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Abstract. We introduce Omega functions that generalize Euler Gamma functions
and study the functional difference equation they satisfy. Under a natural exponen-
tial growth condition, the vector space of meromorphic solutions of the functional
equation is finite dimensional. We construct a basis of the space of solutions com-
posed by Omega functions. Omega functions are defined as exponential periods.
They have a meromorphic extension to the complex plane of order 1 with simple
poles at negative integers. They are characterized by their growth property on
vertical strips and their functional equation. This generalizes Wielandt’s character-
ization of Euler Gamma function. We also introduce Incomplete Omega functions
that play an important role in the proofs.

1. Introduction

1.1. Difference equations. We study in this article difference equations of the form

(1) sf(s) =
d∑

k=1

αkf(s+ k)

where α1, . . . , αd ∈ C and αd 6= 0. The simplest case is the functional equation
satisfied by Euler Gamma function

sΓ(s) = Γ(s+ 1)

These equations are linear and we have a vector space of meromorphic solutions.
A natural motivation for studying these functional equations comes from the study
of subspaces generated by natural linear operators. For instance, we can consider, in
the space of meromorphic functions, the shift (or integer translation) linear operator

T (f(s)) = f(s+ 1)

and the multiplication by s linear operator

S(f(s)) = sf(s)
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Observe that S has no eigenvectors and the minimal invariant subspace invariant
by S containing the constant functions is the space of polynomials C[s]. The space
generated by S and the function f is the vector space C[s]f

〈f, S(f), S2(f), . . .〉 = C[s]f

It is natural to find the functions f such that the space C[s]f is generated by f and
T . This happens if and only if f is solution of the difference equation (1).

Already, in the simplest case of the functional equation of Euler Gamma function,
the space of solutions is infinite dimensional since any function of the form e2πinsΓ(s)
for an integer n ∈ Z is also a solution. It is classical to add conditions to characterize
Euler Gamma function as the only normalized solution to this functional equation.
One can mention Weierstrass characterization imposing some asymptotic behavior
when s → +∞ (1856, [22]), or Wielandt’s characterization (1939, [23], see also [20],
[21]) requiring boundedness on vertical strips of width larger than 1, or, more recently,
requiring finite order of the solutions and a right half plane free of zeros nor poles
(2022, [17]). Wielandt’s boundedness condition has been weakened by Fuglede to a
moderate growth in the vertical strip (2008, [13]).

In the spirit of Wielandt, we search for solutions with some growth control on
vertical strips. Under a suitable growth condition, we prove that the space of solutions
is finite dimensional:

Theorem 1.1. The space of meromorphic solutions f of the functional equation

sf(s) =
d∑

k=1

αkf(s+ k)

where α1, . . . , αn ∈ C, αd 6= 0, and f satisfies a growth condition, for 1 ≤ Re s ≤ d,

|f(s)| ≤ Ce−c Im s

for some constant C > 0 and 0 ≤ c < 2π, is finite dimensional of dimension d.

Moreover, we build an explicit basis of the vector space of solutions with Special
Functions, that we call Omega functions, that generalize Euler Gamma function.
There is a large classical literature on linear difference equations with polynomial
coefficients by Poincaré [19], Birkhoff [3], Carmichael [8], Nörlund [18], and, more
recently, solutions with vertical exponential growth have been studied by Barkatou
[2] and Duval [10] following work of Ramis. The analysis of the equation of this article
is self-contained and independent of the classical theory.
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1.2. Omega functions. Historically, Euler Gamma function appears for the first
time in a letter from Euler to Goldbach, dated January 8th 1730 ([12]). Euler defines
the Gamma function for real values s > 0, by the integral formula

Γ(s) =

∫ +∞

0

ts−1e−tdt .

which is also convergent for complex values of s with Re s > 0. In this integral
formula, the value Γ(s) appears as an exponential period.

Algebraic periods are integrals of algebraic differential forms over cycles of an alge-
braic variety. In the special case of an algebraic curve, when we represent the curve as
a Riemann domain over the complex plane or the Riemann sphere, algebraic periods
are also the integrals of algebraic differential forms on paths joining two ramification
points where we have singularities of the differential form. From the transalgebraic
point of view, it is natural to consider exponential periods, where integrals involve
exponential expressions, and the singularities can be exponential singularities. More
general periods can be envisioned where the differential form has transcendental sin-
gularities with monodromy as ts in a local variable (geometrically these corespond
to differential forms living in a branched Riemann domain with an infinite ramifica-
tion). There is a vast literature on classical algebraic periods, but almost none on
the transalgebraic periods. We refer to [16] for a survey about classical periods, and
to [6] and [7] for exponential periods and their relation with log-Riemann surfaces.
Also we refer the reader to [17] for an historical survey of different definitions of Euler
Gamma function and their generalizations, and to [24] for its classical properties.

