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Abstract

We define a new family of spectral invariants associated to certain Lagrangian links in compact
and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of
Hamiltonians in their limit. As applications, we resolve several open questions from topological
surface dynamics and continuous symplectic topology: we show that the group of Hamiltonian
homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend
the Calabi homomorphism to the group of Hameomorphisms constructed by Oh-Müller; and, we
construct an infinite dimensional family of quasimorphisms on the group of area and orientation
preserving homeomorphisms of the two-sphere. Our invariants are inspired by recent work of
Polterovich and Shelukhin defining and applying spectral invariants for certain classes of links in
the two-sphere.
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1 Introduction

1.1 Recovering the Calabi invariant

Let (Σ, ω) denote a compact and connected surface, possibly with boundary, equipped with an area-
form. When the boundary is non-empty, the group of Hamiltonian diffeomorphisms admits a homo-
morphism

Cal : Ham(Σ, ω)→ R,

called the Calabi invariant, defined as follows. Let θ ∈ Ham(Σ, ω). Pick a Hamiltonian H :
[0, 1] × Σ → R, supported in the interior of Σ, such that θ = φ1

H ; see Section 2.1 for our conventions
in the definition of Ham. Then,

Cal(θ) :=

∫ 1

0

∫
Σ
H ω dt.

The above integral does not depend on the choice of H and so Cal(θ) is well-defined. Moreover,
it defines a non-trivial group homomorphism. For further details on the Calabi homomorphism see
[9, 42].

The first goal of the present work is to recover the Calabi invariant from more modern invariants,
called spectral invariants. In fact, we prove a more general result for closed surfaces. Spectral
invariants have by now a long history of applications in symplectic topology, see for example [63, 56,
43, 19, 44, 60, 37, 17, 2, 16, 14]. For our work here, what is critical is that the techniques of continuous
symplectic topology allow us to define spectral invariants for area-preserving homeomorphisms, and
we will see several applications below.

To state our result about recovering Calabi, define a Lagrangian link L ⊂ Σ to be a smooth
embedding of finitely many pairwise disjoint circles. We emphasize, because it contrasts the setup
for many other works about Floer theory on surfaces, that the individual components of the link are
not required to be Floer theoretically non-trivial; for example, they can be small contractible curves.
Whenever L satisfies a certain monotonicity assumption, see Definition 1.12, we define a link spec-
tral invariant cL : C∞([0, 1] × Σ, ω) → R. The properties of the invariants cL are summarized in
Theorem 1.13 below. We have the following result for suitable sequences of Lagrangian links which
always exist and which we refer to as equidistributed links, see Section 3.1 for the precise definition.
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A sequence of links being equidistributed in particular implies that the number of contractible com-
ponents diverges to infinity, whilst their diameters in a fixed metric tend to zero; we therefore think
of such links as ‘probing the small-scale geometry’ of the surface.

Theorem 1.1 (Calabi property). Let Lm be a sequence of equidistributed Lagrangian links in a closed
symplectic surface (Σ, ω). Then, for any H ∈ C∞([0, 1]× Σ) we have

lim
m→∞

cLm(H) =

∫ 1

0

∫
Σ
Ht ω dt.

Remark 1.2. The Calabi property is reminiscent of a property conjectured by Hutchings for spectral
invariants defined using Periodic Floer homology, see [14, Rmk. 1.12], which was verified in [14] for
monotone twist maps. We were partly inspired to think about it because of this conjecture. Hutchings’
conjecture was in turn inspired by a Volume Property for spectral invariants defined using Embedded
Contact Homology proved in [17] that has had various applications, see for example [2, 16]. On the
other hand, the above Calabi property is different from a property with the same name appearing
in the works of Entov-Polterovich [19] on Calabi quasimorphisms or the recent paper of Polterovich-
Shelukhin [55]. What these papers refer to as the Calabi property is equivalent to the Support control
property of our Theorem 1.13. J

We can think of a result like Theorem 1.1 as asserting that we have “enough” spectral invariants
to recover classical data. We now explain several applications.

1.2 The algebraic structure of the group of area-preserving homeomorphisms

Our first applications resolve two old questions from topological surface dynamics that have been key
motivating problems in the development of continuous symplectic topology. The ability to recover
Calabi is central for both proofs.

Hamiltonian homeomorphisms

Let Homeo0(Σ, ω) denote the identity component in the group of homeomorphisms of Σ which preserve
the measure induced by ω and coincide with the identity near the boundary of Σ, if the boundary
is non-empty. We say ϕ ∈ Homeo0(Σ, ω) is a Hamiltonian homeomorphism if it can be written
as a uniform limit of Hamiltonian diffeomorphisms. The set of all such homeomorphisms is denoted
by Ham(Σ, ω); this is a normal subgroup of Homeo0(Σ, ω). Hamiltonian homeomorphisms have been
studied extensively in the surface dynamics community; see, for example, [40, 34, 35].1

There exists a homomorphism out of Homeo0(Σ, ω), called the mass-flow homomorphism, intro-
duced by Fathi [22], whose kernel is Ham(Σ, ω). The normal subgroup Ham(Σ, ω) is proper when Σ
is different from the disc or the sphere. In the 1970s, Fathi asked in [22, Section 7] if Ham(Σ, ω) is a
simple group; in higher dimensions, one can still define mass-flow and Fathi showed [22, Thm. 7.6]
that its kernel is always simple, under a technical assumption on the manifold which always holds
when the manifold is smooth. When Σ is a surface with genus 0, Fathi’s question was answered in
[14, 15]; however, the higher genus case has remained open. Although the details of mass-flow are not
needed for our work, we recall some facts about it in Section 2.3.

