Approximation sur les données : un problème de distances

Richard Lassaigne
IMJ/Logique mathématique
CNRS-Université Paris Diderot

Applications:

- Correction orthographique
- Reconnaissance de la parole
- Alignement de séquences génomiques
- Traduction automatique
- Traitement du langage naturel
- Recherche sur le WEB
- Traitement de données massives

Exemples de distance :

- Distance de **Hamming**
- Distance d'édition (ou de Levenshtein)
- Distance d'édition avec déplacement

Problème fondamental (en statistique et analyse de données) :

- Comment **tester** les propriétés des distributions de probabilités sous-jacentes aux données provenant d'expériences, de populations, bases de données...
- La quantité énorme de données à traiter est le principal obstacle à l'utilisation des méthodes classiques en statistique ou en apprentissage

Exemples de distance (entre ensembles ou entre distributions) :

- Divergence de Kullback-Leibler (pseudo-distance)
- Indice et distance de Jaccard
- Distance de variation totale
- Distances l_1 , l_2
- Earth Mover's Distance (Kantorovich, Wasserstein)

- La distance d'édition est calculable en temps polynomial mais les algorithmes classiques sont impraticables sur de grandes masses de données
- Il est fort peu probable qu'il existe un algorithme exact en temps **sous-quadratique** à moins qu'une hypothèse sérieuse de complexité ne soit fausse
- Mais cela n'empêche pas une recherche importante sur les algorithmes d'approximation
- Les distances entre distributions de probabilités Distance l_1 et Earth Mover's Distance (EMD)
- Le test (probabiliste) de propriétés :
 Satisfaire une propriété ou être loin de la satisfaire
- Tests d'identité, de proximité ou d'indépendance pour les distributions de probabilités

Degré de (dis)similarité entre 2 chaînes de caractères

Exemple : Alignement de séquences de bases nucléiques (ADN)

La distance d'édition entre 2 chaînes de caractères est le nombre minimum d'opérations d'édition (5)

- insertion (i)
- suppression (d)
- substitution (s)

pour transformer l'une des chaînes dans l'autre

2 chaînes de caractères et leur alignement avec 2 gaps (I,C)

$$I$$
 N T E \times N T I O N \times E X E C U T I O N d s s i s

Si le **coût** de chaque opération est 1, la distance d'édition est 5 Si le coût de la **substitution** est 2 (Levensthein), elle est égale à 8

L'espace des suites d'opérations possibles peut être très grand mais la distance d'édition correspond à un plus court chemin

Pour 2 chaînes de caractères X et Y (|X|=n et |Y|=m) D(i,j) est la distance d'édition entre le **préfixe** X[1,...,i] de **longueur** i et le **préfixe** Y[1,...,j] **de longueur** j La distance d'édition entre X et Y est D(n,m)

Programmation dynamique:

La distance d'édition est obtenue par construction du **tableau** des distances d'éditions entre **préfixes**

Algorithme (Wagner et Fisher, 1974):

- Pour i = 1, ..., n, D[i, 0] := i
- Pour j = 1, ..., m, D[0, j] := j
- Pour $i = 1, \ldots, n$

Pour
$$j = 1, \dots, m$$

Si
$$X[i-1] = Y[j-1]$$
, $\delta := 0$, sinon $\delta := 1$

$$D[i,j] := min \left\{ egin{array}{l} D[i-1,j]+1 \ \\ D[i,j-1]+1 \ \\ D[i-1,j-1]+\delta \end{array}
ight.$$

• Retourner D[n, m]

