Régulateurs et modularité

Courbes elliptiques,

formes modulaires de poids un, et régulateurs de régulateurs

Henri Darmon (avec Alan Lauder, Victor Rotger)

Jussieu, 1er Décembre, 2015

Summary of Victor's lecture

Let f, g, h be p-stabilised eigenforms of weights $2,1,1$.
$f \leftrightarrow E / \mathbb{Q}, \quad g \leftrightarrow V_{g}, \quad h \leftrightarrow V_{h}, \quad V_{g h}:=V_{g} \otimes V_{h}$.
$\varphi_{g}\left(T_{\ell}\right)=a_{\ell}(g), \quad \varphi_{g}\left(U_{p}\right)=\alpha_{g}, \quad I_{g}:=\operatorname{ker}\left(\varphi_{g}\right) \subset \mathbb{T}$,

$$
\begin{gathered}
S_{1}(N, \chi)[g]:=S_{1}(N, \chi)\left[I_{g}\right]=S_{1}^{(p)}(N, \chi)\left[I_{g}\right] \\
S_{1}^{(p)}(N, \chi)[[g]]:=\bigcup_{n \geq 1} S_{1}^{(p)}(N, \chi)\left[I_{g}^{n}\right]
\end{gathered}
$$

Iterated integral associated to (g, f, h) :

$$
e_{g}\left(d^{-1} f^{[p]} \times h\right) \in S_{1}^{(p)}(N, \chi)[[g]] .
$$

The Bellaiche-Dimitrov condition

Definition

The eigenform g satisfies the Bellaiche-Dimitrov condition at p if the following equivalent conditions hold:
(1) the p-adic Coleman-Mazur eigencurve is smooth, and étale over weight space, at the point attached to g;
(2) the natural inclusion

$$
S_{1}(N, \chi)\left[\theta_{\psi_{g}}\right] \hookrightarrow S_{1}^{(p)}(N, \chi)\left[\left[\theta_{\psi_{g}}\right]\right]
$$

is an isomorphism.

Summary of Victor's lecture, cont'd

In the "Bellaiche-Dimitrov setting", the p-adic iterated integral attached to (f, g, h) is classical, and we have the following

Conjecture (Lauder, Rotger, D)

$$
e_{g}\left(d^{-1} f^{[p]} \times h\right)=\frac{R_{p}\left(E, V_{g h}\right)}{\log _{p}\left(u_{g}\right)} \times g
$$

where

- $R_{p}\left(E, V_{g h}\right)$ is a p-adic elliptic regulator attached to $\left(E, V_{g h}\right)$;
- u_{g} is a specific Stark unit in the field cut out by $\operatorname{Ad}\left(V_{g}\right)$.

Relaxing the Bellaiche-Dimitrov conditions

Theorem (Bellaiche, Dimitrov)

The weight one form g fails to satisfy the $B D$ condition iff
(1) it is the theta series attached to a character of a real quadratic field in which p splits, or
(2) g is irregular at $p: x^{2}-a_{p}(g) x+\bar{\chi}(p)$ has a double root.

Question: What can be said about the iterated integrals in these cases?

Numerical evidence reveals that $e_{g}\left(d^{-1} f^{[p]} \times h\right)$ is usually not classical.

The structure of $S_{1}^{(p)}(N, \chi)[[g]]$

First problem: to better understand the generalised eigenspace $S_{1}^{(p)}(N, \chi)[[g]]$ to which the iterated integrals belong.
(1) What is its dimension?
(2) Can one write down the fourier expansions of distinguished elements of $S_{1}^{(p)}(N, \chi)[[g]]$?
(3) Can one describe the fourier expansion of $e_{g}\left(d^{-1} f^{[p]} \times h\right)$?

First case: g is regular, but does not satisfy BD

By Bellaiche-Dimitrov, $g=\theta_{\psi_{g}}$, where

$$
\psi_{g}: \operatorname{Gal}(H / F) \longrightarrow L^{\times} \subset \mathbb{C}^{\times}
$$

is a finite order character of mixed signature of a real quadratic field F in which $p=\mathfrak{p} \overline{\mathfrak{p}}$.