We introduce (resp. Incomplete) Omega functions which are a natural generaliza-
tion of the (resp. Incomplete) Gamma function. They are defined as exponential
periods of the form

Ωk(s) =

∫ +∞.ωk

0

ts−1eP0(t) dt , Ωk(s, z) =

∫ z

0

ts−1eP0(t) dt

where P0(t) ∈ C[t] and ωk is a root of unity pointing to a direction where the poly-
nomial P0 diverges to −∞. Some critical computations in the proof of the main
Theorem generalize computations carried out for exponential periods appearing in
[7]. The generalization of the Ramificant Determinant is the key result for the proof
of the linear independence of the Omega functions (Ωk). In this magical calculation,
we compute a determinant of a matrix of exponential periods which are individually
not computable. Omega functions appeared before in the literature under the name
of “modified Gamma functions” and their asymptotic behavior at infinite was studied
by N. G. De Bruijn, [5] p.119, and A. Duval [10]. We know no earlier references for
Incomplete Gamma functions.
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2. Definition.

Let P0(t) ∈ C[t] be a degree d ≥ 1 polynomial such that P0(0) = 0 and limt→+∞ReP0(t) =
−∞, normalized by

P0(t) = −1

d
td +

d−1∑
k=1

akt
k

We also denote ad = −1/d and a0 = 0. Let ω be the primitive d-th root of unity
given by

ω = e
2πi
d

and write ωk = ωk.

Definition 2.1. Let d ≥ 1. For k = 0, 1, . . . , d − 1, the Omega functions, or Ω-
functions, associated to P0, are defined for Re s > 0, by

Ωk(s) =

∫ +∞.ωk

0

ts−1eP0(t) dt

The roots ωk point to the directions where the polynomial P0 diverges exponentially
to −∞,

lim
t→+∞.ωk

ReP0(t) = −∞

so the integral is converging and we have a sound definition. Usually, we spare the
reference to P0, but for some results it will be crucial to keep track of the dependence
on parameters and we will write

Ω(s) = Ω(s|P0) = Ω(s|a1, . . . , ad−1) .

For d = 1, we have P0(t) = −t and Ω1 = Γ is Euler Gamma function.

If P0 ∈ R[t], then Ω0 is real analytic, and Ωk(s̄|P0) = Ωd−k(s|P̄0), where P̄0 is the
conjugate polynomial

P̄0(t) = −1

d
td +

d−1∑
k=1

ākt
k .

Sometimes we will be interested in the case where αk ∈ K where K ⊂ C is a number
field. In that case we say that the Omega functions are defined over K.
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3. Meromorphic extension, poles and residues.

Theorem 3.1. The Omega functions (Ωk)0≤k≤d−1 extend to the complex plane into
meromorphic functions of order 1 satisfying the fundamental functional equation

(2) Ωk(s+ d) + αd−1Ωk(s+ d− 1) + . . .+ α1Ωk(s+ 1) = sΩk(s)

where αl = −lal.
Moreover, the function Ωk is holomorphic in C − N, and has simple poles at the

negative integers. The residue at s = 0 is

Ress=0 Ωk = 1 .

Observe that for d = 1, Ω0 = Γ and the functional equation (2) is the classical
functional equation Γ(s+ 1) = sΓ(s).

Proof. We have for Re s > 0 and by integration by parts,

Ωk(s+ d) +
d−1∑
l=1

αlΩk(s+ l) =

∫ +∞.ωk

0

ts(−P ′0(t)).eP0(t) dt

=
[
−tseP0(t)

]+∞.ωk
0

+ s

∫ +∞.ωk

0

ts−1eP0(t) dt

= sΩk(s)

and we get the functional equation (2). Now, using once the functional equation we
extend meromorphically Ωk to {Re s > −1}, and by induction to {Re s > −n}, for
n = 1, 2, . . ., hence to all of C. The only poles that can be introduced by this extension
procedure using the functional equation are those created from the pole at s = 0 at
the negative integers. The functional equation shows that sΩk(s) is holomorphic at
s = 0, hence the pole at s = 0 is simple. It follows from the functional equation and
the extension procedure that the other poles are also simple. We compute the residue
at s = 0 using the functional equation,

Ress=0 Ωk = lim
s→0

sΩk(s) =
d∑
l=1

αlΩk(l) =

∫ +∞.ωk

0

(−P ′0(t)).eP0(t) dt =
[
−eP0(t)

]+∞.ωk
0

= 1

�

More generally, we can compute the residues at the negative integers.

Theorem 3.2. Let (λn)n≥0 be the coefficients of the power series expansion of eP0(t),

eP0(t) =
+∞∑
n=0

λnt
n .
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Then the residue of Ωk at s = −n is λn,

Ress=−n Ωk = λn .