By using our new spectral invariants, we can answer Fathi’s question in full generality:

Theorem 1.3. Ham(Σ, ω) is not simple.

1We remark that when Σ = S2, Ham is the group of area and orientation preserving homeomorphisms, and when
Σ = D2, it is the group of area preserving homeomorphisms that are the identity near the boundary.
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Theorem 1.3 generalizes the aforementioned results of [14, 15] proving this result in the genus zero
case. Our proof is logically independent of these works. To prove the theorem, following [14, 15] we
construct a normal subgroup FHomeo(Σ, ω), called the group of finite energy homeomorphisms,
and we prove that it is proper, see Section 3.3. The group FHomeo is inspired by Hofer geometry, and
one can define Hofer’s metric on it, see [15, Sec. 5.3]. For another proof in the genus 0 case, see [55].

The group FHomeo(Σ, ω) contains the commutator subgroup of Ham(Σ, ω), see Proposition 2.2,
hence we learn from our main result that Ham(Σ, ω) is not perfect, either.

Extending the Calabi invariant

One would like to understand more about the algebraic structure of Ham(Σ, ω) beyond the simplicity
question. Recall that Ham(Σ, ω) denotes the subgroup of Hamiltonian diffeomorphisms and suppose
now that the boundary of Σ is non-empty.

A question of Fathi from the 1970s [22, Section 7] asks if Cal admits an extension to Ham(D, ω).
An illuminating discussion by Ghys of this question appears in [26, Section 2]; it follows from results
of Gambaudo-Ghys [25] and Fathi [23] that Calabi is a topological invariant of Hamiltonian diffeo-
morphisms, i.e. if f, g ∈ Ham(Σ, ω) are conjugate by some h ∈ Homeo0(Σ, ω), then Cal(f) = Cal(g).
Hence, it seems natural to try and extend Calabi to Ham(Σ, ω), or at least to a proper normal
subgroup.2 Our proof of Theorem 1.3 involves constructing an “infinite twist” Hamiltonian homeo-
morphism which, heuristically, has infinite Calabi invariant, so our interest in what follows will be
extending the Calabi homomorphism to a proper normal subgroup rather than the full group.

There is a later conjecture of Fathi about what an appropriate normal subgroup for the purpose
of extending Calabi might be. In the article [48], Oh and Müller introduced a normal subgroup
Hameo(Σ, ω), called the group of Hameomorphisms of Σ, and whose definition we review in 2.2;
the idea of the definition is that these are elements of Ham(Σ, ω) that have naturally associated
Hamiltonians. The group Hameo(Σ, ω) is contained in FHomeo(Σ, ω), see Proposition 2.2, and so our
proof of Theorem 1.3 shows that it is proper. The aforementioned conjecture of Fathi is that the
Calabi invariant admits an extension to Hameo(Σ, ω) when Σ is the disc; see [45, Conj. 6.1]. We prove
this for any Σ with non-empty boundary.

Theorem 1.4. The Calabi homomorphism admits an extension to a homomorphism from the group
Hameo(Σ, ω) to the real line.

Theorem 1.4 implies that Hameo(Σ, ω) is neither simple nor perfect, when ∂Σ 6= ∅; we do not
know whether or not the kernel of Calabi on Hameo is simple.

Remark 1.5.

1. Theorem 1.4 implies that FHomeo(Σ, ω) is not simple either, when ∂Σ 6= ∅. This is because
by Proposition 2.2, Hameo(Σ, ω) is a normal subgroup of FHomeo(Σ, ω): we do not know if
Hameo(Σ, ω) forms a proper subgroup, but if not then we can conclude that the Calabi invariant
extends to FHomeo(Σ, ω) and so it cannot be simple. By the same reasoning, Theorem 1.4 implies
Theorem 1.3 in the case where ∂Σ 6= ∅.

2. We also do not know much about the quotient Ham(Σ, ω)/Hameo(Σ, ω), although we do know
that it is abelian, by Proposition 2.2, and that it contains a copy of R; see Remark 3.5.

J
2Fathi proves in [23] that Cal extends to Lipschitz area-preserving homeomorphisms. These, however, do not form a

normal subgroup.
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1.3 Quasimorphisms on the sphere

We now explain one more application of our theory in the case Σ = S2. Strictly speaking, this does
not use the Calabi property, although it does use the abundance of our new spectral invariants.

