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Summary of Victor's lecture
Let f, g, h be p-stabilised eigenforms of weights 2,1, 1.
f<—>E/Q, g Vg, h < Vh, Vgh = Vg®Vh.

(Pg(Té) = ag(g), Qog(Up) = Qg, Ig = ker(‘Pg) CT,

SN, Y)lg] = Su(N, )] = SN, X)[g],

SN X)el = | S22

n>1

Iterated integral associated to (g, f, h):

eg(d 1P x h) € PPV, v)llg]].



The Bellaiche-Dimitrov condition

Definition
The eigenform g satisfies the Bellaiche-Dimitrov condition at p if
the following equivalent conditions hold:

@ the p-adic Coleman-Mazur eigencurve is smooth, and étale
over weight space, at the point attached to g;

@ the natural inclusion

S1(N, X) [0, ] = SN, X) ([0, ]

is an isomorphism.




Summary of Victor's lecture, cont'd

In the “Bellaiche-Dimitrov setting”, the p-adic iterated integral
attached to (f, g, h) is classical, and we have the following

Conjecture (Lauder, Rotger, D)

R,(E, V,

eg(d7LIPL 5 p) = Ro(E, Vgn) X g,
|ng(Ug)

where

® Ry(E, Vgn) is a p-adic elliptic regulator attached to (E, Vgp),

e ug is a specific Stark unit in the field cut out by Ad(Vy).




Relaxing the Bellaiche-Dimitrov conditions

Theorem (Bellaiche, Dimitrov)
The weight one form g fails to satisfy the BD condition iff

@ it is the theta series attached to a character of a real
quadratic field in which p splits, or

@ g is irregular at p: x*> — ay(g)x + X(p) has a double root.

Question: What can be said about the iterated integrals in these
cases?

Numerical evidence reveals that eg(d_lf[p] X h) is usually not
classical.



The structure of 51(p)(N, x)l[g]]

First problem: to better understand the generalised eigenspace
Sl(p)(N, X)[[g]] to which the iterated integrals belong.

@ What is its dimension?

@ Can one write down the fourier expansions of distinguished
elements of S (N, x)[[g]]?

© Can one describe the fourier expansion of e (d~1fIPl x h)?



First case: g is regular, but does not satisfy BD

By Bellaiche-Dimitrov, g = 0,,, where
Vg : Gal(H/F) — L* C C*

is a finite order character of mixed signature of a real quadratic
field F in which p = pp.

Replace 0, by one of its (distinct) p-stabilisations:

Upgwg = a9¢g’ Q= 77/}g(p)



The Coleman-Mazur eigencurve at 60y,

Theorem (Cho-Vatsal, Bellaiche-Dimitrov)

The Coleman-Mazur eigencurve is smooth at the classical weight
one point x,, attached to 0., but it is not étale above weight
space at this point.

Proof: Both the tangent space and the relative tangent space of
the fiber above weight 1 at xy, are one-dimensional. The proof
uses the fact that the three irreducible constituents of

Ad(Ind? ¢g) = 1@ Ad°(Ind2 ) = 1 ® xk @ Ind ¢

occur with multiplicities (0,1,0) in O} ® C. Here ¢ := 1), /1)y is a
totally odd ring class character of F, which plays a key role in the
analysis.



Overconvergent generalised eigenforms

Recall that, in our setting, the natural inclusion

SL(N, )8y, ] = SV (N, X)[[6s,]]

is not surjective.
Definition

A modular form ¢ € SP)(N, x)[[0y,]] which is not classical (i.e.,
not an eigenvector) is called an overconvergent generalised
eigenform attached to 6,,. This generalised eigenform is said to be
normalised if a1(§) = 0.




The structure of 51(p)(/V, X)[[ng]]

Conjecture (Cho-Vatsal; Bellaiche-Dimitrov; Adel Betina)

The space Sfp)(N7 X)[[0y,1] is equal to Sfp)(N, X)[lg%], ie. itis
two-dimensional.