Proof. For n ≥ 0 let rn ∈ C be the residue of Ωk at s = −n, with rn = 0 if there is
no pole, and rn = 0 for n < 0. The functional equation (2) gives

rn = lim
h→0

hΩk(h− n) = lim
h→0

1

h− n

d∑
l=1

αlhΩk(h− n+ l) = − 1

n

d∑
l=1

αl rn−l

hence the recurrence relation

(3) nrn = −
d∑
l=1

αl rn−l

Now, consider the generating power series

F (t) =
+∞∑
n=0

rnt
n

The recurrence relation (3) gives

F ′(t) =
+∞∑
n=0

nrnt
n−1 = −

d∑
l=1

αl

+∞∑
n=0

rn−lt
n−1

= −
d∑
l=1

αlt
l−1

+∞∑
n=l

rn−lt
n−l

= −

(
d∑
l=1

αlt
l−1

)
F (t)

= P ′0(t)F (t)

Since we have F (0) = r0 = 1 from Theorem 3.1, we get

F (t) = eP0(t)

thus rn = λn as claimed. �

Example.

For d = 1, the generating power series is

F (t) = e−t =
+∞∑
n=0

(−1)n

n!
tn
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and we recover the classical result that

Ress=−n Γ =
(−1)n

n!
.

Note that the residues at the simple poles at the negative integers are the same for
all the functions Ω0, . . . ,Ωd−1. Indeed, for k 6= l, we can check directly that Ωk − Ωl

is an entire function because of the convergence for all s ∈ C of the integral

Ωk(s)− Ωl(s) =

∫ +∞.ωk

+∞.ωl
ts−1eP0(t) dt =

∫
γlk

ts−1eP0(t) dt

where the integral can be taken over any path γlk assymptotic to +∞.ωl and +∞.ωk
in the proper direction and with 0 winding number around 0. This integral depends
holomorphically on the parameter s ∈ C.

Observe also that if the coefficients of P0 belong to a number field K, P0(t) ∈ K[t],
then the residues of Ωk belong also to K. Another arithmetical observation is the
following:

Corollary 3.3. We assume that the only non-zero coefficients of P0 are for powers
divisible by an integer n0 ≥ 2, that is, if ak 6= 0 then n0|k.

Then, if n0 does not divide n, we have rn = 0.

Proof. From the previous Theorem we have

eP0(t) =
d∏

k=1

eakt
k

=
d∏

k=1

(∑
m≥0

amk
m!
tmk

)
and when we expand the last product we get the result. �

We have a more precise result than just the computation of the residues. We
can determine the Mittag-Leffler decomposition of Ωk.This is an analytic result that
requires some estimates.

Theorem 3.4. The Omega function Ωk has the Mittag-Leffler decomposition:

Ωk(s) =
+∞∑
n=0

λn
s+ n

+

∫ +∞.ωk

1

ts−1eP0(t) dt

where the integral is an entire function of order 1.

Observe that this Theorem shows that the Omega function Ωk is a meromorphic
function of order 1.

Corollary 3.5. The Omega functions Ωk are meromorphic functions of order 1.
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Proof. We write

Ωk(s) =

∫ 1

0

ts−1eP0(t) dt+

∫ +∞.ωk

1

ts−1eP0(t) dt

and we compute the first integral expanding the exponential in power series (uniformly
convergent in [0, 1]),∫ 1

0

ts−1eP0(t) dt =
+∞∑
n=0

λn

∫ 1

0

ts+n−1 dt =
+∞∑
n=0

λn

[
ts+n

s+ n

]1

0

=
+∞∑
n=0

λn
s+ n

The second integral can be bounded by the next Lemma that shows that it is an
entire function of order 1 (using that Euler Gamma function is of order 1). �

Lemma 3.6. We have the estimate∣∣∣∣∫ +∞.ωk

1

ts−1eP0(t) dt

∣∣∣∣ ≤ e−2π k
d

Im s

(
C0 + C1d

Re s/dΓ

(
Re s

d

))
Proof. We make the change of variables t = ωku∫ +∞.ωk

1

ts−1eP0(t) dt = ωsk

∫ +∞

ω−1
k

us−1e−
1
d
ud(1+O(u−1)) du

= e2πi k
d
s

∫ +∞

ω−1
k

us−1e−
1
d
ud(1+O(u−1)) du

This gives the bound∣∣∣∣∫ +∞.ωk

1

ts−1eP0(t) dt

∣∣∣∣ ≤ e−2π k
d

Im s

∣∣∣∣∣
∫ +∞

ω−1
k

us−1e−
1
d
ud(1+O(u−1)) du

∣∣∣∣∣
Now, taking an integration path of finite length from 1 to ωk and bounded away from
0, we get (using the same letter C to denote several universal constants C > 0)∣∣∣∣∫ +∞.ωk

1

ts−1eP0(t) dt

∣∣∣∣ ≤ e−2π k
d

Im s

(
C +

∣∣∣∣∫ +∞

1

us−1e−
1
d
ud(1+O(u−1)) du

∣∣∣∣)
The last integral can be estimated by∣∣∣∣∫ +∞

1

us−1e−
1
d
ud(1+O(u−1)) du

∣∣∣∣ ≤ (1 + C)

∫ +∞

1

us−1e−
1
d
ud du

≤ (1 + C)

∫ +∞

0

us−1e−
1
d
ud du

≤ (1 + C)dRe s/dΓ

(
Re s

d

)
(for the computation of the last integral we use the change of variable v = ud/d). �
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4. Incomplete Omega functions.