Recall that a homogeneous quasimorphism on a group G is a map µ : G→ R such that

1. µ(gn) = nµ(g), for all g ∈ G, n ∈ Z;

2. there exists a constant D(µ) ≥ 0, called the defect of µ, with the property that |µ(gh)−µ(g)−
µ(h)| 6 D(µ).

Returning now to the algebraic structure of Homeo0(S2, ω), note that the vector space of all
homogeneous quasimorphisms of a group is an important algebraic invariant of it; however, it has
previously been unknown whether Homeo0(S2, ω) has any non-trivial homogeneous quasimorphisms
at all.

Theorem 1.6. The space of homogeneous quasimorphsisms on Homeo0(S2, ω) is infinite dimensional.

The same statement was very recently proven for Homeo0(Σ) where Σ is a surface of positive
genus, see [7], but in contrast the group Homeo0(S2) has no non-trivial homogeneous quasimorphisms
as we review in Example 1.7 below. We also note that the space of all homogeneous quasimorphisms
is infinite dimensional for Homeo0(Σ, ω) when the genus of Σ is at least one, see [20, Thm. 1.2]. The
existence of our quasimorphisms has various implications, as the following illustrates.

Example 1.7. Recall that the commutator length cl of an element g in the commutator subgroup
of a group is the smallest number of commutators required to write g as a product. The stable
commutator length is defined3 by scl(g) := limn→∞

cl(gn)
n . It follows immediately from the existence

of a nontrivial homogeneous quasimorphism that the commutator length and the stable commutator
length are both unbounded. In stark contrast to this, Tsuboi [61] has shown that cl(g) = 1 for any
g ∈ Homeo0(Sn) \ {Id}.4

Moreover, we prove in Proposition 7.11 that scl is unbounded in any C0 neighborhood of the
identity. This contrasts [7, Thm. 1.5] on C0 continuity of scl in the non-conservative setting; see
Section 7.4. J

We also explain an application to fragmentation norms in 7.4 below.
In the course of our proof of Theorem 1.6, we answer a question posed by Entov, Polterovich and

Py [20, Question 5.2], which was partly motivated by the desire to obtain a result like Theorem 1.6, see
Remark 1.11; the question also appears as Problem 23 in the McDuff-Salamon list of open problems
[42, Ch. 14]. The question refers in part to the Hofer metric, defined in Section 2.2.

Question 1.8. Does the group Ham(S2, ω) admit any homogeneous quasimorphism which is contin-
uous with respect to the C0 topology? If yes, can it be made Lipschitz with respect the Hofer metric?5

Theorem 1.9. The space consisting of homogeneous quasimorphsisms on Ham(S2, ω) which are con-
tinuous with respect to the C0 topology and Lipschitz with respect to the Hofer metric is infinite
dimensional.

3To use a phrase from [10], we can think of the commutator length as a kind of algebraic analogue of the number of
handles, and we refer the reader to [10] for further discussion.

4cl(g) = 1 for g ∈ Homeo0(S1) \ {Id} was established earlier by Eisenbud, Hirsch and Neumann [18].
5The analogue of Question 1.8 for the 2 and 4 (complex) dimensional quadrics was recently settled in the affirmative

by Kawamoto [30].
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In fact, our quasimorphisms satisfy a simple asymptotic formula — they converge to 0 in their
limit — and this can be used to recover the Calabi invariant over S2 with more general links, see
Proposition 7.9.

Remark 1.10. In contrast, Ham(S2, ω) does not admit any non-trivial homomorphisms to R since
it is simple [3]. As for Homeo0(S2, ω), it is an open question whether it admits any non-trivial
homomorphisms to R, although a straightforward modification of the argument in [14, Cor. 2.5]
shows that any such homomorphism could not be C0 continuous. J

Remark 1.11. As alluded to above, the motivation for the first part of Question 1.8 is closely
connected to our Theorem 1.6: indeed, a result from Entov, Polterovich and Py [20, Prop. 1.4]
implies that any continuous homogeneous quasimorphism on Ham(S2, ω) would extend to give such a
quasimorphism on Homeo0(S2, ω). As for the second part of the question, this is tuned to applications
in Hofer geometry and C0 symplectic topology. For example, it was very recently shown in [15, 55] that
Ham(S2, ω) is not quasi-isometric to R, thereby settling what is known as the Kapovich-Polterovich
question [42, Prob. 21]; prior to [15, 55], it was shown in [20] that an affirmative answer to the second
question in Question 1.8 would also settle the Kapovich-Polterovich question. J

1.4 Quantitative Heegard Floer cohomology and link spectral invariants

We now explain the main tool that we use to prove the aforementioned results. Let Σ be a closed
genus g surface equipped with a symplectic form ω.

Consider a Lagrangian link (or simply a link) if L = ∪ki=1Li consisting of k pairwise-disjoint circles
on Σ, with the property that Σ \ L consists of planar domains B◦j , with 1 6 j 6 s, whose closures
Bj ⊂ Σ are also planar; throughout the rest of the paper we will only consider links satisfying this
planarity assumption.