If this conjecture is true, then 5{p)(N,X)[[0¢g]] is spanned by
e the classical normalised newform 6, ;

e a normalised overconvergent generalised eigenform
0y, € Sfp)(N, X)[/2], which is unique up to scaling.

Question: What is the fourier expansion of %g?



Gross-Stark units

The fourier coefficients of 0’ will involve p-adic logarithms of
Gross-Stark f-units for £ £ p

These units arise in Gross's p-adic variant of the Stark conjecture
on abelian L-series at s = 0:

Theorem (Dasgupta, Pollack, Ventullo, D)

Let ¢ : Gal(H/F) — L* be a totally odd character of a totally
real field F, and suppose that 1)(p) = 1 for some prime p of F
above p. Then there exists up(1)) € (On[l/p]* ® L)V satisfying

L,(F,v,0) ~ log, Normg, g, (up(1)).




The case of ¢ := g /1,

The ring class character v is totally odd, and every prime £ which
is inert in F splits completely in H/F.

Hence there is a non-trivial
u(y) € (Ou[1/0* ® L)Y,
for all such inert primes, unique up to L*.

Using the Galois representation V,,, one can define canonical
normalisations for uy(1)).



The fourier expansion of %g

Theorem (Alan Lauder, Victor Rotger, D)

The normalised generalised eigenform % attached to 0y, can be
scaled in such a way that, for all primes ¢t N,

a0, )= { o8 uev) L s inert in Fi
g
0 if ¢ is split in F.

More generally, for all n > 2 with gcd(n, N) =1,

an(0y,) = _ log, ug(1) - (orde(n) + 1) - aye(Bys,).
£n




An example in level 5 - 29

X := quartic Dirichlet character of conductor 5 - 29;
51(5 - 29, x) is one-dimensional, spanned by
Oy, = q+ig* +ig® +(—i—1)q" —ig° +(—i+1)g** — ¢** —¢*°+- --

g a quartic character of F = Q(v/29) ramified at one of the
primes above (5).

0% is not a CM theta series.

(Level 145 is the smallest where this happens.)



An example in level 5 - 29, cont'd

The prime p = 13 is split in K, and 0y, is regular.
Hence the BD condition fails.

P = 1/Jg/1/)é, cuts out the ring class field of conductor 5: a cyclic
quartic extension of K

v/145 — 15
32 '

o(VB) = VB, o) = —%(3\/§+ V/29)5.

H = K(V/5,9) where 6% =



An example in level 5 - 29, cont'd

For ¢ =2,3,11,17 and 19,
aé(%g) = logy3(ue(v)),
where (denoting the group operation in L ® H* additively)
ue() = up + i @ o(up) — o?(up) — i @ o3(wp),
for a suitable ¢-unit uy of H. The 2-unit up is given by

( V5 — V294 6)5 + = (xﬁ 7)V5 + (\ﬁ+1),

and the others are listed in the last column of the table



ag(@,:bg) mod 13%0

ug

11

17

19

12915196799386050150007

3524143318627577732842

229407992393437964510

15142834827825079965585

(VB + V29 — 4)6 + 2(v29 — 4)v/5 + 1(2v29 — 13)
(3 (VB +)VE+(—vB+11) 5+ 1 (v5-1))*
((16\/23 + 84)v/5 + (3629 + 200)) 5

+1(11v/29 + 63)V/5 + 1(15v29 + 83)
(3 (3v29 —13)V5 + (~15v29 + 85)) §

+1(3v2 — 15)vE + L(7v29 — 35))2



Digression:

Overconvergent generalised eigenforms

and the Duke-Li Conjecture



A formula of Kudla-Rapoport-Yang

Theorem (Kudla-Rapoport-Yang)

Let x : (Z/NZ)* — +1 be an odd Dirichlet character of prime
conductor N, let E1(1,x) be the associated weight one Eisenstein
series, and let E1(1, x) be the derivative of its “incoherent”
counterpart. For all n > 2 with gcd(n, N) =1,

n(E1(1, X)) Zlog - (ordg(n) + 1) - anse(E1(1,X))-

Theorem (Alan Lauder, Victor Rotger, D)
For all n > 2 with ged(n, N) =1,

an(0y,) = Zlogpw - (orde(n) + 1) - 2,/0(0y, )-



Generalised eigenforms and mock modular forms

Derivatives of incoherent Eisenstein series satisfy are special cases
of the mock modular forms of Yingkun Li's lecture this morning.

