
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221115383

Uniform Monte-Carlo Model Checking

Conference Paper · March 2011

DOI: 10.1007/978-3-642-19811-3_10 · Source: DBLP

CITATIONS

20
READS

147

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Ranking Biological data with consensus ranking techniques View project

GARN : Game Theory for RNa Sampling View project

Johan Oudinet

Technische Universität München

12 PUBLICATIONS 195 CITATIONS

SEE PROFILE

Alain Denise

Université Paris-Saclay

106 PUBLICATIONS 2,719 CITATIONS

SEE PROFILE

Marie-Claude Gaudel

Laboratoire de Recherche en Informatique

116 PUBLICATIONS 1,882 CITATIONS

SEE PROFILE

Richard Lassaigne

Paris Diderot University

45 PUBLICATIONS 861 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marie-Claude Gaudel on 21 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221115383_Uniform_Monte-Carlo_Model_Checking?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221115383_Uniform_Monte-Carlo_Model_Checking?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Ranking-Biological-data-with-consensus-ranking-techniques?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/GARN-Game-Theory-for-RNa-Sampling?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Oudinet?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Oudinet?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische-Universitaet-Muenchen?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Oudinet?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alain-Denise?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alain-Denise?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Paris-Saclay?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alain-Denise?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marie-Claude-Gaudel?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marie-Claude-Gaudel?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Laboratoire-de-Recherche-en-Informatique?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marie-Claude-Gaudel?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Lassaigne?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Lassaigne?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Paris_Diderot_University?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Lassaigne?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marie-Claude-Gaudel?enrichId=rgreq-7a9c8f1051ba6929724293b386b8193d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTExNTM4MztBUzo5OTA4Mjk3NDUzMTYwNkAxNDAwNjM0NjMwOTY4&el=1_x_10&_esc=publicationCoverPdf

Uniform Monte-Carlo Model Checking

Johan Oudinet1,2, Alain Denise1,2,3, Marie-Claude Gaudel1,2,
Richard Lassaigne4,5, and Sylvain Peyronnet1,2,3

1 Univ Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405
2 CNRS, Orsay, F-91405

3 INRIA Saclay - Île-de-France, F-91893 Orsay Cedex
4 Univ. Paris VII, Equipe de Logique Mathématique, UMR7056

5 CNRS, Paris-Centre, F-75000

Abstract. Grosu and Smolka have proposed a randomised Monte-Carlo
algorithm for LTL model-checking. Their method is based on random ex-
ploration of the intersection of the model and of the Büchi automaton
that represents the property to be checked. The targets of this explo-
ration are so-called lassos, i.e. elementary paths followed by elemen-
tary circuits. During this exploration outgoing transitions are chosen
uniformly at random.

Grosu and Smolka note that, depending on the topology, the uniform
choice of outgoing transitions may lead to very low probabilities of some
lassos. In such cases, very big numbers of random walks are required to
reach an acceptable coverage of lassos, and thus a good probability either
of satisfaction of the property or of discovery of a counter-example. In
this paper, we propose an alternative sampling strategy for lassos in the
line of the uniform exploration of models presented in some previous
work.

The problem of finding all elementary cycles in a directed graph is
known to be difficult: there is no hope for a polynomial time algorithm.
Therefore, we consider a well-known sub-class of directed graphs, namely
the reducible flow graphs, which correspond to well-structured programs
and most control-command systems.

We propose an efficient algorithm for counting and generating uni-
formly lassos in reducible flowgraphs. This algorithm has been imple-
mented and experimented on a pathological example. We compare the
lasso coverages obtained with our new uniform method and with uniform
choice among the outgoing transitions.

1 Introduction

Random exploration of large models is one of the ways of fighting the state ex-
plosion problem. In [11], Grosu and Smolka have proposed a randomized Monte-
Carlo algorithm for LTL model-checking together with an implementation called
MC2. Given a finite model M and an LTL formula Φ, their algorithm performs
random walks ending by a cycle, (the resulting paths are called lassos) in the
Büchi automaton B = BM ×B¬ Φ to decide whether L(B) = ∅ with a probabil-
ity which depends on the number of performed random walks. More precisely,

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 127–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

128 J. Oudinet et al.

their algorithm samples lassos in the automaton B until an accepting lasso is
found or a fixed bound on the number of sampled lassos is reached. If MC2 find
an accepting lasso, it means that the target property is false (by construction
of B, an accepting lasso is a counterexample to the property). On the contrary,
if the algorithm stops without finding an accepting lasso, then the probability
that the formula is true is high. The advantage of a tool such as MC2 is that it
is fast, memory-efficient, and scalable.

