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Abstract. We focus on the planning and ver-
ification problems for very large probabilistic
systems, such as Markov Decision Processes
(MDPs), from a complexity point of view. More
precisely, we deal with the problem of designing
an e�cient approximation method to compute a
near-optimal policy for the planning problem in
discounted MDPs and the satisfaction probabil-
ities of interesting properties, like reachability
or safety, over the Markov chain obtained by
restricting the MDP to the near-optimal policy.

In this paper we present two di↵erent ap-
proaches. The first one is based on sparse sam-
pling while the second uses a variant of the
multiplicative weigths update algorithm. The
complexity of the first approximation method
is independent of the size of the state space and
uses only a probabilistic generator of the MDP.
We give a complete analysis of this approach, for
which the control parameter is mainly the tar-
geted quality of the approximation. The second
approach is more prospective and is di↵erent in
the sense that the method is controlled by its
speed of convergence.

Parts of this paper have already been pre-
sented in [24], by the same authors.

1 Introduction

Markov Decision Processes (MDPs) provide a
powerful framework for modelling situations
where a single controller needs to make deci-
sions to achieve a certain goal under uncer-
tainty. For example, MDPs allow to model con-
trol problems for communication systems, em-
bedded systems and industrial software-based
control systems. In this context, at each time
unit, a decision maker or a controller observes
the state of the system and chooses an action.
The action choice has two consequences: the
controller receives an immediate reward, or in-
curs an immediate cost, and the system evolves
to a new state according to a probability dis-
tribution determined by the action choice. A
policy provides the decision maker with a pre-
scription for choosing an action in any possible
future state.

For systems represented as MDPs, there
are two di↵erent important problems. The first
one is the planning problem: can we compute
a policy which is optimal with respect to the
sequence of rewards or costs? The second one
is the verification problem: check if the model
satisfies a specification expressed in a tempo-
ral logic framework or by a regular language.
Verification frequently uses rewards/costs and,
conversely, there are various approaches to plan-
ning based on temporal logic. Discounted MDPs
are not a commonly used model in verification,
while in planning they are widely used. The
most studied approach for solving the planning
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problem in discounted MDPs is dynamic pro-
gramming [19].

In this paper, we study these two problems
from a complexity point of view. For very large
models, as it is often the case for realistic ap-
plications, classical methods that use explicit
or even abstract representation of models, be-
come infeasible, due to the state space explosion
phenomenon.

More precisely, we deal with the problem of
designing e�cient methods to approximate an
optimal policy and the satisfaction probabilities
of interesting properties in the model obtained
by restricting the system to a near-optimal pol-
icy. Classical methods for the planning of dis-
counted MDPs, such as value iteration and pol-
icy iteration [26], are known for being strongly
polynomial (see the recent result of [13]), but
are still intractable in the case of large state
spaces.

Solving the planning and verification prob-
lems together at the same time is of interest
in practical cases. For instance, in the manage-
ment of natural renewable resources, one wants
to find a policy that maximises the amount
of resources that are harvested, while preserv-
ing the renewal so that the resources will still
be available in the future. This is typically a
problem where planning and verification are
of equal importance. In another context, one
may want to make sure that a communication
system allows for the fast routing of messages,
while preserving the privacy of users. This is
again a problem of planning (having the fastest
routes) and verification (checking that privacy
is enforced).

In this paper, we focus on approximation
methods based on randomized approximation
algorithms. In this context, e�ciency means
two things: the first one is that the algorithm
depends on a parameter " which measures the
quality of the approximation; the second one is
the space complexity of the algorithm which is
logarithmic in the size of some compact repre-
sentation of the system. Indeed, the approxima-
tion method has only access to a probabilistic
generator, or a generative model, of the Markov
Decision Process. Given any state, the algo-
rithm uses the probabilistic generator to draw
samples for many state-action pairs, and uses
these samples to compute a near-optimal action
from the given state, which is then executed.
Once an approximation of an optimal policy is
obtained, the MDP restricted to this policy is

a Markov Chain, on which one can e�ciently
compute a good approximation of the satisfac-
tion probabilities of interesting properties, like
reachability or safety.

We recall in section 2 the framework of
MDPs with rewards, the planning problem for
policies, the complexity of the policy iteration
algorithm, a brief survey of probabilistic verifi-
cation, the Cherno↵-Hoe↵ding bounds for sam-
pling and our method to approximate proba-
bilistic verification of interesting quantitative
properties over Markov Decision Processes. In
section 3, we adapt Kearns’s learning approach
to obtain near-optimal policies for the planning
problem. In section 4, we sketch an alternative
algorithm using the Multiple Weight Update
Method to accelerate the convergence toward
a near-optimal policy. Approximate planning
methods and randomized approximation meth-
ods for probabilistic verification are combined
in section 5. Section 6 is dedicated to the related
work.

2 Preliminaries

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a quadru-
ple M = (S,A, P,R) where S is a finite (or
countable) set of states, A is a finite set of ac-
tions, P : S ⇥A �! Distr(S), where Distr(S)
is the set of probability distributions over S, is
the transition relation and R : S ⇥ A �! R+

is the reward function. Thus a MDP is defined
by:

– for each state-action pair (s, a), a next-state
distribution Ps,a(.) that specifies the proba-
bility of transition from state s to another
state when the action a is chosen,

– for each state-action pair (s, a), a real-valued
reward Rs,a for executing action a from
state s.

