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Abstract

We study the existence of efficient approximation methods to verify quantitative specifications of probabilistic systems.
Models of such systems are labelled discrete time Markov chains and checking specifications consists of computing satisfaction
probabilities of linear temporal logic formulas. We prove that, in general, there is no polynomial time randomized approximation
scheme with relative error for probabilistic verification. However, in many applications, specifications can be expressed by
monotone formulas or negation of monotone formulas and randomized approximation schemes with absolute error are sufficient.
We show how some simple randomized approximation algorithms can improve the efficiency of verification of such probabilistic
specifications and can be implemented in a probabilistic model checker.
c� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Model checking has been successfully used to verify if the behavior of concurrent and reactive systems satisfy some
correctness properties, which are usually expressed in temporal logic. While many important system properties can be
studied in this framework, others such as reliability and performance, require instead a probabilistic characterization
of the system.

In classical model checking, time complexity is linear in the size of the model and in the size of formula for CTL
branching time temporal logic [4], and exponential in the size of formula for LTL linear time temporal logic [21]. In
many applications, as protocol verification, the representation of systems by Kripke models leads to a “state explosion
phenomenon” and symbolic representation methods of the transition system and of the formula have been introduced
to overcome this problem.

For probabilistic verification, time complexity is in general polynomial in the size of the model and polynomial or
exponential in the size of the formula [5]. As well as for classical model checking, symbolic representation methods
have been generalized in the probabilistic framework. However, in spite of using these techniques, for many examples
the verification is limited to small values of the main parameters of the model, due to the space complexity of
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the representation. Thus it seems natural to wonder whether some approximation algorithms could be useful for
probabilistic verification.

Since 2001, we have been working on randomized approximation schemes to compute satisfaction probabilities
of interesting properties such as reachability and safety. As a consequence, a natural question is: can we efficiently
approximate satisfaction probability of an LTL formula?

Unfortunately, there are serious complexity reasons to think that this is not the case in general. One of the main
results of this paper is the non-approximability of computing satisfaction probability of a given LTL formula in an
efficient way, unless some unlikely complexity hypothesis is satisfied.

Nevertheless, there exists some efficient algorithms to approximate model checking of expressive classes of LTL
formulas against probabilistic transition systems. These randomized algorithms allow to obtain two types of results,
of independent interest for practical verification:

• polynomial time randomized approximation of bounded-time satisfaction probabilities,
• randomized approximation of non-bounded satisfaction probabilities.

Although in the last case we cannot assure polynomial time in the size of a succinct representation, the main
advantage is to eliminate space complexity by using a Monte Carlo method and efficiently bounding sample size.
Moreover this approach is highly parallelizable and can be integrated in a classical probabilistic model checker.

Our paper is structured as follows: Section 2 is a review of the main complexity results in probabilistic verification.
In Section 3, we recall the linear temporal logical framework for probabilistic verification and we show the hardness
of approximating satisfaction probabilities of LTL formulas. In Section 4, we restrict the specification language to
monotone properties, or negation of monotone properties, and we give a randomized approximation algorithm to
compute satisfaction probabilities of formulas expressing such properties.

2. Classical probabilistic verification

2.1. Qualitative verification

The first application of verification methods to probabilistic systems consists in checking if temporal properties
are satisfied with probability 1 by systems modeled either as finite discrete time Markov chains or as Markov models
enriched with nondeterministic behavior. In the following, the former systems will be denoted by probabilistic sytems
and the latter by concurrent probabilistic systems.

In [27], Vardi presented the first method to verify if a linear time temporal property is satisfied by almost all
computations of a concurrent probabilistic system. This automata-theoretic method is expensive, since its complexity
is doubly exponential in the size of the formula.

The complexity of this work was later addressed by Courcoubetis and Yannakakis [5]. A new model checking
method for probabilistic systems was introduced, the complexity of which was proved polynomial in the size of the
system and exponential in the size of the formula. For concurrent probabilistic systems they presented an automata-
theoretic approach which improved on the Vardi’s method by a single exponential in the size of the formula.