Random exploration of a model is a classical approach in simulation [3] and
testing (see for instance [26,6]) and more recently in model-checking [21,8,20,1].
A usual way to explore a model at random is to use isotropic random walks:
given the states of the model and their successors, an isotropic random walk
is a succession of states where at each step, the next state is drawn uniformly
at random among the successors, or, as in [11] the next transition is drawn
uniformly at random among the outgoing transitions. This approach is easy to
implement and only requires local knowledge of the model.

However, as noted in [21] and [19], isotropic exploration may lead to bad
coverage of the model in case of irregular topology of the underlying transition
graph. Moreover, for the same reason, it is generally not possible to get any
estimation of the coverage obtained after one or several random walks: it would
require some complex global analysis of the topology of the model.

Not surprisingly, it is also the case when trying to cover lassos: Figure 1
from [11], shows a Büchi automaton with q + 1 lassos: l0, l1, . . . , lq where li
is the lasso s0s1 . . . sis0. With an isotropic random walk, lq has probability 1/2q

to be traversed.

s0 s1 s2 sq−1 sq

Fig. 1. A pathological example for Büchi automata

In this paper, we propose an alternative sampling strategy for lassos in the line
of the uniform exploration of models presented in [7,17] and [10]. In the example
above, the low probability of lq comes from the choice done by the random walk
at each state. It has to choose between a state that leads to a single lasso and a
state that leads to an exponential number of lassos. In the case of an isotropic
random walk, those two states have the same probability. If the number of lassos
that start from each state is known, the choice of the successors can be guided to
balance the probability of lassos so as to get a uniform distribution and to avoid

Uniform Monte-Carlo Model Checking 129

lassos with a too small probability. Coming back to Figure 1, with a uniform
distribution on lassos, lq has probability 1/q to be traversed instead of 1/2q.

However, the problem of counting and finding all elementary cycles in a di-
rected graph is known to be difficult. We briefly recall in Section 2 why there is
no hope of polynomial time algorithms for this problem. Therefore, we consider
a well-known sub-class of directed graphs, namely the reducible flow graphs [12],
which correspond to well-structured programs and most control-command sys-
tems. In Section 3, we show that the set of lassos in such graphs is exactly the set
of paths that start from the initial state and that end just after the first back edge
encountered during a depth-first search. Then on the basis of the methods for
counting and generating paths uniformly at random, presented in [7,17] and [10],
we give an algorithm for counting the number of lassos in a reducible flow-
graph and uniformly generating random lassos in reducible flowgraphs. Section 4
presents how this algorithm can be used for LTL model-checking. Section 5 re-
ports how this algorithm has been implemented and how it has been exper-
imented on an example similar to the pathological example in Figure 1. We
compare the lasso coverages obtained with our new uniform method and with
uniform choice among the successors or the outgoing transitions.

2 Counting and Generating Lassos in Directed Graphs

A lasso in a graph is a finite path followed by an elementary, or simple, cycle.
There are two enumeration problems for elementary cycles in a graph. The first
one is counting and the second one is finding all such cycles. These two prob-
lems are hard to compute: let FP be the class of functions computable by a
Turing machine running in polynomial time and �CY CLE(G) be the number of
elementary cycles in a graph G; one can prove that �CY CLE(G) ∈ FP implies
P = NP by reducing the Hamiltonian circuit problem to decide if the number
of elementary cycles in a graph is large.

For the problem of finding all elementary cycles in a directed graph there is no
hope for a polynomial time algorithm. For example, the number of elementary
cycles in a complete directed graph grow faster than the exponential of the
number of vertices. Several algorithms were designed for the finding problem. In
the algorithms of Tiernan [23] and Weinblatt [25] time exponential in the size of
the graph may elapse between the output of a cycle and the next. However, one
can obtain enumeration algorithms with a polynomial delay between the output
of two consecutive cycles.