Given a link L, we denote by kj the number of boundary components of Bj . Since the Euler
characteristic of a planar domain D with kD boundary components is 2− kD, the Euler characteristic
of Σ is 2− 2g =

∑s
j=1(2−kj) = 2s− 2k, and hence s = k− g+ 1. Finally, for 1 6 j 6 s, let Aj denote

the ω-area of Bj .

Definition 1.12. Let L be a Lagrangian link satisfying the above planarity assumption. We call L
monotone if there exists η ∈ R>0 such that

2η(kj − 1) +Aj (1)

is independent of j, for j ∈ {1, . . . , s}. We will use the terminology η-monotone when we need to
specify the value of η. We refer to the quantity 2η(kj − 1) + Aj as the monotonicity constant of
L.6

We will write Ht for a time-dependent Hamiltonian function H : [0, 1]×Σ→ R; it defines a point

of the universal cover H̃am(Σ, ω). A Hamiltonian Ht is said to be mean-normalized if
∫

Σ Ht ω = 0
for all t ∈ [0, 1]. Given Hamiltonians H,H ′ we define H#H ′t(x) = Ht(x) + H ′(t, (φtH)−1(x)), which
generates the Hamiltonian flow φtH ◦ φtH′ . We refer the reader to Section 2.1 for more details on our
notations and conventions.

Theorem 1.13. For every monotone Lagrangian link L = ∪ki=1Li there exists a link spectral invariant

cL : C∞([0, 1]× Σ, ω)→ R

satisfying the following properties.

6Our terminology is motivated by Lemma 4.19.
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� (Spectrality) for any H, cL(H) lies in the spectrum Spec(H : L) (see Definition 6.2 and (54));

� (Hofer Lipschitz) for any H,H ′,∫ 1

0
min(Ht −H ′t)dt 6 cL(H)− cL(H ′) 6

∫ 1

0
max (Ht −H ′t)dt;

� (Monotonicity) if Ht 6 H ′t then cL(H) 6 cL(H ′);

� (Lagrangian control) if Ht|Li = si(t) for each i, then

cL(H) =
1

k

k∑
i=1

∫
si(t)dt;

moreover for any H,

1

k

k∑
i=1

∫ 1

0
min
Li

Ht dt 6 cL(H) 6
1

k

k∑
i=1

∫ 1

0
max
Li

Ht dt;

� (Support control) if supp(Ht) ⊂ Σ\ ∪j Lj, then cL(H) = 0;

� (Subadditivity) cL(H#H ′) 6 cL(H) + cL(H ′);

� (Homotopy invariance) if H,H ′ are mean-normalized and determine the same point of the uni-

versal cover H̃am(Σ, ω), then cL(H) = cL(H ′);

� (Shift) cL(H + s(t)) = cL(H) +
∫ 1

0 s(t) dt.

We prove this theorem in Section 6.4. The spectral invariant cL is defined in Equation (54).

Remark 1.14. The idea of looking for spectral invariants suitable for our applications through
Lagrangian links was inspired by the recent work of Polterovich and Shelukhin [55]: they prove a
similar result for certain classes of links in S2, consisting of parallel circles, in [55, Thm. F] and
demonstrate many applications. J

The above theorem yields spectral invariants for Hamiltonians. We will explain how to use this
result to define spectral invariants for Hamiltonian diffeomorphisms in 3.2. To prove our results we
will also need spectral invariants for Hamiltonian homeomorphisms. We will do this in 3.2 as well.

In Section 7.3, we consider the case Σ = S2 and introduce maps µL : Ham(S2, ω) → R obtained
from homogenization of the link spectral invariant cL; see Equation (63). The µL are homogeneous
quasimorphisms which inherit some of the properties listed above. It is with these quasimorphisms
that we prove Theorem 1.6 and 1.9.

Context for Theorem 1.13

We briefly discuss the ideas entering into the proof of Theorem 1.13. Following an insight from
[39], although some of the individual components Lj are Floer-theoretically trivial in Σ, the link L
defines a Lagrangian submanifold Sym(L) of the symmetric product X = Symk(Σ) which may be
non-trivial. A Hamiltonian function H : [0, 1] × Σ → R determines canonically a function Sym(H) :
[0, 1] × Symk(Σ) → R. Although this is only Lipschitz continuous across the diagonal, the fact that
Sym(L) lies away from the diagonal makes it possible to work with (modified versions of) these
Hamiltonians unproblematically.
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The spectral invariant cL is constructed using Lagrangian Floer cohomology of Sym(L) in X, which
can be viewed as a ‘quantitative’ version of the Heegaard Floer cohomology for links from [50], cf.
Remarks 4.1 and 4.2. This quantitative version counts essentially the same holomorphic discs as in
Heegaard Floer theory, but we keep track of holonomy contributions (working with local systems), and
of intersection numbers of holomorphic discs with the diagonal. The parameter η ∈ R>0 of Theorem
1.13 plays the role of a bulk deformation; when the assumption (1) of Definition 1.12 is satisfied, our
variant of Lagrangian Floer cohomology is both Hamiltonian-invariant and non-zero. To prove the
non-vanishing of Floer cohomology, we show that for certain links L ⊂ P1 the symmetric product
Lagrangian Sym(L) is smoothly isotopic to a Clifford-type torus supported in a small ball (Corollary
4.5), and use that isotopy to control the holomorphic discs with boundary on Sym(L) and to compute
its disc potential (in the sense of [13, 11], see Proposition 5.5, 5.6). A combination of the tautological
correspondence, relating discs in the symmetric product Symk(Σ) with holomorphic maps of branched
covers of the disc to Σ, together with embeddings of the planar domains in Σ\L into P1, allows us
to reduce the general computation of the disc potential to this special case (Theorem 5.10). Once
Floer cohomology of Sym(L) is defined and non-trivial, the construction and properties of the spectral
invariant closely follow the usual arguments [24, 37] with only minor modifications. We remark that,
in contrast to [39], this paper does not use orbifold Floer cohomology and does not require virtual
perturbation techniques.

