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Abstract. This paper presents several ran-
domised algorithms for generating paths in large
models according to a given coverage criterion.
Using methods for counting combinatorial struc-
tures, these algorithms can efficiently explore
very large models, based on a graphical repre-
sentation by an automaton or by a product of
several automata. This new approach can be
applied to random exploration in order to opti-
mise path coverage and can be generalised to
take into account other coverage criteria, via the
definition of a notion of randomised coverage
satisfaction.

Our main contributions are: a method for
drawing paths uniformly at random in com-
posed models, i.e. models that are given as
products of automata, first without and then
with synchronisation; a new efficient approach
to draw paths at random taking into account
some coverage criterion.

Experimental results show promising agree-
ment with theoretical predictions and signifi-
cant improvement over previous randomised ap-
proaches. This work opens new perspectives for
future studies of statistical testing and model
checking, mainly to fight the combinatorial ex-
plosion problem.

1 Introduction

Methods based on randomness seem attractive
for testing large programs or checking large

models. However, designing efficient random
methods, i.e. methods that have a good and as-
sessable fault detection power, is far from being
obvious: the underlying probability distribution
must be carefully designed if one wants to en-
sure a good coverage of the program or model,
or of potential fault locations, and to quantify
this coverage.

Random methods can be classified into three
categories : those based on the input domain
of the system under test, those based on some
knowledge of its environment, and those based
on some model of its behaviour.

In the first case, classical random testing (as
studied by Duran and Ntafos in [13,14]) con-
sists in selecting test data uniformly at random
from the input domain of the program. In some
variants, some knowledge on the input domain
is exploited, for instance to focus on the bound-
ary or limit conditions of the software being
tested [39].

In the second case, the selection is based
on an operational profile (an estimate of the
relative frequency of use of various inputs to
the program). Such testing methods are called
statistical testing. They can serve as a statisti-
cal sampling method to collect failure data for
reliability estimation (for a survey see [35], and
[38] for more recent results).

In the third case, some graphical descrip-
tion of the behaviour of the system under test
is used. Random walks [2] are performed on
the set of paths of the description. Then inputs
that trigger the executions of these paths are
selected. This is in the line of testing methods



2 MOTIVATIONS

developed early in the area of communication
protocols [47,34]. More recently, random walks
have been used for model checking [26]. Clas-
sical random walk methods, sometimes called
isotropic, progresses from one state by draw-
ing among the successors uniformly at random.
A serious drawback is that in case of irregu-
lar topology of the underlying graph, uniform
choice of the next state is far from being opti-
mal from a coverage point of view. We come
back to this point in Section 2.

As a matter of fact, when a graphical model
of the system under test is available (either
as the functional level or at the code level),
most testing or checking methods are based on
coverage criteria. A coverage criterion defines
a set of elements of the graph that must be
covered by the execution of at least one test. In
practical testing context, coverage criteria are
often used to assess the quality of a given test
set. Such criteria provide information about how
well the system under test has been exercised
and may lead testers to design additional test
cases.

In this paper, we study the combination of
coverage criteria with the third kind of random
methods mentioned above. Namely, we develop
some methods for selecting paths at random
in a model. The selection is biased toward a
coverage criterion.

We use methods for counting and generating
combinatorial structures. They make it possible
to efficiently draw paths uniformly at random in
large graphs. This lead to random exploration
methods that optimise path coverage. Then, we
show how to combine other coverage criteria and
randomness, introducing a notion of coverage-
guided random exploration.

This definition corresponds to a notion of
randomised coverage satisfaction. It makes it
possible to assess and compare random explo-
ration methods with respect to a coverage cri-
terion.

The paper is organised as follows. After this
introduction, we develop and explain the moti-
vations of our work in Section 2. Then, Section 3
recalls briefly some classical definitions, namely
labelled transition systems, control flow graphs,
and automata.

In Section 4, we first present a method for
drawing paths uniformly at random in a sin-
gle automaton (Section 4.1). Then we address
the new problem of the uniform exploration of
composed models (Section 4.2), i.e. models that

are given as products of automata, first with-
out and then with synchronisation. We present
algorithms for solving this problem.

In Section 5 we study the problem of draw-
ing paths at random taking into account some
coverage criterion: after some preliminaries, we
define in Section 5.2 a notion of random path
generation biased towards a coverage criterion.
We develop a new approach to obtain a given
approximation of the coverage and we show how
to implement it.

In Section 6 we report several experimental
results, first on random generation of paths in
Labelled Transition Systems (in Section 6.1),
second on statistical testing of some C programs
(in Section 6.2).

Section 7 discusses some related works, and
Section 8 gives some conclusions and perspec-
tives.

2 Motivations

As said above, in this paper we study how to
draw paths, with a coverage criterion as a guide.
However, in this section we first come back to
some existing methods where randomness is
used for input selection, and coverage criteria
are taken into account, either a posteriori or a
priori. Then we come to random path selection,
which naturally emerges when coverage is con-
sidered. We develop the need for improvement
of classical isotropic random walk.

2.1 Random input selection and coverage

A basic way to combine random testing and
coverage criteria is to proceed to random input
generation and then assess the achieved cover-
age a posteriori. Of course, the choice of the dis-
tribution on the input domain is an important
issue. Drawing uniformly at random from the
input domain seems attractive because it is easy
to implement in most cases, or more exactly
to implement good approximations. However,
classical results on its use for program testing,
first by Duran and Ntafos [13,14], and then
others, showed that its detection power is very
variable and related to the degree of achieved
code coverage. Since these first experiments, it
has been generally observed that this type of
testing suffers from the so-called “diminishing
return phenomenon”: some faults are discovered

2



2 MOTIVATIONS 2.2 Random selection of paths

by the first experiments, but then the detection
power decreases, and the method becomes in-
effective. This is due to the existence in most
programs of special cases that correspond to
few inputs and have a low probability to be
triggered by this method.

Another way is to consider a partition of
the input domain, or a decomposition into sub-
domains1, possibly induced by a coverage crite-
rion2, and then to draw at random some inputs
from each of them. As said in [27], it is a way to
force diversification in the choice of test inputs.
And when a coverage criterion is the basis of
the subdomains, it forces diversification of the
parts of the program that are traversed since at
least one test input must be selected from each
subdomain. The big issue with partition testing
is the non homogeneity of the subdomains with
respect to failures: homogeneous subdomains
would be such that either all inputs yield a fail-
ure, or none. It is unrealistic to imagine that
they could be discovered before testing, at the
stage of the definition of the testing strategy.
An attempt to partially deal with this issue is
to select several inputs from each subdomains,
often by drawing them uniformly at random.

Various works have been devoted to the com-
parison of variants of such methods with what
we call pure random testing (i.e. uniform draw-
ing from the whole input domain). For instance,
in [27], Gutjahr has compared the fault detec-
tion capability of pure random testing with
partition testing when one input is drawn uni-
formly at random from each subdomain. He
introduces random variables for modelling the
failure rates of each partition, and shows that
in the special case where the failures rates are
sort of balanced (independent with equal ex-
pected values) partition testing is better or the
same as pure random testing. In [48], Weyuker
and Jeng have shown that if all subdomains
have equal size, if an equal number of inputs is
selected from each of them, subdomain testing
has a better or equal probability of failure detec-
tion. In [7], Chen and Yu have introduced the
idea of “proportional partition testing”, where
the number of selected inputs in a subdomain
is proportional to its size. These results and

1 The difference between partitions and subdomains
is that the first one are required to be disjoint; this
point is not relevant in the present discussion and we
use both terms indifferently.

2 Each element to be covered defines a sub-domain
that is the set of inputs that cause its execution

several other ones have been collected and anal-
ysed by Ntafos in [36]. His moderate conclusion
is that the subdomain testing strategies men-
tioned above are likely to perform better than
pure random testing, with respect to fault de-
tection. However, citing him, “the real issue has
always be cost-effectiveness”. Generally, sub-
domain testing is more effort-consuming than
pure random testing. It means that using ran-
dom testing enriched by a small number of ad-
ditional cases to cover low probability subdo-
mains may be preferable to subdomain testing.
It also means that providing an efficient way of
discovering partitions or subdomains and im-
plementing the corresponding testing strategies
would be of great interest.

An interesting attempt to take into ac-
count coverage criteria without making explicit
the induced subdomains was proposed in [44,
45], where Thévenod-Fosse and Waeselynck de-
veloped what they called a statistical testing
method: the input distribution considers a cov-
erage criterion to avoid the existence of low
probability cases. The authors have reported
several experiments, which led to the conclusion
that their approach has a better fault detection
power than pure random testing and than de-
terministic testing based on classical coverage
criteria. However, the construction of the input
distribution is difficult since it requires the res-
olution of as many equations as paths in the
program or in the model. For large programs, or
in presence of loops, the construction is empir-
ical, based on preliminary observations of the
behaviour of the program [45].

To avoid this explicit construction of some
input distribution, we have developed another
approach where the random space is no more
the input domain but the paths of a graphical
model of the system under test. It makes it
easier to combine coverage criteria and random
testing. Moreover, as the coverage criterion is
taken into account in the definition of the distri-
bution, the achieved coverage can be estimated
a priori for a given number of tests.

2.2 Random selection of paths

2.2.1 Uniformity

The most demanding coverage criterion is to go
through all paths, where the underlying fault
assumption is that any path is likely to produce

3
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a failure. However, this criterion is most of the
time impracticable because of the exponential
number of paths. Thus this criterion is a natu-
ral candidate for combination with randomness.
When deciding on a distribution on paths, ac-
cording to the above assumption, one must take
into account the fact that every path must have
a non-null probability. In a testing or a checking
context, where the aim is fault detection, one
must maximise the probability to cover every
path. This leads to the choice of a uniform dis-
tribution on paths and to the introduction of
a (high) bound on their lengths when there are
infinite paths, as it is unavoidable when testing.

In the case of other coverage criteria, the
choice of a distribution is more involved as it is
developed in Section 5.

