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Abstract. We compute and compare profitabilities of stubborn mining strategies
that are variations of selfish mining. These are deviant mining strategies violating
Bitcoin’s network protocol rules. We apply the foundational set-up from our previ-
ous companion article on the profitability of selfish mining, and the new martingale
techniques to get a closed-form computation for the revenue ratio, which is the
correct benchmark for profitability. Catalan numbers and Catalan distributions ap-
pear in the closed-form computations. This marks the first appearance of Catalan
numbers in the Mathematics of the Bitcoin protocol.

1. Introduction

In our previous article [3] we gave a rigorous foundation for the profitability anal-
ysis of alternative mining strategies in the Bitcoin network [6]. As for games with
repetition, it depends on the proper analysis of the revenue and the duration over
attack cycles. More precisely, we prove that the expected revenue E[R] and expected
duration E[τ ] over an attack cycle give the “Revenue Ratio”

Γ =
E[R]

E[τ ]

This is the correct benchmark for the profitability of the strategy.

This analysis was applied to the “Selfish Mining” strategy from [1]. We also in-
troduced in [3] martingale tools that yield, by the application of Doob’s Stopping
Time Theorem, the expected duration of the attack cycles. With the Markov model
(used in [1] and other articles in the literature) one cannot compute the expected
cycle duration E[τ ]. As we prove in [3], it is only after a difficulty adjustment that
Selfish Mining or any other “block withholding strategy” can become profitable. To
compute the expected time of the next difficulty adjustment it is necessary to be able
to compute the expected duration of cyles E[τ ].
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In this article we apply again these new powerful techniques to some of the “Stub-
born Mining” strategies presented in [7]. So far only a numerical Monte-Carlo analysis
seems to be known for these strategies. For the “Lead-Stubborn Mining” (LSM) and
the “Equal Fork Stubborn Mining” (EFSM) strategies we compute the “Revenue
Ratios”.

We fix some notations. Let b > 0 be the block reward, and τ0 the average inter-block
validation time for the total network (around 10 minutes for the Bitcoin network).
We denote by q the relative hashing power of the attacker. Let γ be the fraction
of the honest network that the attacker attracts to mine on top of his fork. For a
miner that after a difficulty adjustment has a Revenue Ratio Γ̃ we define his apparent
hashrate q̃ by

q̃ =
Γ̃ · τ0
b

.

The apparent hashrate of a miner can also be defined after a difficulty adjustment as
the average proportion of blocks mined by the miner in the official blockchain. We
make use of

C(x) =
1−
√

1− 4x

2x
=

2

1 +
√

1− 4x
=

+∞∑
n=0

Cnx
n

which is the generating series for Catalan numbers (Cn)n≥0 (see Appendix A).

Theorem 1 (Lead-Stubborn mining). The revenue ratio of the “Lead-stubborn min-
ing” strategy is

Γ(LSM) =

(
q − pq(p− q)(1− γ)

γ
· 1− p(1− γ)C((1− γ)pq)

p+ q(p− q)

)
b

τ0
.

After a difficulty adjustment, the apparent hashrate q̃LSM of the stubborn miner is

q̃LSM = q · p+ pq − q2

p+ pq − q
− pq(p− q)(1− γ)

γ
· 1− p(1− γ)C((1− γ)pq)

p+ pq − q
.

Theorem 2 (Equal Fork Stubborn mining). The revenue ratio of the “Equal Fork
Stubborn mining” strategy is

Γ(EFSM) =

(
q −

(
1− γ
γ

)
(p− q) (1− pC((1− γ)pq))

)
b

τ0
.

After a difficulty adjustment, the apparent hashrate q̃EFSM of the miner is

q̃EFSM =
q

p
− (1− γ)(p− q)

γp
(1− pC((1− γ)pq)) .

We compare these strategies to “Honest Mining” (HM) and “Selfish Mining” (SM)
and we determine in the (q, γ) parameter plane which one performs the best.
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2. Generalities.

2.1. Profitability. In [3], we studied the profitability of integrable repetition games
which are composed of cycles, with a finite expected duration E[τ ] < +∞. The
stopping time τ is also called a strategy. Mining strategies are repetition games, and
sound mining strategies are integrable. For the comparison of profitability of two
strategies we only need to compare the Revenue Ratio of each one (see [3])

Γ =
E[R]

E[τ ]

where R is the revenue over a cycle.