Let G be a graph with n vertices, e edges and c elementary cycles. Tarjan [22]
presented a variation of Tiernan’s algorithm in which at most O(n.e) time elapses
between the output of two cycles in sequence, giving a bound of O(n.e(c+1)) for
the running time of the algorithm. To our knowledge, the best algorithm for the
finding problem is Johnson’s [14], in which time consumed between the output
of two consecutive cycles as well as before the first and after the last cycle never
exceeds the size of the graph, resulting in bounds O((n+ e).(c+1)) for time and
O(n + e) for space.

130 J. Oudinet et al.

Because of the complexity of these problems in general graphs, we consider
in this paper a well-known sub-class of directed graphs, namely the reducible
flow graphs [12]. Control graphs of well-structured programs are reducible. Most
data-flow analysis algorithms assume that the analysed programs satisfy this
property, plus the fact that there is a unique final vertex reachable from any
other vertex. Similarly, well-structured control-command systems correspond to
reducible dataflow graphs. But in their case, any vertex is considered as final: this
makes it possible the generalisation of data-flow analysis and slicing techniques
to such systems [15]. Informally, the requirement on reducible graphs is that any
cycle has a unique entry vertex.

It means that a large class of critical systems correspond to such flowgraphs.
However, arbitrary multi-threaded programs don’t. But in many cases where
there are some constraints on synchronisations, for instance in cycle-driven sys-
tems, reducibility is satisfied.

The precise definition of reducibility is given below, as well as a method for
counting and uniformly generating lassos in such graphs.

3 Uniform Random Generation of Lassos in Reducible
Flowgraphs

A flowgraph G = (V, E) is a graph where any vertex of G is reachable from a
particular vertex of the graph called the source (we denote this vertex by s in
the following). From a flowgraph G one can extract a spanning subgraph (e.g.
a directed rooted tree whose vertex set is also V) with s as root. This spanning
subgraph is known as directed rooted spanning tree (DRST). In the specific case
where a depth-first search on the flowgraph and its DRST lead to the same order
over the set of vertices, we call the DRST a depth-first search tree (DFST). The
set of back edges is denotes by BE . Given a DFST of G, we call back edge any
edge of G that goes from a vertex to one of its ancestors in the DFST. And
we say that a vertex u dominates a vertex v if every path from s to v in G
crosses u.

Here we focus on reducible flowgraphs. The intuition for reducible flowgraphs
is that any loop of such a flowgraph has a unique entry, that is a unique edge
from a vertex exterior to the loop to a vertex in the loop. This notion has been
extensively studied (see for instance [12]). The following proposition summarizes
equivalent definitions of reducible flowgraphs.

Proposition 1. All the following items are equivalent:

1. G = (V, E, s) is a reducible flowgraph.
2. Every DFS on G starting at s determines the same back edge set.
3. The directed acyclic graph (DAG) dag(G) = (V, E − BE , s) is unique.
4. For every (u, v) ∈ BE, v dominates u.
5. Every cycle of G has a vertex which dominates the other vertices of the cycle.

We now recall the precise definition of lassos:

Uniform Monte-Carlo Model Checking 131

Definition 1 (lassos). Given a flowgraph G = (V, E, s), a path in G is a final
sequence of vertices s0, s1, . . . , sn such that s0 = s and ∀0 ≤ i < n (si, si+1) ∈
E. An elementary path is a path such that the vertices are pairwise distinct. A
lasso is a path such that s0, . . . , sn−1 is an elementary path and sn = si for some
0 ≤ i < n.

We can now state our first result on lassos in reducible flowgraphs.

Proposition 2. Any lasso of a reducible flowgraph ends with a back edge, and
any back edge is the last edge of a lasso.

Proof. Suppose a traversal starting from the source vertex goes through a lasso
and finds a back edge before the end of the lasso. Since the graph is a reducible
flowgraph this means that we have a domination, thus we see two times the
same vertex in the lasso, which is a contradiction with the fact that a lasso is
elementary (remember a lasso is an elementary path).

Suppose now that the traversal never sees a back edge. Then no vertex has
been seen twice, thus the traversal is not a lasso.

Using this proposition, we can now design a simple algorithm for

– counting the number of lassos in a reducible flowgraph,
– uniformly generating random lassos in a reducible flowgraph.

Here uniformly means equiprobably. In other word any lasso has the same prob-
ability to be generated as the others.