Replace $\theta_{\psi_{g}}$ by one of its (distinct) p-stabilisations:

$$
U_{p} \theta_{\psi_{\mathfrak{g}}}=\alpha \theta_{\psi_{\mathfrak{g}}}, \quad \alpha=\psi_{g}(\mathfrak{p})
$$

The Coleman-Mazur eigencurve at $\theta_{\psi_{g}}$

Theorem (Cho-Vatsal, Bellaiche-Dimitrov)

The Coleman-Mazur eigencurve is smooth at the classical weight one point $x_{\psi_{g}}$ attached to $\theta_{\psi_{g}}$, but it is not étale above weight space at this point.

Proof: Both the tangent space and the relative tangent space of the fiber above weight 1 at $x_{\psi_{g}}$ are one-dimensional. The proof uses the fact that the three irreducible constituents of

$$
\operatorname{Ad}\left(\operatorname{Ind}_{K}^{\mathbb{Q}} \psi_{g}\right)=1 \oplus \operatorname{Ad}^{0}\left(\operatorname{Ind}_{K}^{\mathbb{Q}} \psi_{g}\right)=1 \oplus \chi_{K} \oplus \operatorname{Ind}_{K}^{\mathbb{Q}} \psi
$$

occur with multiplicities $(0,1,0)$ in $\mathcal{O}_{H}^{\times} \otimes \mathbb{C}$. Here $\psi:=\psi_{g} / \psi_{g}^{\prime}$ is a totally odd ring class character of F, which plays a key role in the analysis.

Overconvergent generalised eigenforms

Recall that, in our setting, the natural inclusion

$$
S_{1}(N, \chi)\left[\theta_{\psi_{g}}\right] \hookrightarrow S_{1}^{(p)}(N, \chi)\left[\left[\theta_{\psi_{g}}\right]\right]
$$

is not surjective.

Definition

A modular form $\xi \in S_{1}^{(p)}(N, \chi)\left[\left[\theta_{\psi_{g}}\right]\right]$ which is not classical (i.e., not an eigenvector) is called an overconvergent generalised eigenform attached to $\theta_{\psi_{g}}$. This generalised eigenform is said to be normalised if $a_{1}(\xi)=0$.

The structure of $S_{1}^{(p)}(N, \chi)\left[\left[\theta_{\psi_{k}}\right]\right]$

Conjecture (Cho-Vatsal; Bellaiche-Dimitrov; Adel Betina)

The space $S_{1}^{(p)}(N, \chi)\left[\left[\theta_{\psi_{g}}\right]\right]$ is equal to $S_{1}^{(p)}(N, \chi)\left[I_{g}^{2}\right]$, i.e., it is two-dimensional.

If this conjecture is true, then $S_{1}^{(p)}(N, \chi)\left[\left[\theta_{\psi_{g}}\right]\right]$ is spanned by

- the classical normalised newform $\theta_{\psi_{g}}$;
- a normalised overconvergent generalised eigenform
$\theta_{\psi_{g}}^{\prime} \in S_{1}^{(p)}(N, \chi)\left[I_{g}^{2}\right]$, which is unique up to scaling.
Question: What is the fourier expansion of $\theta_{\psi_{g}}^{\prime}$?

Gross-Stark units

The fourier coefficients of $\theta_{\psi_{g}}^{\prime}$ will involve \mathfrak{p}-adic logarithms of Gross-Stark ℓ-units for $\ell \neq p$.