Recall: If g is a classical weight one form, a mock modular form
g" attached to g is the holomorphic part of a WHMF having g as
shadow.

Questions:

1. To what extent are overconvergent generalised eigenforms a
good p-adic analogue of mock modular forms?

2. Is the fourier expansion of %g a fragment of a “p-adic Kudla
program”?



The Duke-Li conjecture

Conjecture (Bill Duke- Yingkun Li)

The fourier coefficients of the mock modular form g* are simple
linear combinations with algebraic coefficients of logarithms of
algebraic numbers in the field which is cut out by Ad(Vy).

Many cases of this conjecture have been proved:
e by Duke-Li, Ehlen, Viazovska, when g is a CM theta series;

e by Li, when g is an RM theta series attached to a character v,
of mixed signature of a real quadratic field;

e some experimental evidence is gathered for this conjecture in the
paper of Duke and Li, for an octahedral newform g of level 283.



The Duke-Li conjecture and explicit class field theory

If g is the theta series of character 1), of a quadratic field K, the
Duke-Li conjecture expresses the fourier coefficients of g in terms
of logarithms of algebraic numbers in H, where

e H= the ring class field of K cut out by ¢ = wg/wé, if
disc(K) < 0;

e H= K, if disc(K) > 0. This suggests that the fourier
coefficients of Qig do not vyield interesting class fields of K....

in contrast with what occurs when K is imaginary quadratic, or
when GL is replaced by its p-adic avatar %g.



Remarks on [DLR] vs Duke-Li/Ehlen/Viazovska.

e The techniques in [DLR] are fundamentally p-adic in nature,
relying on the theory of p-adic deformations of Galois
representations, and on class field theory for H.

e These techniques are substantially simpler and less deep than
those of Duke-Li, Ehlen, Viazovska: the theory of complex
multiplication and singular moduli plays no role in [DLR].

e Challenge: Find a more complicated proof of [DLR], closer in
spirit to the methods of Duke-Li, Ehlen, Viazovska; (eventually
leading to new insights into explicit class field theory for real
quadratic fields.)

e Question: How (if at all) are the fourier coefficients of %g
related to the real quadratic class invariants of
Duke-Imamoglu-Toth and Kaneko?



End of digression

Revenons-en a nos moutons
(Back to the p-adic iterated integrals)



A conjecture in the smooth, non-étale setting
Conjecture (Lauder, Rotger, D)

M x 0, (mod S1(N,x)[g])

il
e, (d flrl x h) = a9, e

® Ry(E, Vgn) is the same p-adic elliptic regulator attached to
(E, Vgn) as in Victor's lecture;
e (), is a p-adic invariant depending only on g and not on f and h.

Special case: If h = 0, attached to the same real quadratic F,

Vgh = le S, V1p2, Y1 = wgwhv o = wgw;;v and
Ro(E, Vgn) = Iogp(PEﬂpl) . Iogp(PEﬂpQ),

where Pg 4, and Pg y, are analogous to Heegner points on E, but
are defined over ring class fields of F.




The non-smooth (i.e., irregular) setting

Let g be an irregular weight one modular form. Then

S1(N, X)[lell = S1(N, x)[I2] = Cpg(q) & Cpg(qP).

SPUN,V)Ilgll = Si(N. )l © SN, x)[[g]lnorm-

(An overconvergent generalised eigenform in £ € 5§p)(N,X)[[g]] is
said to be normalised if

Conjecture (Lauder, Rotger, D)

The space 5{p)(N, X)[[g]] is four-dimensional, i.e.,
Sfp)(/\/ , X)[[g]]norm s two-dimensional.