2.2.2 Isotropic random walk and coverage
issues

A classical way to explore at random a graph is
to use isotropic random walks. If we know every
state of the system and their successors, and we
are able to assign a probability to each successor
of a state such that it sums to 1, then we can
explore such systems by using random walks.
In the case of isotropic random walks, every
successor has the same probability. Algorithm 1
draws paths of length less than or equal to n.

Algorithm 1 Isotropic random walk
Require: a graph G, an initial state s0 and a

length n
Ensure: a path σ such that |σ| ≤ n
i← 0
s← s0
while i 6= n and succ(s) 6= ∅ do

Choose a state s′ uniformly at random among
the successors of s (succ(s))
σ ← σ ∪ t with t the arc s→ s′

i← i+ 1
s← s′

end while
return σ

Since it doesn’t need any knowledge but the
current state and its successors, an isotropic
random walk could be the ideal candidate to
explore very large models at random. Unfortu-
nately, the underlying probability distribution
of paths induced by isotropic random walks is
hard to know as it depends on the graph topol-

ogy. Sometimes, an isotropic random walk is
totally inefficient, like in the following example.

In Figure 1, the expected number N of
isotropic random walks to execute before get-
ting n different paths (of length n) is:

E(N) = E(N1) + E(N2) + · · ·+ E(Nn)

=
1
p1

+
1
p2

+ · · ·+ 1
pn

= 1 + 2 + · · ·+ 2n−1

= 2n − 1

(1)

where E(Ni) (resp. pi) is the expected value
(resp. probability) to get a new path after i− 1
different isotropic random walks. In other words,
Formula 1 show that isotropic random walks
need an exponential amount of drawings to
cover paths of the graph in Figure 1.

s0 s2

s1

s4

s3 s5

s2n s2n+2

s2n+1

Fig. 1: A pathological graph for isotropic ran-
dom walk

This exponential amount of drawings comes
from the choice done by the random walk at
each state. It has to choose between a state that
leads to a single path and a state that leads
to an exponential number of paths. But, in the
case of an isotropic random walk, those two
states have the same probability, hence a lot of
paths have a low probability to occur in favour
of a single path.

If the number of paths that start from each
state is known, the random walk can be guided
to balance the probability to draw every path
so as to get a uniform distribution.

2.3 Contributions

In this paper, we first show how to efficiently
compute numbers of paths starting from states
in large models. Then we show how to use these
numbers to draw paths in a way guided by
coverage criteria. When the coverage criterion is

4



3 BACKGROUND 3.3 Automata

about paths, we use an exploration method with
a uniform probability distribution of the set of
paths to be covered, as explained in Section 4.
When the coverage criterion is not about paths,
but, for instance, about states or transitions,
it is clear that uniform path drawing is not
optimal. Then we show how to adjust it in order
to get a good approximation of the required
coverage, as explained in Section 5.

3 Background

We study how to draw paths in two kinds of
graphs: labelled transition systems and control
graphs of C programs. Considering these graphs
as automata makes it possible to use a number
of results that are useful for studying random
exploration and the notion of randomised cov-
erage.

3.1 Models of reactive systems: LTS

We consider a rather classical kind of model
of reactive systems, namely transition systems
where transitions are labelled by symbols of a
given alphabet X which represent the set of
actions of the reactive system.

Definition 1. A labelled transition system
(LTS) is a structure M = (S, T, s0, X) where
S is a set of states, s0 the initial state, T ⊆
S × X × S a transition relation, X a set of
labels.

When a LTS is finite, we note |M| the size
of M, i.e. its number of states.

A path of an LTS M is a finite or infinite
sequence σ = (s0, a0, s1, . . . , si, ai, si+1, . . . ) of
transitions satisfying:

∀i ≥ 0, (si, ai, si+1) ∈ T.

3.2 Control graphs

Control graphs are a classical way of represent-
ing programs. They are oriented and connected
graphs (S,V ,s0,sf ) where S is a set of states, V
is a set of transitions, s0 is the initial state and
sf is the final state. In control graphs, states are
either maximum indivisible blocks of statements
of the program, or predicates that appear in
conditional or loop statements. Transitions cor-
respond to possible transfers of control between
these states.

As said above, we consider control graphs
with two distinguished states named s0 and
sf : they correspond to the entry point and the
exit point of the program. We consider control
graphs with no dead code, i.e., any state is
reachable from s0, and sf is reachable from any
state. Each state (resp. transition) is labelled
in order to find easily at which piece of code
(resp. branch) of the program it corresponds to.
A control path is a path in the control graph
which goes from s0 to sf .

Given a control path, the valuations of in-
puts such that this path is followed during
program execution are characterised by the
path predicate. This predicate is the conjunc-
tion of the conditions (or of their negations)
met when traversing the path, adequately up-
dated in function of the variables assignments
(see for instance [24]). Any data satisfying the
above predicate is an input executing the path,
thus a possible test input for covering this path:
thus test data generation is done by resolution
of this predicate, using an adequate constraint
solver. The choice of the constraint solver de-
pends on the kind of constraints expressible in
the language. This is a well-known issue that in
control graphs some paths may be unfeasible:
those with a predicate that is not satisfiable be-
cause of the occurrence of contradictory condi-
tions when traversing them. In the case of linear
constraints it is possible to decide whether a
path is unfeasible, and there exist good tools for
that. In more realistic cases, such as the ones
addressed in Section 6.2, more powerful solvers
must be used [5,10,32]. In some cases they may
fail to return a decision, since the general sat-
isfiability problem is known to be undecidable.
However, thank to significant progresses both on
constraint solvers [4] and on heuristics for pre-
detection of unfeasible paths [31], these failures
turn out to be more and more manageable (see
also our experimental results in Section 6.2).

3.3 Automata

LTS and control graphs are very close to the
notion of automata, that comes with a rich
corpus of results that we will use in the sequel.

Definition 2. An automaton A is denoted as
follows:

A = 〈X,S, s0, F, T 〉.
where X is an alphabet of labels, S a finite
set of states, s0 the initial state, F ⊆ S a set

5
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Fig. 2: A finite automaton

of final states, and T a transition function T :
S ×X → S.

We will consider two special cases for F :
the case where F is a singleton {sf} (which
is convenient when considering control graphs
of programs); the case where F = S (which is
convenient when considering models of reactive
systems such as LTS). Moreover, the automata
we deal with have the following property : any
two different transitions have distinct labels.

Figure 2 presents such an automaton, where
S = {0, 1, 2, 3, 4, 5, 6, 7}, s0 = 0, F = {7} and
X = {a, b, c, d, e, f, g, h, i, j, k}.

As for LTS, a path of an automaton A is
a sequence of transitions.The trace of a path
in A is the sequence of symbols of X that cor-
responds to the sequence of transitions. The
formal language defined by A, denoted L(A), is
the set of traces of all the paths from s0 to any
state of F .

4 Uniform path random generation

Here we are interested in drawing uniformly
at random a set of paths in one or several au-
tomata that represent a model, as seen above.
In Section 4.1 we suppose that there is only one
automaton, and we recall a known algorithm
for generating paths uniformly at random: this
is a special case of a general method of genera-
tion of combinatorial structures, which has been
first addressed by Wilf [49] and then generalised
and systematised by Flajolet, Zimmermann and
Van Cutsem [18].

Then, in Section 4.2, we deal with the prob-
lem of generating paths uniformly in a very large
model which is composed of a (unsynchronised
or synchronised) product of much smaller com-
ponents (modelled by automata). Using com-
binatorial techniques, we reduce the problem

to drawing paths in the components. At first
we focus on unsynchronised systems, then we
study the case where there is one synchronised
transition per component, and all components
must synchronise at the same time.

4.1 Single automaton

If n is a positive integer, Pn (resp. P≤n) denotes
the set of paths of length n (resp. whose length
is ≤ n) in A from s0 to any state of F .

The aim is, given an integer n, to generate
uniformly at random one or several paths of
length ≤ n from s0 to any state of F . Uniformly
means that all paths in P≤n have the same
probability to be generated. At first, let us focus
on a slightly different problem: the generation
of paths of length n exactly. We will see further
that a slight change in the automaton allows
to generate paths of length ≤ n. Remark that
generally the number of paths of length n grows
exponentially with n.

The principle of the generation process is
simple: starting from s0, draw a path step by
step. At each step, the process consists in choos-
ing a successor of the current vertex and going
to it. The problem is to proceed in such a way
that only (and all) paths of length n can be
generated, and that they are equiprobably dis-
tributed. This is done by choosing successors
with suitable probabilities. Given any state s,
let fs(m) denote the number of paths of length
m which connect s to any state of F . Suppose
that, at one given step of the generation, we
are on state s, which has k successors denoted
s1, s2, . . . , sk. In addition, suppose that m > 0
transitions remain to be crossed in order to get
a path of length n. Then the condition for uni-
formity is that the probability of choosing state
si (1 ≤ i ≤ k) equals fsi

(m−1)/fs(m). In other
words, the probability to go to any successor of
s must be proportional to the number of paths
of suitable length from this successor to any
state of F .

Computing the numbers fs(i) for any 0 ≤
i ≤ n and any state s of the graph can be done
by using the following recurrence rules:

fs(0) = 1 if s ∈ F
= 0 otherwise

fs(i) =
∑
s→s′ fs′(i− 1) for i > 0

(2)

where s→ s′ means that the sum is on all the
states s′ and all the transitions between s and
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f0(0) = f1(0) = f2(0) = 0
f3(0) = f4(0) = f5(0) = f6(0) = 0
f7(0) = 1

f0(k) = f1(k − 1) + f2(k − 1) (k > 0)
f1(k) = f3(k − 1) (k > 0)
f2(k) = f5(k − 1) (k > 0)
f3(k) = f4(k − 1) + f5(k − 1) (k > 0)
f4(k) = f6(k − 1) (k > 0)
f5(k) = f6(k − 1) + f7(k − 1) (k > 0)
f6(k) = f1(k − 1) + f7(k − 1) (k > 0)
f7(k) = 0 (k > 0)

Table 1. Recurrences for the fi(k).

s′ (note that s′ may be equal to s if loops are
allowed in the automaton). Table 1 presents
the recurrence rules which correspond to the
automaton of Figure 2.

