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Abstract. It has been known for some time that the Nakamoto consensus as im-
plemented in the Bitcoin protocol is not totally aligned with the individual interests
of the participants. More precisely, it has been shown that block withholding min-
ing strategies can exploit the difficulty adjustment algorithm of the protocol and
obtain an unfair advantage. However, we show that a modification of the difficulty
adjustment formula taking into account orphan blocks makes honest mining the
only optimal strategy. Surprinsingly, this is still true when orphan blocks are re-
warded with an amount smaller to the official block reward. This gives an incentive
to signal orphan blocks. The results are independent of the connectivity of the
attacker.

1. Introduction

Satoshi Nakamoto’s foundational article describes Bitcoin protocol [12]. Bitcoin is
an electronic currency and bitcoin transactions operate through a computer network.
This network is permissionless : anyone can freely enter or leave the network [3, 15].
Moreover, there is no central authority acting as a referee. The minting algorithm
is implemented in the protocol. Transactions are packed in chronologically ordered
blocks that form an unforgeable public ledger: the blockchain. Certain nodes of
the network, called miners, play a special role. They secure the blockchain through
intensive computation by a “proof of work”, a technique originally invented to fight
email spam and denial of service attacks. A miner creates a new block of transactions
to add to the blockchain by solving a cryptographic puzzle by brute force iterating a
simple algorithm. For this computational work he is rewarded by a coinbase reward
of newly minted bitcoins. This mechanism generates the Bitcoin monetary mass.

This article investigates mining strategies for Bitcoin. A mining strategy determines
each time where the miner should mine according to the history of the discovered
blocks. Most of the time he has the choice between mining on the last block of the
official blockchain or on top of a fork that he keeps secret. The strategy also specifies
whether the miner should make public any previously discovered blocks that he has
kept secret. Satoshi Nakamoto proposes mining always on top of the last block of the
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official blockchain, and always making public his discovered blocks. He thought that
this strategy called ”honest strategy” was the most profitable strategy. But, indeed,
other more profitable strategies are possible.

Mining is at the heart of Nakamoto’s consensus. Nakamoto’s consensus has the
remarkable feature that it is a probabilistic valid consensus in an open network,
whereas former known consensus only existed in closed systems [15]. In general,
when the miner sticks to a mining strategy, the evolution of the network from different
states follows the random discovery of blocks. The number of such states is countable.
A mining strategy gives a dynamical system in its associated Markov chain. The
strategy is repetitive: Regularly, and in finite time, the miner comes back the initial
state, i.e. to mine on the last block of the official blockchain which corresponds
to the state 0. The Markov chain is therefore recurrent [4]. This “state machine”
model is popular in the literature. Each transition on the Markov chain comes with
rewards earned by the miners, but these rewards are not immediately earned by the
miners but later (when the network returns to the initial state). Then it is possible to
calculate the profitability of a mining strategy. On the long run, when the difficulty
adjustment has stabilized, official blocks arrive on average every ten minutes, then
the profitability is proportional to the percentage of blocks mined by the miner in
the official blockchain (see Section 3.2 below). One can compute this proportion by
computing the stationary probability of the Markov chain, which only requires to
invert the transition matrix [5]. If one wishes to prove general optimality results that
hold for any mining strategy, such as the two results presented in this article, we need
to proceed differently. The main technique is the use of Martingale Theory. For this,
we extend the point of view of Satoshi Nakamoto when he tried to model the evolution
of the network when computing the probability of success of a double spend attack
using Poisson processes [12, 7, 6]. In this setup we are able to use Doob’s martingale
theorem. It is difficult to conceive a proof of these results without using Martingale
Theory and the authors do not know of an alternative proof.