2.2. Quantitative verification

The Courcoubetis and Yannakakis’s method [5] allows to compute the probability that a probabilistic system,
modeled as a Markov chain, satisfies some given linear time temporal formula. The algorithm transforms step by step
the Markov chain and the formula, eliminating one-by-one the temporal connectives, while preserving the satisfaction
probability of the formula. The elimination of temporal connectives is performed by solving a linear system of
equations of the size of the Markov chain.

A temporal logic for the specification of quantitative properties, which refer to a bound of the probability of
satisfaction of a formula, is given by Hansson and Jonsson [11]. The authors introduced the logic PCTL, which is an
extension of branching time temporal logic CTL with some probabilistic quantifiers. A model checking algorithm is
also presented: the computation of probabilities for formulas involving probabilistic quantification is performed by
solving a linear system of equations.

A model checking method for PCTL properties against concurrent probabilistic systems is given by Bianco and
de Alfaro [1]. Probabilities are computed by solving an optimisation problem over a system of linear inequalities, the
size of which is the model size.
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In order to illustrate space complexity problems, we mention the main model checking tool for the verification
of quantitative properties. The probabilistic model checker PRISM [7] was designed by the Kwiatkowska’s team
in Birmingham and allows to check PCTL formulas on probabilistic or concurrent probabilistic systems. In many
applications, Markov chains are very large and the computation is intractable. Thus the use of PRISM is often limited
to small values of model parameters for reason of memory overflow: for example, N = 25 for the dining philosophers
problem [13].

For theoretical and practical reasons, it is natural to ask the question: can probabilistic verification be efficiently
approximated? In the following, we study some possible answers for fully probabilistic systems and linear time
temporal logic.

We chose to study probabilistic verification in the context of linear time temporal logic for two reasons. The first one
is historical: the complexity of probabilistic verification was first studied by Vardi, Coucourbetis and Yannakakis in
this logical framework. The second one is practical: in real-life case studies, quantitative specifications to be checked
need only to apply one probabilistic operator to a temporal formula. Moreover, it can be useful to obtain a good
approximation of the desired probability, and not only the comparison with a given threshold as in the logic PCTL.

3. Probabilistic verification and approximation

In this section, we present the linear temporal logical framework which allows to express quantitative properties of
probabilistic systems, the results of Courcoubetis and Yannakakis and the hardness of efficiently approximating such
probabilities.

3.1. Probabilistic verification

A Discrete Time Markov Chain (DTMC) is a pair M = (S, P) where S is a finite or countable set of states and
P : S ⇥ S ! [0, 1] is a transition probability function, i.e. for all s 2 S,

P
t2S P(s, t) = 1. In the following, the set

of states S is finite and we consider P as a probability matrix.

Definition 1. A probabilistic transition system (PTS) is a structure M = (S, P, s0, L) given by a Discrete Time
Markov chain (S, P) with an initial state s0 and a function L : S ! P(AP) labelling each state with a set of atomic
propositions in AP .

In linear-time logic LTL, formulas are composed from the set AP of atomic propositions by using the Boolean
connectives and the temporal operators X (next) and U (until). The usual operators F (eventually) and G (always) can
also be defined. LTL formulas are interpreted over paths of a transition system M. A path � is a finite or countable
sequence of states (s0, s1, . . . , si , . . . ) such that P(si , si+1) > 0 for all i � 0. We note also that � (i) the (i + 1)th
state of the path � and � i the path (� (i), � (i + 1), . . . ). We denote by Path(s) the set of paths whose first state is s.

For each structure M and state s, it is possible to define a probability measure Prob on the set Path(s): for any
finite path ⇡ = (s0, s1, . . . , sn), the measure is defined by Prob({�/� is a path and (s0, s1, . . . , sn) is a prefix of � }) =Qn

i=1 P(si�1, si ). This measure can be extended uniquely to the Borel family of sets generated by the sets
{�/⇡ is a prefix of � } where ⇡ is a finite path.

In [27], it is shown that for any LTL formula  , probabilistic transition system M and state s, the set of paths
{�/� (0) = s andM, � |=  } is measurable. We denote by Prob[ ] the measure of this set. We say that the
probabilistic transition systemM satisfy the formula  if Prob[ ] = 1, i.e. if almost all paths inM, whose origin is
the initial state, satisfy  .

