not intersect the z-plane.

We can always construct a family of C-circles whose centers move in such a way that their
projection move from the point determined by n/6 to q

1
and its radii from the radius at

R
0
#r

1
(n/6) to 2.

An analogous construction is done for R
2
.

From the two points q
1
and q

2
in the lines whose projection is p we de"ne C-circles whose centers

are those points and increasing radii. The two families are clearly parallel and they do not intersect

Fig. 3. C-sphere determined by the axis.
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Fig. 4. A fundamental domain for the standard embedding.

Fig. 5. A fundamental domain.
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the C-sphere because their projections do not intersect any projection of C-circle on the C-sphere,
their radii being greater than 2. In Figs. 3 and 5 we show the C-sphere and a fundamental domain
for the following values; h

1
"3n/11, h

2
"!3n/10, a

1
"!n/4, a

2
"n/4. One can follow the

proof above for those values of the parameters (Figs. 3}5).
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