The two general results presented are culminate part of the literature on deviant
mining strategies. These strategies have in common to be block withholding mining
where the miner does not always mine on the last block of the official blockchain and
times properly when to make his block findings public. After showing the existence
of such strategies and calculating their profitability, we look for the optimal strategy
highlighting a counter-intuitive phenomena: in some cases, the miner may have an
interest in mining against the whole network on a secret fork whose height is lower
than the height of the official blockchain (trailing mining) [1, 5, 11, 14]. Several
solutions were then put forward to limit the effectiveness of deviant strategies. Then,
it was understood that this was an attack on a weaknes of the Difficulty Adjustment
Algorithm (DAA) [8]. Some arguments were presented on how to change the DAA
taking into account the production of orphan blocks. Ethereum implemented this
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partially rewarding uncle blocks, before adopting a completely different consensus
mechanism in 2022 (Proof of Stake). The literature on the study of deviant mining
strategies has been abundant and the reader can consult [10] for a recent survey on
the subject. Several recent papers with numerical simulations have confirmed the
relevance of including the orphan block count in the DAA [18, 17]. The main result
of this article is to show that a modification of Bitcoin’s DAA including the count
of orphan blocks neutralizes block withholding attacks because they become non-
profitable. It is proved that we can even reward all orphan blocks and this ensures
that they are recorded in the blockchain data.

This article is self-contained. We introduce a very simple mining strategy (the “1+2
strategy” in Section 4) which shows in hte simplest way that the honest strategy is
not optimal under the usual DAA. We start in the next section reviewing the basics
of mining on Bitcoin, that can be skipped by the knowledgeable reader.

2. How Bitcoin works

2.1. Nodes. The Bitcoin network is a peer-to-peer network made up of thousands
of ”nodes” connected around the world, forming an irreducible and highly connected
graph. All nodes play or can play the same role and perform the same operations.
The nodes exchange information that consists of more or less complicated transactions
and blocks of validated transactions. The blockchain is a database that defines the
ledger of all confirmed transactions. The mempool is the set of all transactions in
waiting for a confirmation in a block. Each time a node receives a transaction, it
examines whether the transaction is legal, in the proper format, and checks that it
does not conflict with other transactions already in its mempool. When this is the
case, the transaction is added to its mempool and broadcasted to neighboring nodes.

2.2. Mining. Some of the nodes of the network perform a mining activity. A miner
is a particular node that seeks to build up a new block. By definition, a B block is a
set of data whose maximum size is about 2 Mega Bytes. It is formed by a reference
to an old block, a set of transactions drawn from the miner’s mempool, a creation
date, the mining difficulty ∆ and a parameter called ”nonce”. The goal is to obtain
a block B such the hash of its header is below some threshold:

(1) h(B) <
1

∆

where h is the SHA 256◦SHA 256 function where SHA 256 is the cryptographical hash
function, and ∆ is called the difficulty. If successful, the miner receives a reward as a
coinbase transaction. The reward decreases by half every four years (the “halving”).
The difficulty parameter ∆ is adjusted regularly. The current difficulty adjustment
algorithm allows blockwithholding attacks, i.e. the miner can obtain an advantage
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by withholding blocks and releasing them at the appropiate timing. This type of
attack exploits the difficulty adjustment algorithm that evaluates the total hashrate
in an erroneous way, only considering validated blocks and forgetting about orphan
blocks (that fulfill the proof of work but are displaced from the blockchain by other
competing blocks). The purpose of this article is to show that this problem can be
corrected using an improved difficulty adjustment mechanism that evaluates properly
the total hashrate by taking into account orphan blocks.

2.3. Mining strategies. Why should miners immediately release a newly discovered
block? This is implicitely assumed in the Bitcoin founding article, but in fact it is not
properly incentivized. Could a miner validating a block try to widen the gap even
further by secretly mining on top of that block? Could he devise a block withholding
strategy giving him an advantage compared to the honest strategy?

Definition 2.1. The official blockchain is the chain of blocks with the most of proof-
of-work.

In other words, the official blockchain is the chain of blocks which maximizes the
quantity

∑
∆i where ∆i is the difficulty parameter included in the i-th block. Most

ot the time it is the longest blockchain because the difficulty parameter is locally
constant (updated every 2016 block period).