Theorem 1 ([5]). The satisfaction of an LTL formula  by a probabilistic transition system M can be decided in
time linear in size ofM and exponential in size of  , or in space polylogarithmic in size ofM and polynomial in size
of  .
The probability Prob[ ] can be computed in time polynomial in size ofM and exponential in size of  .

The first part of the theorem is about qualitative properties, the second one concerns quantitative properties. In
the following, we study quantitative properties and show, in the next subsection, that the problem of computing the
number of truth assignments satisfying a propositional formula in conjunctive normal form (]S AT ) can be reduced
to the problem of counting finite paths satisfying LTL formulas. Therefore it is unlikely to obtain an approximation
algorithm for computing Prob[ ] in general.
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3.2. Counting problems and approximation

Intuitively, the class ]P captures the problems of counting the number of solutions to NP problems. The counting
versions of all known NP-complete problems are ]P-complete. The well-adapted notion of reduction is parsimonious
reduction: it is a polynomial time reduction from the first problem to the second one, recovering via some oracle, the
number of solutions for the first problem from the number of solutions for the second one.

No deterministic approximation algorithms are known for ]P-complete problems. However, randomized versions
of such approximation algorithms exist for problems such as counting the number of valuations satisfying a
propositional disjunctive normal form formula (]DNF) [19] or network reliability problem [17]. We introduce the
notion of polynomial randomized approximation scheme which is due to Karp and Luby [18]. Consider a counting
problem and let #(x) be the number of distinct solutions for an instance x of this problem. We note |x | the size of this
instance.

Definition 2. A randomized approximation scheme (RAS) for a counting problem is a randomized algorithm A that
takes an input x , two real numbers ", � > 0 and produces a value A(x, ", �) such that:

Pr
�|A(x, ", �) � #(x)|  ".#(x)

� � 1 � �.

A randomized approximation scheme is said to be fully polynomial (FPRAS) [18] if its running time is polynomially
bounded in |x |, 1

" and log( 1
� ).

The probability Pr is taken over the random choices of the algorithm. We call " the error parameter and (1 � �)

the confidence parameter. We remark that the error parameter is a multiplicative parameter taking into account the
size of #(x).

We adapt the notion of randomized approximation scheme to the problem of computing probabilities. A probability
problem is defined by giving as input a succinct representation of a probabilistic system, a property x and as output
the probability measure µ(x) of the measurable set of execution paths satisfying this property.

Definition 3. A randomized approximation scheme for a probability problem is a randomized algorithm A that takes
an input x , two real numbers ", � > 0 and produces a value A(x, ", �) such that:

Pr
�|A(x, ", �) � µ(x)| < ".µ(x)

� � 1 � �.

If the running time of A is polynomial in |x |, 1
" and log( 1

� ), A is said to be fully polynomial.

In order to obtain the non-approximability result for the general case of probabilistic verification, we recall the
randomized complexity class BPP which corresponds to the useful class of two-sided error randomized algorithms.
Let � be some finite alphabet and � ⇤ be the set of strings over � .

Definition 4. The class BPP, for Bounded-error Probabilistic Polynomial time, consists of all languages L that have
a randomized polynomial time algorithm A such that for any input x 2 � ⇤,

• if x 2 L then Pr
�
A(x) accepts

� � 3
4 ,

• if x 62 L then Pr
�
A(x) accepts

�  1
4 .

Theorem 2. If there is a fully polynomial randomized approximation scheme for the problem of computing Prob[ ]
for LTL formula  , then NP ✓ BPP.

Proof. We consider the fragment L(F) of LTL in which F is the only temporal operator. The following result is due
to Clarke and Sistla [26]: the problem of deciding the existence of some path satisfying a L(F) formula in a transition
system is NP-complete. Their proof uses a polynomial time reduction of S AT to the problem of deciding satisfaction
of L(F) formulas.

From this reduction, we can obtain a one to one reduction between problem ]S AT and counting finite paths, of
given length, whose extensions satisfy the associated L(F) formula.