Exemple : $X = INTENTION \ Y = EXECUTION$

	ω	E	X	$oxed{E}$	C	$oxed{U}$	T	I	O	N
ε	0	1	2	3	4	5	6	7	8	9
I	1	1	2	3	4	5	6	6	7	8
N	2	2	2	3	4	5	6	7	7	7
T	3	3	3	3	4	5	5	6	7	8
$oxed{E}$	4	3	4	3	4	5	6	x	7	8
N	5	4	4	4	4	5	6	7	7	7
T	6	5	5	5	5	5	5	6	7	8
I	7	6	6	6	6	6	6	5	6	7
O	8	7	7	7	7	7	7	6	5	6
$oxed{N}$	9	8	8	8	8	8	8	7	6	5

Complexité

- Algorithme originel (Wagner et Fisher, 1974)
 Temps et espace quadratiques dans la longueur n
- Algorithme amélioré (Hirschberg, 1975)
 Temps quadratique et espace linéaire
- Algorithme exact le plus rapide (Masek et Paterson, 1980) Amélioration sur le temps (facteur **logarithmique**) Temps en $O(n^2/\log n)$
- Algorithme différence (Myers, 1986) Temps en $O(n \times d)$ (d est la **distance d'édition**) Espace linéaire. Temps en $O(n+d^2)$ en moyenne

Dans le contexte des ensembles de données de (très) grande taille

- Problème 1 : Existence d'un algorithme exact fonctionnant en temps sous-quadratique?
- Problème 2 : Conception d'algorithmes d'approximation efficaces pour la distance d'édition

Un algorithme A est un algorithme d' ε -approximation pour la distance D si pour toute entrée (X,Y)

$$\frac{|A(X,Y) - D(X,Y)|}{D(X,Y)} \le \varepsilon$$

Remarque : ε peut être fonction de la taille n de l'entrée

- Algorithme de \sqrt{n} -approximation en temps linéaire Conséquence facile de l'algorithme différence de Myers
- Algorithme de $n^{3/7}$ -approximation en temps quasi-linéaire (Bar-Yossef, Jayram, Krauthgamer et Kumar, 2004)
- Algorithme de $n^{1/3+o(1)}$ -approximation en temps $\tilde{O}(n)$ (T. Batu, F. Ergun et C. Sahinalp, 2006) Remarque : la notation $\tilde{O}(f(n))$ signifie f(n) . $log^{O(1)}$ f(n)
- Algorithme de $2^{\tilde{O}(\sqrt{\log n})}$ -approximation en temps presque linéaire (A. Andoni et K. Onak, 2009)
- Pour tout $\varepsilon > 0$, $(log\ n)^{O(1/\varepsilon)}$ -approximation en temps $n^{1+\varepsilon}$ (modèle de requête asymétrique) (A. Andoni, R. Krauthgamer et K. Onak, 2010)

- Comment classifier les problèmes (vraiment) difficiles?
- Un problème canonique **difficile** : le problème SAT Entrée : n variables propositionnelles x_1, \ldots, x_n une formule F conjonction de m clauses C_i où chaque clause est une k-disjonction de x_j ou $\neg x_j$ Sortie : une valuation **satisfaisant** la formule F ou NON si la formule n'est pas satisfaisable
- Théorème (S. Cook, R. Karp, 1972) Le problème SAT est NP-complet pour $k \geq 3$ S'il existe un algorithme résolvant le problème SAT en temps polynomial alors **tout problème** de NP l'est et ainsi P = NP
- Le meilleur algorithme connu pour le problème SAT fonctionne en temps $O(2^{n-(cn/k)} \cdot n^d)$ (c,d) constantes) Ce problème est conjecturé comme vraiment difficille

- R. Impagliazzo, R. Paturi et F. Zane (2001) ont proposé deux conjectures pour la **difficulté** du problème SAT
- Strong Exponential Time Hypothesis (SETH): pour tout $\varepsilon > 0$, il existe un k tel que le problème SAT pour n variables et m clauses ne peut pas être résolu en temps $2^{(1-\varepsilon)n}$. poly(m)
- A. Backurs et P. Indyck (2015) ont montré un résultat de **borne inférieure** relativisé à l'hypothèse SETH Théorème : Si la distance d'édition peut être calculée en temps $O(n^{(2-\delta)})$ pour une constante $\delta>0$, alors le problème SAT avec n variables et m clauses peut être résolu en temps $m^{O(1)}$. $2^{(1-\varepsilon)n}$ (ε constante >0)