Definition 2.2. The honest strategy consists in always mining on top of the last block
of the official blockchain.

2.4. Performance of a mining strategy. A mining strategy is repetitive in the
sense that the miner will return, to its starting point after a finite time. The miner
has performed a strategy cycle during this period. We call such a strategy with
finite expected return time, a finite strategy (also integrable strategy as been used).
We note τ the random duration of this cycle and G the miner’s gain accumulated
during this cycle. We use as a unit of wealth the average value contained in a block
(i.e., average value of transaction fees contained in a block plus value of a coinbase).
Mathematically speaking τ is a stopping time. We consider only cycles with expected
finite duration: E[τ ] < ∞. If a miner repeats his strategy n times, he will gain per
unit time

G1 + . . .+Gn

τ1 + . . .+ τn
=

G1+...+Gn

n
τ1+...+τn

n

which converges to E[G]
E[τ ]

according to the strong law of numbers (the assumption

E[τ ] < ∞ implies that E[G] < ∞). Similarly, the cost per unit time of the miner

over the long term is E[C]
E[τ ]

where C is the cost per cycle of his mining activity and
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the miner’s net income per unit time is therefore E[G]
E[τ ]
− E[C]

E[τ ]
. However, the cost of

his mining activity per unit of time does not depend on whether or not the miner
keeps blocks secret (it depends on the cost of electricity, the price of his equipment,
the salaries paid to employees for a mining company, etc). Whether he makes blocks
public or not has no impact on his cost per unit of time. Therefore, comparing two
mining strategies with the same average operating cost per unit of time, a rational
miner will choose the strategy that maximizes his income per unit of time in the long

run Γ = E[G]
E[τ ]

.

Definition 2.3. The profitability ratio of an integrable mining activity is Γ = E[G]
E[τ ]

where G is the gain per cycle and τ the duration of a cycle.

Note 2.4. According to the profitability analysis from [8] (see also [2, 14]), what
counts is the yield per unit time in the long run, that is, the limit of G1+...+Gn

τ1+...+τn
which

converges to E[G]
E[τ ]

, and not the average yield per unit time per cycle E
[
G
τ

]
. The two

quantities are not equal. See also Note 4.1 below.

3. Mining model and notations

We use the widely adopted model and notations that Satoshi Nakamoto proposed
in his Bitcoin founding article (see [12] and [7]). We consider a miner who is a possible
attacker (or a group of miners) against the rest of the network consisting of honest
miners all following the rules of the Bitcoin protocol. Since the hash function used
in Bitcoin mining operations is pseudorandom, the time T (resp. T′) taken by the
honest miners (resp. attacker) to discover a block is a random variable following an
exponential law (see [7]). We denote by α (resp. α′) the parameter of the exponential
law. We have E[T] = 1

α
(resp. E[T′] = 1

α′ ). In other words, α (resp. α′) is the average
speed taken by honest miners (resp. attacker) to discover a block.

Definition 3.1. For t ∈ R+, we denote N(t) (resp. N ′(t)) the number of blocks
mined by honest miners (resp. attacker) between 0 and t.

The counting processes N(t) and N ′(t) are Poisson processes of parameters α and
α′ (see [7]). Let h (resp. h′) be the number of hashes per second computed by the
honest miners (resp. attacker). This is the absolute hash power of the honest miners
(resp. attacker). The mining difficulty ∆ represents the number of hashes that one
has to compute on average before finding a proof of work. It is related to the average
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time taken to discover a block. We have h · E[T] = h′ · E[T′] = ∆. It follows that

α =
h

∆
(2)

α′ =
h′

∆
(3)

Since the two variables T and T′ are independent, we also have P[T′ < T] = α′

α+α′ =
h′

h+h′
. Therefore, the probability that the attacker discovers a block before the other

miners is equal to its relative hash power. We make the assumption that this remains
constant over time. We keep Nakamoto’s notation for relative hashing powers of
miners [12].