Let
Vm

j=1 c j be some SAT formula, built with the propositional variables {xi / i = 1, . . . , n}. Let M =
(S, P, y0, L) be the following probabilistic transition system:



Author's personal copy

126 R. Lassaigne, S. Peyronnet / Annals of Pure and Applied Logic 152 (2008) 122–131

• AP = {c j / j = 1, . . . , m} (set of atomic propositions),
• S = {xi / i = 1, . . . , n} [ {x 0

i / i = 1, . . . , n} [ {yi / i = 0, . . . , n},
• P(yi�1, xi ) = 1/2, P(yi�1, x 0

i ) = 1/2 for i = 1, . . . , n,
P(xi , yi ) = 1, P(x 0

i , yi ) = 1 for i = 1, . . . , n, P(yn, yn) = 1,
• L(xi ) = {c j / xi appears in c j } for i = 1, . . . , n,

L(x 0
i ) = {c j / ¬xi appears in c j } for i = 1, . . . , n.

Now we consider the LTL formula
Vm

j=1 Fc j . It is easy to see that an assignment satisfying
Vm

j=1 c j corresponds
to a finite path from y0 to yn whose all infinite extensions satisfy the LTL formula

Vm
j=1 Fc j . Therefore, the problem

of counting finite paths, of given length, satisfying L(F) formulas is ]P-complete.
A consequence of this result is the ]P-hardness of computing probabilities of satisfaction for general LTL formulas.

Then we remark that if there was a FPRAS for approximating Prob[ ] for LTL formula  , we could efficiently
approximate ]S AT .

A polynomial randomized approximation scheme for ]S AT could be used to distinguish, for input x , between the
case ](x) = 0 and the case ](x) > 0, thereby implying a randomized polynomial time algorithm for the decision
problem S AT . �

As a consequence of a result of Jerrum, Valiant et Vazirani [16] and a remark of Sinclair [25], the existence of
an FPRAS for ]S AT would also imply R P = NP, where R P is the class of languages that admit one-sided error
polynomial time randomized algorithms.

4. Approximate probabilistic model checking

In this section, we determine some restrictions on the class of linear temporal formulas  , on the value p =
Prob[ ] and on the type of approximation (additive error) in order to obtain efficient randomized approximation
schemes for computing such probabilities.

4.1. A positive fragment of LTL

For many natural properties, as reachability, satisfaction by an execution path of finite length implies satisfaction
by any extension of this path. Such properties are called monotone. Another important class of properties, namely
safety properties, can be expressed as negation of monotone properties. We can reduce the computation of satisfaction
probability of a safety property to the same problem for its negation, that is a monotone property.

In the following, we consider a subset of LTL formulas which allows to express only monotone properties and
for which we can approximate satisfaction probabilities. The essentially positive fragment (EPF) of LTL is the set
of formulas constructed from atomic formulas (p) and their negations (¬p), closed under _, ^ and the temporal
operators X, U.

Definition 5. The set of EPF formulas can be defined by induction:

• for all p 2 AP , p and ¬p are EPF formulas,
• if � and � are EPF formulas, then so are � _ � and � ^ � ,
• if � and � are EPF formulas, then so are X� and �U� .

For example, formula Fp, that expresses a reachability property, is an EPF formula. Formula Gp, that expresses a
safety property, is equivalent to ¬F¬p, which is the negation of an EPF formula. Formula G(p ! Fq), that expresses
a liveness property, is not an EPF formula, nor equivalent to the negation of an EPF formula.
In order to approximate the satisfaction probability Prob[ ] of an EPF formula, we first consider Probk[ ], the
probability measure associated to the probabilistic space of execution paths of finite length k. The monotonicity of the
property defined by an EPF formula gives the following result.

Proposition 1. Let  be an LTL formula of the essentially positive fragment and M be a probabilistic transition
system. Then the sequence (Probk[ ])k2N converges to Prob[ ].
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A first idea is to approximate Probk[ ] and to use a fixed point algorithm to obtain an approximation of Prob[ ].
This approximation problem is believed to be intractable for deterministic algorithms. In the next section, we give a
randomized approximation algorithm to compute Probk[ ], whose running time is polynomial in the size of a succinct
representation of the system and of the formula. Then we deduce a randomized approximation algorithm to compute
Prob[ ], whose space complexity is logspace.