These units arise in Gross's p-adic variant of the Stark conjecture on abelian L-series at $s=0$:

Theorem (Dasgupta, Pollack, Ventullo, D)

Let $\psi: \operatorname{Gal}(H / F) \longrightarrow L^{\times}$be a totally odd character of a totally real field F, and suppose that $\psi(\mathfrak{p})=1$ for some prime \mathfrak{p} of F above p. Then there exists $u_{p}(\psi) \in\left(\mathcal{O}_{H}[1 / p]^{\times} \otimes L\right)^{\psi}$ satisfying

$$
L_{p}^{\prime}(F, \psi, 0) \sim \log _{p} \operatorname{Norm}_{F_{\mathfrak{p}} / \mathbb{Q}_{p}}\left(u_{p}(\psi)\right)
$$

The case of $\psi:=\psi_{g} / \psi_{g}^{\prime}$

The ring class character ψ is totally odd, and every prime ℓ which is inert in F splits completely in H / F.

Hence there is a non-trivial

$$
u_{\ell}(\psi) \in\left(\mathcal{O}_{H}[1 / \ell]^{\times} \otimes L\right)^{\psi}
$$

for all such inert primes, unique up to L^{\times}.
Using the Galois representation $V_{\psi_{g}}$, one can define canonical normalisations for $u_{\ell}(\psi)$.

The fourier expansion of $\theta_{\psi_{g}}^{\prime}$

Theorem (Alan Lauder, Victor Rotger, D)

The normalised generalised eigenform $\theta_{\psi_{g}}^{\prime}$ attached to $\theta_{\psi_{g}}$ can be scaled in such a way that, for all primes $\ell \nmid N$,

$$
a_{\ell}\left(\theta_{\psi_{g}}^{\prime}\right)= \begin{cases}\log _{\mathfrak{p}} u_{\ell}(\psi) & \text { if } \ell \text { is inert in } F \\ 0 & \text { if } \ell \text { is split in } F .\end{cases}
$$

More generally, for all $n \geq 2$ with $\operatorname{gcd}(n, N)=1$,

$$
a_{n}\left(\theta_{\psi_{g}}^{\prime}\right)=\sum_{\ell \mid n} \log _{\mathfrak{p}} u_{\ell}(\psi) \cdot\left(\operatorname{ord}_{\ell}(n)+1\right) \cdot a_{n / \ell}\left(\theta_{\psi_{g}}\right)
$$

An example in level $5 \cdot 29$

$\chi:=$ quartic Dirichlet character of conductor 5-29;
$S_{1}(5 \cdot 29, \chi)$ is one-dimensional, spanned by
$\theta_{\psi_{g}}=q+i q^{4}+i q^{5}+(-i-1) q^{7}-i q^{9}+(-i+1) q^{13}-q^{16}-q^{20}+\cdots$,
ψ_{g} a quartic character of $F=\mathbb{Q}(\sqrt{29})$ ramified at one of the primes above (5).
$\theta_{\psi_{g}}$ is not a CM theta series.
(Level 145 is the smallest where this happens.)

An example in level $5 \cdot 29$, cont'd

The prime $p=13$ is split in K, and θ_{ψ} is regular.
Hence the BD condition fails.
$\psi=\psi_{g} / \psi_{g}^{\prime}$ cuts out the ring class field of conductor 5: a cyclic quartic extension of K

$$
\begin{gathered}
H=K(\sqrt{5}, \delta) \quad \text { where } \delta^{2}=\frac{\sqrt{145}-15}{32} \\
\sigma(\sqrt{5})=-\sqrt{5}, \quad \sigma(\delta)=-\frac{1}{4}(3 \sqrt{5}+\sqrt{29}) \delta
\end{gathered}
$$

An example in level $5 \cdot 29$, cont'd

For $\ell=2,3,11,17$ and 19 ,

$$
a_{\ell}\left(\theta_{\psi_{g}}^{\prime}\right)=\log _{13}\left(u_{\ell}(\psi)\right)
$$

where (denoting the group operation in $L \otimes H^{\times}$additively)

$$
u_{\ell}(\psi):=u_{\ell}+i \otimes \sigma\left(u_{\ell}\right)-\sigma^{2}\left(u_{\ell}\right)-i \otimes \sigma^{3}\left(u_{\ell}\right)
$$