Definition 3.2. We denote by p (resp. q) be the relative hashing power of the honest
miners (resp. attacker).

In other words, q = α′

α+α′ and p = 1− q. Note that the network (the honest miners
and the attacker) finds a block in inf(T,T′). This is again an exponential law of
parameter α+ α′ because T and T′ are independent [13]. Therefore, E[inf(T,T′)] =

1
α+α′ and α = p

E[inf(T,T′)]
and α′ = q

E[inf(T,T′)]
.

3.1. First stability theorem. In this section only, we consider a simplified Bitcoin
network without difficulty adjustment (that is, the difficulty parameter is assumed
to be constant). Let τ0 = E[inf(T,T′)] be the average time taken by the network
to discover a block. Note that a priori here, τ0 6= 10 minutes because there is no
particular difficulty adjustment. It follows easily from the previous section that N
(resp. N ′) is a Poisson process with parameter α = p

τ0
(resp. α′ = q

τ0
) [13].

Theorem 3.3. If Γ is the profitability ratio for a finite mining strategy, we have
Γ 6 q

τ0
.

Proof. Since the mining strategy is finite we have by definition E[τ ] < ∞ where τ
the stopping time of the duration a cycle. Let G be the number of official blocks
mined by the attacker between 0 and τ . We have G 6 N ′(τ). Let n ≥ 1 and
the truncated stopping time τn = inf(τ, n). The random variable N ′(t) − α′t is
a martingale. Therefore, by Doob’s Stopping Time Theorem, we have E[N ′(τn) −
α′τn] = 0, and E[N ′(τn)] = α′E[τn]. By making n → +∞ and using the Monotone

Convergence Theorem, we obtain E[N ′(τ)] = α′E[τ ], which finally gives Γ = E[G]
E[τ ]
6

α′ = q
τ0

. �

Corollary 3.4. Without difficulty adjustment, the optimal strategy is the honest one.
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Proof. If the attacker mines honestly, he earns on average q during a lapse τ0. Thus,
the return on the honest strategy is q

τ0
which is also the maximum return in the

previous Theorem. �

This result was already proved in [8].

3.2. Effect of the difficulty adjustment on the profit per unit time. The dif-
ficulty adjustment ensures a lower bound for expected interblock time that allows the
network to synchronize, and also an upper bound for transaction confirmation waiting
time (i.e.inclusion in the blockchain). The goal of a regular difficulty adjustment is
to have, on average, a lapse of 10 minutes to validate a block. More precisely, the
difficulty parameter ∆ is adjusted every n0 blocks with n0 = 2016. At each difficulty
adjustment, the network calculates the time T taken to validate the last series of n0

blocks. This work is done thanks to the timestamps of the blocks in the blockchain.
If this time T is greater than 14 days = n0 × 10 minutes, the difficulty decreases.
Otherwise, it increases. The new difficulty parameter ∆′ is given by:

(4) ∆′ = ∆× n0 × 10

T
where T is calculated here in minutes. When the mining difficulty ∆ is changed, so are
the parameters α and α′ of the Poisson processes N and N ′. The counting processes
N and N ′ are piecewise Poisson processes whose parameters α and α′ change each
time the official blockchain progresses by n0 blocks. If ∆ varies and becomes equal
to ∆

λ
, then α and α′ are each multiplied by λ according to the previous formulas (2)

and (3).