The initial state of the system is chosen ran-
domly according to an initial probability dis-
tribution on state space. The function Ps,a can
be extended to subsets X ✓ S by: Ps,a(X) =P

t2X Ps,a(t). Labeled Markov Processes, also
called Probabilistic Labeled Transition Systems,
are Markov Decision Processes without rewards.

A run on M is a finite or infinite sequence
r = (s0, a1, s1, . . . , si�1, ai, si, . . . ) such that for
any i > 0, ai 2 A, si 2 S and Ps

i�1,ai

(si) > 0.
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Given a run r, we can consider the associated
execution path rS which is the restriction of
the run r to the sequence of states. Let rA be
the trace associated to r, i.e. the restriction of
r to the sequence of actions. Given a run r and
n 2 N, we write rn for the sequence of the first
n� 1 states in rS .

A stationary policy on M is a function
⇡ : S �! Distr(A) which resolves the non
determinism of the system by choosing a dis-
tribution on the set of available actions for
each state of the MDP. The notion of policy
is closely related to the notions of scheduler
[29], adversary [27] or strategy [5]. A policy ⇡
and an initial distribution ↵ 2 Distr(S) induce
a probability distribution P⇡,↵ on the ⇡-field
F of the set of runs, generated by the cones
C� = {r | r|�| = �}, see [7,29]. In the particular
case of |A| = 1, i.e., there is only one action
possible, the MDP is in fact a Markov chain.
When a stationary policy is fixed, the restric-
tion of the MDP to this policy is also a Markov
chain.

In order to overcome the complexity barrier
and to preclude approaches that compute di-
rectly on a full representation of an MDP, we
assume that an MDP is only given in the form
of the ability to sample its behavior. We call
this simulative form of the model a probabilis-
tic generator . We note that the existence of a
succinct representation, as in [23], clearly gives
a probabilistic generator.

Definition 1. A probabilistic generator for an
MDP M is a randomized algorithm that, on
input of a state-action pair (s, a), outputs a
state t, which is randomly drawn according
to the next-state distribution Ps,a(.), and the
associated reward Rs,a.

This notion is well-known in the literature. For
example, a probabilistic generator for an MDP
is also called a generative model [21] or a sim-
ulation model in many simulation-based algo-
rithms for MDPs [6]. Moreover, such succinct
representations are used to represent MDPs via
the input language of verification tools such as
PRISM [17].

2.2 Planning problem in MDPs

In the following, we consider finite, or count-
able MDPs with the discounted total expected
reward criterion, i.e. given a number 0  � < 1

the value function V ⇡ : S �! R underlying a
policy ⇡ is defined by:

V ⇡(s) = E⇡
s (

1X

i=1

�i�1ri)

where ri is the reward received on the ith step
of executing the policy ⇡ from state s, and the
expectation is over the probability distribution
P⇡,↵ and any randomization in ⇡. Define the
action-value function Q⇡ : S ⇥A �! R under-
lying a policy ⇡ as:

Q⇡(s, a) = Rs,a + �Es0⇠P
s,a

(.)(V
⇡(s0))

where the notation s0 ⇠ Ps,a(.) means that s0 is
drawn according to the distribution Ps,a(.). The
optimal value function V ⇤, optimal Q-function
Q⇤ and optimal policy ⇡⇤ are defined by: for all
s 2 S,

V ⇤(s) = sup⇡V
⇡(s)

Q⇤(s, a) = sup⇡Q
⇡(s, a)

⇡⇤(s) = argmaxaQ
⇤(s, a)

In the class of MDPs that we consider here,
an optimal stationary policy always exists. The
planning problem in MDPs is to compute such
an optimal policy. This problem can be solved
by linear programming or dynamic program-
ming. In the latter approach, the algorithms
that compute the optimal policy require stor-
age for two arrays indexed by states for value
function V and policy ⇡. The algorithms have
two kinds of steps:

(step 1)
⇡(s) := argmaxa(Rs,a + �Es0⇠P

s,a

(.)(V (s0)))

(step 2)
V (s) := Rs,a + �Es0⇠P

s,⇡(s)(.)(V (s0))

The two main types of algorithms are value
iteration and policy iteration. In value iteration,
substituting the calculation of ⇡(s) into the
calculation of V (s) gives the combined step:

V (s) := maxa(Rs,a + �Es0⇠P
s,⇡(s)(.)(V (s0)))

This update rule is iterated for all states s until
it converges with the left-hand size approxima-
tively equal to the right-hand size. However, the
most common way of solving planning problem
for MDPs in practice is Howard’s policy iter-
ation algorithm. In policy iteration, step 1 is

3
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performed once, and then step 2 is repeated un-
til it converges. Then step 1 is again performed
and so on.

These classical approaches use an explicit
representation of a model of size N . They are
thus intractable for large N , where even reading
all the input can take O(N2) time and speci-
fying a policy requires space on the order of
N .