- Exemple d'application : Systèmes d'extraction d'images
 Représentation par histogrammes à plusieurs dimensions
 Réponse à une requête dans une Base d'images :
 les images ayant les histogrammes les plus proches
 Mesure nécessaire de la dissimilarité entre histogrammes
- Histogramme $\{h_i\}$: application $\mathbf{i} \longrightarrow h_i$ \mathbf{i} vecteur de dimension d (représentant des couleurs, par ex.) h_i mesure de la masse de la distribution correspondante
- Mesures de dissimilarité entre 2 histogrammes $\{h_{\bf i}\}$ et $\{k_{\bf i}\}$: Les mesures **bin-by-bin** comparent $h_{\bf i}$ avec $k_{\bf i}$ Les mesures **cross-bin** comparent $h_{\bf i}$ avec $k_{\bf i}$

Quelle est votre distance préférée?

Distance de Minkowski :

$$d_{L_p}(H,K) = \left(\sum_{i} |h_i - k_i|^p\right)^{1/p}$$

La **distance** L_1 est souvent utilisée pour la couleur Dautres applications utilisent les distances L_2 ou L_{∞}

• Divergence de Kullback-Leibler (théorie de l'information) :

$$d_{KL}(H,K) = \sum_{i} h_{\mathbf{i}} \cdot \log \frac{h_{\mathbf{i}}}{k_{\mathbf{i}}}$$

La divergence KL n'est pas symétrique et est sensible au découpage de l'histogramme Divergence de **Jeffrey** (stable, symétrique et robuste) :

$$d_J(H,K) = \sum_i \left(h_{\mathbf{i}} \cdot \log \frac{h_{\mathbf{i}}}{m_i} + k_{\mathbf{i}} \cdot \log \frac{k_{\mathbf{i}}}{m_i}\right) \text{ où } m_i = \frac{h_{\mathbf{i}} + k_{\mathbf{i}}}{2}$$

- Les distances cross-bin utilisent une distance de base entre les vecteurs caractéristiques utilisés dans l'histogramme EMD peut être défini comme le coût minimal payé pour transformer un histogramme dans un autre
- Un histogramme : une masse de terre dans un espace
 Un autre : une collection de trous dans le même espace
 EMD mesure le travail minimum pour remplir les trous
- Cas discret du problème de transport de Monge (1781)
 Etudié par Kantorovich (Prix Nobel d'économie 1975)

EMD est la solution d'un problème de **transport** représenté comme un problème de **flot minimal** :

Signatures $P = \{(x_1, p_1), \dots, (x_n, p_n)\}$ et $Q = \{(y_1, q_1), \dots, (y_m, q_m)\}$

Matrice des distances de base : $D = (d_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$

Déterminer le flot $F = (f_{ij})$ qui **minimise** le coût global

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} d_{ij} \text{ sous les contraintes}$$

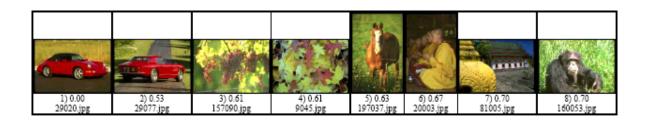
$$f_{ij} \geq 0 \ (1 \leq i \leq n, \ 1 \leq j \leq m)$$

$$\sum_{j=1}^{n} f_{ij} \leq p_i \ (1 \leq i \leq m)$$

$$\sum_{j=1}^{m} f_{ij} \leq q_j \ (1 \leq j \leq n)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} = min(\sum_{i=1}^{n} p_i, \sum_{j=1}^{m} q_j)$$