4.2. Randomized approximation scheme with additive error

We show that we can approximate the satisfaction probability of an EPF formula with a simple randomized
algorithm. As in practice, randomized approximation with additive error is sufficient and gives simple algorithms, we
first explain how to design it. Moreover, this randomized approximation is fully polynomial for bounded properties.
Then we will use the estimator theorem [19] and an optimal approximation algorithm [6] in order to obtain randomized
approximation scheme with multiplicative error, according to definition 3. However, in this case the randomized
approximation is not fully polynomial even for bounded properties.

We generate random paths in the probabilistic space underlying the Kripke structure of depth k and compute a
random variable Y which approximates p = Probk[ ]. Our approximation will be correct, i.e |Y � p| < " (additive
error), with confidence (1 � �), after a polynomial number of samples in 1

✏ , log 1
� . This result is obtained by using the

Chernoff–Hoeffding bounds [15] on the tail of the distribution of a sum of independent random variables.
The main advantage of the method is that we can proceed with just a succinct representation of the transition system

in some input language, thus eliminating the space complexity problem.

Definition 6. A succinct representation, or diagram, of a PTS M = (S, P, s0, L) is a representation of the PTS, that
allows to generate algorithmically, for any state s, the set of states t such that P(s, t) > 0.

The size of such a succinct representation is subtantially lower than the size of the corresponding PTS. For example,
a succinct representation is given by a program representing the PTS in the input language of probabilistic models
checkers such as PRISM or APMC [13]. Typically the size of a diagram is polylogarithmic in the size of the PTS.

The following function Random Path uses this succinct representation to generate a random path of length k and
to check the formula  :

Random Path
Input: diagramM, k, 

Output: samples a path ⇡ of length k and check formula  on ⇡
(1) Generate a random path ⇡ of length k (with the diagram)
(2) If  is true on ⇡ then return 1 else 0

Consider now the random sampling algorithm GAA designed for the approximate computation of Probk[ ]:
Generic approximation algorithm GAA
Input: diagramM, k, , ✏, �

Output: approximation of Probk[ ]
N := ln( 2

� )/2"2

A := 0
For i = 1 to N do
A := A + Random Path(diagramM, k, )

Return Y = A/N

Theorem 3. The generic approximation algorithm GAA is a fully polynomial randomized approximation scheme
(with additive error parameter) for computing p = Probk[ ] whenever  is in the EPF fragment of LTL and
p 2]0, 1[.
Proof. We want to estimate p = Probk[ ] by a random sampling of size N . The random variable A is the
sum of random variables with a Bernouilli distribution. We use the Chernoff–Hoeffding bound [15] to obtain the
result. Let X1, . . . , X N be N independent random variables which take value 1 with probability p and 0 with
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probability (1 � p), and Y = PN
i=1 Xi/N . Then the Chernoff bound gives: Prob

�
Y < (p � ")

�
< e�2N ·"2

and
Prob

�
Y > (p + ")

�
< e�2N ·"2

.

In the previous algorithm, if N � log( 2
� )

2"2 , then: Prob
�
(p � ")  A/N  (p + ")

� � 1 � �. �

We can obtain a randomized approximation of Prob[ ] by iterating the approximation algorithm described above.
Detection of time convergence for this algorithm is hard in general and we will study the particular case of primitive
Markov chains, that is important for applications. Another feature, which is crucial for applications, is that space
complexity is logspace.

Corollary 1. The fixed point algorithm defined by iterating the approximation algorithm GAA is a randomized
approximation scheme, whose space complexity is logspace, for the probability problem p = Prob[ ] whenever
 is in the EPF fragment of LTL and p 2]0, 1[.
Proof. In order to compute an "-approximation of Probk[ ], we have to store the N := ln( 2

� )/2"2 Boolean results of
the Random Path function. The space needed is log N and is independent of an appropriate bound for the length k
of generated execution paths to obtain a good approximation of Prob[ ]. �

In the following, we recall some basic facts of Markov chain theory [2] and we give a speed convergence criterion
for the important case of irreducible, aperiodic Markov chains. Let P be the transition matrix of a finite discrete-time
Markov chain. A Markov chain is called irreducible if the underlying graph is strongly connected. A Markov chain
is called primitive if some power of the transition matrix has only positive elements. It is well known that a Markov
chain is primitive if and only if it is irreducible and aperiodic [2].