We define the Incomplete Omega functions that generalize the Incomplete Gamma
function.

Definition 4.1. For z, s ∈ C, Re s > 0, the Incomplete Omega function Ω(s, z) is
defined by

Ω(s, z) =

∫ z

0

ts−1eP0(t) dt

For P0(t) = −t this is the classical Incomplete Gamma function. Observe that we
recover all the (Ωk) functions by taking the appropriate limit of Ω(s, z) as z →∞,

Ωk(s) = lim
z→+∞.ωk

Ω(s, z)

For the particular values of s = 1, 2, . . . , d − 1 these are the transcendental entire
functions of the variable z ∈ C studied in [7] which form a basis of the fundamental
for the transcendental vector space of functions on a simply connected log-Riemann
surface with exactly d infinite ramification points. Some of the results proved here
generalize some results from [7]. Following the same Abel’s philosophy that inspires
[7], we prove that we only need to use a finite number of transcendentals (Ω(s +
k, z))0≤k≤d−1 to compute integrals of the form∫ z

0

Q(t, ts)eP0(t) dt

where Q(x, y) ∈ C[x, y] is a polynomial. We start by studying the simpler case when
Q(t) ∈ C[t].

Proposition 4.2. Let Q(t) ∈ C[t]. For d ≥ 2, the integral∫ z

0

tsQ(t)eP0(t) dt

is of the form∫ z

0

tsQ(t)eP0(t) dt = zsA(s, z) eP0(z) +
d−1∑
k=0

ck(s) Ω(s+ k, z)

where A ∈ C[s, z], and the polynomial coefficients ck(s) ∈ C[s] have coefficients de-
pending polynomially on the coefficients of P0, (a1, . . . , ad−1).
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Proof. First we consider the case d = 1. We prove the result for Q(t) = tn integrating
by parts n+ 1 times∫ z

0

ts+ne−t dt =
[
−ts+ne−t

]z
0

+ (s+ n− 1)

∫ z

0

ts+n−1e−t dt

= −zs+ne−z + (s+ n)

∫ z

0

ts+n−1e−t dt

= −(zs+n + (s+ n)zs+n−1)e−z + (s+ n)(s+ n− 1)

∫ z

0

ts+n−2e−t dt

...

= −zs(zn + (s+ n)zn−1 + . . .)e−z + (s+ n)(s+ n− 1) . . . sΩ(s, z)

For a general polynomial Q(t) we have the the result by linear decomposition of the
integral.

In the rest of the proof we assume d ≥ 2. If q = degQ ≤ d − 2, by linearity, the
integral is a linear combination (with the coefficients of tQ(t)) of (Ω(s+ k, z))0≤k≤d−1

and the result follows.

If degQ ≥ d− 1, then we consider the Euclidean division of Q(t) by P ′0(t),

Q(t) = A1(t)P ′0(t) +B1(t)

with A1, B1 ∈ C[t], degB1 ≤ d−2 and degA1 = degQ− (d−1) = q− (d−1) ≤ q−1.
We proceed splitting the integral:∫ z

0

tsQ(t)eP0(t) dt =

∫ z

0

tsA1(t)P ′0(t)eP0(t) dt+

∫ z

0

tsB1(t)eP0(t) dt

Since degB1 ≤ d − 2, the second integral is a linear combination of Ω(s, z),Ω(s +
1, z), . . . ,Ω(s + d − 1, z), thus of the desired form, and we can forget about it. We
work on the first integral integrating by parts,∫ z

0

tsA1(t)P ′0(t)eP0(t) dt =
[
tsA1(t)eP0(t)

]z
0
−
∫ z

0

(tsA1(t))′ eP0(t) dt

Then we get:∫ z

0

tsA1(t)P ′0(t)eP0(t) dt = zsA1(z)eP0(z) −
∫ z

0

tsA′1(t)eP0(t) dt− s
∫ z

0

ts−1A1(t)eP0(t) dt

The first integral in the right hand side is of the same form as the initial one with
Q(t) but with degA′1 = degA1 − 1 ≤ degQ − (d − 1) − 1 = q − d ≤ q − 2 (using
here d ≥ 2), hence by descending induction we can forget about it. For the second
integral, we can write

s

∫ z

0

ts−1A1(t)eP0(t) dt = A1(0)sΩ(s, z) + s

∫ z

0

ts
(
A1(t)− A1(0)

t

)
eP0(t) dt
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and t−1(A1(t) − A1(0)) is a polynomial of degree degA1 − 1 ≤ q − 2. Then the
descending induction gives the expression for the integral as announced.