Color-based Image Retrieval



L1 distance

Jeffrey divergence

Earth Mover Distance

- EMD est due à Y. Rubner, C. Tomasi et L.J. Guibas (2000) Algorithme **exponentiel** pour le problème de transport dans le pire des cas, **super-cubique** en **moyenne** L'algorithme de J. Orlin est en temps $O(N^3logN)$
- EMD avec distance de base L_1 : H. Ling et K. Okada (2006) Algorithme expérimentalement en temps quadratique,
- P. Indyck et N. Thaper (2003) : Approximation de EMD- L_1 par plongement dans l'espace \mathbb{R}^d muni de la norme l_1 Pour des ensembles de vecteurs caractéristiques $\subseteq [\Delta]^d$ Le calcul du plongement est en temps $O(Ndlog\Delta)$
- A. Andoni, P. Indyck et R. Krauthgamer (2007) : construction d'un **plongement** pour des sous-ensembles de taille s de $[\Delta]^d$ avec une **distorsion** en $O(log(s).log(d\Delta))$

- Problème : estimation de EMD entre 2 distributions avec accès seulement à des échantillons des distributions
- **Testeur** de proximité pour EMD : 2 distributions P,Q sur un espace métrique M et $\varepsilon>0$ Algorithme A t.q. avec **forte probabilité** ($\geq 2/3$) : si P=Q, alors l'algorithme A accepte, si $EMD(P,Q)>\varepsilon$, alors l'algorithme A rejette
- Un **estimateur** avec **erreur additive** pour EMD : Algorithme qui, étant donné les mêmes entrées, retourne une valeur dans $[EMD(P,Q)-\varepsilon,EMD(P,Q)+\varepsilon]$
- La mesure de complexité est la taille de l'échantillonnage

[K.D. Ba, H.L. Nguyen, H.N. Nguyen et R. Rubinfeld, 2009] **Testeur de proximité pour EMD** :

- Contexte : 2 distributions P,Q sur $M\subseteq [0,1]^d$ Considérer une grille sur $[0,1]^d$ de pas $\frac{1}{2^i}$ et les **approximations** grossières de P,Q sur cette grille
- Le testeur pour EMD utilise un nombre $\log(2d/\varepsilon)$ fois un testeur des approximations pour la **distance** l_1 La complexité en **échantillons** est $\tilde{O}((2d/\varepsilon)^{2d/3})$

Estimateur pour EMD : Algorithme $A(P,Q,\varepsilon)$

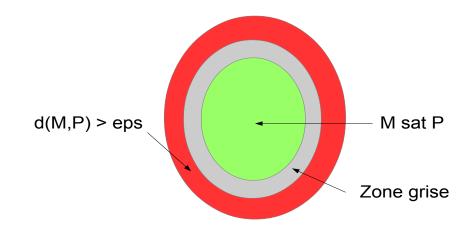
- Soit G la grille sur $[0,1]^d$ de pas $\frac{\varepsilon}{4d}$ et P',Q' les distributions **induites** par P,Q
- Prendre $O((\frac{4d}{\varepsilon})^{d+2})$ échantillons pour P' et Q' et soit \hat{P}', \hat{Q}' les distributions **empiriques** résultantes
- Retourner $EMD(\hat{P'}, \hat{Q'})$

La complexité en **échantillons** est $O((\frac{4d}{\varepsilon})^{d+2})$

Test (probabiliste) de Propriétés

Satisfaction classique : $\mathcal{M} \models \mathbf{P}$ \mathcal{M} satisfait la propriété \mathbf{P} Satisfaction approchée : $\mathcal{M} \models_{\varepsilon} \mathbf{P}$ si \mathcal{M} est ε -proche

de \mathcal{M}' tel que $\mathcal{M}' \models \mathbf{P}$



Testeur: Algorithme **probabiliste** A

- si $\mathcal{M} \models \mathbf{P}$, alors A accepte
- si $\mathcal M$ est $\varepsilon\text{-loin}$ de P, alors A rejette avec forte probabilité Le temps de calcul peut être indépendant de $|\mathcal M|$ mais dépend de $1/\varepsilon$