Now the generation scheme is as follows:

– Preprocessing stage: Compute a table of the
fs(i)’s for all 0 ≤ i ≤ n and any state s.

– Generation stage: Draw the path according
to the scheme seen above.

Note that the preprocessing stage must be done
only once, whatever the number of paths to be
generated. Easy computations show that the
memory space requirement is n × |S| integer
numbers. The number of arithmetic operations
needed for the preprocessing stage is in the
worst case in O(nd|S|), where d stands for the
maximum number of transitions from a state,
and the generation stage is O(nd).

For generating paths of length ≤ n instead
of exactly n, the only change is the following:
Add to the automaton a new state s′0 which
becomes the new initial state, with a transition
from s′0 to s0 and a loop transition from s′0 to
itself. Label both transitions with a same new
letter. Each path of length n + 1 from s′0 to
a state of F in this new automaton crosses k
times the new loop transition for some k such
that 0 ≤ k ≤ n and exactly once the one from
s′0 to s0. With this path we obviously associate
a path of length n − k in the previous graph.
It is straightforward to verify that any path of
length ≤ n can be generated in such a way, and
the generation is uniform.

4.2 Composed automata

4.2.1 Without synchronisation

Here we focus on the problem of uniformly (that
is equiprobably) generating traces of a given
length n in a system of r modules represented
by automata. In a first step, we consider that
there is no synchronisation between the r mod-
ules. Each one is represented by a finite state
automaton

Ai = 〈Xi, Si, s
0
i , Fi, Ti〉.

where the Xi’s are pairwise disjoint. Each of
the Ai’s defines a regular language Li whose
words correspond to the traces within the cor-
responding module.

Now, the following automaton recognises
the language L that represents the set of traces
in the whole system: A = 〈X,S, s0, F, T 〉, where

– X = X1 ∪X2 ∪ . . . ∪Xr;
– S = S1 × S2 × . . .× Sr;
– s0 = (s01, s

0
2, . . . , s

0
r);

– F = F1 × F2 × . . .× Fr;
– T ((s1, . . . , si, . . . , sr), x)) =

(T1(s1, x), . . . , si, . . . , sr) if x ∈ X1

. . .
(s1, . . . , Ti(si, x), . . . , sr) if x ∈ Xi

. . .
(s1, . . . , si, . . . , Tr(sr, x)) if x ∈ Xr

We call this automaton a shuffling automa-
ton of L1, L2, . . . , Lr because the language L
can be also described by the shuffling opera-
tion on languages. The shuffling of two words
w,w′, denoted w ∃ w′ is the set w ∃ w′ defined
as follows:

{w1w
′
1 · · ·wmw′m | wi, w′i ∈ X∗∧
w = w1 · · ·wm ∧ w′ = w′1 · · ·w′m}.

For example, ab ∃ cde = {abcde, acbde, acdbe,
acdeb, cabde, cadbe, cadeb, cdabe, cdaeb, cdeab}.
The shuffle of two languages L1 and L2 is the
set

L1

∃ L2 =
⋃

w1∈L1,

w2∈L2

w1

∃ w2

This easily generalises to any finite number r
of languages.

Since there is no synchronisation in the sys-
tem, clearly there is a one-to-one correspon-
dence between the set of its traces and the words

7
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of L = L1

∃ L2

∃ . . . ∃ Lr. Thus the problem
reduces to uniformly generating words of length
n in L. We present two different approaches for
this problem and we discuss their complexity
issues.

Brute force method. This first approach con-
sists in constructing the shuffling automaton
seen above for L = L1

∃ L2

∃ . . . ∃ Lr. Then
classical algorithms for randomly and uniformly
generating words of a regular language can be
processed, as described in Section 4.1.

Let C1 =
∑

1≤i≤r |Xi| and C2 =
∏

1≤i≤r |Si|.
The worst-case complexities of the two main
steps of the algorithm are the following.

1. Constructing the automaton: This step is
performed only once, whatever the num-
ber of traces to be generated. Its worst-case
complexity is C1C2 in time and space re-
quirements.

2. Generating traces: Using classical algorithms,
randomly and uniformly generating one word
requires nC1 time requirement, after a pre-
processing stage having worst-case complex-
ity nC1C2 in time and in nC2 space. This
preprocessing stage is performed once, what-
ever the number of traces to be generated.

Hence the worst case complexity for generat-
ing m traces of length n is O(C1C2 +mnC1) in
time and O(C1C2 +nC2) in space. This is linear
in n, in m, in the total size of the alphabets.
However, since C2 =

∏
1≤i≤r |Si|, the complex-

ity is exponential according to the number of
modules. Thus the algorithm will be efficient
only for a small number of modules.

“On the fly” shuffling method. Here we describe
an alternative method which avoids construct-
ing the above automaton. It allows to generate
random traces almost uniformly, with a time
complexity linear time according to n and to r.
However this method suffers from the following
limitation: every word wi ∈ Li that participates
to the trace must be longer than a constant ν.
As will be seen below, ν can be computed from
the automatas of the languages Li’s.

At first we need some additional notation.
Let `(k) (resp. `i(k)) be the number of words of
length k belonging to the language L (resp. Li).
The number of words of length n belonging to
L is:

`(n) =
∑

k1+···+kr=n

(
n

k1, . . . , kr

)
`1(k1) · · · `r(kr)

where
(

n
k1,...,kr

)
= n!

k1!k2!...kr
is a multinomial

coefficient.
Now, generating a trace of length n can be

done in three steps, as follows. At first, choose at
random, with a suitable probability, the length
ni of each word wi of Li which will contribute to
the word w of L to be generated. Then generate
each wi independently. Finally shuffle the wi’s.
That is:

1. Choose at random a composition of n in
r parts, that is a r-tuple (n1, . . . , nr) such
that ni ≥ 0 for every i and n1 + . . .+ nr =
n. This compositions must be chosen with
probability

Pr(n1, . . . , nr) =

(
n

n1,...,nr

)
`1(n1) · · · `r(nr)
`(n)

2. For each 1 ≤ i ≤ r, draw uniformly a ran-
dom word wi of length ni in Li, using the
classical algorithm for generating words of
a regular language.

3. Shuffle the r words. This can be done with
the following algorithm:

Shuffling r words
Input: r words w1, . . . , wr, of length n1, . . . , nr
respectively
Output: one word w of length n =

∑
i ni,

drawn uniformly among the set of shuffles of
w1, . . . , wr.
w ← ε
n←

∑
i ni

while n > 0 do
choose an integer i between 1 and r with

probability ni

n
add the first letter of wi at the end of w
remove the first letter of wi
ni ← ni − 1
n← n− 1

The word w has been generated equiproba-
bly among all the words of L of length n. Re-
garding complexity issues, clearly the complex-
ity of step 3 is linear in n and in r. The com-
plexity of step 2 is linear in n, in the maximum
of |Xi| and in the maximum of |Si|, in time as
well as in space requirements. The main contri-
bution to the total worst-case time complexity
is the computation of the suitable probabilities
by Formula (1) in step 1. The space require-
ment is O(1) but, unfortunately, the number of
terms that have to be computed is exponential
in n. However, with additional conditions on
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the ni’s and on the Li’s, there is a way of drasti-
cally simplifying the step 1, by using asymptotic
approximates.

According to a well known result (see e.g.
[42] or [17, Section IV.5.1]), if L is a regular
language, then there exist an integer N , a finite
set of complex numbers ω1, ω2, . . . , ωk and a fi-
nite set of polynomials R1(n), R2(n), . . ., Rk(n)
such that

n ≥ N → `(n) =
k∑
j=1

Rj(n)ωnj . (3)

The number N , as well as the ωj ’s and the
Rj ’s, can be computed from any automaton of
L, with an algorithm of polynomial complexity
according to the size of the automaton.

If the automaton of L is aperiodic and strongly
connected, then there is a unique i such that
|ωi| > |ωj | for any j 6= i, and Ri(n) has degree
zero, that is Ri(n) = C for any n, where C is
a constant. (An automaton is aperiodic if the
greater commun divisor of the lengths of all its
cycles is 1.)

Thus, if we define ω = ωi then we have, for
any n ≥ N ,

`(n) = Cωn +O(ω′n) (4)

where ω′ is the value of largest modulus among
the ωj ’s except ω. And, since ω > ω′ if follows
immediately that `(n) ∼ Cωn.

It is worth noticing that the strong connec-
tivity condition is sufficient, yet not necessary.
For instance, it suffices to have some unique
biggest strongly-connected component in the
automaton for Formula (4) to hold.

Now, assume that all the Li’s are such that,
for all k > Ni,

`i(k) = Ciω
k
i +O(ω′ki )

where Ni, Ci, ωi, and ω′i are four constants that
play the same roles, respectively, as N , C, ω,
and ω′ in (4). This can be restated as:

`i(k) = Ciω
k
i (1 +O(

ω′ki
ωki

)

= Ciω
k
i (1 +O(αki ))

where 0 ≤ |αi| < 1.
Now let us denote `(n1, n2, . . . , nr) the num-

ber of words of L of size n = n1 + n2 + . . .+ nr

having ni letters in the word from Li for every
i. Then we have

`(n1, n2, . . . , nr)
= C1 · · ·Cr

(
n

n1,...,nr

)
`1(n1) · · · `r(nr)

= C1 · · ·Cr · ωn1
1 · · ·ωnr

r

(1 +O(αn1
1 )) · · · (1 +O(αnr

r ))
= C1 · · ·Crωn1

1 · · ·ωnr
r (1 +O(αν))r

where α = maxi αi and ν = mini ni. And finally

`(n1, n2, . . . , nr)
= C1 · · ·Crωn1

1 · · ·ωnr
r (1 + rO(αν))

where α < 1 and ν ≤ mini ni, provided that
ni > Ni for all i.