We consider the previous situation where a miner repeats some block withholding
strategy (deviant or not) and the rest of the network is composed by honest miners.
We assume that the total hash power remains constant. The first observation is
that this miner can have a significant impact on the first difficulty adjustment if he
conceals his blocks. For example, after a period of mining n0 official blocks, if a miner
adopts a block withholding strategy, this slows down the natural progression of the
official blockchain. The network will generally take longer than the expected two
weeks to mine 2016 blocks. This triggers a downward difficulty adjustment, making
the mining activity more profitable afterwards. If in the long run the miner continues
with the same strategy, the difficulty parameter will stabilize assuming that the total
hashrate remains constant. Then, in such a period of constant difficulty, since the
interblock time is 10 minutes, the duration τ of an attack cycle is proportional on
average to the height progression H of the official blockchain during that cycle, i.e.
E[τ ] = E[H] × 10 where H. Although it is intuitively clear, this is proved by direct
application of Wald’s Theorem.

Thus we have the following Proposition:
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Proposition 3.5. Consider a finite mining strategy, i.e. E[τ ] < ∞. Let G be the
number of blocks per cycle mined by the miner added to the official blockchain and
H denote the height progression of the official blockchain over a cycle. Then the

profitability ratio of the strategy is Γ = E[G]
E[H]

.

Note that the honest strategy corresponds to a simple cycle that ends each time
that a block is discovered. In this case, we have E[G] = q and E[H] = 1 where q
is the relative hash power of the miner. Thus, Γ = q for the honest strategy and a
rational miner has an incentive to adopt a deviant strategy if and only if Γ > q.

In the next section, we show that there are mining strategies with Γ greater than q
(Section 4) and that a modification of the difficulty adjustment formula in the Bitcoin
protocol results in Γ always less than q (Section 5).

4. Block withholding attacks

It has been known since late 2013 that the rules of the Bitcoin protocol are not
aligned with the interests of miners. The reader can consult [9] or [16] for an overview.
In particular, when the miner has enough computing power, he can have an interest in
adopting a deviant strategy. For the sake of self-containing of this article, we present
next a simple example of deviant strategy, the “1+2 strategy”, showing that the
honest strategy is not the most profitable one. This strategy is a simplified version of
the selfish-mining strategy [5]. See Note 4.5 below. It is the simplest profitable block
witholding mining strategy one can imagine.

Note 4.1. The profitability ratio Γ that we have introduced equals to the objective
function defined in some literature as r1+r2+...

h1+h2+...
where each ri (resp. hi) denotes the

reward in terms of number of blocks won by the attacker (resp. progression of the
height of the official blockchain) coming from a new step in the random walk [2, 14].
To prove that the two notions are the same, we can group terms in the numerator
which belong to a same excursion around state {0} :

r1 + r2 + .. = (r1 + ...+ rν1) + (rν1+1 + ...+ rν2) + ...

where νi is the i− th returning time at the initial state {0}. The same thing occurs
for the denominator. So,

r1 + r2 + ..

h1 + h2 + ...
=

R1 +R2 + ..

H1 +H2 + ...
= Γ

The “1+2 strategy”.

Suppose that the network is composed of an attacker and a set of honest miners.
The attack is defined as follows. The attacker starts mining. If the honest miners
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are first to find a block then the attack ends and the attacker returns to mine on top
of the last discovered block. If, on the other hand, the attacker manages to mine a
block before the honest miners, then he keeps it secret and continues to mine on top
of that block, seeking to widen the gap with the official blockchain. Then, regardless
of the identity of the miners who validated the following blocks, as soon as two blocks
have been discovered, the attack ends. If he is successful, i.e. if it has mined more
blocks than the honest miners, the attacker reveals his secret blocks and imposes
its ”fork” (his block sequence) on the official blockchain, which then goes through a
small reorganization. If this is not the case, it is useless for the attacker to broadcast
anything since none of his blocks will be included in the official blockchain.

If we denote by A a block discovered by the attacker and by B a block discovered
by the honest miners, the outcome of the attack can be encoded as a word formed
with the letters A and B. The universe Ω of all possible cycles is :

Ω = {B,AAA,AAB,ABA,ABB}
The name “1+2 strategy” reflects the fact that the attacker is waiting to discover a
block (hence the “1”). Then, when he does, he waits for two blocks to be discovered,
hence the ”+2”.