Let

W, = Ad°(Vg).
e Inner product: (A, B) := trace(AB),
e Lie bracket: [A, B] = AB — BA,

e Determinant function: det(A, B, C) := (A, [B, C]).



Units and p-units
Let H be the field cut out by W,, and G := Gal(H/Q).

Dirichlet unit theorem: dim; (O], ® W,)¢ =1,

dim (On[1/0* ® W,)€ = 2 if g is regular at ¢;
4 if gisirregular at /¢
Fix a generator
ug € log,((Of; @ Wg)®) € Wy @1 Cp.
For each regular prime /, the representation V; gives an element

ug(£) € log,(On[1/0]* © Wg)®) € Wy @, Cp,

which is well defined up to translation by multiples of ug.



A conjectural description of Sl(P)(N, X)[[&]]norm

Conjecture (Lauder, Rotger, D)

There exists an isomorphism

W 3. Cp

(p)
(D (Cp ° ug — 51 (N7 X)[[g]]norm

satisfying, for all £ 1 Np,

2 (S(w)) = det(w, ug, ug(¢)) if g is regular at ¢;

0 if g is irregular at £.

The fourier expansion of ®(w) can be written down fully.




The elliptic regulator R,(E, V)

The elliptic regulator of Victor's lecture depends on the
Up-eigenvalue for g, and is ill-defined when g is irregular.

Instead we set Ry(E, Vgn) = 0 if dimy((E(Hgn) ® Vr)©) # 2, and
consider the sequence of maps

/\2((E(th) ® Vgh)G) - (Sym2E(th) ® /\2 Vgh)G

P,
: (Sym2E(th) ® Wg)G

Iog?2

Wg@CP

Elliptic regulator: Ry(E, Vgn) 1= Ioggg’2 opg(P A Q) € Wy ®Cp.



A conjectural conjecture in the irregular setting

Conjecture (Lauder, Rotger, D)

For all irregular g,
1
eg(d_lf[p] X h) = Qi X (D(RP(E, Vgh)) (mOd 51(N7X)[[g]])a
g

where Qg is a p-adic invariant depending only on g and p, but not
on f and h.




A conjectural conjecture on regulators of regulators

This conjecture implies that, for all primes ¢ that are regular for V,

Qg - ar(eg(d71FIPl x h)) ~

log, P1 log, P> log, P3 log, P4 log, Ps log, Ps
det log, Q1 log, Q> log, Q3 log, Q4 log, @5 log, Qs
Iogp u1 Iogp uo Iogp u3
log,, ur (0) log,, u>(¢) log,, u3(¢)

with Pi, Q_,' S E(th), uj € O;f,, UJ'(E) € Oyl1/0)*.




Theoretical evidence

Suppose that g = h is induced from a quartic ring class character
g of an imaginary quadratic field K in which p splits.

Then ¢ = wg/w’g = @Z)ﬁ is a genus character.

H = Q(v'D1, VD).

Theorem (Lauder, Rotger, D, in progress)

The conjectural conjecture is true, with

Qg = logp ux (|ng vi(p) — |ng va(p)),

where

e u is the fundamental unit of the real quadratic subfield of H;
e vi(p) and vo(p) are fundamental p-units of the two imaginary
quadratic subfields of H.




Theoretical evidence, cont'd

Theorem (Lauder, Rotger, D, in progress)

The conjectural conjecture is true, with

Qg = log,, u x (log, vi(p) — log, v2(p))

Ingredients in the proof.
e Explicit p-adic deformations of g;

e The p-adic Gross-Zagier/Waldspurger formula of Bertolini, D,
Prasanna;

e Katz's p-adic Kronecker limit formula;

e An “exceptional zero formula” for the Katz L-function, due to
Ralph Greenberg.



Experimental evidence

A lot of experimental evidence for the conjecture has been
gathered, using Alan Lauder's fast algorithm for computing the
ordinary projection on a space of overconvergent modular forms.



Thank you for your attention!!