In other words, we just stated that

`(n1, n2, . . . , nr) ≈ C1 · · ·Crωn1
1 · · ·ωnr

r

and the relative error tends to zero at an ex-
ponential rate according to ν, the minimum
of the ni’s. In practice, taking for example
ν = 2 maxiNi will suffice to get a very good ap-
proximation of `(n1, n2, . . . , nr) in most cases.

Now, this approximation gives us a fast way
to perform the step 1 of our random generation
algorithm. What we have to do is to generate
the composition of n, namely (n1, n2, . . . , nr),
with probability

Pr(n1, . . . , nr) ∼
(

n
n1,...,nr

)
ωn1

1 ωn2
2 . . . ωnr

r

(ω1 + ω2 + . . .+ ωr)n
(5)

since∑
k1+···+kr=n C1 · · ·Cr

(
n

k1,...,kr

)
ωk11 · · ·ωkr

r

= C1 · · ·Cr(ω1 + · · ·+ ωr)n.
(6)

There is an easy algorithm for doing it without
computing the formula: take the set of inte-
gers {1, . . . , r} and draw a random sequence
by picking independently n numbers in this set
in such a way that the probability to choose
i is Pr(i) = ωi

ω1+ω2+...+ωr
. Then take ni as the

number of occurrences of i in this sequence.
Now, recall that we must ensure that ni > ν

for all i. This could be done by rejecting all r-
uples that do not satisfy this requirement. But
it would lead to a huge number of rejects. Alter-
natively, a slight change in the algorithm allows
to satisfy the requirement without any reject. It
is based on the fact that the distribution of com-
positions of n into r parts larger than ν is equal
to the distribution of compositions of n − rν
into r parts. Thus the algorithm becomes: take
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the set of integers {1, . . . , r} and draw a ran-
dom sequence by picking independently n− rν
numbers in this set in such a way that the proba-
bility to choose i is Pr(i) = ωi

ω1+ω2+...+ωr
. Then

take ni as the number of occurrences of i in this
sequence, plus ν.

In conclusion, for any large enough n, the
algorithm generates traces of length n almost
uniformly at random. Its overall complexity
is linear according to n and r, polynomial ac-
cording to the maximum of |Xi| and to the
maximum of |Si|, in time as well as in space
requirements.

4.2.2 With one synchronisation

Now we suppose that each module contains
exactly one synchronised transition, denoted α.
Thus, in the global system all modules must
take α at the same time.

Let A1, . . . , Ar be r automata, with alpha-
bets X1, . . . , Xr, all containing a common syn-
chronisation symbol α, such that

∀i, j ∈ 1 . . . r, i 6= j,Xi ∩Xj = {α}.

Let L1, . . . , Lr be the respective languages recog-
nised by A1, . . . , Ar. Here, any trace can be
represented by a word belonging to the lan-
guage L defined as follows: L is the set of words
w ∈ X1 ∪ . . . ∪Xr such that

w = w0αw1α . . . wm−1αwm

where the projection of w onto every Xi be-
longs to Li. The number m is the number of
synchronisations during the process: each of the
projections contains exactly m letters α (and,
equivalently, there is no α in any of the wi.)

Again the brute force approach. Here the ap-
proach consists in constructing the synchro-
nised product of A1, A2, . . . , Ar, as follows. Let
Xi,α = Xi\{α}. The synchronised product [3] of
A1, A2, . . . , Ar with {α} as synchronisation set
is the finite automaton A =< X,S, s0, F, T >,
where

– X = X1 ∪X2 ∪ . . . ∪Xr;
– S = S1 × S2 × . . .× Sr;
– s0 = (s01, s

0
2, . . . , s

0
r);

– F = F1 × F2 × . . .× Fr;

– T is as follows:

T ((s1, . . . , si, . . . , sr), x)) =
(T1(s1, x), . . . , si, . . . , sr) if x ∈ X1,α,
. . .
(s1, . . . , Ti(si, x), . . . , sr) if x ∈ Xi,α,
. . .
(s1, . . . , si, . . . , Tr(sr, x)) if x ∈ Xr,α.

T ((s1, . . . , si, . . . , sr), α)) =
(T1(s1, α), . . . , Ti(si, α), . . . , Tr(sr, α))

This automaton represents the language L
of synchronised traces. Once it has been built,
the generation process is exactly as in Sec-
tion 4.2.1. The construction easily generalises
to these cases where there are several synchro-
nisations
α1, . . . , αk in each automaton. If k is small, the
size of the synchronised product is of the same
order as for the non-synchronised case (see Sec-
tion 4.2.1). However, in presence of many syn-
chronisations the brute force method turns out
to be exploitable (see Section 6.1.4) since the
reachable state space of the synchronised prod-
uct remains of reasonable size.

“On the fly” generation of synchronised traces.
Here we present an algorithm for, given n and
m, uniformly generating random synchronised
traces of length n with m synchronisations,
avoiding the construction of the synchronised
product.

Given that each automaton Ai contains a
unique transition labeled by α (the synchronised
transition), let si,1 and si,2 be the states just
before and just after this transition, respectively.
Now let us define, for each Li, the four following
languages:

– The beginning language: Bi is the set of
words corresponding to the paths which
start at the initial state of Ai, which do
not cross the α transition, and which stop
at si,1.

– The central language: Ci is the set of words
corresponding to the paths which start at
si,2, which do not cross the α transition, and
which stop at si,1.

– The ending language: Ei is the set of words
corresponding to the paths which start at
si,2, which do not cross the α transition, and
which stop anywhere.

– The non-synchronised language: Di is the
set of words which start at the initial state
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of Ai, which never cross the α transition,
and which stop anywhere.

For any i, the language Li can be defined ac-
cording to Bi, Ci, Ei and Di:

Li = Bi.(α.Ci)∗.α.Ei ∪ Di .

Thus, if we define B = ∃ r
i=1Bi (resp. C =

∃ r
i=1Ci, E = ∃ ri=1Ei, and D = ∃ ri=1Di), we

have:
L = B.(α.C)∗.α.E ∪ D . (7)

Now let `(n) (resp. `i(n), b(n), bi(n), c(n), ci(n),
e(n), ei(n), d(n), di(n)) be the number of words
of length n in L (resp. Li, B, Bi, C, Ci, E,
Ei, D, Di). Additionally, let `(n,m) be the
number of words of L of length n which contain
α exactly m times. Let w be one of these words.
If m > 0, then w = w0αw1α . . . αwm where
w0 ∈ B, wi ∈ C for any 1 ≤ i < m, and
wm ∈ E. Finally, let `(i0, i1, . . . , im) be the
number of such words such that the length of
each wj equals ij , for all 0 ≤ j ≤ m. Then we
have

`(n,m) =


d(n) if m = 0,∑
i0+···+im=

n−m

`(i0, . . . , im) else,

(8)
where

`(i0, . . . , im) = b(i0)c(i1) · · · c(im−1)e(im).
(9)

Now we can present the algorithm. At first
let us remark that if m = 0 we are in the
case where there is no synchronisation, as in
the previous section. Thus we can suppose that
m > 0.

1. Compute the b(i)’s, c(i)’s, and e(i)’s for all
0 ≤ i ≤ n−m. As each of the languages B,
C, and E is a shuffle of r languages without
synchronisation, these coefficients can be
computed by using one of the algorithms of
Section 4.2.1, knowing that using the on the
fly algorithm requires additional hypotheses
on the involved automata and path lengths.

2. Using Formula 9, compute all the `(k0, . . . , km)
for all (m+ 1)-tuples (k0, . . . , km) such that
k0 + · · · + km = n −m. In the same time,
compute and keep in memory the sum

`(n,m) =
∑

k0+···+km=n−m

`(k0, . . . , km)

and all the partial sums

S(i0, . . . , is) =∑
ks+1+···+km=
n−m−i0−···−is

`(i0, . . . , is, ks+1, . . . , km)

for each 0 ≤ s < m and for each (s+1)-tuple
(i0, . . . , is). This can be done in O((n−m)m)
time and space requirements. It is worth
noticing that these two first steps have to
be done only once, whatever the number of
traces to be generated afterwards.

3. Choose a (m + 1)-tuple (i0, . . . , im). For
ensuring the uniformity of the generation
of the final trace, this probability must be
equal to

Pr(i0, i1, . . . , im) =
`(i0, i1, . . . , im)

`(n,m)
.

This can be done in an incremental way,
by using the partial sums that have been
computed during the previous step: choose
i0 with probability

Pr(i0) =
S(i0)
`(n,m)

,

then i1 with probability

Pr(i1/i0) =
S(i0, i1)
S(i0)

,

and follow by choosing each is, for 2 ≤ s ≤
m, with probability

Pr(is/i0, i1, . . . , is−1) =
S(i0, i1, . . . , is)
S(i0, i1, . . . , is−1)

.

Each choice can be done in O(n−m) oper-
ations. Since there are m choices, the com-
plexity of the whole step is O(m(n−m)).

4. Now we have got the whole sequence (i0, . . . , im)
with a suitable probability. It remains to gen-
erate the words w0 ∈ B, w1, . . . , wm−1 ∈ C
and wm ∈ E, each wk having length ik. Each
of these words is simply a shuffle of the r
languages (Bi)i=1...r if k = 0, (Ci)i=1...r if
1 ≤ k < m, (Ei)i=1...r if k = m. For each
of the wk’s, the shuffling algorithm given in
Section 4.2.1 can be used.

5 Randomised coverage criteria

5.1 Coverage criteria and randomness

As seen in Section 2, the idea of combining cov-
erage criteria and random testing aims at over-
coming some drawbacks of both approaches.
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One main drawback of the classical use of
coverage criteria (i.e selecting in a deterministic
way one input for each element to be covered) is
that the induced sub-domains are generally not
homogeneous: some of their inputs may result
in a failure, and some others may yield correct
results.

Random testing lessens this drawback since
it allows intensive test campaigns where the
same element of the program may be executed
several times with different data. However, as
seen in Section 2, in its pure random version it
induces a bad coverage of cases corresponding
to small input sub-domains.