Remark 1.15. When g = 0 or η = 0, the arguments can be simplified by working with spherically
monotone symplectic forms on X, with respect to which Sym(L) is a monotone Lagrangian. (See
Remarks 4.22 and 6.7 as well as Section 7.2). In this case, the spectral invariant we define coincides with
the classical monotone Lagrangian spectral invariant associated to Sym(L) in X with an appropriate
symplectic form (see Lemma 7.2).

The above allows us to prove Corollary 7.3 establishing an inequality between our link spectral
invariants and the Hamiltonian Floer spectral invariants of Sym(H). With the help of this inequality,
we prove that our link spectral invariants yield quasimorphisms in the g = 0 case. J

Organization of the paper

In Section 2, we set our notation, introduce our groups of homeomorphisms on surfaces and recall
Fathi’s mass flow homomorphism. In Section 3, we use the properties of spectral invariants stated in
Theorem 1.13 to prove the Calabi property (Theorem 1.1), non-simplicity of the group of Hamiltonian
homeomorphisms (Theorem 1.3) and the extension of the Calabi homomorphism to Hameomoprhisms
(Theorem 1.4). In Section 4 we study pseudo-holomorphic discs with boundary on Sym(L), which
allows us to compute the disc potential function of Sym(L) in Section 5. This is used in Section 6 to
show that the relevant Floer cohomology is well-defined and non-vanishing. We also define our spectral
invariants and prove Theorem 1.13 in Section 6.4. Finally, we prove our results on quasimorphisms in
Section 7.3, and our results on commutator and fragmentation lengths in Section 7.4.
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2 Preliminaries

In this section we introduce parts of our notation and review some necessary background.

2.1 Recollections

Let (M,ω) be a symplectic manifold. We denote by C∞([0, 1]×M) the set of time-varying Hamiltonians
that vanish near the boundary when M has non-empty boundary. Our convention is such that the
(time-varying) Hamiltonian vector field associated to H is defined by ω(XHt , ·) = dHt. The homotopy

class of a Hamiltonian path {φtH : 0 6 t 6 1} determines an element of the universal cover H̃am(M,ω).

In the case of a surface Σ 6= S2, the fundamental group of Ham is trivial and so H̃am = Ham; see [53,

Sec. 7.2]. The fundamental group of Ham(S2, ω) is Z/2Z and so H̃am(S2, ω) is a two-fold covering of
Ham(S2, ω).

2.2 Hameomorphisms and finite energy homeomorphisms

Denote by C0([0, 1]×M) the set of continuous time-dependent functions on M that vanish near the
boundary if ∂M 6= ∅. The energy, or the Hofer norm, of H ∈ C0([0, 1] ×M) is defined by the
quantity

‖H‖(1,∞) =

∫ 1

0

(
max
x∈M

Ht − min
x∈M

Ht

)
dt.

The Hofer distance between ϕ,ψ ∈ Ham(M,ω) is defined by

dH(ϕ,ψ) := inf{‖H‖(1,∞) : ϕψ−1 = φ1
H}. (2)

This is a bi-invariant distance on Ham(M,ω); see [29, 32, 53].

Definition 2.1. An element φ ∈ Ham(M,ω) is a finite energy homeomorphism if there exists a
sequence of smooth Hamiltonians Hi ∈ C∞([0, 1]×M) such that

φ1
Hi

C0

−−→ φ, with ‖Hi‖(1,∞) ≤ C

for some constant C. An element φ ∈ Ham(M,ω) is called a Hameomorphism if there exists a
continuous H ∈ C0([0, 1]×M) such that

φ1
Hi

C0

−−→ φ, and ‖H −Hi‖(1,∞) → 0.

The set of all finite energy homeomorphisms is denoted by FHomeo(M,ω) and the set of all Hameo-
morphisms is denoted by Hameo(M,ω).7

There is an inclusion Hameo(M,ω) ⊂ FHomeo(M,ω).

Proposition 2.2. The groups Hameo(M,ω) and FHomeo(M,ω) satisfy the following properties.

(i) They are both normal subgroups of Homeo0(M,ω);

(ii) Hameo(M,ω) is a normal subgroup of FHomeo(M,ω);

(iii) If M is a compact surface, they both contain the commutator subgroup of Homeo0(M,ω).