2.3 Policy Iteration is strongly polynomial

The problem of determining worst case complex-
ity of Howard’s algorithm was stated explicitly
at least twenty-five years ago [19]. Recently, Ye
presented a simple proof that Howard’s algo-
rithm terminates after at most O( kn

1�� log(
n

1�� )),
where n is the number of states, k is the num-
ber of actions and 0 < � < 1 is the discount
factor (see [30]). In particular, when the dis-
count factor is fixed, the number of iterations
is O(knlogn). Since each iteration only involves
solving a system of linear equations, Ye’s re-
sult established that Howard’s algorithm is a
strongly plolynomial time algorithm, when the
discount factor is fixed.

More recently, Ye’s analysis was improved
and extended by T.D. hansen, P.B. Miltersen
and U. Zwick to two-player turn-based stochas-
tic games (see [13]). They showed that Howard’s
algorithm terminates after at most
O( k

1�� log(
n

1�� )) iterations, improving Ye’s
bound by a factor of n. The way to obtain
this result is a well-known relationship between
Howard’s policy iteration algorithm and Bell-
mann’s value iteration algorithm.

Ye’s and Zwick’s results, combined with the
recent results of Friedmann [10] and Fearnley
[9] give a complete characterization of the com-
plexity of the policy iteration algorithm. The
policy iteration algorithm is strongly polyno-
mial for a fixed discount factor, but exponential
for non discounted MDPs.

2.4 Probabilistic Verification

The first application of verification methods to
probabilistic systems consists in checking if tem-
poral properties are satisfied with probability 1
by systems modeled either as finite probabilistic
transition systems, i.e., discrete-time Markov
chains, or as concurrent probabilistic transition
systems, i.e., MDPs. This problem was called

qualitative verification. In [29], Vardi presented
the first method to verify if a linear time tempo-
ral property is satisfied by almost all computa-
tions of a concurrent probabilistic system. This
automata-theoretic method is expensive, since
its complexity is doubly exponential in the size
of the formula.

The complexity of this work was later ad-
dressed by Courcoubetis and Yannakakis [7].
A new model checking method for probabilis-
tic systems was introduced, the complexity of
which was proved polynomial in the size of
the system and exponential in the size of the
formula. For concurrent probabilistic systems
they presented an automata-theoretic approach
which improved on the Vardi’s method by a
single exponential in the size of the formula.

Courcoubetis and Yannakakis’s method [7]
also solves the quantitative verification problem,
i.e., to compute the probability that a proba-
bilistic system, modeled as a Markov chain,
satisfies some given linear time temporal for-
mula. The algorithm transforms step by step
the Markov chain and the formula, eliminat-
ing one by one the temporal connectives, while
preserving the satisfaction probability of the
formula. The elimination of temporal connec-
tives is performed by solving a linear system of
equations of the size of the Markov chain.

A model checking method for properties ex-
pressed in a branching time temporal logic ex-
tended by a probabilistic operator against con-
current probabilistic systems is given by Bianco
and de Alfaro [5]. Probabilities are computed by
solving an optimisation problem over a system
of linear inequalities, the size of which is the
model size.

In order to illustrate space complexity prob-
lems, we mention the main model checking tool
for the verification of quantitative properties.
PRISM [8,22] allows to check linear and branch-
ing time temporal formulas extended with a
probabilistic operator on probabilistic or concur-
rent probabilistic systems. PRISM also supports
costs and rewards. However, in many applica-
tions MDPs are very large and the computation
is intractable.

For theoretical and practical reasons, it is
natural to ask the question: can probabilistic
verification be e�ciently approximated? Ap-
proximate probabilistic verification has been
investigated for Markov chains in [15,23]. In
[17], the authors of PRISM integrated a version
of Approximate Probabilistic Model Checking

4
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(APMC) to obtain a simulator that can be used
in case of very large MDPs. In section 3, we
describe some approximation method for plan-
ning and verification of interesting quantitative
properties expressed in linear time temporal
logic over large or infinite MDPs.

2.5 The Cherno↵-Hoe↵ding bounds for
sampling

In section 3, we will use Cherno↵-Hoe↵ding
bounds [18] on the tail of the distribution of a
sum of independent random variables. The main
interest of Cherno↵-Hoe↵ding bounds is to allow
sampling procedures with polynomial size in
order to estimate probabilities or expectations.

Lemma 1. [18] Let X1, ..., XN be N indepen-
dent random variables which take value 1 with
probability p and 0 with probability (1� p), and

Y =
PN

i=1 Xi/N . Then the Cherno↵-Hoe↵ding
bound gives:

Prob
�
|Y � p|

�
� 1� 2e�2N ·"2 .

The approximation will be correct, i.e., |Y �
p| < ", with confidence (1� �), after a sampling
of polynomial size N in 1

✏ , log
1
� , i.e.,

N = ln(
2

�
)/2"2.