Exemple : Pour la distance de **Hamming** entre les mots l'appartenance d'un mot à un langage **régulier** est testable avec un nombre de **requêtes** en $O(\log^3(1/\varepsilon)/\varepsilon)$ (N. Alon, M. Krivelevich, I. Newman et M. Szegedy, 2000)

Etant donné des **échantillons** obtenus à partir d'une (ou plus) distribution **inconnue**, décider si elle satisfait une propriété.

- Problème classique en statistique
 (Neymann, Pearson, 1933; Lehmann, Romano, 2005)
- Test de propriétés (informatique théorique depuis 2000) (Goldreich, Ron, 2000; Batu et al, FOCS 2000)
- Test d'identité (distribution inconnue / distribution connue)
 Test de proximité pour 2 distributions inconnues
 Lecture Notes for Testing Properties of Distributions
 (O. Goldreich, 2016)

Lemme (Chan, Diakonikolas, Valiant et Valiant, 2014) : Soient P,Q des distributions **inconnues** sur un domaine de taille n Il existe un algorithme qui :

- sur l'entrée $n, \varepsilon > 0$ et $b \ge max(||P||_2, ||Q||_2)$,
- utilise $O(bn/\varepsilon^2)$ échantillons des distributions P et Q
- et distingue, avec probabilité $\geq 2/3$, entre les cas P=Q et $||P-Q||_2 \geq \varepsilon/\sqrt{n}$

Remarque:

- Si $||P||_2$ et $||Q||_2$) sont **petites**, alors le test est **efficace** Si $||P||_2 = ||Q||_2 = O(1/\sqrt{n})$, la complexité est en $O(\sqrt{n}/\varepsilon^2)$
- En fait, il suffit que l'une des deux soit petite car il est facile de détecter une **grande différence** entre les deux

Idée principale : Split distribution et Poissonisation

- P distribution et S multi-ensemble de [n]Split distribution P_S associée à la distribution P:

 Soit $a_i = 1+$ le nombre d'éléments de S égaux à iCorrespondance entre [n+|S|] et $B = \{(i,j): i \in [n], 1 \leq j \leq a_i\}$ Distribution P_S à support $B: i \in_r P$ et $j \in_r [a_i]$
- Lemme : Soit P une distribution sur [n] Pour tous multi-ensembles $S\subseteq S'$ de [n], $||P_{S'}||_2 \le ||P_S||_2$ Si S est obtenu en prenant Poisson(m) échantillons de P, alors

$$\mathbb{E}[||P_S||_2^2] \le 1/m$$

P une distribution **inconnue** et Q une distribution **donnée** sur [n] P_S,Q_S split distributions associées à P,Q relativement à S

Propriétés :

- ullet On peut simuler un échantillon de P_S ou Q_S à partir d'un échantillon de P ou Q
- Les différences en norme l_1 sont conservées : $||P_S Q_S||_1 = ||P Q||_1$

Testeur d'identité pour la norme l_1 :

- Etant donné Q, construire le multi-ensemble S qui contient $\lfloor nq_i \rfloor$ copies de i
- Utiliser le **testeur de base** pour distinguer entre $P_S = Q_S$ et $||P_S Q_S||_1 \ge \varepsilon$

Analyse :
$$n + |S| \le 2n$$
 et $||Q_S||_2 = O(1/\sqrt{n})$

Le **test d'identité** entre P_S et Q_S s'effectue en $O(||Q_S||_2|S|/\varepsilon^2)$ c'est-à-dire $O(\sqrt{n}/\varepsilon^2)$