Proposition 2. Let P be the transition matrix of a primitive Markov chain and v an arbitrary probability vector. Then
limk!1vPk = u where u is the unique left eigenvector associated to the eigenvalue � = 1.

If we start a Markov chain with initial probabilities given by v, then the probability vector vPk gives the
probabilities of being in the various states after k steps. The previous proposition establishes the fact that for this
general class of processes, the probability of being in state s j is u j .
The following theorem, which is known as the Perron–Frobenius theorem, is a classical result of matrix theory [24].

Theorem 4. Let P be a non-negative primitive matrix of order n. There exists a real eigenvalue �1 with multiplicity
1 such that �1 > 0 and �1 > |� j | for any other eigenvalue � j . Let �2, �3, . . . , �n the eigenvalues of P other than �1
ordered in such a way that �1 > |�2| � |�3| � . . . � |�n| and if |�2| = |� j | for some j � 3, then m2 � m j , where
m j is the multiplicity of � j . Then

Pk = �k
1vu + O(km2�1|�2|k)

, where u, v are the left and the right eigenvectors associated with �1.
If in addition, P is a Markov matrix, then �1 = 1.

Thus the convergence rate is geometrical and the question is to determine k such that O(km2�1|�2|k)  ". If the
multiplicity of the second eigenvalue �2 is one, the number k of iterations sufficient to obtain an "-approximation is
O(ln(1/")). In general, there is no known polynomial time convergence criterion. The probabilistic model checker
APMC, that implements the previous randomized approximation scheme, uses a practical stopping criterion as
explained in the APMC section. Number of iterations can be exponential in the size of a succinct representation
of the model. However, complexity space is logspace and the approximation method can be used to verify very large
systems [13].

4.3. Randomized approximation scheme with multiplicative error

We use a generalization of the zero-one estimator theorem [19] to estimate the expectation µ of a random
variable X distributed in the interval [0, 1]. The generalized zero-one estimator theorem [6] proves that if the random
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variables X1, X2, . . . , X N are independent and identically distributed according to X , S = PN
i=1 Xi , ✏ < 1, and

N = 4(e � 2). ln( 2
� ).⇢/(✏.µ)2, then S/N is an (✏, �)-approximation of µ, i.e.:

Pr
�
µ(1 � ✏)  S/N  µ(1 + ✏)

� � 1 � �

, where ⇢ = max(� 2, ✏µ) is a parameter used to optimize the number N of experiments and � 2 denotes the variance
of X .

In [6], an optimal approximation algorithm, running in three steps, is described:

• using a stopping rule, the first step outputs an (✏, �)-approximation µ̂ of µ after expected number of experiments
proportional to �/µ, where � = 4(e � 2). ln( 2

� )/✏
2,

• the second step uses the value of µ̂ to set the number of experiments in order to produce an estimate ⇢̂ that is within
a constant factor of ⇢ with probability at least (1 � �),

• the third step uses the values of µ̂ and ⇢̂ to set the number of experiments and runs the experiments to produce an
(✏, �)-approximation of µ.

We obtain a randomized approximation scheme with multiplicative error by applying the optimal approximation
algorithm OAA with input parameters ✏, � and the sample given by the function Random Path to a succinct
representation ofM, the parameter k and the formula  .

Theorem 5. The optimal approximation algorithmOAA is a randomized approximation scheme (with multiplicative
error parameter) for computing p = Probk[ ] whenever  is in the EPF fragment of LTL and p 2]0, 1[.

The optimal approximation algorithm was also used by Grosu and Smolka to approximate classical model checking
[9]. We remark that the optimal approximation algorithm is not an FPRAS as the expected number of experiments �/µ

can be exponential for small values of µ.