Following the previous proposition, the set of lassos is exactly the set of paths
that start from the source and that end just after the first back edge encountered.
At first, we change the problem of generating lassos into a problem of generating
paths of a given size n, by slightly changing the graph: we add a new vertex s0

with a loop, that is an edge from itself to itself, and edge from s0 to s. And
we give n a value that is an upper bound of the length of the lassos in the new
graph. A straightforward such value is the depth of the depth-first search tree
plus one.

Now for any vertex u, let us denote fu(k) the number of paths of length k
starting from vertex u and finish just after the first back edge encountered. The
edge (s0, s0) is not considered as a back edge because it does not finish a lasso
in the initial graph G. The number of lassos is given by fs0(n). And we have the
following recurrence:

– fs0(1) = 0.
– fu(1) = number of back edges from u if u �= s0.
– fu(k) =

∑
(u,v)∈E′ fv(k − 1) for k > 1 where E′ is the set of edges of the

graph, except the back edges.

The principle of the generation process is simple: starting from s, draw a path
step by step. At each step, the process consists in choosing a successor of the
current vertex and going to it. The problem is to proceed in such a way that

132 J. Oudinet et al.

only (and all) lassos of length n can be generated, and that they are equiproba-
bly distributed. This is done by choosing successors with suitable probabilities.
Suppose that, at one given step of the generation, we are on state u, which has
k successors denoted v1, v2, . . . , vk. In addition, suppose that m > 0 transitions
remain to be crossed in order to get a lasso of length n. Then the condition
for uniformity is that the probability of choosing state vi (1 ≤ i ≤ k) equals
fvi(m − 1)/fu(m). In other words, the probability to go to any successor of
u must be proportional to the number of lassos of suitable length from this
successor.

Computing the numbers fu(i) for any 0 ≤ i ≤ n and any state u of the graph
can be done by using the recurrence rules above.

Table 1 presents the recurrence rules which correspond to the automaton of
Figure 2.

s0 1 2 3 4

Fig. 2. An example of a Büchi automaton, from [11]. We have added the vertex s0 and
its incident edges, according to our procedure for generating lassos of length ≤ n for
any given n.

Table 1. Recurrences for the fi(k)

fs0(1) = f2(1) = 0
f1(1) = f3(1) = f4(1) = 1

fs0(k) = fs0(k − 1) + f1(k − 1) (k > 1)
f1(k) = f2(k − 1) (k > 1)
f2(k) = f3(k − 1) + f4(k − 1) (k > 1)
f3(k) = f4(k − 1) (k > 1)
f4(k) = 0 (k > 1)

Now a primitive generation scheme is as follows:

– Preprocessing stage: Compute a table of the fu(i)’s for all 0 ≤ i ≤ n and
any state u.

– Generation stage: Draw the lassos according to the scheme seen above.

Note that the preprocessing stage must be done only once, whatever the num-
ber of lassos to be generated. Easy computations show that the memory space
requirement is O(n × |V |) integer numbers, where |V | denotes the number of
vertices in G. The number of arithmetic operations needed for the preprocessing
stage is in the worst case in O(nd|V |), where d stands for the maximum number
of transitions from a state; and the generation stage is O(nd) [13]. However,

Uniform Monte-Carlo Model Checking 133

the memory required is too large for very long lassos. In [18] we presented an
improved version, named Dichopile, which avoids to have the whole table in
memory, leading to a space requirement in O(|V | log n), at the price of a time
requirement in O(nd|V | log n).

4 Application to LTL Model-Checking

This section shows how to use this generation algorithm (and its variants, see [18])
for LTL randomised model-checking. We note M and Φ the considered model and
LTL formula. We propose a randomised method to check whether M |= Φ. We
call BM a Büchi automaton corresponding to M : the transitions are labeled, the
underlying graph is assumed to be reducible, and all the states are accepting (but
this condition can be relaxed). We call B¬ Φ the Büchi automaton corresponding
to the negation of Φ. The problem is to check that L(B) = ∅ where B = BM ×
B¬ Φ.