The coefficients of P0 appear first linearly in the Euclidean divisions by P ′0 then,
by repeated Euclidean divisions the dependence of the ck(s) is polynomial on the
coefficients of P0. �

Now, we can get easily the general result for Q(t, ts).

Corollary 4.3. Let Q(t, ts) ∈ C[t, ts]. For d ≥ 2, the integral∫ z

0

Q(t, ts)eP0(t) dt

is of the form∫ z

0

ts−1Q(t, ts)eP0(t) dt = A(s, z, zs)eP0(z) +
d−1∑
k=0

ck(s)Ω(s+ k, z)

where A ∈ C[s, z, zz] and the coefficients ck(s) ∈ C[s] have coefficients that are poly-
nomials on the coefficients of P0 (a1, . . . , ad−1).

Proof. We write Q(t, ts) = Q(t)(ts) as a polynomial on the variable ts with coeffi-
cients polynomials in t, and we split linearly the integral, observing that the part
corresponding to each monomial is like the integral when Q is a polynomial in t as
before, but with s shifted into s + l by some positive integer l. The result follows
from the previous Proposition. �

Now, we can prove that the Omega functions (Ωk(s))0≤k≤d−1 generate a large class
of exponential periods:

Corollary 4.4. Let Q(t, ts) ∈ C[t, ts] and 0 ≤ n ≤ d− 1. The exponential period∫ +∞.ωn

0

Q(t, ts) eP0(t) dt

is a linear combination of the exponential periods (Ωk(s))0≤k≤d−1∫ +∞.ωn

0

Q(t, ts) eP0(t) dt =
d−1∑
k=0

ck(s) Ωk(s)

where the coefficients ck(s) are polynomials on s and on the coefficients (a1, . . . , ad−1).

Proof. For d ≥ 2, we have from the previous Proposition that∫ z

0

Q(t, ts)eP0(t) dt = A(s, z, zs)eP0(z) +
d−1∑
k=0

ck(s)Ω(s+ k, z)
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When z → +∞.ωn the terms in the first sum vanish, since A(s, z, zs)eP0(z) → 0
for a polynomial A(s, z, zs) ∈ C[z] (the exponential decay of eP0(z) takes over the
polynomial divergence of A(z)), and we get∫ +∞.ωn

0

Q(t, ts)eP0(t) dt =
d−1∑
k=0

ck(s)Ωn(s+ k)

�

5. Linear independence.

The row vector build with Omega functions Ω(s) = (Ωk(s))0≤k≤d−1 has the follow-
ing important linear independence property:

Theorem 5.1. For any s ∈ C−N∗−, the vectors Ω(s+ 1),Ω(s+ 2), . . . ,Ω(s+ d) are
linearly independent,

∆(s) 6= 0

where

∆(s|a1, . . . , ad−1) = det


Ω11 Ω12 . . . Ω1d

Ω21 Ω22 . . . Ω2d
...

...
. . .

...
Ωd1 Ωd2 . . . Ωdd

 .

where Ωkl = Ωk−1(s+ l).

More precisely, we can compute

∆(s|a1, . . . , ad−1) = ∆(s|0, . . . , 0) exp (Πd(s, a1, . . . , ad−1))

where Πd(s, a1, . . . , ad−1) is a universal polynomial with rational coefficients.

In view of the last formula, the result follows from ∆(s|0, . . . , 0) 6= 0. We will
prove the last formula and compute explicitly the determinant ∆(s|0, . . . , 0). These
computations are similar to the ones for the Ramificant Determinant (see [7]) that
corresponds to the special case s = 0.

We can compute Ωk(s+ l|0, . . . , 0) using Euler Gamma function.

Lemma 5.2. We have

Ωk(s+ l|0, . . . , 0) = ωk(s+l)d
s+l
d
−1Γ

(
s+ l

d

)
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Proof. We first make the change of variables t = ωku, and then v = ud/d,

Ωk(s+ l|0, . . . , 0) =

∫ +∞.ωk

0

ts+l−1e−
1
d
td dt

= ωk(s+l)

∫ +∞

0

us+l−1e−
1
d
ud du

= ωk(s+l)d
s+l
d
−1

∫ +∞

0

v
s+l
d
−1e−v dv

= ωk(s+l)d
s+l
d
−1Γ

(
s+ l

d

)
�

Now we recall the following well known elementary Vandermonde Lemma:

Lemma 5.3. If ξ1, . . . , ξd are the d roots of a monic polynomial Q(X), then we can
compute the Vandermonde determinant V (ξ1, . . . , ξd) of the (ξ1, . . . , ξd) as

V (ξ1, . . . , ξd) =

∣∣∣∣∣∣∣∣∣
1 ξ1 ξ2

1 . . . ξd−1
1

1 ξ2 ξ2
2 . . . ξd−1

2
...