for a suitable ℓ-unit u_{ℓ} of H. The 2 -unit u_{2} is given by

$$
u_{2}:=\frac{1}{2}(-\sqrt{5}-\sqrt{29}+6) \delta+\frac{1}{8}(\sqrt{29}-7) \sqrt{5}+\frac{1}{8}(\sqrt{29}+1),
$$

and the others are listed in the last column of the table

An example in level $5 \cdot 29$, cont'd

ℓ	$a_{\ell}\left(\theta_{\psi_{g}}^{\prime}\right) \bmod 13^{20}$	u_{ℓ}
3	12915196799386050150007	$(\sqrt{5}+\sqrt{29}-4) \delta+\frac{1}{4}(\sqrt{29}-4) \sqrt{5}+\frac{1}{4}(2 \sqrt{29}-13)$
11	3524143318627577732842	$\left(\frac{1}{4}((\sqrt{29}+1) \sqrt{5}+(-\sqrt{29}+11)) \delta+\frac{1}{4}(\sqrt{5}-1)\right)^{4}$
17	229407992393437964510	$((16 \sqrt{29}+84) \sqrt{5}+(36 \sqrt{29}+200)) \delta$
		$+\frac{1}{4}(11 \sqrt{29}+63) \sqrt{5}+\frac{1}{4}(15 \sqrt{29}+83)$
19	15142834827825079965585	$\left(\frac{1}{4}((3 \sqrt{29}-13) \sqrt{5}+(-15 \sqrt{29}+85)) \delta\right.$
		$\left.+\frac{1}{8}(3 \sqrt{29}-15) \sqrt{5}+\frac{1}{8}(7 \sqrt{29}-35)\right)^{2}$

Digression:

Overconvergent generalised eigenforms and the Duke-Li Conjecture

A formula of Kudla-Rapoport-Yang

Theorem (Kudla-Rapoport-Yang)

 Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \longrightarrow \pm 1$ be an odd Dirichlet character of prime conductor N, let $E_{1}(1, \chi)$ be the associated weight one Eisenstein series, and let $\tilde{E}_{1}(1, \chi)$ be the derivative of its "incoherent" counterpart. For all $n \geq 2$ with $\operatorname{gcd}(n, N)=1$,$$
a_{n}\left(\tilde{E}_{1}(1, \chi)\right)=\frac{1}{2} \sum_{\ell \mid n} \log (\ell) \cdot\left(\operatorname{ord}_{\ell}(n)+1\right) \cdot a_{n / \ell}\left(E_{1}(1, \chi)\right) .
$$

Theorem (Alan Lauder, Victor Rotger, D)
For all $n \geq 2$ with $\operatorname{gcd}(n, N)=1$,

$$
a_{n}\left(\theta_{\psi_{\mathfrak{g}}}^{\prime}\right)=\frac{1}{2} \sum_{\ell \mid n} \log _{\mathfrak{p}} u_{\ell}(\psi) \cdot\left(\operatorname{ord}_{\ell}(n)+1\right) \cdot a_{n / \ell}\left(\theta_{\psi_{\mathfrak{g}}}\right)
$$

Generalised eigenforms and mock modular forms

Derivatives of incoherent Eisenstein series satisfy are special cases of the mock modular forms of Yingkun Li's lecture this morning.

Recall: If g is a classical weight one form, a mock modular form g^{\sharp} attached to g is the holomorphic part of a WHMF having g as shadow.

Questions:

1. To what extent are overconvergent generalised eigenforms a good p-adic analogue of mock modular forms?
2. Is the fourier expansion of $\theta_{\psi_{g}}^{\prime}$ a fragment of a " p-adic Kudla program"?

The Duke-Li conjecture

Conjecture (Bill Duke- Yingkun Li)

The fourier coefficients of the mock modular form g^{\sharp} are simple linear combinations with algebraic coefficients of logarithms of algebraic numbers in the field which is cut out by $\operatorname{Ad}\left(V_{g}\right)$.