In this section we study what it means for
a random testing method to ensure a given
coverage. This leads to a notion of randomised
coverage satisfaction. A similar notion, called
test quality for statistical testing, was defined
by Thévenod-Fosse and Waeselynck in [43]. We
reformulate it in our context.

Let A be an automaton describing a system
under test. On the basis of this automaton, it
is possible to define the usual coverage criteria:
all-states, all-transitions, all-paths-of a certain-
kind, etc. More precisely, a coverage criterion C
characterises for a given description A a set of
elements EC(A) of the underlying automaton
(this set is denoted E in the sequel when C
and A are obvious). In the case of deterministic
testing, the criterion is satisfied if every element
of the set is exercised by at least one test.

In the case of random testing, the satisfac-
tion of a coverage criterion is a probabilistic
notion. When drawing N tests, what can be
said on the probability to cover EC(A)? Let us
note qC,N (A) the minimal probability of cov-
ering any element of EC(A) when drawing N
tests. The value qC,N (A) is called the test qual-
ity of the random method with respect to C.

The test quality qC,N (A) can be easily stated
if qC,1(A) is known. Indeed, one gets qC,N (A) =
1− (1− qC,1(A))N , since when drawing N tests,
the probability of reaching an element is one mi-
nus the probability of not reaching it N times.

Let us come back to the example of Sec-
tion 4.1, where we generate uniformly random
paths among the set P≤n of paths of length ≤ n.
Considering the coverage criterion “all paths
of length ≤ n”, noted below AP≤n, we get the
following test quality:

qAP≤n,N = 1− (1− 1
|P≤n|

)N

q 0.9 0.99 0.999 0.9999

N 32 63 94 125

Table 2. Number of tests N required for a given test
quality q w.r.t. the “all paths of length ≤ 10” criterion,
for Figure 2

In the example, choosing n = 10 allows the
coverage of all elementary paths (see Figure 2).
Using Table 1, one can compute the number of
paths of length less or equal to 10. there are 14
of them. Thus we have:

qAP≤10,N = 1− (1− 1
14

)N

Table 2 gives the number of tests required
for four values of test quality, for the criterion
“all paths of length ≤ 10”.

The assessment of test quality is more com-
plicated in general. Let us consider more prac-
ticable coverage criteria, such as “all-states” or
“all-transitions”, and some given random testing
method. Generally, the elements to be covered
have different probabilities to be reached by a
test. Some of them are covered by all the tests.
Some of them may have a very weak probability,
due to the structure of the behavioural automa-
ton or to some specificity of the testing method.
For instance, in the example transitions b and
d appear in 5 paths of length ≤ 10 only. Transi-
tions a and c appear in 9 such paths. It means
that drawing uniformly from P≤10 leads to a
probability of 5

14 to reach transition b, and 9
14

to reach transition a.
Let EC(A) = {e1, e2, ..., em} and for any

i ∈ (1..m), pi the probability for the element ei
to be exercised during the execution of a test
generated by the considered random testing
method. Then

qC,N (A) = 1− (1− pmin)N (10)

where pmin = min{pi|i ∈ (1..m)}. pmin is called
the minimum reachability property by some au-
thors [1]. Consequently, the number N of tests
required to reach a given quality qC(A) is

N ≥ log(1− qC(A))
log(1− pmin)

(11)

By definition of the test quality, pmin is just
qC,1(A). Thus, from the formula above one im-
mediately deduces that for any given A, for
any given N , maximising the quality of a ran-
dom testing method with respect to a coverage

12
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criteria C reduces to maximising qC,1(A), i. e.
pmin.

However, maximising pmin must not lead to
give up the randomness of the method. This
may be the case when there exists one path
traversing all the elements of EC(A): one can
maximise pmin by giving a probability 1 to
this path, going back to a deterministic testing
method. When one wants to keep randomness of
the testing method, another requirement must
be combined to the maximisation of pmin: all
the paths traversing an element of EC(A) must
have a non null probability and the minimal
probability of such a path must be as high as
possible. Thus designing an optimal random
testing method for a given coverage criterion
turns out to be a difficult multi-criteria problem:

1. maximising pmin, that is the minimal proba-
bility to any element of EC(A) to be reached
by a path

2. maximising the minimal probability of any
path traversing an element of EC(A)

If the main requirement of the testing cam-
paign is to cover the elements of EC(A) what-
ever paths traversing them, then maximising
pmin is the solution. But it may lead to give
null probability to some paths traversing these
elements. Conversely, if the main requirement
is to explore those paths traversing some el-
ement of EC(A), then the best method is to
draw uniformly at random among these paths.
But it may lead to some weak probability for
some elements, namely those reachable by few
paths, thus to a weak probability to satisfy the
coverage criterion. There is a bunch of solutions
between those two extremes.

In the next section, we present one of these
solutions that favours (item 1) and weakens
(item 2) into: “any path traversing an element
of EC(A) must have a non-null probability.”

5.2 Path generation biased towards a coverage
criterion

Now let us consider a given coverage criterion
C. As a preliminary remark, note that the set
of elements EC(A) must be finite, otherwise the
quality of test would be zero. This implies, in
particular, that the coverage criterion “all paths”
is irrelevant as soon as there is a cycle in the
description, like in the example (Figure 2). Thus,
this criterion has to be bounded by additional

conditions, for example “all paths of length
≤ n”, “all paths of length between given n1

and n2”, or “all paths which take at most m
times each cycle in the automaton”. For the
sake of simplicity, we consider in the following
that paths are generated within P≤n, the set of
paths of length ≤ n.

Two cases must be considered, according to
the nature of the elements of EC(A). If EC(A)
denotes a set of paths in the automaton, the
quality of test is optimal if the paths of EC(A)
are generated uniformly, i.e. any path has the
same probability 1/|EC(A)| to be generated.
Indeed, if the probability of one or several paths
was greater than 1/|EC(A)|, then there would
exist at least one path with probability less than
1/|EC(A)|, therefore the quality of test would
be lower. Section 4.1 presented how to generate
uniformly random paths of given length n in
an automaton, and how to fit with the criterion
“all paths of length ≤ n”. The method easily
applies to other criteria that involve paths, as
those given above, by ways similar to the ones
that will be seen in Section 5.3.

Note that with such criteria, the paths to be
drawn are independent in the sense that there
is a one-to-one correspondence between these
paths and the elements to be covered.

In the case where the elements of EC(A) are
not paths, but are constitutive elements of the
automaton as, for example, states, transitions,
or loops, uniform generation of paths does not
ensure optimal quality of test in this case. Ide-
ally, the distribution on paths should ensure
conditions (1) and (2) above. In Gouraud et
al. [12,24], a practical solution in two steps is
proposed, namely:

1. pick at random one element e of EC(A), ac-
cording to a suitable probability distribution
(which is discussed below),

2. generate uniformly at random a path of
length ≤ n that goes through e. This en-
sures a balanced coverage of the set of paths
which cover e.

Now let us compute the probability pi for
the element ei (for any i in [1..m]) to be reached
by a path generated with the above process. Let

– πi be the probability of choosing element ei
in step 1 of the process.

– αi be the number of paths of P≤n, which
cover element ei;

13
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– αi,j be the number of paths, which cover
both elements ei and ej (note that αi,i = αi
and αi,j = αj,i);

The probability of reaching ei by drawing a
random path which goes through another ele-
ment ej is αi,j

αi
. Thus the probability pi for the

element ei (for any i in [1..m]) to be reached
by a path is

pi = πi +
∑

j∈[1..m]−{i}

πj
αi,j
αj

,

which simplifies to

pi =
m∑
j=1

πj
αi,j
αj

(12)

since αi,i = αi.
Note that with such criteria, the paths to

be drawn may be no more independent in the
sense that a path covering ei may cover another
element ej . This is reflected by the occurrence
of the αi,j in the computations above.

We will see in the following section how
to compute the αj ’s and the αi,j ’s, and how to
generate paths that cross a given transition. For
now, let us suppose that the αj ’s and the αi,j ’s
have been computed. The problem of computing
the probabilities {π1, π2 . . . , πm} with

∑
πi =

1, which maximise pmin = min{pi, i ∈ [1..m]}
can be stated as a linear programming problem:

Maximise pmin under the constraints:{
∀i ≤ m, pmin ≤ pi ;
π1 + π2 + · · ·+ πm = 1 ;

where the pi’s are computed as in Formula 12.
Standard methods lead to a solution in time
polynomial according to m.

However, some paths traversing an element
to be covered may have a null probability (see
the example below). In this case, the solution
we have chosen is to redefine the probability
distribution on EC(A) with the additional re-
quirements that each element has a non-null
probability greater or equal than some small
positive value3 ε.

Starting with the principle of a two-step
drawing strategy as seen above, this method en-
sures a maximal minimum probability of reach-
ing the elements to be covered and, once one

3 This solution has the advantage of being general, i.e.
applicable for any coverage criterion. For certain simple
criteria, there exist simpler solutions. For instance, for
“all-states”, it is sufficient to add the requirement that
π0, the probability to get s0 at the first step, is greater
or equal than some ε.

a b c d e f g h i j k

a 9 0 9 0 5 7 5 5 6 6 3
b 0 5 3 5 1 2 1 4 3 3 2
c 9 3 12 3 6 9 6 8 9 8 4
d 0 5 3 5 1 2 1 4 3 3 2
e 5 1 6 1 6 3 6 3 5 5 1
f 7 2 9 2 3 9 3 7 7 5 4
g 5 1 6 1 6 3 6 3 5 5 1
h 5 4 8 4 3 7 3 9 7 7 2
i 6 3 9 3 5 7 5 7 9 6 3
j 6 3 8 3 5 5 5 7 6 9 0
k 3 2 4 2 1 4 1 2 3 0 5

Table 3. Table of the αij .

element chosen, a uniform coverage of the paths
traversing this element. For a given number of
tests, it makes it possible to assess the approx-
imation of the coverage, and conversely, for a
required approximation, it gives a lower bound
of the number of tests to reach this approxima-
tion (cf. Formula 11).