...
...

. . .
...

1 ξd ξ2
d . . . ξd−1

d

∣∣∣∣∣∣∣∣∣ =
∏
i 6=j

(ξi − ξj) =
d∏
i=1

Q′(ξi) .

Using this Lemma with Q(X) = Xd−1 we compute the Vandermonde determinant:

Vd =

∣∣∣∣∣∣∣∣∣
1 ω1 ω2

1 . . . ωd−1
1

1 ω2 ω2
2 . . . ωd−1

2
...

...
...

. . .
...

1 ωd ω2
d . . . ωd−1

d

∣∣∣∣∣∣∣∣∣ =
∏
i 6=j

(ωi−ωj) =
∏
i

(dωd−1
i ) = dd

(∏
i

ωi

)d−1

= (−1)d−1dd .

We use this result to compute ∆(s|0, . . . , 0).

Lemma 5.4. We have

∆(s|0, . . . , 0) =
(2πd)

d
2

√
2π

ω
d(d−1)

2
ssΓ(s)

and in particular ∆(s|0, . . . , 0) 6= 0 for s 6= −1,−2, . . ..

Taking the limit s→ 0 we recover the formula from Lemma 3.5 from [7].
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Proof. Using Lemma 5.2 we have

∆(s|0, . . . , 0) =

=

∣∣∣∣∣∣∣∣∣
ω0.(s+1)d

s+1
d
−1Γ

(
s+1
d

)
ω0.(s+2)d

s+2
d
−1Γ

(
s+2
d

)
. . . ω0.(s+d)d

s+d
d
−1Γ

(
s+d
d

)
ω1.(s+1)d

s+1
d
−1Γ

(
s+1
d

)
ω1.(s+2)d

s+2
d
−1Γ

(
s+d
d

)
. . . ω1.(s+d)d

s+d
d
−1Γ

(
s+d
d

)
...

...
. . .

...

ω(d−1).(s+1)d
s+1
d
−1Γ

(
s+1
d

)
ω(d−1).(s+2)d

s+2
d
−1Γ

(
s+2
d

)
. . . ω(d−1).(s+d)d

s+d
d
−1Γ

(
s+d
d

)
∣∣∣∣∣∣∣∣∣

= ω
d(d−1)

2
sdsd

d−1
2
−dΓ

(
s

d
+

1

d

)
Γ

(
s

d
+

2

d

)
. . .Γ

(
s

d
+
d

d

) ∣∣∣∣∣∣∣∣
ω1

0 ω2
0 . . . ωd0

ω1
1 ω2

1 . . . ωd1
...

...
. . .

...
ω1
d−1 ω2

d−1 . . . ωdd−1

∣∣∣∣∣∣∣∣
= ω

d(d−1)
2

sd−
d
2 s(2π)

d−1
2 Γ(s)dd

= d
d
2 (2π)

d−1
2 sω

d(d−1)
2

s Γ(s)

=
(2πd)

d
2

√
2π

ω
d(d−1)

2
ssΓ(s)

where we have used Gauss multiplication formula in the second line (that is in fact
due to Euler and not to Gauss, see [1]) with z = s/d,

Γ(z).Γ

(
z +

1

d

)
. . .Γ

(
z +

d− 1

d

)
= (2π)

d−1
2 d

1
2
−dzΓ(dz) .

and that the determinant in the fourth line is equal to (−1)d−1Vd where Vd is the
Vandermonde determinant computed previously.

�

Proof of Theorem 5.1. Consider the entire function of several complex variables
∆(s|a1, a2, . . . , ad−1) on the variables (a1, a2, . . . , ad−1). Observe that Corollary 4.4
proves that each integral ∫ +∞.ωk

0

ts+n−1eP0(t) dt ,

is a linear combination with coefficients that are polynomial on s and the (ak) of the
integrals Ωk(s) for k = 0, 1, . . . , d − 1, Therefore, differentiating column by column,
we observe that for each k = 0, 1, . . . , d− 1, we have

∂ak∆ = Qk ∆
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where Qk is a polynomial on s and the (ak). We conclude that the logarithmic
derivative of ∆ with respect to each variable ak is a universal polynomial on the
variables s and (ak). This gives the existence of the universal polynomial Υd such
that

∆(s|a1, a2, . . . , ad−1) = c(s).eΥd(s;a1,a2,...,ad−1) ,

with c(s).eΥd(s;0,0,...,0) = ∆(s|0, . . . , 0) ∈ C. Then if we define Πd(s, a1, . . . , ad−1) =
Υd(s; a1, a2, . . . , ad−1)−Υd(s; 0, 0, . . . , 0) we get the result

∆(s|a1, a2, . . . , ad−1) = ∆(s|0, . . . , 0)eΠd(s,a1,...,ad−1)

�

Corollary 5.5. The functions Ω0, . . . ,Ωd−1 do not have a common zero in C− N−.