The number of blocks N ′(t) and N(t) validated by the attacker and honest miners
respectively are independent Poisson processes (see [8] for background on Poisson
Process). The attack cycle ends when the honest miners catch-up the attackers. The
number of validated blocks in a cycle in the official blockchain is N(τ) ∨ N ′(τ). We
denote by T1, T2, . . . (resp. T ′1, T

′
2, . . .) the inter-block validation time for the honest

miners (resp. attackers).

2.2. Profitability after a difficulty adjustment. The following Theorem describes
how the Revenue Ratio changes after a difficulty adjustment (see [3]).

Theorem 2.1. After a difficulty adjustment the new Revenue Ratio Γ̃ is given by

Γ̃ = Γ · δ ,
where

δ =
E[τ ]

τ0 · E[N(τ) ∨N ′(τ)]
.

Proof. After a difficulty adjustment, the expected revenue is the same, E[R̃] = E[R],
but the expected duration of a cycle is E[τ̃ ] = τ0 · E[N(τ) ∨ N ′(τ)]. So, the new
revenue ratio is Γ̃(τ) = Γ(τ) · δ. �

2.3. Description of Stubborn strategies. We describe first the Selfish Mining
(SM) strategy. Let ∆ ≥ 0 be the advance of the secret fork over the public blockchain.
When the honest miners validate a block then the selfish miner does the following:

• If ∆ = 0, he mines normally.
• If ∆ = 1 then he broadcasts his block. A competition follows.
• If ∆ = 2 then he broadcasts his secret fork.
• If ∆ ≥ 3 then he broadcasts blocks from his secret fork to match the length

of the public blockchain.
• Except in the first two cases, he keeps working on top of his secret fork.
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For the Lead-Stubborn Mining (LSM) strategy, with ∆ ≥ 2 he proceeds as in the
SM strategy for ∆ ≥ 3 and with ∆ = 1 he releases all his secret fork and mines
normally on top of it.

In other words, a stubborn miner following the Lead Stuborn Mining strategy
(LSM) waits until the honest miners catch up with him to broadcast all of his secret
fork. Then, when this happens, there is a final round. Notice that a selfish miner
following SM strategy does not take the risk of being caught by the honest miners.
If his advance shrinks to 1, then he broadcasts his fork.

For the Equal Fork Stubborn Mining (EFSM) strategy, everything is equal to LSM,
but for ∆ = 1 if he finds a new block he does not reveal it.

In other words a stubborn miner following the Equal Fork Stubborn Mining strategy
(EFSM) waits for the official blockchain to overcome his secret fork by one block. He
only gives up when the length of the official blockchain equals the length of his secret
fork plus one. In particular, the last round of the attack cycle of the strategy is always
lost by such a miner. His reward comes only when blocks of the official blockchain
are built by honest miners on top of one of his blocks. Indeed, the rogue miner never
adds new blocks to the official blockchain. He only tries to replace old blocks mined
by the honest miners with some of his blocks.

3. Lead-Stubborn Mining strategy

3.1. Stopping time. For each mining strategy we consider the stopping time asso-
ciated with an attack cycle. Let τLSM be the stopping time of the “Lead-Stubborn”
Mining strategy.

Proposition 3.1. We have

τLSM = τ + (TN(τ)+1 ∧ T ′N(τ)+1) · 1T ′
1≤T1

with
τ = inf{t ≥ T1;N(t) = N ′(t) + 1T1<T ′

1
} .

In other words, either T1 < T ′1 and the attack cycle ends at T1 or T ′1 ≤ T1 and the
attack cycle ends up a final round after the honest miner catch up with the attacker.

We calculate the expected duration time of an attack cycle.