Let us illustrate this method with the exam-
ple. Given the coverage criterion “all-transitions”
and given n = 10, Table 3 presents the coeffi-
cients αi,j , where i and j denote letters from
’a’ to ’k’. For example, the value ’9’ in row ’f’
and column ’c’ means that αc,f = 9, i.e. there
are exactly 9 paths of length lower or equal to
10 from the initial state to the final state which
cross both transitions c and f in the automaton
of Figure 2.

The corresponding linear program is shown
in Table 4. Each line, but the last one, is an
inequation which corresponds to a row in Ta-
ble 3. The first term of the inequation is pmin,
the value to be maximised. The second term
is one of the pi’s, computed according to For-
mula 12. For example, the first line means that
pmin must be lower or equal to pa, the proba-
bility of reaching transition ’a’ with a random
path. By maximising pmin, one maximises the
lowest pi, i.e. the quality of test. The last line
ensures that the probabilities πi sum to 1.

Solving this linear program leads to πa =
πc = πd = πf = πg = πh = πi = πj = 0,
while πb = πk = 5

16 = 0.3125 and πe = 6
16 =

0.375. This gives pmin = 1
2 = 0.5, therefore the

quality of test is 1− 1
2N , according to Formula 10.

But with this distribution, the paths acfhj and
acfhicfhj have a null probability to be drawn.
To ensure the coverage of all paths, one adds
the following constraints πx ≥ ε for all x ∈
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pmin ≤ πa + 3
4
πc + 5
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πe + 7

9
πf + 5

6
πg + 5
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πh + 2

3
πi + 2

3
πj + 3

5
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6
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9
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3
πi +πk

1 = πa +πb +πc +πd +πe +πf +πg +πh +πi +πj +πk

Table 4. The linear program.

EC(A). In the example, with ε = 0.0001, the
new distribution is πa = πb = πc = πe = πf =
πh = πi = πj = 1

1000 , while πd = 35729
115200 ≈

0.3101, πg = 11867
32000 ≈ 0.3708, and πk = 179141

576000 ≈
0.311. This gives pmin = 58893

120000 ≈ 0.4908. The
new pmin is very close to the previous one.

The value pmin is computed taking into ac-
count all the paths traversing some element of
EC(A). As mentioned above, when testing pro-
grams, there may be unfeasible paths in the
control flow graph. The presence of unfeasible
paths may induce some inacurracy in the max-
imisation of pmin. When exploring LTS, this
problem does not occur.

5.3 Conditions on paths and operations on
automata

As seen above, coverage criteria can be related
to constitutive elements of the automaton, as
all-states or all-transitions, or may express some
constraints, as all-paths of a certain kind. For
example, one can define coverage criteria such
as:
– all paths that cross a given transition (or

a given state), or more generally a set of
transitions (or states), in a given order or
in an arbitrary order;

– all paths that do not to cross a given transi-
tion (or state) or a given set of transitions
(or states);

– all paths that cross one or several transitions,
or one or several sequences of transitions, a
fixed number of times;

– any combination of the above constraints.
Here we show how the theory of formal lan-
guages provides procedures for dealing with

Fig. 3: An automaton that contains only the
paths of the automaton of Figure 2 which cross
transition labeled ’e’.

these kinds of constraints. The solution con-
sists, given the automaton A that represents
the system, in building a new automaton A′

whose total set of paths is equal to the set of
paths in A that satisfy the desired constraint.

All kinds of constraints enumerated above
are said to be regular, because they can be
expressed as a regular language L′. For example,
“cross at least once the transition e” can be
represented by the language L′ = X∗eX∗, that
is the language of words that contain the letter
e at least once. And, obviously, L(A)∩L′ equals
the language that corresponds to the paths from
s0 to a final state in A that cross transition e.
There are classical algorithms to construct the
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automaton of the intersection of two regular
languages (see e.g. [30]). Figure 3 shows the
result of such an algorithm, for the automaton
of Figure 2 and the constraint “cross at least
once the transition e”. It is known [30] that
the complexity of the intersection algorithm,
and the number of states of the corresponding
automaton, are proportional to the product of
the numbers of states of the two automata. Once
A′ has been built, the problem of generating
paths subject to the given regular constraint in
A simply reduces to generating paths in A′.

Meanwhile, there are constraints that can-
not be modelled by a regular language. For
example, “cross transition a not a fixed num-
ber of times, but exactly as many times than
transition b” is a constraint that typically needs
a more general class of languages in Chom-
sky’s hierarchy [30], the class of context-free
language. The method described here for regu-
lar languages can be generalised to context-free
languages, by using context-free grammars in
place of automata. But this is beyond the scope
of the present paper. On the other hand, there
exist constraints that need an even more gen-
eral class in Chomsky’s hierarchy. They cannot
be handled by the methods described here. An
example of such a constraint is “the paths to be
generated must not cross twice the same state”.

6 Experimental results

In this section we present the experiments we
did to prove the effectiveness of our approaches.
More precisely, in Section 6.1 we give numerical
results for the uniform generation of random
paths in both non-synchronised and synchro-
nised systems while in Section 6.2 we present
experiments of our method for testing programs
under different coverage criteria.

6.1 Uniform path generation

We present experimental results that prove the
feasibility of the method we described in Section 4.
We first describe the implementation of our
approach for the uniform generation of paths
of a given length from components of a tran-
sition system described in the BCG format
(Binary Coded Graphs bcg-format). We then
present our methodology for the experiments
together with our experimental framework. Last

we give tables summarising the numerical re-
sults together with a discussion, both in the non-
synchronised and synchronised cases. Moreover,
we compare our approach to the one that builds
the whole system (e.g., computing the product
of several components) before generating paths.

6.1.1 Implementation and methodology

For our implementation, we use several tools
that we mention here: the BCG library of the
CADP toolbox [20], the MuPAD computer al-
gebra system [8], the GMP (Gnu Multiple Pre-
cision) library [25] and the random function of
the BOOST library [33] in order to generate
random numbers.

We did all our experiments on a dedicated
server whose hardware is composed of an In-
tel Xeon 2.80GHz processor with 1GB mem-
ory. Each BCG graph used for our experiments
comes from the VLTS (Very Large Transition
Systems [19]) benchmark suite. These models
correspond to real industrial systems. Each
model name is of the form vasy X Y, where
X is the number of states divided by 1000, and
Y is the number of transitions divided by 1000.
A detail description of the models is available
in Table 5. Table 6 gives the number of paths
for each specified length ; those large numbers
justify why we are interested in random meth-
ods.

6.1.2 Generation in single models

Here, we give results for the uniform generation
of paths in a transition system described by
a single component. Table 7 shows the time
measurements for the uniform generation of
paths in models of various sizes.

The main drawback of the brute force ap-
proach is its memory consumption. When this
approach is feasible, it is efficient. However, we
can see that it is not possible to deal with sys-
tems of size more than 104 states for reasonable
path lengths. In the next section, we show that
generating paths from composed systems allows
to handle systems up to 1027 states and maybe
more.

6.1.3 Generation in composed systems
without synchronisation

We present here the results for the uniform gen-
eration of paths in a system succinctly described
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name # states # transitions # labels branching factor avg [min - max]

vasy 0 1 289 1224 2 4.24 [4 - 8]

vasy 1 4 1183 4464 6 3.77 [2 - 5]

vasy 5 9 5486 9676 31 1.76 [0 - 6]

vasy 8 24 8879 24411 11 2.75 [1 - 5]

vasy 10 56 10849 56156 12 5.18 [4 - 6]

vasy 12323 27667 12323703 27667803 119 2.25 [0 - 13]

Table 5. Detail description of the VLTS benchmark suite

length

name 200 1000 2000 3000 5000 8000

vasy 0 1 10121 10602 101204 101806 103010 104817

vasy 1 4 1097 10479 10957 101435 102392 103826

vasy 5 9 1053 10265 10531 10797 101328 102125

vasy 8 24 1059 10295 10590 10885 101475 102360

vasy 10 56 10140 10699 101399 102098 103496 105593

vasy 12323 27667 1069 10337 10673 101009 101681 102689

Table 6. Number of paths

length

name
200 1000 2000 3000 5000 8000

vasy 0 1 0.0s 0.9s 2.9s 6.3s 15.9s 40.1s

vasy 1 4 0.1s 1.0s 3.2s 6.7s 18.2s 8

vasy 5 9 0.0s 0.9s 2.4s 5.2s 8 8

vasy 8 24 0.2s 0.8s 2.4s 8 8 8

vasy 10 56 0.0s 1.3s 8 8 8 8

vasy 12323 27667 8 8 8 8 8 8

Table 7. Uniform generation of paths in models of various sizes: size versus time. 8 means there is not enough
memory to build the counting table

as the composition of vasy 0 1 with itself several
times (from 2 to 12 times). If r is the number
of such modules used for the composition, then
the number of states of the whole system is 289r

since there is 289 states in the component and
there is no synchronisation here.

MuPAD needs 8.23s, measured using the
Unix time function, to compute the value of ω
for each component.

Table 8 and Table 9 give respectively the
time needed in order to build the counting table
for vasy 0 1 (the table that gives the number of
paths leaving each state of the module) and the
time required for the generation of 100 paths.
The time is measured with the timer function of
the Boost library. Measurements were made 10
times each and we give the mean and standard
deviation of these measures.

We observe that 28912 is of the same order of
magnitude as 1027. It means that this method is
tractable and still efficient for very large models.

We also did experiments with systems com-
posed of different components. For instance, Ta-
ble 10 (resp. Table 11) shows the time needed
to generate 100 paths in a system composed
of two (resp. three) different components. As
soon as it is possible to build the counting table
of each component, we can draw paths in the
whole system.