 $\begin{array}{c} \textbf{Difficult\'e}: \ \mathsf{La} \ \mathsf{distribution} \ Q \ \mathsf{n'est} \ \mathsf{pas} \ \mathsf{connue} \\ \mathsf{On} \ \mathsf{va} \ \mathsf{utiliser} \ \mathsf{un} \ \mathsf{nombre} \ \mathsf{appropri\'e} \ \mathsf{d'\'echantillons} \ \mathsf{de} \ Q \\ \mathsf{pour} \ \mathsf{d\'efinir} \ \mathsf{l'ensemble} \ \mathsf{de} \ \mathsf{split} \ S \\ \end{array}$

Testeur de proximité pour la norme l_1 :

- Soit $k = min\{n, n^{2/3}\varepsilon^{-4/3}\}$
- Prendre Poisson(k) échantillons de Q pour définir S
- Utiliser le **testeur de base** pour distinguer entre $P_S = Q_S$ et $||P_S Q_S||_1 \ge \varepsilon$

Analyse : Avec forte probabilité, |S|=O(n) et $||Q_S||_2=O(1/\sqrt{k})$ Le **testeur de base** utilise $O(nk^{-1/2}/\varepsilon^2)$ échantillons Le nombre total d'échantillons est en $O(k+nk^{-1/2}/\varepsilon^2)=O(max\{n^{2/3}\varepsilon^{-4/3},\sqrt{n}/\varepsilon^2\})$

- La distance d'édition est utilisée en recherche d'information
 L'algorithme originel (DP) est en temps quadratique
 Amélioration en moyenne (recherche de plus court chemin)
- Approximation linéaire résultant de cette amélioration
 Compromis entre la qualité de l'approximation et le temps
- Peu d'espoir pour un algorithme en temps sous-quadratique Recherche importante sur la comparaison expérimentale
 G. Navarro : A guided tour to approximate string matching
- Une distance adaptée à la comparaison entre distributions
 Earth Mover's Distance rel. à une distance de base
 Algorithme super-cubique en moyenne
- Le Test de Propriétés : une méthode pour obtenir des Algorithmes probabilistes en temps sous-linéaire

Références 28

A. Andoni, R. Krauthgamer and K. Onak.
 Polylogarithmic Approximation for Edit Distance
 and the Asymmetric Query Complexity. Proc. 51th
 Symposium on Foundations of Computer Science, 2010

- K.D. Ba, H.L. Nguyen, H.N. Nguyen and R. Rubinfeld.
 Sublinear Time Algoritms for Earth Mover's Distance.
 Theory of Computing Systems, 48(2),p.428-442, 2011
- A. Backurs and P. Indyck. Edit Distance cannot be computed in Strongly Subquadratic Time unless SETH is false.
 Proc. 47th Symposium on Theory of Computing, 2015
- S. Chan, I. Diakonikolas, P. Valiant and G. Valiant.
 Optimal Algorithms for Testing Closeness of Discrete
 Distributions. Proc. 25th ACM-SIAM Symposium on
 Discrete Algorithms, p. 1193-1203, 2014

- I. Diakonikolas and D. Kane. *A New Approach for Testing Properties of Discrete Distributions*. arXiv:1601.05557, 2016
- W.J. Masek and M.S. Paterson. *A faster algorithm* computing string edit distances. Journal of Computer and System Sciences 20(1), p.18-31, 1980
- E.W. Myers. *An O(ND) difference algorithm and its variants*. Algorithmica 1, p. 251-266, 1986
- G. Navarro. A guided tour to approximate string matching ACM Computing Surveys 33(1), p. 31-88, 2001
- Y. Rubner, C. Tomasi and L.J. Guibas. The Earth
 Movers's Distance as a Metric for Image Retrieval.
 Int. Journal of Computer Vision 40 (2), p. 99-121, 2000
- R.A. Wagner and M.J. Fisher. *The String-to-String Correction Problem*. Journal of ACM 21, 1, p. 168-173, 1974