Lemma 3.2. We have
E[τ ] =

p

p− q
τ0

and

E[τLSM ] = E[τ ] + qτ0 = τ0 + 2qE[τ ] =
p+ pq − q2

p− q
τ0 .
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Proof. By the strong Markov property (see [8]), we have

E[τ ] = E[τ |T1 < T ′1] · P[T1 < T ′1] + E[τ |T1 > T ′1] · P[T1 > T ′1]

= E[T1|T1 < T ′1] · P[T1 < T ′1] + E[T ′1 + τ̃ |T1 > T ′1] · P[T1 > T ′1]

= E[T1 ∧ T ′1] + E[τ̃ ] · q

where τ̃ = inf{t; Ñ(t) = Ñ ′(t) + 1} with Ñ(t) = N(t + T ′1) − N(T ′1) and Ñ ′(t) =
N ′(t + T ′1) − N ′(T ′1). Both Ñ and Ñ ′ are Poisson processes with parameters α and
α′. Thus, from Appendix 2 on Poisson Games, we have

E[τ̃ ] =
τ0

p− q
and

E[τ ] = τ0 +
q

p− q
τ0 =

p

p− q
τ0

If T1 < T ′1 then τLSM = τ = T1. Otherwise (and this event occurs with probability
q), once the honest miners catch-up with the attacker at τ -time, there is a final
round. �

Note that if T1 < T ′1 then, τLSM = τ = T1 and N ′(τ) = 0. Otherwise, T ′1 ≤ T1 and
N ′(τ) > 0.

3.2. Revenue Ratio. For n ≥ 0, we denote by Cn the n-th Catalan number

Cn =
1

2n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
.

We present in Appendix A the combinatorial properties of Catalan numbers used in
this article, and the definition of (p, q)-Catalan distributions.

The link between Catalan numbers and Bitcoin appears in the following lemma.

Lemma 3.3. The random variable N ′(τ) follows the second type (p, q)-Catalan dis-
tribution, more precisely, we have P[N ′(τ) = 0] = p and for n ∈ N∗,

P[N ′(τ) = n] = Cn−1(pq)
n .

Proof. For n = 0 we have P[N ′(τ) = 0] = p. Consider n ≥ 1. The event {N ′(τ) = n}
is the disjoint union of sub-events of the form {Σ1 < . . . < Σ2n+1} where for each Σi

there is j such that Σi ∈ {Sj, S ′j}, and Σ2n+1 = S ′n+1. The sequence of points with
coordinates (N(Σi), N

′(Σi)) form a path starting at (0, 0) and ending at (n, n) which
stays strictly above the first bisector {x = y} in the Euclidean plane. For example,
with n = 3,

{N ′(τ) = 3} = {S ′1 < S ′2 < S ′3 < S1 < S2 < S3 < S ′4}∪{S ′1 < S ′2 < S1 < S ′3 < S2 < S3 < S ′4}
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The number of such paths is Cn−1 (see Proposition A.4 in Appendix A). Moreover,
the number of Sj (resp. S ′j) in the sequence of (Σk)1≤k≤2n is equal to n. �

From the expected value computation of a second type (p, q)-Catalan random vari-
able (Proposition A.2 in Appendix A) we get:

Corollary 3.4. We have

E[N ′(τ)] =
pq

p− q
.

Remark 3.5. An alternative probabilistic proof follows from Doob’s Theorem: We
have E[N ′(τ ∧ t)] = α′E[τ ∧ t] for t > 0 and we let t→ +∞ (similar to Theorem C.1
in Appendix C).

Next we compute the expected revenue per attack cycle.

Proposition 3.6. Let RLSM be the revenue over an attack cycle. We have

E[RLSM ] =

(
p

p− q
+ q

)
qb− f(γ)b

with

f(γ) =
pq(1− γ)

γ
· (1− p(1− γ)C((1− γ)pq)) .

Proof. Note that for n > 0,

P[RLSM = nb|N ′(τ) = n] = γp

P[RLSM = (n+ 1)b|N ′(τ) = n] = q

P[RLSM < nb|N ′(τ) = n] = (1− γ)p

Moreover, during an attack cycle, each time the honest miners find a block (except
for the first block which is mined on a common root), there is a probability γ that it is
found by a miner mining on top of the attacker’s fork. IfN ′(τ) = n and R(τLSM) < nb,
this can happen at most n − 1 times over an attack cycle. So, by Lemma B.1 from
Appendix B,