2.6 Approximate Probabilistic Verification

For many linear time properties, as reachabil-
ity, satisfaction by an execution path of finite
length implies satisfaction by any extension of
this path. Such properties are called monotone.
Another important class of properties, namely
safety properties, can be expressed as nega-
tion of monotone properties. We can reduce
the computation of satisfaction probability of
a safety property to the same problem for its
negation, that is a monotone property. In [23],
it is demonstrated that the satisfaction proba-
bility of monotone or anti-monotone linear time
properties can be approximated with a random-
ized approximation scheme. This means that,
given a Discrete Time or a Continuous Time
Markov Chain (DTMC or CTMC) M and a
monotone property  , it is possible to approx-
imate Prob[ ], the probability measure of the
set of execution paths satisfying the property
 by a fixed point algorithm obtained by iter-
ating a randomized approximation scheme for

Probk[ ], the probability measure associated
to the probabilistic space of execution paths of
finite length k. For that purpose, the authors
of [23] adapt the notion of randomized approxi-
mation scheme for counting problems, which is
due to Karp and Luby [20], to the problem of
computing probabilities. A probability problem
has the goal, given a probabilistic generator of a
probabilistic system and a linear time property
x, to compute the probability measure µ(x) of
the measurable set of execution paths satisfying
this property.

Definition 2. [23] A randomized approxima-
tion scheme for a probability problem is a ran-
domized algorithm A that takes an input x,
two real numbers ", � > 0 and produces a value
A(x, ", �) such that:

Pr
�
|A(x, ", �)� µ(x)| < "

�
� 1� �.

If the running time of A is polynomial in |x|, 1
"

and log( 1� ), A is said to be fully polynomial.

In [23], a probabilistic generator is used
to generate random paths and to compute a
random variable Y which approximates p =
Probk[ ]. The approximation will be correct,
i.e |Y � p| < " (additive error), with confidence
(1� �), after a polynomial number of samples
in 1

✏ , log
1
� .

The following random sampling algorithm,
called GAA for Generic Approximation Algo-
rithm, uses a probabilistic generator G to com-
pute a good approximation of Probk[ ].

GAA
Input: G, k, , ", �
Output: "-approximation of Probk[ ]
N := ln( 2� )/2"

2

A := 0
For i = 1 to N do
1. Generate a random path � of length k
2. If  is true on � then A := A+ 1
Return Y = A/N

The following result is obtained by using a
Cherno↵-Hoe↵ding bound [18] on the tail of
the distribution of a sum of independent ran-
dom variables.

Theorem 1. [23] The generic approximation
algorithm GAA is a fully polynomial random-
ized approximation scheme for computing p =
Probk[ ] whenever  is a monotone or anti-
monotone linear time property and p 2]0, 1[.

5
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As a corollary, the fixed point algorithm de-
fined by iterating the approximation algorithm
GAA is a randomized approximation scheme,
whose space complexity is logspace, to com-
pute the probability Prob[ ] for monotone or
anti-monotone linear time properties.

The generic approximation algorithm GAA
was implemented in several verification tools,
first in APMC (Approximate Probabilistic Model
Checker, see [16]), then in PRISM (see [17]).
Since the algorithm processes random paths
independently, the algorithm can benefit from
parallel and distributed architectures [11,12].

3 Approximate Planning using
sampling methods

3.1 Planning problem and Learning in MDPs

The learning phase of our first planning and
verification method is an adaptation of Kearns’s
learning algorithm [21]. The running time and
the space complexity of the learning phase are
independent of the number of states of M.
Given as input a state s, the algorithm pre-
sented in [21] uses a probabilistic generator to
find a near-optimal action to perform from state
s. The basic idea of the method is to sample
the probabilistic generator from states in the
neighborhood of s.

In this paper, our goal is to build a Markov
chain M⇤ obtained by restricting the MDP
M to a near-optimal policy ⇡⇤. Following the
Kearns’s idea, we construct a small MDP M0

of depth H 0. For any state u of M0 at depth
at most H = H 0/2, we ensure that the optimal
action in M0 from u is a near-optimal action
from u in M. M0 is built as a sparse look-ahead
directed tree in which the start state is s, and in
which taking an action from a node in the tree
causes a transition to a sample of C random
children of that node with the corresponding
action label. In order to build M⇤, M0 is ex-
tended with some additional information that
are given below. The main property of the tree
is that the size of M0 can be independent of
the number of states in M. This is obtained by
establishing bounds on the required depth H
of the tree and the required degree C of each
node in the tree.

Rather than estimating the optimal value
function V ⇤, the algorithm estimates, for a value

of H to be specified later, the H-step expected
discounted reward V ⇤

H(s), given by:

V ⇤
H(s) = E⇡⇤

s (
HX

i=1

�i�1ri)

where ri is the reward received on the ith step
upon executing the optimal policy ⇡⇤ from state
s. Moreover, the h-step expected discounted
reward V ⇤

h (s), for h � 1, is recursively given by:

V ⇤
h (s) = Rs,a⇤ + �Es0⇠P

s,a

⇤ (.)(V
⇤
h�1(s

0))

V ⇤
h (s) ⇡ maxa{Rs,a + �Es0⇠P

s,a

⇤ (.)(V
⇤
h�1(s

0))}

where a⇤ is the action taken by the optimal
policy from state s and V ⇤

0 (s) = 0.
The algorithm will approximate the expec-

tation in this last equation by a sample of C
random next states from the probabilistic gen-
erator. We modify the recursive procedure in
Kearns’s learning algorithm to obtain an esti-
mation V̂ ⇤

h (s) of V
⇤
h (s). More precisely, we con-

struct an intermediary structure cM according
to the following:

– storing for each node s in the tree represent-
ing the MDP M0, for each action a 2 A, the
set Ss,a of the C successors of (s) according
to the next-state distribution Ps,a(.). Note
that the first time a state s is encountered
in this process, we pick the C successors be-
longing to each action. Once this is done, all
sets Ss,a (for this state s and for all a 2 A)
are stored and reused when s is considered
again.