Many cases of this conjecture have been proved:

- by Duke-Li, Ehlen, Viazovska, when g is a CM theta series;
- by Li , when g is an RM theta series attached to a character ψ_{g} of mixed signature of a real quadratic field;
- some experimental evidence is gathered for this conjecture in the paper of Duke and Li, for an octahedral newform g of level 283.

The Duke-Li conjecture and explicit class field theory

If g is the theta series of character ψ_{g} of a quadratic field K, the Duke-Li conjecture expresses the fourier coefficients of g^{\sharp} in terms of logarithms of algebraic numbers in H, where

- $H=$ the ring class field of K cut out by $\psi=\psi_{g} / \psi_{g}^{\prime}$, if $\operatorname{disc}(K)<0$;
- $H=K$, if $\operatorname{disc}(K)>0$. This suggests that the fourier coefficients of $\theta_{\psi_{g}}^{\sharp}$ do not yield interesting class fields of $K \ldots$.
in contrast with what occurs when K is imaginary quadratic, or when $\theta_{\psi_{g}}^{\sharp}$ is replaced by its p-adic avatar $\theta_{\psi_{g}}^{\prime}$.

Remarks on [DLR] vs Duke-Li/Ehlen/Viazovska.

- The techniques in [DLR] are fundamentally p-adic in nature, relying on the theory of p-adic deformations of Galois representations, and on class field theory for H.
- These techniques are substantially simpler and less deep than those of Duke-Li, Ehlen, Viazovska: the theory of complex multiplication and singular moduli plays no role in [DLR].
- Challenge: Find a more complicated proof of [DLR], closer in spirit to the methods of Duke-Li, Ehlen, Viazovska; (eventually leading to new insights into explicit class field theory for real quadratic fields.)
- Question: How (if at all) are the fourier coefficients of $\theta_{\psi_{g}}^{\prime}$ related to the real quadratic class invariants of Duke-Imamoglu-Toth and Kaneko?

End of digression

Revenons-en à nos moutons

(Back to the p-adic iterated integrals)

A conjecture in the smooth, non-étale setting

Conjecture (Lauder, Rotger, D)

$$
e_{\theta_{\psi_{g}}}\left(d^{-1} f^{[p]} \times h\right)=\frac{R_{p}\left(E, V_{g h}\right)}{\Omega_{g}} \times \theta_{\psi_{g}}^{\prime} \quad\left(\bmod S_{1}(N, \chi)[g]\right)
$$

- $R_{p}\left(E, V_{g h}\right)$ is the same p-adic elliptic regulator attached to $\left(E, V_{g h}\right)$ as in Victor's lecture;
- Ω_{g} is a p-adic invariant depending only on g and not on f and h.

Special case: If $h=\theta_{\psi_{h}}$ attached to the same real quadratic F,

$$
\begin{gathered}
V_{g h}=V_{\psi_{1}} \oplus V_{\psi_{2}}, \quad \psi_{1}=\psi_{g} \psi_{h}, \quad \psi_{2}=\psi_{g} \psi_{h}^{\prime}, \quad \text { and } \\
R_{p}\left(E, V_{g h}\right)=\log _{p}\left(P_{E, \psi_{1}}\right) \cdot \log _{p}\left(P_{E, \psi_{2}}\right),
\end{gathered}
$$

where $P_{E, \psi_{1}}$ and $P_{E, \psi_{2}}$ are analogous to Heegner points on E, but are defined over ring class fields of F.

The non-smooth (i.e., irregular) setting

Let g be an irregular weight one modular form. Then

$$
\begin{gathered}
S_{1}(N, \chi)[[g]]=S_{1}(N, \chi)\left[I_{g}^{2}\right]=\mathbb{C}_{p} g(q) \oplus \mathbb{C}_{p} g\left(q^{p}\right) . \\
S_{1}^{(p)}(N, \chi)[[g]]=S_{1}(N, \chi)[[g]] \oplus S_{1}^{(p)}(N, \chi)[[g]]_{\text {norm }}
\end{gathered}
$$

(An overconvergent generalised eigenform in $\xi \in S_{1}^{(p)}(N, \chi)[[g]]$ is said to be normalised if

$$
\left.a_{1}(\xi)=a_{p}(\xi)=0 .\right)
$$

Conjecture (Lauder, Rotger, D)
The space $S_{1}^{(p)}(N, \chi)[[g]]$ is four-dimensional, i.e., $S_{1}^{(p)}(N, \chi)[[g]]_{\text {norm }}$ is two-dimensional.