E[RLSM |(N ′(τ) = n) ∧ (RLSM < nb)] =

(
n− 1− (1− γ)n

γ

)
b
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Therefore, by conditioning on τ and using Lemma 3.2, Lemma 3.3 and Corollary 3.4,
we get

E[RLSM ]

b
=
∑
n>0

E
[
RLSM

b

∣∣∣∣N ′(τ) = n

]
· P[N ′(τ) = n]

=
∑
n>0

((
n− 1− (1− γ)n

γ

)
· (1− γ)p+ nγp+ (n+ 1)q

)
· P[N ′(τ) = n]

=
∑
n>0

(
n+ 1− p

γ
+

(1− γ)n+1

γ
p

)
· P[N ′(τ) = n]

= E[N ′(τ)] +

(
1− p

γ

)
(1− P[N ′(τ) = 0]) +

p2q(1− γ)2

γ

∑
n>0

Cn−1((1− γ)pq)n−1

=
pq

p− q
+

(
1− p

γ

)
q +

p2q(1− γ)2

γ
C((1− γ)pq)

=

(
p

p− q
+ q

)
q − pq

γ
· (1− γ − p(1− γ)2C((1− γ)pq))

�

Theorem 3.7. The revenue ratio of the Lead Stubborn strategy is

Γ(LSM) =

(
q − pq(p− q)(1− γ)

γ
· 1− p(1− γ)C((1− γ)pq)

p+ q(p− q)

)
b

τ0
.

Proof. We have Γ(LSM) = E[RLSM ]/E[τLSM ]. Use Lemma 3.2 and Proposition 3.6.
�

3.3. Difficulty adjustment. We compute now the revenue ratio and the apparent
hashrate after a difficulty adjustment.

Lemma 3.8. We have E[N(τLSM) ∨N ′(τLSM)] = E[τLSM ]
2τ0

+ 1
2
.

Proof. For all t > 0, τLSM ∧ t is a bounded stopping time. So, by proceeding as in
Appendix 2, Doob’s theorem yields E[N(τLSM ∧ t)] = αE[τLSM ∧ t] and E[N ′(τLSM ∧
t)] = α′E[τLSM ∧ t]. Taking limits when t → 0, the monotone convergence theorem
yields E[N(τLSM)] = αE[τLSM ] and E[N ′(τLSM)] = α′E[τLSM ]. Now, we observe
that at the end of an attack cycle, we have necessarily |N(τLSM) − N ′(τLSM)| = 1.

So, N(τLSM) ∨ N ′(τLSM) = N(τLSM )+N ′(τLSM )+1
2

. Hence we get the result by taking
expected values on both sides of the last equality. �

The following proposition is now a consequence of Theorem 2.1.
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Proposition 3.9. The parameter δLSM updating the difficulty is

δLSM =
p+ pq − q2

p+ pq − q
> 1 .

Proof. Using Theorem 2.1, Lemma 3.2 and Lemma 3.8, we have

δLSM =

E[τLSM ]
τ0

1
2

(
E[τLSM ]

τ0
+ 1
) =

E[τ ]
τ0

+ q

1 + q E[τ ]
τ0

=

p
p−q + q

1 + pq
p−q

=
p+ pq − q2

p+ pq − q
> 1

�

3.4. Apparent hashrate after a difficulty adjustment. From Proposition 3.9,
we can deduce the hashrate of the strategy on the long term.

Corollary 3.10. After a difficulty adjustment, the apparent hashrate q̃LSM is

q̃LSM = q · p+ pq − q2

p+ pq − q
− pq(p− q)(1− γ)

γ
· 1− p(1− γ)C((1− γ)pq)

p+ pq − q

Proof. By Theorem 2.1, we have:

Γ̃(LSM) = Γ(LSM)δLSM

=

(
q − pq(p− q)(1− γ)

γ
· 1− p(1− γ)C((1− γ)pq)

p+ q(p− q)

)
b

τ0
· p+ pq − q2

p+ pq − q

=

(
q · p+ pq − q2

p+ pq − q
− pq(p− q)(1− γ)

γ
· 1− p(1− γ)C((1− γ)pq)

p+ pq − q

)
b

τ0

�

4. Equal Fork Stubborn Mining strategy

4.1. Stopping time. Let τEFSM be the stopping time of an attack cycle for the
Equal Fork Stubborn Mining strategy.

Proposition 4.1. We have

τEFSM = inf{t ≥ 0;N(t) = N ′(t) + 1} .