Example 4.2. We describe the cycle ABA. The attacker discovers a block, then
the honest miners mine one too and finally the attacker mines the next one. In
this case, tha attack has succeeded and the attacker propagates his two secret blocks
(the two A’s). The official blockchain goes through a small reorganization: its now
penultimate block (block ”B”) is replaced (it becomes an orphan block) and the height
of the blockchain has increased by one block. The attacker earns the reward contained
from his two blocks.

We can now compute the expected profitability of the “1+2” strategy. As before,
we denote by q the relative hash power of the attacker and p = 1 − q the one of
the honest miners. Let G the number of blocks mined by the attacker and added
to the official blockchain. Let also H be the progression of the height of the official
blockchain during an attack cycle. We have the probability distribution

P[B] = p,P[AAA] = q3,P[AAB] = P[ABA] = pq2,P[ABB] = p2q

From this we can compute:

G(B) = G(ABB) = 0, G(AAA) = 3, G(AAB) = G(ABA) = 2

and
H(B) = 1, H(ABB) = H(AAB) = H(ABA) = 2, H(AAA) = 3

Therefore we can compute the expected values

E[G] = p · 0 + q3·3 + pq2 · 2 + pq2 · 2 + p2q · 0 = q2(4− q)



10 CYRIL GRUNSPAN AND RICARDO PÉREZ-MARCO

and
E[H] = p · 1 + q3·3 + pq2·2 + pq2 · 2 + p2q · 2 = 1 + q + q3

From these computations it follows:

Proposition 4.3. The profitability ratio of the ”1+2” strategy is

Γ =
E[G]

E[H]
=
q2 · (4− q)
1 + q + q3

This proves that the ”1+2 strategy“ is more profitable than the honest strategy if

and only if q2·(4−q)
1+q+q3

> q. This happens only when

(5) q >
√

2− 1

Thus, if a miner has a more than
√

2 − 1 ≈ 41, 4% of hashpower, then he has no
incentive to follow the protocol. From this simple example we reach the conclusion:

Proposition 4.4. The rules of the Bitcoin protocol are not aligned with the self-
interests of miners.

One can show that the ”1+2” strategy is the best possible when the miner’s attack
cycle ends after the discovery of three blocks.

Note 4.5. The strategy can also be described with the help of the following finite
Markov chain with only four states. This is a truncated version of the ”selfish mining”

0’

10 2

p

q

p

qq
p

p

q

random walk where states {n} with n > 2 have disapeared [5]. State {0} is the state
when all miners mine on top of the same last block of the official blockchain. State
{k} for k = 1, 2 is the state when the attacker has just validated k secret block(s)
and is mining on top of his secret fork whereas the honest miners haven’t found any
block yet. State {0′} is the state when both the attacker and the honest miners
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have mined a block and are trying to mine one another on top of their last block.
Each state transition gives a reward r to the attacker and a contribution h to the
increase of the height of the official blockchain. A possible modelization for (r, h) is
the following. We have (r, h) = (0, 1) from {0} to {0}, (r, h) = (0, 0) from {0} to {1},
(r, h) = (0, 1) from {1} to {0′}, (r, h) = (0, 1) from {0′} to {0} if the honest miners
find the new block (probability p) and (r, h) = (2, 1) otherwise (probability q). To
simplify, the connectivity γ is set γ = 0. So, there are only two edges from {0′} to
{0} depending on who mine the next block between the honest miners (probability
p) and the attacker (probability q). We also have (r, h) = (0, 0) from {1} to {2} and
(r, h) = (2, 2) from {2} to {0} if the honest miners find the new block (probability p)
and (r, h) = (3, 3) otherwise (probability q). This is just one possible modelization.
We could set for instance (r, h) = (2, 2) from {1} to {2} and (r, h) = (0, 0) from
{2} to {0} if the honest miners find the new block (probability p) and (r, h) = (1, 1)
otherwise (probability q). The contribution r represents a number of blocks that will
end soon or later in the official blockchain. The only quantities of interest are