Describing $S_{1}^{(p)}(N, \chi)[[g]]_{\text {norm }}$

Let

$$
W_{g}=\operatorname{Ad}^{0}\left(V_{g}\right)
$$

- Inner product: $\langle A, B\rangle:=\operatorname{trace}(A B)$,
- Lie bracket: $[A, B]=A B-B A$,
- Determinant function: $\operatorname{det}(A, B, C):=\langle A,[B, C]\rangle$.

Units and p-units

Let H be the field cut out by W_{g}, and $G:=\operatorname{Gal}(H / \mathbb{Q})$.
Dirichlet unit theorem: $\operatorname{dim}_{L}\left(\mathcal{O}_{H}^{\times} \otimes W_{g}\right)^{G}=1$,

$$
\operatorname{dim}_{L}\left(\mathcal{O}_{H}[1 / \ell]^{\times} \otimes W_{g}\right)^{G}= \begin{cases}2 & \text { if } g \text { is regular at } \ell ; \\ 4 & \text { if } g \text { is irregular at } \ell\end{cases}
$$

Fix a generator

$$
u_{g} \in \log _{p}\left(\left(\mathcal{O}_{H}^{\times} \otimes W_{g}\right)^{G}\right) \in W_{g} \otimes_{L} \mathbb{C}_{p}
$$

For each regular prime ℓ, the representation V_{g} gives an element

$$
\left.u_{g}(\ell) \in \log _{p}\left(\mathcal{O}_{H}[1 / \ell]^{\times} \otimes W_{g}\right)^{G}\right) \in W_{g} \otimes_{L} \mathbb{C}_{p}
$$

which is well defined up to translation by multiples of u_{g}.

A conjectural description of $S_{1}^{(p)}(N, \chi)[[g]]_{\text {norm }}$

Conjecture (Lauder, Rotger, D)

There exists an isomorphism

$$
\Phi: \frac{W_{g} \otimes_{L} \mathbb{C}_{p}}{\mathbb{C}_{p} \cdot u_{g}} \longrightarrow S_{1}^{(p)}(N, \chi)[[g]]_{\mathrm{norm}}
$$

satisfying, for all $\ell \nmid N p$,

$$
a_{\ell}(\Phi(w))=\left\{\begin{array}{cl}
\operatorname{det}\left(w, u_{g}, u_{g}(\ell)\right) & \text { if } g \text { is regular at } \ell \\
0 & \text { if } g \text { is irregular at } \ell
\end{array}\right.
$$

The fourier expansion of $\Phi(w)$ can be written down fully.

The elliptic regulator $R_{p}\left(E, V_{g h}\right)$

The elliptic regulator of Victor's lecture depends on the U_{p}-eigenvalue for g, and is ill-defined when g is irregular. Instead we set $R_{p}\left(E, V_{g h}\right)=0$ if $\operatorname{dim}_{L}\left(\left(E\left(H_{g h}\right) \otimes V_{g h}\right)^{G}\right) \neq 2$, and consider the sequence of maps

$$
\begin{gathered}
\Lambda^{2}\left(\left(E\left(H_{g h}\right) \otimes V_{g h}\right)^{G}\right) \longrightarrow\left(\operatorname{Sym}^{2} E\left(H_{g h}\right) \otimes \Lambda^{2} V_{g h}\right)^{G} \\
\xrightarrow{p_{g}}\left(\operatorname{Sym}^{2} E\left(H_{g h}\right) \otimes W_{g}\right)^{G} \\
\xrightarrow[g]{\log _{p}^{\otimes 2}} W_{g} \otimes \mathbb{C}_{p}
\end{gathered}
$$

Elliptic regulator: $R_{p}\left(E, V_{g h}\right):=\log _{\mathfrak{p}}^{\otimes 2} \circ p_{g}(P \wedge Q) \in W_{g} \otimes \mathbb{C}_{p}$.