– tagging the action a corresponding to the
maximum value in the previous equation.
We denote this action by a⇤.

This extension of M0 is from now denoted as
cM and is depicted in figure 1. s denotes the
initial node and a⇤ is written as a superscript
of actions of the near-optimal policy b⇡?. It is
worth noting that the near-optimal policy b⇡? is
Markovian.

These additional information allow to build
the Markov chain M⇤ by deleting nodes and
transitions corresponding to non tagged actions
and also by pruning the branches of our inter-
mediary structure cM to a certain depth H.

Bounding the required depth of the tree is
the easy part. Let the so-called "-horizon time
be H 0 = 2H where

H = log�(�/Vmax),

6
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a0
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Fig. 1: Structure of cM

with � = "(1��)2/4 and Vmax = Rmax/(1� �).
H is the depth used in Kearns’s construction.
Our intermediary structure cM has depth H 0,
so for every state of the chain M⇤, the H-
step expected discounted reward V ⇤

H(s) is an
"-approximation of the optimal value.

By using a Cherno↵-Hoe↵ding bound, we
can obtain that, at each step, the probability of
a single bad estimate for Q⇤(s, a) is e��2C/V 2

max .
The probability of a bad estimate increases by
a factor of kC at each step, where k is the
number of actions. Therefore the probability of
some bad estimate after H steps is bounded
by (kC)He��2C/V 2

max . We can choose C so that
this last quantity is bounded by �/Rmax. The
main property of the degree C of each node
in the tree is that it can be chosen indepen-
dent of the number of states in M. The key
argument is that even though small samples
may give very poor approximations to the next-
state distribution at each state in the tree, they
will, nevertheless, give good estimates of the
expectation terms in the last equation.

However, as we shall explain in the section 5,
even though the running time of the Kearns’s
learning algorithm does not depend on the size
of the MDP, it still runs in time exponential in
the "-horizon time, and therefore exponential
in 1/(1 � �) whenever � is very close to 1. In
this case, the use of another sampling technique
such as policy rollout can be envisioned.

3.2 Rollout-based Monte-Carlo Planning

In order to improve the performance of the
Approximate Planning algorithm, one can ap-
ply a particular bandit algorithm, named UCB
(Upper Confidence Bounds, see [3]), for rollout-
based Monte-Carlo planning. As opposed to the
previous planning algorithm, a rollout-based
algorithm builds its lookahead tree by repeat-
edly sampling episodes from the initial state.
An episode is a sequence of state-action-reward
triplets that are obtained using the generative
domain. The reason to consider rollout-based
algorithms is that they allow to keep track of
estimates of the actions’ values at the sampled
states encountered in earlier episodes.

The algorithm iteratively generates episodes
and returns the action with the highest average
long-term reward. Episodes are generated by
a search function that selects and e↵ectuates
actions recursively until the reach of a terminal
state, or episodes can be cut at a certain depth.
The search function computes the total reward
corresponding to the episode and the reward
value is used to adjust the estimated value for
the given state-action pair at the given depth,
completed by increasing the counter that stores
the number of visits of this state-action pair.

The main feature of this algorithm is the
introduction of a bandit algorithm for the imple-
mentation of the selective sampling of actions.

7
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A bandit problem with K actions, or arms,
is defined by a sequence of rewards Xit, i =
1, . . . ,K, t � 1 where each i is the index of an
action. Successive choices of action i yield the
rewards Xi1, Ri2, . . . . For simplicity, one can
assume that all rewards Xit lie in the interval
[0, 1]. An allocation policy is a mapping that
selects the next action to be chosen based on
the sequence of past selections and associated
obtained rewards. The expected regret of an
allocation policy after n choices is defined by:

regn = maxi(
nX

t=1

Xit)� (
KX

j=1

T
j

(n)X

t=1

Xit)

where It 2 {1, . . . ,K} is the index of the action
selected at time t by the policy, and where Ti(t)
is the number of times action i was played up
to time t. Thus, the regret is the loss caused by
the policy that does not always choose the best
action. The algorithm UCB keeps track of the
average rewards X̄i,T

i

(t�1) for all the actions
and thus can choose the action with the best
upper confidence bound:

It = argmaxi2{1,...,K}(X̄i,T
i

(t�1)+ct�1,T
i

(t�1))

where ct,s is a bias sequence chosen to be ct,s =p
2lnt/s.
The bias sequence is such that:

Prob[X̄is � µi + ct,s]  t�4,

P rob[X̄is  µi + ct,s]  t�4

This comes directly from the Cherno↵-Hoe↵ding’s
inequality. The fundamental consequence of
this result is that the regret after n successive
choices is logarithmic with respect to n.