4.4. APMC: An implementation

In 2003, we started the design of a tool that implements the randomized approximation scheme with additive error
described in this paper. This tool [13], called APMC for Approximate Probabilistic Model Checker, is freely available
under GPL (Gnu Public License). APMC is now a probabilistic distributed model checker that uses a distributed
computation model in order to speed up the verification process by distributing the Random Path function on a
cluster of workstations [12]. Extensive tests with hundreds of machines were done. We have also collaborated with
the Kwiatkowska’s team to achieve the integration of APMC with PRISM.

Now we would like to explain the practical stopping criterion that is used by APMC. Let p = Prob[ ] =
limk!1Probk[ ] be the probability to approximate. If  is a monotone formula, then q = 1 � p = Prob[¬ ]
can be approximated by a slight modification of the MC2 algorithm [10] for probabilistic model checking. Let p̂k be
an "/3-approximation of pk = Probk[ ] computed by the GAA randomized approximation algorithm and q̂ be an
"/3-approximation of q computed by the MC2 algorithm. The stopping criterion is : | p̂k � (1 � q̂)|  "/3. If this test
is satisfied, then pk is an "-approximation of p.

Since 2003, numerous experiments have been done, such as the verification of various probabilistic distributed
algorithms (mutual exclusion, dining philosophers, leader election. . . ) [13], of the IEEE 802.3 CSMA/CD protocol
[8], that is part of the ethernet protocol, and of very large sensor networks [3]. Recently, we have extended the random
path generator of APMC to the verification of continuous time Markov chains [14].

5. Related work

To our knowledge, there exists no similar non-approximability result for the probabilistic verification of general
linear temporal formula.

In this section, we compare approximation methods with statistical approaches to probabilistic model checking.
Other sampling methods have been used for statistical model checking. In [28], a procedure is described for verifying
properties of discrete event systems, that are expressed in a fragment of CSL continuous stochastic logic, restricted to
bounded time formulas. This acceptance sampling method, that is based on Monte Carlo simulation and statistical
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hypothesis testing, is well adapted to determine whether the satisfaction probability is above or below a given
threshold. The objective is different from approximating such a probability with any degree of accuracy and the
comparison with randomized approximation methods is difficult. In a more recent paper [29], Younes states that the
sample size used in the acceptance method is smaller than the path generation size of our randomized approximation
algorithm. In fact, we believe that hypothesis testing is better to deal with threshold problems, whereas approximation
methods are better to obtain good estimation of unknown probabilities. Moreover, the acceptance method is limited
to verify bounded time properties. In [23], a statistical method is proposed to model checking black-box probabilistic
systems against specifications given in a fragment of continuous stochastic logic. This approach also uses statistical
hypothesis testing and is limited to bounded time properties.

The closest approach to ours is the MC2 algorithm [10], a randomized algorithm for classical model checking
of linear time logic formulas. A straightforward modification of this algorithm can be used for probabilistic model
checking. It provides a randomized algorithm to estimate the satisfaction probability of safety properties over
probabilistic transition systems. The MC2 algorithm uses the optimal approximation algorithm of [6] and differs
from ours by the random generation of finite execution paths containing cycles, named lassos. Their approximation
method is complementary and we are collaborating with them since 2005.

6. Conclusion

In this paper, we first addressed the general problem of approximating the probabilistic verification of any linear
time temporal formula against probabilistic systems. We showed that satisfaction probabilities of such formulas are
non-approximable by a polynomial time randomized algorithm with relative error unless some unlikely complexity
conjecture holds. Nevertheless, we presented a polynomial time randomized approximation scheme, with absolute
error, for the quantitative verification of bounded time monotone LTL formulas, and we deduced a randomized
approximation scheme for non-bounded monotone formulas. We obtained also a randomized approximation scheme
with relative error by using an optimal approximation algorithm. The randomized approximation schemes have been
implemented in a probabilistic model checker that is very efficient in practice. We started the study of such methods
in 2001 [20,22], and to our knowledge, it was the first time that such randomized approximation methods were used
for probabilistic verification. The main advantage of this approximation method is to eliminate the space complexity
problem due to the state explosion phenomenon that occurs in the representation of protocols as probabilistic transition
systems.
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