It is possible to avoid the construction of the product B = BM × B¬ Φ. The
idea is to exploit the fact that this product is the result of a total synchronisation
between BM and B¬ Φ: as explained in [4], the behaviours of B are exactly those
behaviours of BM accepted by B¬ Φ. It means that a lasso in B corresponds to
a lasso in BM (but not the reverse). Therefore, it is possible to draw lassos
from BM and, using B¬ Φ as an observer, to reject those lassos that are not in
B. It is well-known that such rejections preserve uniformity in the considered
subset [16].

4.1 Drawing Lassos in B

There is a pre-processing phase that contains the one described in Section 3,
namely:

(pre-DFS) the collection of the set BE of back edges via a DFS in BM , and
computing n, the depth of the DFS + 1;

(pre-vector) the construction of the vector of the |V | values fu(1), i.e. the
numbers of lassos of length 1 starting for every vertex u;

The two steps above are only needed once for each model. They are independent
of the properties to be checked. The third step below is dependent on the
property:

(pre-construction of the negation automaton) the construction of the
Büchi automaton B¬ Φ.

Lassos are drawn from BM using the Dichopile algorithm [18] and then observed
with B¬ Φ to check whether they are lassos of B. Moreover, it is also checked
whether an acceptance state of B¬ Φ is traversed during the cycle. The observa-
tion may yield three possible results:

– the lasso is not a lasso in BM × B¬ Φ;
– the lasso is an accepting lasso in BM × B¬ Φ;
– the lasso is a non-accepting lasso in BM × B¬ Φ.

134 J. Oudinet et al.

Observation of lassos
The principle of the observation algorithm is: given a lasso of BM , and the
B¬ Φ automaton, the algorithm explores B¬ Φ guided by the lasso: since B¬ Φ

is generally non deterministic, the algorithm performs a traversal of a tree made
of prefixes of the lasso.

When progressing in B¬ Φ along paths of this tree, the algorithm notes
whether the state where the cycle of the lasso starts and comes back has been
traversed; when it has been done, it notes whether an accepting state of the
automaton is met.

The algorithm terminates either when it reaches the end of the lasso or when
it fails to reach it: it is blocked after having explored all the strict prefixes of
the lasso present in B¬ Φ. The first case means that the lasso is also a lasso of
BM ×B¬ Φ; then if an accepting state of B¬ Φ has been seen in the cycle of the
lasso, it is an accepting lasso. Otherwise it is a non-accepting lasso. The second
case means that the lasso is not a lasso in BM × B¬ Φ.

As soon as an accepting lasso is found, the drawing is stopped.

4.2 Complexities

Given a formula Φ and a model M , let |Φ| the length of formula Φ, |V | the
number of states of BM and |E| its number of transitions, the complexities of
the pre-processing treatments are the following:

(pre-DFS) this DFS is performed in BM ; it is O(|E|) in time and O(|V |) in
space in the worst case;

(pre-vector) the construction of the vector of the fu(1) is Θ(|V |) in time and
space;

(pre-construction of the negation automaton) the construction of B¬ Φ

is O(2|Φ|. log |Φ|) in time and space in the worst case [24].

The drawing of one lasso of length n in BM using the Dichopile algorithm is
O(n.d.|V |. log n) in time and O(|V |. log n) in space; then its observation is a
DFS of maximum depth n in a graph whose size can reach O(2|Φ|). Let dB¬ Φ the
maximal out-degree of B¬ Φ, the worst case time complexity is min(dn

B¬ Φ
, 2|Φ|),

and the space complexity is O(n).
The main motivation for randomised model-checking is gain in space. With

this respect, using isotropic random walks as in [11] is quite satisfactory since a
local knowledge of the model is sufficient. However, it may lead to bad coverage of
the model. For instance, [11] reports the case of the Needham-Schroeder protocol
where a counter-exemple has a very low probability to be covered by isotropic
random walk. The solution presented here avoids this problem, since it ensures
a uniform drawing of lassos, but it requires more memory: Θ(|V |) for the pre-
processing and O(|V |. log n) for the generation.

We can also compare the complexity of our approach to the complexity of
practical algorithm for the model checking of LTL. The NDFS algorithm [5] has
a space complexity of O(r log |V |) for the main (randomly accessed) memory,

Uniform Monte-Carlo Model Checking 135

where r is the number of reachable states. This complexity is obtained thanks
to the use of hash tables. Information accessed in a more structured way (e.g.
sequentially) are stored on an external memory and retrieved using prediction
and cache to lower the access cost.