7Oh and Müller use the terminology Hamiltonian homeomorphisms for the elements of Hameoc(M,ω). We have chosen
to avoid this terminology because in the surface dynamics literature it is commonly used for elements of Ham(M,ω).
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Proof. The fact that Hameo(M,ω) is a normal subgroup of Homeo0(M,ω) is proven in [48]; the same
statement for FHomeo(M,ω) is proven in [14, Prop. 2.1], in the case where M is the disc; the same
argument generalizes, in a straightforward way, to any M . This proves the first item.

The second item follows from the first and the inclusion Hameo(M,ω) ⊂ FHomeo(M,ω).
The third item follows from a general argument, involving fragmentation techniques [21, 28, 22],

which proves that any normal subgroup of Homeo0(M,ω) contains the commutator subgroup
[Homeo0(M,ω),Homeo0(M,ω)]. A proof of this in the case where M = D2 is presented in [14,
Prop. 2.2]; the argument therein generalizes, in a straightforward way, to any M .

We end this section with the observation that φ ∈ Homeo0(M,ω) is a finite energy homeomorphism
(resp. Hameomorphism) if it can be written as the C0 limit of a sequence φi ∈ Ham(M,ω) which is
bounded (resp. Cauchy) in Hofer’s distance.

2.3 The mass-flow and flux homomorphisms

Let M denote a manifold equipped with a volume form ω and denote by Homeo0(M,ω) the identity
component in the group of volume-preserving homeomorphisms of M that are the identity near ∂M .
In [22], Fathi constructs the mass-flow homomorphism

F : Homeo0(M,ω)→ H1(M)/Γ,

mentioned above, where H1(M) denotes the first homology group of M with coefficients in R and Γ
is a discrete subgroup of H1(M) whose definition we will not need here. Clearly, Homeo0(M,ω) is
not simple when the mass-flow homomorphism is non-trivial. This is indeed the case when M is a
closed surface other than the sphere. As we explained in 1.2, Fathi proved that ker(F) is simple if the
dimension of M is at least three.

For the convenience of the reader, we recall here a (symplectic) description of the mass-flow ho-
momorphism in the case of surfaces; we will be very brief as the precise definition of the mass-flow
homomorphism is not needed for our purposes in this article.

Denote by Diff0(Σ, ω) the identity component in the group of area-preserving diffeomorphisms Σ
that are the identity near the boundary if ∂Σ 6= ∅. There is a well-known homomorphism, called flux,

Flux : Diff0(Σ, ω)→ H1(Σ)/Γ,

where H1(Σ) denotes the first cohomology group of Σ with coefficients in R and Γ ⊂ H1(Σ) is a
discrete subgroup; see [42] for the precise definition. The kernel of this homomorphism is Ham(Σ, ω).
It can be shown that, in the case of surfaces, the flux homomorphism extends continuously with respect
to the C0 topology to yield a homomorphism

Flux : Homeo0(Σ, ω)→ H1(Σ)/Γ,

which coincides with the mass-flow homomorphism F : Homeo0(, ω) → H1(M)/Γ, after applying
Poincaré duality. As we said above, its kernel, whose non-simplicity we establish in this paper, is
exactly the group of Hamiltonian homeomorphisms Ham(Σ, ω).

In dimensions greater than 2, the mass-flow homorphism can be described similarly in terms of
the Poincaré dual of the volume flux homomorphism.

3 Non-simplicity and the extension of Calabi

Here we assume Theorem 1.13 and establish our applications to non-simplicity of surface transforma-
tion groups and the extension of the Calabi invariant. Theorem 1.13 will be proven in the subsequent
sections.
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3.1 The Calabi property

We begin by defining equidistributed sequences of Lagrangian links and prove Theorem 1.1.
Throughout this section, we fix a Riemannian metric d on the surface Σ and let ω be the associated

area form. Define the diameter of a Lagrangian link L = ∪ki=1Li to be the maximum of the diameters
of the contractible components of L; we will denote it by diam(L).

We call a sequence of Lagrangian links Lm equidistributed if

(i) diam(Lm)→ 0;

(ii) the number of non-contractible components of Lm is bounded above by a number N independent
of m;

(iii) the contractible components of Lm are not nested: more precisely, each such circle bounds a
unique disc of diameter no more than diam(Lm) and we require these discs to be disjoint;

(iv) each Lm is monotone, in the sense of Definition 1.12, for some η which may depend on m.

Figure 1: A typical example of a link Lm for m large in an equidistributed sequence. Here, Σ has
genus 2, there are 4 non-contractible components in Lm (in blue). The disc components in Σ \Lm are
colored in grey.

Note that any disc associated to a contractible component Lm as in (iii) must be a connected
component of F \ Lm: indeed, if it contained a component of Lm then this component would have to
be contractible and then the disc associated with it would violate the uniqueness property in (iii). It
also follows from (iv) that all these discs have equal area. We denote this common area by αm. Note
that the other components of Σ \ Lm all have area smaller than or equal to αm.