6.1.4 Generation in composed systems with
synchronisation

Now, we experiment the generation of paths
in composed systems when the composition is
synchronised. We use a real case-study to draw
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length 200 500 1000 2000 4000 8000

0.12s 0.34s 0.77s 2.06s 6.01s 20.70s

Table 8. Preprocessing: time for the construction of the counting table of vasy 0 1, according to the path length.

length

# components
200 500 1000 2000 4000 8000

2 0.58s (0.04) 0.91s (0.08) 1.83s (0.08) 4.71s (0.08) 14.93s (0.54) 37.39s (0.40)

4 0.91s (0.07) 1.25s (0.10) 2.42s (0.11) 5.09s (0.25) 14.57s (0.12) 36.05s (1.04)

6 1.37s (0.11) 1.73s (0.08) 3.00s (0.10) 6.39s (0.27) 18.31s (0.13) 42.21s (0.69)

8 1.78s (0.17) 2.20s (0.07) 3.70s (0.08) 7.91s (0.18) 22.61s (0.32) 49.88s (0.72)

10 2.16s (0.12) 2.76s (0.16) 4.57s (0.13) 9.30s (0.25) 26.82s (0.15) 58.61s (0.69)

12 2.65s (0.22) 3.41s (0.15) 5.31s (0.13) 11.23s (0.17) 31.36s (0.18) 68.73s (1.23)

Table 9. Generation: average time (and standard deviation) for the generation of 100 paths in composed models
without synchronisation (vasy 0 1 is composed with itself)

length 200 1000 2000 3000 5000 8000

0.3s 1.0s 2.4s 4.1s 9.2s 8

Table 10. Average time for the generation of 100 paths in a system composed of vasy 0 1 and vasy 1 4. 8 means
there is not enough memory to build the counting table of each components

paths in a communication protocol, based on a
brute force approach (see Section 4.2.2).

We studied a well-known communication
protocol: the INRES protocol [29]. In this three-
model protocol, the Initiator sends data to the
Responder through a Medium that offers an
unreliable data-transfer service. We used a LO-
TOS description of this protocol4.

The method is as follows:
1. we build an automaton that represents the

whole system from the LOTOS description,
2. we uniformly draw paths in this system.

The step 1 starts from a LOTOS descrip-
tion of each component. Component sizes are
summarised in Table 12. We build an automa-
ton that represents the composed system by
using CADP tools: First, we translate LOTOS
abstract data types into a concrete implemen-
tation in C with the program caesar.adt. Then,
we translate the system described in LOTOS
into a finite state automaton in the BCG format
with the program caesar.

This process takes less than one second to
build the BCG automaton. Table 13 describes
its sizes.

Once the whole system is built, the step 2
consists in drawing uniformly at random paths

4 ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_

09

as in the single-model case. Table 14 and Ta-
ble 15 show the time needed to build the count-
ing table and to generate 100 paths in the whole
system, respectively.

This case-study reveals that the brute force
approach is feasible and provides good results
in specific composed systems in which there are
few non-synchronised transitions. Actually, in
such systems, the size of the product automaton
is not too large according to the size of the
biggest component. So we can build the whole
system and then draw paths in this system.
However, if there are many non-synchronised
transitions, the size of the whole system will be
too large for the brute force approach.

6.2 Uniform generation of paths and testing
programs

Here we present some experiments in the area
of program testing. The objectives of this cam-
paign were the following : first evaluate the fault
detection power of the approach, second study
the stability of this detection power w.r.t. ran-
domness, third, study the impact of unfeasible
paths on the method.

We have developed a prototype, AuGuSTe,
which has been used for testing some C func-
tions extracted from an industrial application.
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6 EXPERIMENTAL RESULTS 6.2 Uniform generation of paths and testing programs

length 200 1000 2000 3000 5000 8000

0.2s 1.6s 2.3s 2.9s 8 8

Table 11. Average time for the generation of 100 paths in a system composed of vasy 0 1, vasy 1 4, and vasy 5 9.
8 means there is not enough memory to build the counting table of each components

# transitions
model # states

synchronised internal

Initiator 34 111 4

Responder 26 81 2

Medium 65 294 0

Table 12. Description of the three models (Initiator, Responder and Medium) that compose the INRES protocol

# transitions
model # states

synchronised internal

Global system 981 2290 262

Table 13. Description of the BCG automaton built from a LOTOS description of the INRES protocol

This test suite is a part of the one used in [45].
In that paper Thevenod-Fosse and Waeselynck
presented an experimental evaluation of their
statistical structural testing method [44]. We
used the same sets of mutants (see below), and
the same set of experiments as in [45] was re-
played with some minor differences due to the
evolution of the C compiler and of the operating
system in the last years.

Below we briefly recall the principles of mu-
tation testing. Then, we present the prototype
and the context of the experiments: the pro-
grams under test and their mutants, the con-
sidered coverage criteria, and the number of
performed tests.

6.2.1 Mutation testing

Classically, mutation testing is used as a selec-
tion method [11], but it can be also used to
evaluate the efficiency of dynamic testing gen-
eration methods. The idea is to create clones
of the program under test where one elemen-
tary error is introduced. These clones are called
mutants.

A test data set, and by extension the method
which created this set, is evaluated by measur-
ing the proportion of mutants which are killed.
A mutant is said to be killed when the program
and the mutant have different outputs. This
proportion of killed mutants is called the mu-
tation score [11]. It is a number between 0 and

1: a high mutation score indicates that the test
data set has been very good at detecting the
faults in the mutants.

6.2.2 The AuGuSTe prototype

The prototype has been developed for experi-
menting the method described in Section 5 and
a detailed description of the AuGuSTe tool can
be found in [23]. Its modular architecture allows
for an easy switch of the programming language
of the programs to test, the constraint solver
and the distribution on the elements to be used.

AuGuSTe takes four input data: a program
under test P , a coverage criterion C, a num-
ber of tests to be generated N , and a maximal
length of paths n. Currently, the program P is
written in a simple imperative language inspired
from C and Pascal. The basic constructions
are sequential composition, If...Then...Else con-
struction (Else is optional), While loop and For
loop. The data types we consider are booleans,
integers, arrays of booleans and arrays of in-
tegers. The criterion C is chosen among “all
paths of length ≤ n”, “all branches” and “all
statements”. Then, AuGuSTe draws the paths
and computes the corresponding input data.

AuGuSTe proceeds in three main steps: the
analysis, the paths generation and the resolu-
tion.

The analysis step builds the control graph G
of the program P , and the necessary automata
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6.2 Uniform generation of paths and testing programs 6 EXPERIMENTAL RESULTS

length 200 500 1000 2000 4000 8000

0.21s 0.74s 1.76s 4.53s 12.40s 8

Table 14. Preprocessing: time to build the counting table from the INRES system according to the path length. 8
means there is not enough memory to build the counting table

length 200 500 1000 2000 4000 8000

0.08s 0.23s 0.86s 2.54s 8.54s 8

Table 15. Generation: average time to generate 100 paths in the INRES system. 8 means there is not enough
memory to build the counting table

required by the chosen criterion. If C is “all
statements” (resp. “all branches”) then the dis-
tribution on the nodes (resp. edges) which is a
linear programming system is built and solved
by an optimisation function using a simplex
algorithm of MuPAD.

The path generation step is performed in
one or two steps as described in Section 5.

Finally, the resolution step builds the predi-
cates corresponding to each path and then tries
to solve them. Each path predicate, which is
a conjunction of boolean expressions, is trans-
lated into logical constraints and a constraint
solver package is used to compute a solution of
the resulting constraint system. This package
is borrowed from the GATeL tool [32]. This
solver uses randomised resolution i.e. variables
are randomly instantiated [24]. This kind of res-
olution has two advantages. First, when a path
is generated several times, the solver very lilely
yields different input data to execute this path,
something really important in software testing.
Second, whenever the resolution of a predicate
does not succeed, if this predicate actually has
a solution, it is more likely that this solution
will be obtained if the same path is generated
again.

When an unfeasible path is detected (or sus-
pected) by the constraint solver, it is rejected
and another path is drawn. This so-called re-
jection strategy does not affect the uniform
distribution on paths: feasible paths are still
drawn with uniform probability.

6.2.3 Programs under test

We report here experiments that were performed
on two out of four C functions that are part of
an industrial software. We used 2914 mutants
of these functions created by the mutation oper-

ators of the SESAME tool (details can be found
in [9]).

The four functions belong to a component,
extracted from a nuclear reactor safety shut-
down system, which periodically scans the posi-
tion of the reactor’s control rods [45]. At each
operating cycle, 19 rod positions and some gen-
eral control data on the hardware device are
processed. This data acquisition is performed
by two functions FCT1 and FCT2. After ac-
quisition, a filtering process is performed by
an other function (FCT3) in order to detect
and eliminate doubtful measures (for instance,
by checking the parity bit). Finally, measures
are converted by a function called FCT4 into
a sequence of mechanical steps. In this paper,
we consider the experiments on functions FCT1
and FCT4 only. Indeed the two other functions
do not bring any useful information: FCT2 is
similar to FCT1 while FCT3 is highly depen-
dent of the environment. On the contrary, FCT4
is very interesting since it contains a loop (thus
an infinite number of paths). A complete report
on the experiments with the four functions is
given in [23].

Table 16 gives main characteristics for each
function i.e. its number of code lines, and the
number of paths (∞ if there is a loop), of blocks
(maximal sequence of statements without choice
points), of edges and of choice points (While,
IfThen, IfThenElse) in its control graph.

For each function, the number of mutants is
different according to the code complexity and
the length: there are 279 mutants of FCT1 and
605 of FCT4.

6.2.4 Coverage criteria and test quality

Since FCT1 has a finite number of paths (there
is no loop), we were able to use the strongest
structural criterion for it, namely “all paths”,
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whereas for FCT4 we choose to use (as it is
also done in [45]) the weaker, but feasible, “all
branches” criterion.

The number of tests needed for each function
was calculated in order to obtain a test quality
qC of 0.9999. Table 17 summarises the number
of runs we perform for each function in order to
ensure the good coverage. This means that for
FCT1 one run with 170 tests allows to obtain
the target test quality and guarantees a good
coverage while 5 runs with 850 tests each are
needed for FCT4.