In this case, uniform sampling of lassos, with a space complexity of
O(|V | log n) is close to the O(r log |V |) of the classic NDFS algorithm, without
being exhaustive. Nevertheless, a randomized search has no bias in the sequence
of nodes it traverses (as is NDFS), and may lead faster to a counterexample in
practice.

4.3 Probabilities

Let lassosB the number of lassos in B, and lassosBM the number of lassos in
BM , i. e. lassosBM = fs(n), we have lassosB ≤ fs(n). The probability for a lasso
to be rejected by the observation is lassosB/fs(n), where the value of lassosB

is dependent on the considered LTL formula. Thus, the average time complexity
for drawing N lassos in B is the complexity of the pre-processing, which is
O(|E|) + O(2|Φ|)) plus N × fs(n)/lassosB [16] times the complexity of drawing
one lasso in BM and observing it, which is O(n log n|V |) + min(dn

B¬ Φ
, 2|Φ|).

Since the drawing in BM is uniform, and fs(n) is the number of lassos the
probability to draw any lasso in BM is 1/fs(n). Since there are less lassos in B,
and rejection preserves uniformity [16], the probability to draw any lasso in B is
1/lassosB which is greater or equal to 1/fs(n). It is true for any lasso in B, the
accepting or the non accepting ones. Thus there is no accepting lasso with too
low probability as it was the case in the Needham-Schroeder example in [11].

Moreover, the probability ρ that M |= Φ after N drawings of non-accepting
lassos is greater than:

1 − (
1 − 1/fs(n)

)N

Increasing N may lead to high probabilities. Conversely, the choice of N may be
determined by a target probability ρ:

N ≥ log(1 − ρ)
log(1 − 1/fs(n))

(1)

Remark: A natural improvement of the method is to use the fact that during
the preliminary DFS some lassos of BM are discovered, namely one by back edge.
These lassos can be checked as above for early discovery of accepting lassos in
BM × B¬φ. However, it is difficult to state general results on the gain in time
and space, since this gain is highly dependent on the topology of the graph.

5 Experimental Results

In this section, we report results about first experiments, which use the algorithm
presented in Section 4 to verify if an LTL property holds on some models. We

136 J. Oudinet et al.

first chose a model in which it is difficult to find a counter-example with isotropic
random walks. The idea is to evaluate the cost-effectiveness of our algorithm:
does it find a counter-example in a reasonable amount of time and memory? How
many lassos have to be checked before we get a high probability that M |= Φ? [2].

5.1 Implementation and Methodology

This algorithm has been implemented using the RUKIA library1. This C++
library proposes several algorithms to generate uniformly at random paths in
automata. In particular, the Dichopile algorithm that is mentioned in Section 3.
We also use several tools that we mention here: The Boost Graph Library (BGL)
for classical graph algorithms like the depth-first search algorithm; The GNU
Multiple Precision (GMP) and Boost.Random libraries for generating random
numbers; The LTL2BA software [9] to build a Büchi automaton from a LTL
formula.

We did all our experiments on a dedicated server whose hardware is composed
of an Intel Xeon 2.80GHz processor with 16GB memory. Each experiment was
performed 5 times. The two extreme values are discarded and the three remaining
values are averaged.

5.2 Description of the Model and the Formula

Figure 3 shows BM , the Büchi automaton of the model. It has q states and every
state, except sq, has two transitions labeled by the action a: stay in the current
state or move to the next state. The state sq can only do the action ¬a.

s1 s2 s3 sq−1 sq
a

a

a

a a

a

a ¬a

Fig. 3. The Büchi automaton, BM , of the model. Its transitions are labeled by a or
¬a, to indicate if the action a occurs or not.

The property that we want to check on this model is: “an action a should
occur infinitely often”. In LTL, this property can be expressed as

φ = GFa,

where the operator G means “for all” and the operator F means “in the future”.
It is clear that M �|= Φ because if sq is reached, then no a will occur. Hence,

there is a behavior in M where the action a will not occur infinitely often. How-
ever, it is difficult for an isotropic random walk to find the lasso that traverses
sq. In the next section, we measure the difficulty to find this lasso with our
algorithm.
1 http://rukia.lri.fr

http://rukia.lri.fr

Uniform Monte-Carlo Model Checking 137

5.3 LTL Model-Checking with Uniform Generation of Lassos

The first step of the algorithm is to build a Büchi automaton that represents
the formula ¬φ (here, ¬φ = FG¬a). We used the tool LTL2BA and got the
automaton in Figure 4.

s0 s1
¬a

1 ¬a

Fig. 4. The Büchi automaton, B¬φ, of the formula ¬φ. The label 1 means that both a
and ¬a are accepted.