∑ν
i=1 ri

and
∑ν

i=1 hi where ν is the first returning time at 0 and ri is the reward won by the
attacker coming from the transition from state {i−1} to state {i}. Similarly, hi is the
contribution to the increase of the height of the official blockchain following a change
of state from state {i − 1} to state {i}. The finite Markov chain has a stationary
probability distribution π which is given by π({0}) = 1

1+2q
, π({k}) = q.π({k − 1})

for k > 0 and π({0′} = pq
1+2q

. From here, we find easily that E[r] = q2

1+2q
(4 − q) and

E[h] = 1+q+q3

1+2q
. Hence we get again Γ = E[r]

E[h]
= q2(4−q)

1+q+q3
as in Proposition 4.3.

5. Modified Bitcoin protocol

From Corollary 3.4 and Proposition 4.4 it appears that the origin of the problem
comes from the difficulty adjustment formula that can be exploited by blockwith-
holding strategies. We can prevent these attacks using a different formula for the
difficulty adjustment taking into account orphan blocks.

5.1. A more general difficulty adjustment formula. We consider a more general
difficulty adjustment formula on the Bitcoin network of the form :

(6) ∆′ = ∆ · D × 10

T

where D denotes the progression of a certain quantity, called difficulty function, over
a validation period of n0 official blocks. The introduction of a difficulty function and
the notation D comes from [2]. In the case of current Bitcoin protocol we simply
have that D grows linearly and at the end of the period D = n0 = 2016. That is, the
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difficulty function for Bitcoin increases one by one with each new block on the official
blockchain.

We can consider more general difficulty functions D. With the new formula, the
mining time of a cycle is now proportional to the progression of the difficulty function.
The same argument as before shows the following result (see also [2]).

Proposition 5.1. In the context of a modified Bitcoin protocol with a difficulty ad-
justment mechanism following relation (6), the rate of return of a mining strategy is

Γ = E[G]
E[D]

where G is the number of blocks per cycle mined by the miner and added

to the official blockchain and D denotes the progression of the difficulty function over
that cycle.

Then we can consider a modification of the Bitcoin protocol, where miners, in ad-
dition to their mining activity, will report the presence of orphan blocks by recording
their proof of existence. It is possible to encourage miners to record the existence of
orphan blocks by modifying the rule that defines the official blockchain and, as we will
see later, even by rewarding the reporting of orphan blocks. The blockchain that max-
imizes the difficulty is the one reporting the most number of orphan blocks weighted
by their difficulty (during a difficulty adjustment period it will be the longest). At
the end of a validation period of n0 official blocks, the adjustment of difficulty will be
given by a similar formula as the standard one but of the form:

∆′ = ∆ · (n0 + n1)× 10

T

where n1 is the number of orphaned blocks reported during the last mining period of
2016 blocks. That means that we consider a difficulty function D that is not given by
the height function of the blockchain but that increases by 1 at each time that a new
block is registered in the official blockchain (whether this is an official block or just
an orphan block detected by the network). The honest mining strategy corresponds
to a cycle that ends as soon as a block is discovered, which still gives a profitability
ratio equal to q. Hence, we have the following Proposition:

Corollary 5.2. Consider a finite mining strategy with a length cycle τ and E[τ ] <
∞. The number of blocks added to the official blockchain by the miner (resp. the
progression of the difficulty function) between 0 and τ is G(τ) (resp. D(τ)). This
strategy is more profitable than the honest strategy if and only if

E[G(τ)] > qE[D(τ)]

5.2. Stability of the Nakamoto consensus with general difficulty adjustment
formula. Now assume that we are running the modified Bitcoin protocol with a
difficulty adjustment formula as in (5.1) that takes into account orphan blocks.
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Theorem 5.3. For any finite mining strategy with E[τ ] <∞, we have

E[G(τ)] 6 qE[D(τ)]

Proof. During an attack cycle, among the N ′(τ) blocks that are mined by the attacker
we consider OrphA, resp. OffA, the number of official, resp. orphan, blocks. Also,
we denote N(τ) blocks mined by honest miners and among them OffH , resp. OrphH ,
the numbers of officialm resp. orphan, blocks mined by honest miners. We have

N(τ) = OffH + OrphH

N ′(τ) = OffA + OrphA

and G(τ) = OffA.