Proof. Otherwise, if s0 ∈ C − N− is a common zero, then s0 + 1 ∈ C − N∗− and the
functional equation shows that the non-zero vector (1, αd−1, . . . , α1) is in the kernel
of the matrix [Ωkl(s0 + 1)], which contradicts that it has non-zero determinant by
Theorem 5.1. �

Observe that this simultaneously non-vanishing result relies on the fact that Euler
Gamma function has no zeros. This is something that was explained to be a “mini-
Riemann hypothesis” in [17], and was the subject of correspondence between Hermite
and Stieltjes [15]. Although used in the proof, the non-vanishing of Euler Gamma
function is a particular case of this general result for Omega functions.

Corollary 5.6. The functions Ω0, . . . ,Ωd−1 are C-linearly independent.

Proof. Otherwise there will be a non-trivial null linear combination of the rows of the
matrix [Ωkl] and the determinant will be zero. �

6. Solutions of the functional equation.

Observe that the functional equation (1) reduces to the functional equation (2) by
dividing the equation by αd that is assumed to be non-zero. We can make a first
observation that the space of solutions of the functional equation (2) is an infinite
dimensional vector space.

Proposition 6.1. The space of meromorphic solutions f of the functional equation

(4) f(s+ d) + αd−1f(s+ d− 1) + . . .+ α1f(s+ 1) = s f(s)

is an infinite dimensional vector space.



16 R. PÉREZ-MARCO

Proof. The functional equation is linear and there are non-zero solutions (the Ωk

functions). Given a non-zero meromorphic solution f(s), we can construct an infinite
number of linear independent solutions

g(s) = e2πinsf(s)

where n ∈ Z is any integer. �

If we restrict to solutions with a controlled growth, the situation the space of
solutions is finite dimensional.

Definition 6.2. We consider the C-vector space V of meromorphic functions f sat-
isfying the functional equation (2) and the estimate in the vertical strip S1,d = {1 ≤
Re s ≤ d}, for s ∈ S1,d,

(5) |f(s)| ≤ Ce−c Im s

for some constant 0 ≤ c < 2π.

It is clear that the space V is a subspace of the vector space of general solutions
(without a prescribed growth condition). We prove first that V is non-empty by
proving the estimates for the functions Ωk for k = 0, 1, . . . d− 1.

Proposition 6.3. For k = 0, 1, . . . , d − 1, for any strip Sa,b = {a ≤ Re s ≤ b} with
0 < a < b, there exists a constant C = C(a, b, P0) > 0, depending only on a, b > 0
and the polynomial P0, such that for s ∈ Sa,b, we have

|Ωk(s)| ≤ Ce−
2πk
d

Im s

Obviously we can take a = 1 and b = d and since 0 ≤ c = 2πk
d
< 2π we get that Ωk

satisfies the estimate (5).

Proof. We make the change of variables t = ωku

Ωk(s) =

∫ +∞.ωk

0

ts−1eP0(t) dt

= ωsk

∫ +∞

0

us−1e−
1
d
ud(1+O(u−1)) du

= e2πi k
d
s

∫ +∞

0

us−1e−
1
d
ud(1+O(u−1)) du
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so, we get for 0 < a ≤ Re s ≤ b

|Ωk(s)| ≤ e−2π k
d

Im s(1 + C1)

∫ +∞

0

uRe s−1e−
1
d
ud du

≤ e−2π k
d

Im s(1 + C1)dRe s/dΓ

(
Re s

d

)
≤ Ce−

2πk
d

Im s

where C,C1 > 0 are constants depending only on a, b > 0 and P0. �

The growth condition on the strip S(1, d) and the functional equation implies a
control of f in the halph plane {Re s ≥ 1}. More precisely, we have

Proposition 6.4. Let f ∈ V. Then f there exists constants C0, τ > 0 such that for
Re s ≥ 1

|f(s)| ≤ C0e
τ |s| Γ

(
Re s

d

)
Proof. More precisely, we prove that for Re s ≥ 1

|f(s)| ≤ C0

∣∣d2 s
dΓ(s/d)

∣∣ ≤ C0d
2Re s

d Γ

(
Re s

d

)
The functional equation gives, for Re s ≥ s0, for s0 > 0 large enough,

|f(s+ d)| ≤ d |sf(s)|
We can take the constant C0 > 0 large enough to have, for Re s ≤ s0,

f(s)| ≤ C0

∣∣d2 s
dΓ(s/d)

∣∣
then

|f(s+ d)| ≤ d|s|C0

∣∣d2 s
dΓ(s/d)

∣∣ = C0

∣∣∣d2 s+d
d
s

d
Γ(s/d)

∣∣∣
≤ C0

∣∣∣∣d2 s+d
d Γ

(
s+ d

d

)∣∣∣∣
Thus the estimate holds for Re s ≥ s0 + d and by induction for Re s ≥ so + kd for all
k ≥ 1. �

Now we prove the main Theorem:

Theorem 6.5. The space of solutions V is a finite dimensional vector space generated
by the basis (Ωk)0≤k≤d−1.