Then, we can apply our algorithm to generate lassos in BM until we find an
accepting lasso in BM ∩B¬φ, by observing the lasso of BM with the automaton
B¬φ. Table 2 shows the time needed to our algorithm to find the counter-example
in two versions of the automaton in Figure 3, one with q = 100 states and the
other with q = 1000 states. We also tried to find this counter-example with
isotropic random walks. It did not work, even after the generation of 2 billions
lassos. Thus, using uniform generation of lassos provides a better detection power
of counter-examples.

Table 2. M �|= Φ: elapsed time, used memory and numbers of lassos generated in BM

by the algorithm of Section 4 to find the counter-example of Section 5.2

states Time (s) Mem (MiB) Nb lassos

100 0.38 49 70
1000 546 50 680

As we know the probability to find the counter-example in B with both
isotropic random walks and uniform random generation (i.e., 1/2q for an isotropic
random walk and 1/q for a uniform random generation), we can compute the
number of lassos required to achieve a target probability ρ. Table 3 describes
those numbers for some target probabilities and for the two previous versions of
the automaton in Figure 3.

Note: In general, the minimal probability to find a counter example is unknown.
In the case of uniform random generation of lassos, we have a lower bound of
this probability. Thus, the maximal number of lassos to be generated for a given
probability can always be determined with Formula 1, which it is not possible
with isotropic random walks.

138 J. Oudinet et al.

Table 3. M |= Φ: numbers N of lassos to be generated with isotropic random walks
(resp. uniform random generation) in order to ensure a probability ρ that M |= Φ. The
symbol ∞ means a huge number, which cannot be computed with a calculator.

N

states ρ isotropic uniform

100 0.9 1030 227
0.99 ∞ 454

0.999 ∞ 681
1000 0.9 ∞ 2300

0.99 ∞ 4599
10000 0.9 ∞ 23022

6 Conclusion

We have presented a randomised approach to LTL model checking that ensures
a uniform distribution on the lassos in the product B = BM × B¬ Φ. Thus,
there is no accepting lasso with too low probability to be traversed, whatever
the topology of the underlying graph.

As presented here, the proposed algorithm still needs an exhaustive traversal
of the state graph during the pre-processing stage. This could seriously limit
its applicability. A first improvement of the method would be to use on the fly
techniques to avoid the storage in memory of the whole model during the DFS. A
second improvement would be to avoid the complete storage of the vector, parts
of it being computed during the generation stage, when needed. However, it will
somewhat increase the time complexity of drawing. Another possibility would be
approximate lasso counting, thus approximate uniformity, under the condition
that the approximation error can be taken into account in the estimation of the
satisfaction probability, which is an open issue.

First experiments, on examples known to be pathological, show that the
method leads to a much better detection power of counter-examples, and that
the drawing time is acceptable. In Section 5, we report a case with long counter-
examples difficult to reach by isotropic random walks. A counter-example is
discovered after a reasonable number of drawings, where isotropic exploration
would require prohibitive numbers of them. The method needs to be validated on
some more realistic example. We plan to embed it in an existing model-checker
in order to check LTL properties on available case studies.

The method is applicable to models where the underlying graph is a reducible
flow graph: we give a method for counting lassos and drawing them at random in
this class of graphs, after recalling that it is a hard problem in general. Reducible
data flow graphs correspond to well-structured programs and control-command
systems (i.e., the steam boiler [2]). A perspective of improvement would be to
alleviate the requirement of reducibility. It seems feasible: for instance, some
data flow analysis algorithms have been generalised to communicating automata

Uniform Monte-Carlo Model Checking 139

in [15]. Similarly, we plan to study the properties and numbers of lassos in
product of reducible automata, in order to consider multi-threaded programs.