Proof. If T1 < T ′1, then we have τEFSM = τ = T1. Otherwise, we wait for the honest
miners to catch up with the stubborn miner and win the last round. �

From Theorem C.1 in Appendix C we get:
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Lemma 4.2. We have

E[τEFSM ] =
τ0

p− q
.

4.2. Revenue ratio. We denote by REFSM the revenue of the stubborn miner after
an attack cycle.

Lemma 4.3. The random variable N ′(τEFSM) is a (p, q)-Catalan distribution, i.e.
for n ≥ 0, we have

P[N ′(τEFSM) = n] = Cn p(pq)
n .

Proof. The event {N ′(τEFSM) = n} can be decomposed as a disjoint union of sub-
events of the form {Σ1 < . . . < Σ2n+1 < Σ2n+2} where for each Σi there is j such that
Σi ∈ {Sj, S ′j}, and Σ2n+1 = Sn+1 and Σ2n+2 = S ′n+1. The sequence of points with
coordinates (N(Σi), N

′(Σi)) for i ∈ {1, . . . , 2n+ 1} form a path starting at (0, 0) and
ending at (n + 1, n) which never crosses the first diagonal {x = y} in the Euclidean
plane before reaching the point (n+ 1, n). For example,

{N ′(ξ) = 2} = {S ′1 < S ′2 < S1 < S2 < S3 < S ′3} ∪ {S ′1 < S1 < S ′2 < S2 < S3 < S ′3}

The number of such paths is Cn (see Proposition A.4 from Appendix A). Moreover,
the number of Sj (resp. S ′j) in the sequence of (Σk)1≤k≤2n+1 is equal to n + 1 (resp.
n). Hence we get the result. �

From the expected value computation of a (p, q)-Catalan random variable (Propo-
sition A.2 in Appendix A) we get:

Corollary 4.4. We have

E[N ′(τEFSM)] =
q

p− q
.

We compute now E[REFSM ].

Proposition 4.5. We have

E[REFSM ] =
q

p− q
b− g(γ)b

with

g(γ) =
1− γ
γ

(1− pC((1− γ)pq)) .

Proof. By definition of τEFSM , if we know that N ′(τEFSM) = n, then the honest
miners have mined n + 1 blocks at time t = τEFSM . Except for the first block, the
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probability that the block validated by the honest miners is mined on a fork created
by the stubborn miner is γ. So, by Lemma B.1 from Appendix B,

E
[
REFSM

b

∣∣∣∣N ′(τEFSM) = n

]
= n+ 1− 1− (1− γ)n+1

γ
.

Therefore, we have

E[REFSM ]

b
=
∑
n≥0

E
[
REFSM

b

∣∣∣∣N ′(τEFSM) = n

]
· P[N ′(τEFSM) = n]

=
∑
n≥0

(
n+ 1− 1− (1− γ)n+1

γ

)
· P[N ′(τEFSM) = n]

=
∑
n≥0

nP[N ′(τEFSM) = n] + 1− γ − 1

γ

∑
n≥0

P[N ′(τEFSM) = n] +
1− γ
γ

p
∑
n≥0

((1− γ)pq)nCn

= E[N ′(τEFSM)]− 1− γ
γ

+
1− γ
γ

pC((1− γ)pq)

=
q

p− q
− 1− γ

γ
(1− pC((1− γ)pq)) .

�

Theorem 4.6. The revenue ratio of the “Equal Fork Stubborn mining” strategy is

Γ(EFSM) =

(
q − 1− γ

γ
(p− q) (1− pC((1− γ)pq))

)
b

τ0
.

Proof. Use Lemma 4.2 and Proposition 4.5. �

4.3. Difficulty adjustment.

Proposition 4.7. The parameter δEFSM updating the difficulty is

δEFSM =
1

p
> 1 .

Proof. At the end of an attack cycle, the number of new blocks in the official blockchain
is N(τEFSM) and E[N(τEFSM)] = αE[τEFSM ]. Therefore we have

δEFSM =

E[τEFSM ]
τ0

E[N(τEFSM)]
=

1

p
.