It is straightforward to check that equidistributed sequences of Lagrangian links exist; see Figure
1.

Example 3.1. Let ηm be a sequence of real numbers such that

ηm <
1

2m(m− 1)
(3)

for all m. Then, there is an equidistributed sequence of ηm-monotone links Lm on S2.
Indeed, for each m, one can take Lm to be the boundaries of a collection of m pairwise disjoint

discs of equal area λ = 1
m+1 + 2ηm

m−1
m+1 . The complement of these discs then has area 1−mλ, which

is positive by (3). J

11



Proof of Theorem 1.1. We will suppose throughout the proof that
∫

Σ ω = 1. Denote by L1, . . . , Lkm
the contractible components in Lm. These bound closed and pairwise disjoint discs B1, . . . , Bkm
associated via (iii) above.

Now fix ε > 0. Then, since diam(Lm)→ 0, for sufficiently large m we can find a smooth Hamilto-
nian Gm such that

Gm|Bi = si(t), max|H −Gm| ≤ ε,

where each si : [0, 1]→ R. We have that∣∣∣∣∫ 1

0

∫
Σ
H ω dt − cLm(H)

∣∣∣∣ 6∣∣∣∣∫ 1

0

∫
Σ
H −Gm ω dt

∣∣∣∣+

∣∣∣∣∫ 1

0

∫
Σ
Gm ω dt − cLm(Gm)

∣∣∣∣+
∣∣cLm(Gm)− cLm(H)

∣∣
and so we must bound the three terms from the previous line.

The term
∣∣∣∫ 1

0

∫
ΣH −Gm ω dt

∣∣∣ is bounded by ε because max |H − Gm| 6 ε and Area(Σ) = 1.

Similarly, we have
∣∣cLm(Gm)− cLm(H)

∣∣ 6 ε by the Hofer Lipschitz property from Theorem 1.13.
To bound the final term, use the Lagrangian control property of Theorem 1.13 to get

cLm(Gm) =
1

km + `m

km∑
i=1

∫ 1

0
si(t) dt+ Em,

where `m is the number of non-contractible components of Lm and Em satisfies

`m
km + `m

(minH − ε) 6 `m
km + `m

minGm 6 Em 6
`m

km + `m
maxGm 6

`m
km + `m

(maxH + ε).

In particular, since `m is bounded, Em converges to 0 as km goes to ∞.
Now, noting that

∫ 1
0 si(t)dt = 1

αm

∫ 1
0

∫
Bi
Gm ω dt, because Area(Bi) = αm, we can rewrite the

above as

cLm(Gm) =
1

αm(km + `m)

km∑
i=1

∫ 1

0

∫
Bi

Gm ω dt+ Em =
1

αm(km + `m)

∫ 1

0

∫
Σ\Cm

Gm ω dt+ Em,

where Cm denotes the complement Cm := Σ \ ∪kmi=1Bi. We claim that

limm→∞
1

αm(km + `m)
= 1, limm→∞area(Cm) = 0, limm→∞km =∞; (4)

from this, it follows by the third limit that Em converges to zero in view of the above, and then from
the first two limits that ∣∣∣∣cL(Gm)−

∫ 1

0

∫
Σ
Gm ω dt

∣∣∣∣ 6 ε

for m large enough, as desired.
It remains to show (4).
We claim the inequality

1

km
> αm >

1

km + 2N + 1
. (5)

The first inequality here is immediate. To see the second, consider the surface C ′m given by removing
the noncontractible components of Lm from Cm. Then, a coarse bound is that C ′m has at most 2N +1
components, and so Cm satisfies

area(Cm) 6 (2N + 1)αm.

12



Using that area(Cm) +
∑

area(Bj) = 1, we can now deduce (5).
To finish the proof of (4), since diam(Lm) → 0, we have αm → 0 which, in combination with the

inequality immediately above, gives the second limit in (4); it also gives in combination with (5), the
third limit. The first limit in (4) now follows from (5), since `m is bounded.

3.2 Link spectral invariants for Hamiltonian diffeomorphisms and homeomor-
phisms

Theorem 1.13 yields link spectral invariants for Hamiltonians. To prove our results we will also need
to define these invariants for Hamiltonian diffeomorphisms and homeomorphisms.

We begin by defining our invariants for Hamiltonian diffeomorphisms. Suppose that Σ is a closed
surface and let L be a monotone Lagrangian link in Σ. Given ϕ̃, an element in the universal cover

H̃am(Σ, ω), we pick a mean normalized Hamiltonian H whose flow represents ϕ̃. Then, we define

cL(ϕ̃) := cL(H). (6)

This is well-defined by the homotopy invariance property from Theorem 1.13. When Σ 6= S2, this
yields a well-defined map

cL : Ham(Σ, ω)→ R, (7)

because Ham(Σ, ω) is simply connected.

For clarity of exposition, we will suppose that Σ has positive genus throughout the rest of Section
3; we will see below that this suffices to prove Theorems 1.3 and 1.4.