A conjectural conjecture in the irregular setting

Conjecture (Lauder, Rotger, D)

For all irregular g,

$$
e_{g}\left(d^{-1} f^{[p]} \times h\right)=\frac{1}{\Omega_{g}} \times \Phi\left(R_{p}\left(E, V_{g h}\right)\right) \quad\left(\bmod S_{1}(N, \chi)[[g]]\right)
$$

where Ω_{g} is a p-adic invariant depending only on g and p, but not on f and h.

A conjectural conjecture on regulators of regulators

This conjecture implies that, for all primes ℓ that are regular for V_{g},
$\Omega_{g} \cdot a_{\ell}\left(e_{g}\left(d^{-1} f^{[p]} \times h\right)\right) \sim_{L^{\times}}$
det

$|$| $\left\|\begin{array}{cc}\log _{\mathfrak{p}} P_{1} & \log _{\mathfrak{p}} P_{2} \\ \log _{\mathfrak{p}} Q_{1} & \log _{\mathfrak{p}} Q_{2}\end{array}\right\|$ | $\left\|\begin{array}{cc}\log _{\mathfrak{p}} P_{3} & \log _{\mathfrak{p}} P_{4} \\ \log _{\mathfrak{p}} Q_{3} & \log _{\mathfrak{p}} Q_{4}\end{array}\right\|$ |
| :---: | :---: |
| $\log _{\mathfrak{p}} u_{1}$ | $\left\|\begin{array}{cc}\log _{\mathfrak{p}} P_{5} & \log _{\mathfrak{p}} P_{6} \\ \log _{\mathfrak{p}} u_{2} & \log _{\mathfrak{p}} Q_{6}\end{array}\right\|$ |
| $\log _{\mathfrak{p}} u_{1}(\ell)$ | $\log _{\mathfrak{p}} u_{2}(\ell)$ | with

$$
P_{i}, Q_{j} \in E\left(H_{g h}\right), \quad u_{j} \in \mathcal{O}_{H}^{\times}, \quad u_{j}(\ell) \in \mathcal{O}_{H}[1 / \ell]^{\times} .
$$

Theoretical evidence

Suppose that $g=h$ is induced from a quartic ring class character ψ_{g} of an imaginary quadratic field K in which p splits.

Then $\psi=\psi_{g} / \psi_{g}^{\prime}=\psi_{g}^{2}$ is a genus character.
$H=\mathbb{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$.
Theorem (Lauder, Rotger, D, in progress)
The conjectural conjecture is true, with

$$
\Omega_{g}=\log _{\mathfrak{p}} u \times\left(\log _{\mathfrak{p}} v_{1}(p)-\log _{\mathfrak{p}} v_{2}(p)\right)
$$

where

- u is the fundamental unit of the real quadratic subfield of H;
- $v_{1}(p)$ and $v_{2}(p)$ are fundamental p-units of the two imaginary quadratic subfields of H.

Theoretical evidence, cont'd

Theorem (Lauder, Rotger, D, in progress)

The conjectural conjecture is true, with

$$
\Omega_{g}=\log _{\mathfrak{p}} u \times\left(\log _{\mathfrak{p}} v_{1}(p)-\log _{\mathfrak{p}} v_{2}(p)\right)
$$

Ingredients in the proof:

- Explicit p-adic deformations of g;
- The p-adic Gross-Zagier/Waldspurger formula of Bertolini, D, Prasanna;
- Katz's p-adic Kronecker limit formula;
- An "exceptional zero formula" for the Katz L-function, due to Ralph Greenberg.

Experimental evidence

A lot of experimental evidence for the conjecture has been gathered, using Alan Lauder's fast algorithm for computing the ordinary projection on a space of overconvergent modular forms.

Thank you for your attention!!