Orphan blocks by honest miners are public and will be registered sooner or later
in the official blockchain. Only the orphan blocks of the attacker can remain secret.
Therefore we have,

OffA + OffH + OrphH 6 D(τ)

The two processes N and N ′ are Poisson processes of parameters λ · p and λ · q
where λ depends on the difficulty adjustment. If all miners are honest, then λ = 1

τ0

with τ0 = 10 minutes. The condition E[τ ] < ∞ gives that E[N(τ)] = λpE[τ ] and
E[N ′(τ)] = λqE[τ ]. This follows from the fact that if M is a Poisson process of
parameter α then the compensated process M(t)− αt is a martingale. Therefore,

pE[OffA] 6 pE[N ′(τ)] = pλqE[τ ] = qλpE[τ ] = qE[N(τ)] = qE[OffH ] + qE[OrphH ]

which gives,

E[G(τ)] = E[OffA]

= pE[OffA] + qE[OffA]

6 qE[OffH ] + qE[OrphH ] + qE[OffA]

6 q · E[D(τ)]

which proves the Proposition. �

Corollary 5.4. In the modified Bitcoin protocol, the most profitable strategy is always
the honest one, and this does not depend on the connectivity of the miner.

We can indeed be more precise. We have :

pE[OffA] + pE[OrphA] = pE[N ′(τ)]

= pλqE[τ ]

= qλpE[τ ]

= qE[N(τ)]

= qE[OffH ] + qE[OrphH ](7)
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Among the OrphA orphan blocks of the attacker, we note Orph′A the orphan blocks
made public by the attacker and thus detected by the network at a given moment
(the others remain secret).

We have, on the one hand

E[D(τ)] = E[OffH ] + E[OrphH ] + E[OffA] + E[Orph′A]

and on the other hand according to (7),

E[OffA] + E[Orph′A] = pE[OffA] + pE[Orph′A] + qE[OffA] + qE[Orph′A]

6 pE[OffA] + pE[OrphA] + qE[OffA] + qE[Orph′A]

6 qE[OffH ] + qE[OrphH ] + qE[OffA] + qE[Orph′A]

6 q · E[D(τ)]

Now assume that the protocol grants a reward x to any orphan block creator with
x ≤ 1. Then,

G(τ) = OffA +x ·Orph′A
6 OffA + Orph′A

So, from the above,

E[G(τ)] 6 E[OffA] + E[Orph′A]

6 q · E[D(τ)]

And we have proved the more general result:

Theorem 5.5. Consider a modified Bitcoin protocol that grants a coinbase fraction
reward 0 ≤ x ≤ 1 for each block to orphan block creators. We assume that the
difficulty adjustment mechanism is given by (5.1). Then the honest mining strategy
is optimal. If x < 1 it is the only optimal strategy.

To illustrate this theorem, we can revisit the example of the “1+2” strategy.

Example 5.6. In the case of the “1+2” strategy, we have

D(B) = 1, D(ABB) = 2, D(AAA) = D(AAB) = D(ABA) = 3

and we check that E[G] − qE[D] = −p3q < 0. Note that if the attacker modifies his
strategy and decides to publish his orphan block (the “A” in the sequence ABB), then
in this case we have:

G(B) = 0, G(ABB) = x,G(AAA) = 3, G(AAB) = G(ABA) = 2

and
D(B) = 1, D(ABB) = D(AAA) = D(AAB) = D(ABA) = 3

Similarly, we check that E[G]− qE[D] = −p2q(1− x) ≤ 0.
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