We recall Carlson’s Theorem [8]:
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Theorem 6.6 (Carlson, 1914). Let C+ = {s ∈ C; Re s > 0} and f : C+ → C
be a holomorphic function extending continuously to C+. We assume that f is of
exponential type, that is, there is C, τ > 0 such that for all s ∈ C+,

|f(s)| ≤ Ceτ |s|

We assume that on the imaginary axes we have a more precise control, for y ∈ R,

|f(iy)| ≤ Cec|y|

for some constant c < π.

If f(n) = 0 for all n ∈ N, then f is identically 0.

We use Carlson’s Theorem in the half plane {Re s > 1} to prove the main Theorem.

Proof. We consider a meromorphic solution f(s) of the functional equation and satis-
fying the estimate (5). The matrix [Ωkl(1)] being invertible, we have a linear combi-
nation g(s) = c0Ω0(s) + . . .+ cd−1Ωd−1(s) with c0, . . . , cd−1 ∈ C such that g(l) = f(l)
for l = 1, 2, . . . , d. Since g satisfies also the functional equation, we get by induction
using the functional equation that f and g take the same values at all the positive
integers s ∈ N∗. So the function f − g vanish at all positive integers and satisfies the
estimate (5). Therefore, the function h(s) = e−iπs(f(s) − g(s))/Γ(s/d) satisfies on
Re s = 1 (recall that Γ is bounded on vertical strips),

|h(s)| ≤ Ce−(c−π) Im s

with 0 ≤ c < 2π. Therefore we have on Re s = 1

|h(s)| ≤ Cec
′| Im s|

with 0 ≤ c′ < π.

Also using Proposition 6.4 the function h has exponential growth in the right half
plane {Re s ≥ 1}. Therefore using Carlson’s Theorem we conclude that h is identically
0, thus f(s) = g(s) for all values s in this half plane, hence in C. �

We have proved that the vector space generated by Omega functions can be charac-
terized by the functional equation (2) and the growth property (5). This generalizes
to Omega functions Wielandt’s characterization for Euler Gamma function (1939,
[23], [20], [21]).

We also observe that Omega functions provide the general solutions of the func-
tional equation (2) with estimates (5) since given such a functional equations with
coefficients (αl) we can build the coefficients al = −l−1αl, then the polynomial P0

and the Omega functions (Ωk)0≤k≤d−1 that form a basis for the space of solutions.
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It is also easy to see that we can replace the (5) by an estimate of the form, for
s ∈ S(1, b),

|f(s)| ≤ Ce−c Im s

with 2πn ≤ c < 2π(n + 1) for an integer n ∈ Z. Then the space of solutions is also
finite dimensional as the map f(s) 7→ e−2πinsf(s) provides an isomorphism of the
space of solutions with V.

The structure of the space of solutions is interesting. The space of holomorphic
solutions is a subspace of dimension d− 1.

Proposition 6.7. The subspace of holomorphic solutions in V is a subspace of di-
mension d− 1 generated by the entire functions

Ωl(s)− Ω0(s) =

∫
γ0l

ts−1eP0(t) dt

Proof. As observed before, the functions Ωl(s) − Ω0(s) are entire functions and are
linearly independent. �

Some of the results in [7] can be generalized. In particular the Integrability criterion
and Abel-like Theorem (Theorems 4.2 and 4.3). This will be studied in a separate
article. K. Biswas has extended results from [7] to curves of higher genus [4]. It is
interesting to speculate on the extension of the results for Omega functions in higher
genus.
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le chanp complexe., Institut National Polytechnique de Grenoble, HAL tel-00332857, 1988.
[3] BIRKHOFF, K.; General theory of linear difference equations, Trans. Am. Math. Soc., 12, p.243-

284, 1911.
[4] BISWAS, K.; Algebraic de Rham cohomology of log-Riemann surfaces of finite type,

Arxiv:1602.08219, 2015.
[5] DE BRUIJN, N.G.; Asymptotic methods in analysis, 3rd ed., Dover, New York, 1970.

[6] BISWAS, K.; PÉREZ-MARCO, R.; Log-Riemann surfaces, Arxiv:1512.03776, 2015.
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