�
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4.4. Apparent hashrate after a difficulty adjustment. It’s now easy to get the
long term apparent hashrate of the EFSM strategy.

Corollary 4.8. After a difficulty adjustment, the apparent hashrate is

q̃EFSM =
q

p
− (1− γ)(p− q)

γp
(1− pC((1− γ)pq)) .

Proof. Use Theorem 2.1 and Proposition 4.7. �

5. Comparison of strategies.

For different values of the parameters q and γ, we can compare the profitability of
the different strategies after a difficulty adjustment by comparing the revenue ratios
after a difficulty adjustment, or, equivalently, their apparent hashrate.

We consider the four strategies:

• Honest Mining (HM).
• Selfish Mining (SM).
• Lead-Stubborn Mining (LSM).
• Equal Fork Stubborn mining (EFSM).

We color the region (q, γ) ∈ [0, 0.5] × [0, 1] according to which strategy is more
profitable, and we obtain Figure 1.

Figure 1. Profitability. From left to right: HM, SM, LSM, EFSM.
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From left to right, the best strategy is successively HM, SM, LSM and EFSM. Note
that, the LSM strategy is superior only on a thin domain.

A similar picture is numerically computed by Montecarlo simulations in [7] where
only a numerical study is carried out. See Figure 2 (disregard regions R4 to R7 that
correspond to “Trail Tj Stubborn Mining” strategies that are studied in [4]).

Figure 2. Figure from [7].

Regions R1, R2 and R3 correspond respectively to HM, SM and EFSM. We notice
the absence of the region corresponding to LSM in between R2 and R3. Apparently
the numerical methods did not detect it (also it is noticeable how in their figure the
boundary between R2 and R3 is more blurred than other boundaries, as for example
the one separating R1 and R2).

Appendix A. Catalan distributions.

For n ≥ 0, we denote by Cn the n-th Catalan number

Cn =
1

2n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
.
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We refer to [5] for background and combinatorial properties of Catalan numbers.
Their generating series is

C(x) =
+∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
=

2

1 +
√

1− 4x
.

Observe that
√

1− 4pq = p− q and C(pq) = 1/p, which justifies the following defini-
tion:

Definition A.1 (Catalan distributions). Let 1/2 < p < 1 and q = 1− p. A random
variable X taking values in N is a (p, q)-Catalan random variable if it follows the
(p, q)-Catalan distribution, that is, for n ≥ 0

P[X = n] = Cnp(pq)
n .

The second type (p, q)-Catalan distribution is defined by P[X = 0] = p and for n ≥ 1,

P[X = n] = Cn−1(pq)
n .

Proposition A.2. The expected value of a (p, q)-Catalan random variable X is

E[X] =
q

p− q
If X is a second type (p, q)-Catalan random variable then

E[X] =
pq

p− q
.

Lemma A.3. We have
d

dx
(xC(x))

∣∣∣∣
x=pq

=
1

p− q
.

Proof of the Lemma. We have d
dx

(xC(x)) = (1− 4x)−1/2 and the result follows. �

Proof of the Proposition. For the (p, q)-Catalan random variable we have

E[X] =
+∞∑
n=0

n.P[X = n] =
+∞∑
n=0

n.Cnp(pq)
n

= p

+∞∑
n=0

Cn(n+ 1)(pq)n − p
+∞∑
n=0

Cn(pq)n

= p
d

dx
(xC(x))

∣∣∣∣
x=pq

− pC(pq)

=
p

p− q
− 1 =

q

p− q
.
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For the second type (p, q)-Catalan random variable we have

E[X] =
+∞∑
n=0

n.P[X = n] =
+∞∑
n=1

n.Cn−1(pq)
n

=
+∞∑
m=0

Cm(m+ 1)(pq)m = pq
d

dx
(xC(x))

∣∣∣∣
x=pq

=
pq

p− q
.

�

The main geometric combinatorial property of Catalan numbers used in this article
is the following well known enumeration (see section 9 of [5] p.259)

Proposition A.4. The number of paths in N2 going up and right at each step that
start at (0, 0) and end-up at (n+ 1, n+ 1) without touching the first diagonal is Cn.