4 Approximate policies using the
Multiple Weights Update Method

The Multiple Weights Update Method (MWUM)
[2] is used in various fields to speed up the con-
vergence of optimization algorithms. In the con-
text of approximate planning for large MDPs,
the idea is to maintain a distribution over the
set of stationary deterministic policies and to
use the multiplicative update rule to iteratively
change the weights in order to obtain a near-
optimal policy. Initially, the algorithm select
uniformly at random amongst the policies. As
time goes on, some policies are seen as giving

better total rewards than others, and the al-
gorithm increases their weights proportionally.
The multiplicative update rule is thus the way
to improve drastically the distribution.

We note M(⇡i, j) the outcome, which is the
total reward, that a stationary deterministic
policy ⇡i(1  i  m) gives for the event j corre-
sponding to the successive choices state/action
made by the policy ⇡i to resolve the non de-
terminism up to the finite horizon H. For each
step t of the algorithm, we consider the distribu-
tion Dt = {pt1, pt2, . . . , ptm} on the set of policies
⇡i(1  i  m). The probabilities pti(1  i  m)
are computed at each step according to the
multiplicative update rule. At each step t, we
can consider the randomized policy defined by
applying the policies ⇡i(1  i  m) according
to the distribution Dt.

MWUA
(Multiple Weights Update Algorithm)
Input: ", T, MDP M
Output: weights wT

i ()
w1

i := 1 for all 1  i  m
For t = 1 to T � 1 do

For 1  i  m

1. pti :=
wt

iP
m

i=1 wt

i

2. wt+1
i := wt

i(1� ")M(⇡
i

,j
t

)/⇢

EndFor
EndFor
Return wT

i (1  i  m)

where 0 < "  1/2 is an approximation pa-
rameter, jt is the event at step t and ⇢ is the
maximum total reward.

The expected reward for event jt is
mX

i=1

ptiM(⇡i, jt)

which we denote by M(Dt, jt). By linearity
of expectations, the expected total reward isPT

t=1 M(Dt, jt).

Theorem 2. Let 0 < "  1/2. After T steps,
for any stationary deterministic policy ⇡i(1 
i  m), we have:

TX

t=1

M(Dt, jt) � (1� ")
TX

t=1

M(⇡i, jt))�
⇢lnm

"

Let ⇡⇤ be an optimal stationary determin-
istic policy. As a consequence of the previous
result, we obtain:

TX

t=1

M(⇡⇤, jt) �
TX

t=1

M(Dt, jt)

8
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and

TX

t=1

M(Dt, jt) � (1� ")
TX

t=1

M(⇡⇤, jt)�
⇢lnm

"
.

Corollary 1. Let 0 < �. After T = 4⇢2lnm
�2

steps, the average total reward is a good additive
approximation of the total reward given by an
optimal stationary deterministic policy:

1

T

TX

t=1

M(⇡⇤, jt) �
1

T

TX

t=1

M(Dt, jt)

and

1

T

TX

t=1

M(Dt, jt) �
1

T

TX

t=1

M(⇡⇤, jt)� �.

5 Approximate Planning and
Probabilistic Verification

Taking into account that an approach with an
explicit representation of an MDP is clearly
infeasible for very large state spaces, we propose
an e�cient approximation method for planning
and verification when a MDP is given in the
form of a probabilistic generator, which has the
ability to simulate its behavior.

The approximation method is working in
two phases: the planning phase and the veri-
fication phase. The first one is a randomized
algorithm to compute a near-optimal policy
for the planning problem in discounted MDPs.
The second one is a randomized approximation
scheme to approximate satisfaction probabili-
ties of linear time properties over the Markov
chain when restricting the MDP to the near-
optimal policy. For simplicity, we described the
two phases separately, but they are combined
in the resulting algorithm.

5.1 Approximate Planning by learning and
Probabilistic Verification

Our final goal is to approximate the satisfaction
probability of a monotone or anti-monotone
linear time formula on a MDP under a near-
optimal policy b⇡⇤. This probability is denoted
by Prob[ |b⇡?].

The randomized algorithm that computes a
near-optimal policy for the planning problem
in discounted MDPs is written in figure 2.

We remind the reader that the tagged ac-
tions are those of the near-optimal policy b⇡⇤.
For the sake of clarity, we illustrate in figure 3
the step 3 of APVA. Each action of cM is con-
sidered. If the action is one of the actions of b⇡⇤

we keep the action for building M⇤, otherwise
we erase the transition labelled by the action to-
gether with the whole sub-tree induced by this
transition in cM. It should be noted that each
state of M⇤ has only one leaving action remain-
ing after the trimming stage. It means that all
non-deterministic steps have disappeared and
that M⇤ is a Markov chain (remind that the
near-optimal policy is Markovian).