References

1. Abed, N., Tripakis, S., Vincent, J.-M.: Resource-aware verification using random-
ized exploration of large state spaces. In: Havelund, K., Majumdar, R. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 214–231. Springer, Heidelberg (2008)

2. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications, Specifying and Programming the Steam Boiler Control (the book
grow out of a Dagstuhl Seminar). LNCS, vol. 1165. Springer, Heidelberg (1996)

3. Aldous, D.: An introduction to covering problems for random walks on graphs. J.
Theoret. Probab. 4, 197–211 (1991)

4. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoe-
belen, P.: Systems and Software Verification. In: Model-Checking Techniques and
Tools, Springer, Heidelberg (2001)

5. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal methods in system de-
sign 1(2), 275–288 (1992)

6. Denise, A., Gaudel, M.-C., Gouraud, S.-D.: A generic method for statistical test-
ing. In: 15th International Symposium on Software Reliability Engineering (ISSRE
2004), pp. 25–34. IEEE Computer Society, Los Alamitos (2004)

7. Denise, A., Gaudel, M.-C., Gouraud, S.-D., Lassaigne, R., Peyronnet, S.: Uniform
random sampling of traces in very large models. In: 1st International ACM Work-
shop on Random Testing, pp. 10–19 (July 2006)

8. Dwyer, M.B., Elbaum, S.G., Person, S., Purandare, R.: Parallel randomized state-
space search. In: 29th International Conference on Software Engineering (ICSE
2007), pp. 3–12 (2007)

9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

10. Gaudel, M.-C., Denise, A., Gouraud, S.-D., Lassaigne, R., Oudinet, J., Peyronnet,
S.: Coverage-biased random exploration of large models. In: 4th ETAPS Work-
shop on Model Based Testing. Electronic Notes in Theoretical Computer Science,
vol. 220(1,10), pp. 3–14 (2008) (invited lecture)

11. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005)

12. Hecht, M.S., Ullman, J.D.: Characterizations of reducible flow graphs. J.
ACM 21(3), 367–375 (1974)

13. Hickey, T., Cohen, J.: Uniform random generation of strings in a context-free lan-
guage. SIAM J. Comput. 12(4), 645–655 (1983)

14. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

15. Labbé, S., Gallois, J.-P.: Slicing communicating automata specifications: polyno-
mial algorithms for model reduction. Formal Asp. Comput. 20(6), 563–595 (2008)

16. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg
(1986)

140 J. Oudinet et al.

17. Oudinet, J.: Uniform random walks in very large models. In: RT 2007: Proceedings
of the 2nd International Workshop on Random Testing, pp. 26–29. ACM Press,
New York (2007)

18. Oudinet, J., Denise, A., Gaudel, M.-C.: A new dichotomic algorithm for the uniform
random generation of words in regular languages. In: Conference on random and
exhaustive generation of combinatorial objects (GASCom), Montreal, Canada, p.
10 (September 2010)

19. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: Proc. of Formal Methods for Industrial Critical Systems (FMICS
2005), Lisbon, Portugal, pp. 98–105. ACM Press, New York (2005)

20. Rungta, N., Mercer, E.G.: Generating counter-examples through randomized
guided search. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595,
pp. 39–57. Springer, Heidelberg (2007)

21. Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. In: Proc. of Parallel and Distributed Model
Checking (PDMC 2003). Electr. Notes Theor. Comput. Sci., vol. 89(1) (2003)

22. Tarjan, R.E.: Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput. 2(3), 211–216 (1973)

23. Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a
graph. Commun. ACM 13(12), 722–726 (1970)

24. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

25. Weinblatt, H.: A new search algorithm for finding the simple cycles of a finite
directed graph. J. ACM 19(1), 43–56 (1972)

26. West, C.H.: Protocol validation in complex systems. In: SIGCOMM 1989: Sym-
posium proceedings on Communications architectures & protocols, pp. 303–312.
ACM, New York (1989)

View publication stats

https://www.researchgate.net/publication/221115383

	Uniform Monte-Carlo Model Checking
	Introduction
	Counting and Generating Lassos in Directed Graphs
	Uniform Random Generation of Lassos in Reducible Flowgraphs
	Application to LTL Model-Checking
	Drawing Lassos in B
	Complexities
	Probabilities

	Experimental Results
	Implementation and Methodology
	Description of the Model and the Formula
	LTL Model-Checking with Uniform Generation of Lassos

	Conclusion
	References