Appendix B. Biased coin tossing.

The following lemma is useful for both LSM and EFSM strategies.

Lemma B.1. Let 0 < γ < 1 and n ∈ N. Let ω ∈ {0, 1}n denotes the outcome of
tossing a biased coin n times with P[ωi = 1] = γ for i ∈ {1, . . . n}. Let Z(ω) =

sup{i ∈ {1, . . . n};ωi = 1} ∪ {0}. Then we have E[Z] = n+ 1− 1−(1−γ)n+1

γ
.

Proof. Note that n+ 1−Z = inf{i ∈ {1, . . . , n};ωn+1−i = 1} ∪ {n+ 1} = Z̃ ∧ (n+ 1)
where Z̃ is the number of trials (stopping time) before getting ”Heads” when a coin
is flipped repeatedly with a probability γ of getting ”Heads” each time. We have

E[Z̃ ∧ (n+ 1)] =
n∑
i=1

iP[Z̃ = i] + (n+ 1)P[Z̃ > n]

=
n∑
i=1

i(P[Z̃ > i− 1]− P[Z̃ > i]) + (n+ 1)P[Z̃ > n]

=
n∑
i=0

P[Z̃ > i] =
n∑
i=0

(1− γ)i =
1− (1− γ)n+1

γ

�
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Appendix C. Poisson Games.

Theorem C.1. Let N(t) (resp. N ′(t)) be a Poisson process with parameter α (resp.
α′). Let τ be the stopping time defined by τ = inf{t ∈ R+;N(t) = N ′(t) + 1}. If
α > α′ then τ ∈ L1, N(τ) ∈ L1,E[τ ] = 1

α−α′ and E[N(τ)] = α
α−α′ .

Proof. The proof is similar to the proof of Theorem 4.4 from [2]. For t ≥ 0, the stop-
ping time τ ∧ t is bounded. So, by applying Doob’s Theorem ([9]) to the martingales
N(t)− αt and N ′(t)− α′t, we get

αE[τ ∧ t] = E[N(τ ∧ t)]
= E[N(τ ∧ t)|τ ≤ t]P[τ ≤ t] + E[N(τ ∧ t)|τ > t]P[τ > t]

= E[N(τ)|τ ≤ t]P[τ ≤ t] + E[N(t)|τ > t]P[τ > t]

= E[N ′(τ) + 1|τ ≤ t]P[τ ≤ t] + E[N(t)]P[τ > t]

= E[N ′(τ)|τ ≤ t]P[τ ≤ t] + αtP[τ > t] + P[τ ≤ t]

= E[N ′(τ ∧ t)|τ ≤ t]P[τ ≤ t] + E[N ′(τ ∧ t)|τ > t]P[τ > t]

− E[N ′(τ ∧ t)|τ > t]P[τ > t] + αtP[τ > t] + P[τ ≤ t]

= E[N ′(τ ∧ t)]− E[N ′(t)|τ > t]P[τ > t] + αtP[τ > t] + P[τ ≤ t]

= α′E[τ ∧ t]− α′tP[τ > t] + αtP[τ > t] + P[τ ≤ t]

So we have (α− α′)(E[τ ∧ t]− tP[τ > t]) = P[τ ≤ t] and

(α− α′)E[τ ∧ t|τ ≤ t]P[τ ≤ t] = (α− α′)(E[τ ∧ t]− tP[τ > t]) = P[τ ≤ t] .

Therefore,

E[τ1τ≤t] =
P[τ ≤ t]

α− α′
.

Making t→∞, by monotone convergence we have τ ∈ L1 and E[τ ] = 1
α−α′ . Moreover,

using Doob’s Theorem again, we have for t > 0,

E[N(τ)1τ≤t] = E[N(τ ∧ t)]− E[N(t)|τ > t]P[τ > t]

= E[τ ∧ t]− αtP[τ > t]

= αE[τ1τ≤t]

So, using the monotone convergence theorem again, we get E[N(τ)] = α
α−α′ �
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[3] C. Grunspan and R. Pérez-Marco. On profitability of Selfish Mining, ArXiv:1805.08281, 2018.
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