Recall from [21] that the horizon H and
width C parameters are given by:

H = dlog�(�/Vmax)e

where � = "(1� �)2/4

and Vmax = Rmax/(1� �)

C = O(
V 2
max

�2
(2H · logH + log(Rmax/�))

We remark that the size CH of the set of exe-
cution paths of length H in the Markov chain
M⇤ is much more large than the sample size in
the generic approximation algorithm GAA. The
following result is obtained as a consequence of
the two previous subsections.

Theorem 3. The approximate verification al-
gorithm APVA is a randomized algorithm that,
given access to a probabilistic generator for any
k-action MDP M with discount factor �, takes
as input a state s, a linear time formula  and
two real parameters ", � and satisfies the follow-
ing conditions:

• it is a randomized approximation scheme
for computing p = Prob[ |b⇡?] whenever  
is a monotone or anti-monotone linear time
property and p 2]0, 1[,

• the value function of the near-optimal stochas-
tic policy b⇡? is an "-approximation of V ?,
i.e. |bV (s) � V ?(s)|  ", with probability
greater than, or equal to, 1� �/Rmax,

• the running time is O((kC)H) and the space
complexity is O(CH).

APVA provides a di↵erent complexity trade-
o↵ than classical algorithms for planning prob-
lem and probabilistic verification in MDPs. Usu-
ally, classical algorithms as value iteration for

9



5.2 5 APPROXIMATE PLANNING AND PROBABILISTIC VERIFICATION

Approximate planning and verification algorithm APVA
Input: G, �, s, , ", �
Output: "-approximation of Prob[ |b⇡?]
1. Compute horizon H and width C as functions of ", � and of the maximum
reward R

max

.
2. Construct cM from G
3. Trim cM to obtain M⇤ by deleting branches corresponding to non tagged
actions.
4. Apply the generic approximation algorithm GAA to (M⇤, H, , ", �)

Fig. 2: APVA
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Fig. 3: Step 3 of the APVA algorithm

planning or solving linear systems for probabilis-
tic verification have a polynomial time complex-
ity with respect to the state space size and are
unusable for very large models. In contrast to
this complexity, the complexity of the APVA
algorithm does not depend of the state space
size and is polynomial with respect to 1/" and
log(1/�), where " is the error parameter and
(1� �) the confidence parameter.

However, for practical issues, even though
the running time of the algorithm APVA does
not depend on the size of the MDP, it still runs
in time exponential in the "-horizon time, and
therefore exponential in 1/(1� �) whenever �
is very close to 1.

5.2 Approximate Planning by MWUM and
Probabilistic Verification

In this section, we present a possible use of
MWUM for the joint planning and verification
problem. We call our method MWPV for Mul-
tiple Weights for Probabilistic Verification. This
is a first attempt to use multiplicative weights
in this context, and our approach is clearly not
optimal. It can however lead to interesting prac-
tical results. Here again, the method proceeds
in two steps. First, we find, using the multiple
weights update algorithm, a distribution over
deterministic policies that defines a good policy
⇡? with respect to maximizing the total reward
one can obtain over traces of a given system.
Rewards are either discounted or the horizon is
finite, thus we only have to consider the total
reward over finite traces of a given length.

10



6 RELATED WORK

We recall that a stationary deterministic
policy is a restriction of policies. In a determin-
istic policy ⇡, each state is given a unique action
that resolves the non-determinism. This means
that, for a stationary deterministic policy ⇡ and
8s 2 S, ⇡(s) = Distr(next(s)), where next(s)
is the set of states reachable from s.

Once we have obtained ⇡?, the second step
of the method uses it in order to compute
Prob[ |⇡?], where  is a LTL formula. For
this step, we use the generic approximation
algorithm over paths generated using ⇡? and
random choices over reachable states.

In the following we present in more details
the method, and then discuss its practical as-
pects.

5.2.1 Multiple Weights for Probabilistic
Verification

The first step of our method MWPV has the
goal of computing ⇡?. The algorithm by itself is
depicted in figure 4. Amongst the input of the
algorithm, " and � are approximation parame-
ters, and M is the MDP. m denotes the number
of deterministic policies over this MDP. We as-
sume that we have a data structure that stores
all the deterministic policies, i.e., we know, for
each deterministic policy ⇡i and state sj , the
transition probabilities for states reachable from
sj under the action chosen by ⇡i. We also make
the hypothesis that the horizon is known, we de-
note it by H . This is realistic when rewards are
discounted, or when the system has a natural
bound on its execution.

Note that we have replaced ⇢ (the maxi-
mum reward) by the quantity max total. In-
deed, since we access M through its succinct
representation, we can only give an upper bound
to the maximum total reward (basically it is
H ·Rmax). Moreover, the algorithm uses a quan-
tity that we note total reward(i, t). The com-
putation of this quantity is the keypoint of our
algorithm.

In order to update the weights, we need to
know the outcome of the choices of a given pol-
icy. The method proceeds using a fictitious play
approach. For any given t, suppose that we are
looking at policy ⇡i. The total reward is initial-
ized to total reward(i, t) = 0. Starting from the
initial state of M, the method is doing a traver-
sal of M until it reaches the horizon H . At state
sj , it chooses the next state at random accord-
ing to ⇡i(sj) and updates total reward(i, t) by

adding to it the local reward obtained at state
sj . At the end of the traversal, the outcome of
the policy ⇡i is total reward(i, t).