The program, FCT4 contains both a loop
and a huge number of unfeasible paths. The
coverage criterion considered for the experi-
ments was “all branches”. The maximal length
of paths was 234 (in number of edges of the
control graph, thus much more in number of
statements). The length 234 was chosen accord-
ing to the characteristics of the loop.

The example of FCT4 shows that the method
is likely to scale up to large and realistic pro-
grams: the research space is a set of around
1020 paths and associated predicates contains
on average 190 conjunctions.

In order to reduce the number of unfeasi-
ble paths, we adapted the automaton according
to the characteristics of the feasible paths us-
ing simple data flow considerations [22]. This
manipulation dramatically decreased the pro-
portion of infeasible paths from 1

1000 to 1
2 . It

reduced the test generation time (drawing paths
and solving predicates) but increased the time
of the preprocessing stage (construction of the
automaton and counting the number of paths);
this was largely compensated by the reduction
of the number of unfeasible path rejections.

The mutation scores are presented in Ta-
ble 18. The results are significantly better than
with uniform random testing on inputs (first
line). It should be noted that the average value
for FCT4 in the case of uniform testing is not
available in [45]. However, this value is less
than 0.915, thus it remains less effective than
our methods. They are comparable to the ones
reported in [45] for a different statistical struc-
tural testing method, which has been proposed
in the 90’s by Thevenod-Fosse and Waeselynck
[44]. The main difference with our approach
is that it is based on drawing inputs, with an
explicit construction of an input distribution
that takes into account the structure of the pro-
gram. This construction cannot be automated
in presence of loops and is performed by succes-

FCT1 FCT4

]lines 30 77

]paths 17 ∞
]blocks 14 19

]edges 24 41

]choice pts 5 10

]var: bool 11 5

]var: int 6 10

]var: array of bool 6 3

]var: array of int 0 3

Table 16. Main characteristics of FCT1 and FCT4

FCT1 FCT4

criterion all paths all branches

]runs 1 5

]tests N per run 170 850

Table 17. Number of tests

sive experimental refinements. Our approach is
based on drawing paths and has the advantage
of being fully automated. However, it requires
the use of some constraint solver for getting
the test inputs. As we have noted above, the
technology of constraint solvers is progressing
fast. During the experiments reported here, we
were faced with very few non decisions of the
GATeL randomised constraint solver (i.e. leav-
ing a solving attempt because of a time-out). It
is very likely that with recent, more powerful
SMT solvers [10,5] the situation would be even
better.

7 Related Work

In Section 2 we have examined several classical
approaches for improving the detection power
of subdomain testing by combining it with some
random input selection. Various authors have
addressed the different problem of improving
random testing by taking into account coverage
issues. Some approaches consider program cov-
erage, some consider model coverage. In those
considering programs, significant experimental
results have been reported by combining dy-
namic and symbolic evaluations. We first report
on this class of work.

Directed Automated Random Testing (DART)
[21] is a method and a tool proposed by Gode-
froid et al., which combines static and dynamic
program analysis for automatically testing soft-
ware. It is similar to ideas proposed earlier by
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FCT1 FCT4
min ave max

uniform testing[45] 1 0.8950 na 0.9150

structural statistical testing[45] 1 0.9898 0.9901 0.9915

AuGuSTe 1 0.9854 0.9854 0.9854

Table 18. Mutation scores

Ferguson and Korel in [16]. A DART directed
search attempts to sweep through all the feasi-
ble execution paths of a program using dynamic
test generation: the program under test is first
executed on some random well-formed input;
symbolic constraints on inputs are gathered at
conditional branches during that run; then a
linear constraint solver is used to generate vari-
ants of the previous inputs in order to steer the
next execution of the program towards an alter-
native program branch. This process is repeated
until all feasible program paths of the program
are executed, which is very demanding, while
detecting various type of errors using run-time
checking tools.

The only form of randomness that is used by
DART concerns the first inputs: the test driver
is initialised by random values. The directed
aspect of the method is deterministic. Some
limitation on the form of the programs is in-
troduced from the fact that a linear constraint
solver is used.

The basic idea of DART, i.e. the combina-
tion of dynamic testing and symbolic evaluation,
has been at the origin of different variants and
extensions in order to palliate the main draw-
back of this approach, that is the systematic
execution of all feasible program paths: it leads
to some explosion of the number of tests, or
even non termination of DART when there are
some loops. All these variants make use, at dif-
ferent levels, of random selection of some inputs,
but there is no random generation of paths.

In the area of random walk in concurrent
systems, Sen [41] has proposed a new way for ef-
fective random testing of concurrent programs,
based on partial order reduction methods. Such
methods exploit the fact that among the traces
of a concurrent system, a number of interleav-
ings are equivalent to each other because they
correspond to the different executions orders of
various independent instructions from concur-
rent threads. Sen has designed a novel algorithm
(RAPOS) which aims at sampling partial or-
ders more uniformly than the classical random

selection of traces where successors are drawn
uniformly at random. In [41], some experiments
are reported. But, as the author says, it is not
clear how to mathematically show that this
method samples partial order more uniformly.

Object-oriented programs and models call
for new notions of coverage and randomness. It
has been recognised for a while that method
interactions and dependencies are an adequate
level for defining test criteria. In [37], Pacheco
et al. present a technique that improves ran-
dom test generation of sequences of method
calls. Sequences are built in an incremental way,
alternating phases of random generation and
test executions as follows: A method is drawn
at random and appended to some previous test
sequences that have shown to be extensible,
i.e. able to lead to new and legal object states.
Such objects are used as inputs for the new
method. Feedback from previous test sequences
execution is used for producing new test se-
quences. This method can be seen as random
walks among feasible sequences of method calls.
There is no coverage consideration. It is imple-
mented by a random tester for object-oriented
programs (RANDOOP).

In the area of model checking a few studies
have been led to explore the introduction of
random explorations in model-checkers.

Monte-Carlo Model Checking, presented by
Grosu and Smolka [26] is an approximate method
for model checking inspired from the work of
Herault et al [28]. It uses path generation by a
classical isotropic random walk on the transition
graph. The main advantage of this approach is
the following fact: the randomized algorithm
takes also as input an approximation parameter
and a confidence parameter which measure the
quality of error detection. However, the draw-
back is that the random path generation is not
uniform, as mentioned in the introduction. Thus
some paths may have a very low probability.
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8 CONCLUSION

Another approach, reported by Dwyer and
al. in [15], is based on concurrent randomised
depth-first searches on models extracted from
Java programs. The goal is rather different from
ours, since it aims at speeding up the first error
finding: as soon as one of the concurrent search
reaches a counter-example, the other ones are
stopped. The implementation is based on Java
Path Finder [46] and makes use of the JPF’s
RandomOrderScheduler. The experimental re-
sults show a significant gain in time to reach
the first error. Other work for DFS improve-
ments based on various heuristics are reported
by Rungta and Mercer in [40].

A more similar approach to our work is the
“hit or jump” test generation method [6]. It ad-
dresses the problem of testing an embedded
component in a system described as a set of
communicating extended finite state machines.
It is based on a kind of randomised DFS bi-
ased in order to cover all the transitions of the
component under test.

Namely, the test generation is based on suc-
cessive depth-bounded DFSs: when some tran-
sition of interest is hit during such a DFS, a
new DFS is started from its target state; if it
is not the case, one of the leaves of the DFS is
chosen uniformly at random to start the next
DFS. Experimental results show that this kind
of random exploration avoids to be trapped in
zones where there are no transitions of interest.
However, its mathematical analysis remains to
be done.

8 Conclusion

In this paper, we have introduced two main
ideas: the first one is to use uniform path gen-
eration for very large model exploration and
software testing; the second one is to combine
coverage criteria and random exploration. These
methods are based for the first part on algo-
rithms for counting combinatorial structures
and for the second part on a careful analysis
of the new notion of randomised coverage crite-
rion.

In a first part of the paper, we have pre-
sented, and efficiently implemented, uniform
paths generation in single models, and then,
on this basis we have developed a “on the fly
generation” method which makes it possible to

cope with large composed models, avoiding the
construction of global models.

In case of non synchronised composition, we
have handled models up to 1027 states and it
would be possible to do more.

Then, we have studied how to deal with
synchronised compositions of models, first using
a brute force approach, where the synchronised
product is built explicitly.

The brute force approach is feasible for com-
posed systems where there are many synchro-
nised transitions. On the contrary, when there
are few synchronised transitions, the size of
the global model explodes, suggesting the use
of some “on the fly” method. However, the
full transposition of the ”on the fly” method
from the non synchronised product to the syn-
chronised product is made problematic. The
approximations used in the non synchronised
case are not directly applicable. Thus it is very
likely that brute-force and “on the fly” meth-
ods need to be combined in a way depending
on architecture patterns of the global systems.
The determination of these patterns (including
pathological ones that may be out of the scope
of the approach) is part of on-going work.

In another part of the paper we have stud-
ied how to take into account weaker coverage
criteria when drawing paths randomly, giving
up global uniformity on paths, and introducing
a notion of randomised coverage satisfaction of
elements of the graph such as states, transitions,
etc. The definition of the corresponding test-
ing methods requires some compromise between
maximising the minimum reachability property
for the elements to be covered, and uniformly
covering those paths that traverse one such ele-
ment. The first point favors classical coverage
satisfaction and may lead to absence of ran-
domness in path selection. The second point
favors random exploration of all the paths that
may contribute to coverage. Among the possible
trade-offs, we have proposed and implemented a
two-step drawing strategy: first, one element to
be covered is drawn at random with a suitable
probability distribution; second, a path that
goes through this element is drawn uniformly
at random. We have shown how to choose the
probability distribution of the first step in or-
der to both maximise the minimum probability
to reach an element to be covered, and ensure
that any path going trough such an element
has a non-null probability. This method has
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been implemented with the help of a powerful
constraint solver and applied to C programs.

This paper presents several original applica-
tions of the corpus of knowledge that has been
developed on counting and generating combi-
natorial structures. They open numerous per-
spectives in the area of random testing, model
checking, or simulation of protocols and sys-
tems.
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