Using this algorithm, we obtain a proba-
bility distribution over deterministic policies
that defines ⇡?. More precisely, we obtain a
probability distribution over probabilistic tran-
sition matrices over S. We can combine these
information into a unique probabilistic transi-
tion matrix over S. This matrix represents the
DTMC that corresponds to the use of the pol-
icy ⇡? on M. Then, we can apply the generic
approximation algorithm GAA to this DTMC
in order to compute Prob[ |⇡?] for any LTL
formula  .

5.2.2 Practical aspects

The main issue concerning our method MWPV
is that its time complexity is highly dependent
on m, the number of deterministic policies in
the MDP M. Moreover, the space complexity
su↵ers from the same problem since it is needed
to store the probabilities for any of the deter-
ministic policies.

While this is a problem from the theoretical
point of view, this is unlikely to be an issue
while analyzing real life systems. Indeed, typi-
cal industrial systems have only very few non
deterministic steps, making the number of de-
terministic policies highly tractable.

Moreover, for MDPs that can be represented
using high level languages such as Reactive Mod-
ules [1] or PRISM input language, symmetry
and/or code factoring is very important. This
means that most of the time it will be possible
to encode ⇡? on the fly directly in the succinct
representation.

Finally, the main interest of this method
is that it is always tractable to use it. Indeed,
once you have chosen the value of T , it is al-
ways possible to compute a corresponding ⇡?.
This means that if one knows how much com-
putation power one has, it is possible to use
the method, with an approximate result that
will be the best that can be obtained with this
actual computation power.

6 Related work

Several methods exist for the planning problem
in MDPs, but most are less e�cient than sam-
pling based methods. For years, these sampling-
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7 DISCUSSION AND CONCLUSION

MWPV – step 1

Input: M, ", �
Output: probabilities pT

i

()

For all 1  i  m, w1
i

:= 1
t := 1
T := 4(max total)2lnm

�

2

While t  T do
For 1  i  m do

pt
i

:=
wt

iP
m

i=1 w
t

i

wt+1
i

:= wt

i

(1� ")
total reward(i,t)

max total

endFor
t := t+1
endWhile

For all 1  i  m, Return pT
i

(1  i  m)

Fig. 4: MWPV

based methods had the drawback of not having
any known proof of their e�ciency. This is no
longer the case. Roughly, there are two types of
sampling methods to approximate the planning
problem in very large MDPs.

The first one is the sparse sampling tech-
nique initiated by Kearns et al. (see [21]) and
the planning phase of our first approximation
method uses an extension of Kearns’s technique.
The main advantage of sparse sampling is to
provide strong theoretical guarantees for near
optimality and complexity independent of state-
space size. The main drawback is complexity
exponential in 1/(1��) when the discount rate
� is close to 1.

The second type of sampling methods is
policy rollout, an online version of policy it-
eration (see [28,4]). The amount of sampling
required to guarantee policy improvement is
independent of state-space size. Policy rollout
is an easy way to improve policy quality from a
simple initial policy, but there is no guarantee
for near optimality.

Concerning the use of the multiple weights
update method, it has been used previously for
machine learning and game theory. But to the
best of our knowledge, this is the first time it is
used for both planning and verifying a system
defined as a MDP.

Recently, a few papers adress the problem
of the approximate verification of large MDPs.

This paper is an extension of [24], which adresses
both the planning and verification problems of
MDPs. Some other research groups obtained
results about the verification problem (they
do not consider the planning problem). For in-
stance, the authors of [14] present an algorithm
that resolves nondeterminism probabilistically
using sampling and Reinforcement Learning.
Their algorithm allows to check the satisfac-
tion of Bounded Linear Temporal Logic (BLTL)
properties. Another interesting work has been
presented by Legay and Sedwards [25]. They
designed a lightweight Monte Carlo algorithm
for the statistical model checking of models that
contain non determinism. One of the advantages
of their method is that it can be e�ciently par-
allelised.

7 Discussion and conclusion

We presented two approaches for the design of
an e�cient randomized approximation method
to combine planning and verification for very
large MDPs.

In this context, we have used sparse sam-
pling and randomized approximation schemes
to compute a near-optimal policy for MDPs
and to approximate the satisfaction probabili-
ties of interesting properties over the Markov
chain obtained by restricting the MDP to the
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near-optimal policy. To the best of our knowl-
edge, it is the first time that the combination
of Kearns’s learning method and randomized
approximation scheme is used for planning and
verification in very large MDPs.

We also presented a prospective algorithm
based on the Multiplicative Weights Update
Method. This approach has a very high poten-
tial that is still to be fulfilled.

These two methods have their advantages
and drawbacks. But there is a main di↵erence
between them. The first method, based on sparse
sampling, uses the quality of the approximation
as control criterion, while the second method
(MWPV) considers the speed of convergence as
control criterion. This makes the second method
more interesting in a real life context, where
the computation power available for a verifica-
tion task is known, rather than the quality one
wants to achieve.
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