The spectral invariant cL : Ham(Σ, ω) → R inherits appropriately reformulated versions of the
properties listed in Theorem1.13. We list the following properties which will be used below. For
φ, ψ ∈ Ham(Σ, ω) we have

1. (Hofer Lipschitz) |cL(ϕ)− cL(ψ)| 6 dH(ϕ,ψ), where dH is the Hofer distance defined in (2).

2. (Triangle inequality) cL(φψ) ≤ cL(φ) + cL(ψ).

We now turn to defining invariants of homeomorphisms. An individual cL is not in general C0-
continuous, as the following example shows.

Example 3.2. Let D be a disc that does not meet L and let ϕ be supported in D. Then, by the Shift
and Support control properties from Theorem 1.13, we have that

cL = −Cal(ϕ).

Now it is known that Cal is not C0-continuous. For example, identify D with a disc of radius one
centered at the origin in R2, equipped with an area form, and take a sequence of Hamiltonians Hi that
are compactly supported in discs Di centered at the origin with radius 1/i, such that Cal(φ1

Hi
) = 1.

Then the maps φ1
Hi

are converging in C0 to the identity, which has Calabi invariant 0.
On the other hand, if we consider a difference of spectral invariants cL− cL′ and D is disjoint from

L and L′, then cL − cL′ vanishes on any ϕ supported in D. In fact, we will see in Proposition 3.3
below that this difference is continuous on Ham(Σ, ω). J

We now state the result that allows us to define invariants for homeomorphisms. The notation dC0

in the proposition stands for the C0 distance which is defined to be

dC0(ϕ,ψ) = sup
x∈Σ

d(ϕ(x), ψ(x)),

where d is a Riemannian distance on Σ.
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Proposition 3.3. Let L,L′ be monotone Lagrangian links. The mapping Ham(Σ, ω)→ R defined via

ϕ 7→ cL(ϕ)− cL′(ϕ)

is uniformly continuous with respect to dC0. Consequently, it extends continuously to Ham(Σ, ω).

To treat surfaces with boundary, we will need a variant of Proposition 3.3. Let Σ0 be a compact
surface with boundary contained in a closed surface Σ. Then, by the above discussion, any monotone
Lagrangian link L in Σ, yields a spectral invariant

cL : Ham(Σ0, ω)→ R

obtained from restricting cL to Ham(Σ0, ω) ⊂ Ham(Σ, ω).

Proposition 3.4. Let L be a monotone Lagrangian link. The mapping Ham(Σ0, ω)→ R defined via

ϕ 7→ cL(ϕ) + Cal(ϕ) (8)

is uniformly continuous with respect to dC0. Consequently, it extends continuously to Ham(Σ, ω).

Note that cL(ϕ)+Cal(ϕ) corresponds to the value of cL(H) where H is any Hamiltonian generating
ϕ whose support is included in the interior of Σ0.

The proofs of the above results follow from standard arguments from C0 symplectic topology; see
[59, 14, 15, 55]. We will now prove these results.

Proof of Proposition 3.3. Define ζ : Ham(Σ, ω)→ R by

ζ(ϕ) = cL(ϕ)− cL′(ϕ).

We need to prove that ζ is uniformly continuous with respect to the C0 distance.
Let ε > 0 and fix a closed disc B ⊂ Σ \ (L∪L′). By8 [15, Lemma 3.11], there exists a real number

δ > 0 such that for any g ∈ Ham(Σ, ω) satisfying dC0(g, Id) < δ, there exists h ∈ Ham(Σ, ω) with
support in B and

dH(g, h) 6 ε.

Let φ1, φ2 ∈ Ham(Σ, ω) be such that dC0(φ1, φ2) < δ. We will prove that |ζ(φ1)− ζ(φ2)| 6 2ε and
this will conclude our proof.

Since dC0(φ1φ
−1
2 , Id) = dC0(φ1, φ2) 6 δ, we may pick h ∈ Ham(Σ, ω) supported in B and such that

dH(φ1φ
−1
2 , h) 6 ε. (9)

We now claim that
cL(h) = −cL(h−1) = cL′(h) = −cL′(h−1). (10)

Indeed, this follows from the Lagrangian control property of Theorem 1.13, since we can find a mean
normalized Hamiltonian H for h such that Ht is constant in the complement of B, and so h−1 has a
mean normalized Hamiltonian equal to −H in the complement of B.

Now observe that

cL(φ1) = cL(φ1φ
−1
2 φ2) 6 cL(φ1φ

−1
2 h−1) + cL(hφ2)

6 ε+ cL(hφ2) 6 cL(h) + cL(φ2) + ε. (11)

8The lemma is stated for Σ = S2, but the argument works just as well for the case of general Σ.
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Here, the first inequality holds by the Triangle inequality property from above; the second holds by
the Hofer Lipschitz property combined with (9); and the third holds by again applying the Triangle
inequality.

Similarly,

cL′(φ2) = cL′((φ1φ
−1
2 )−1φ1) 6 cL′(h

−1φ1) + ε 6 cL′(h
−1) + cL′(φ1) + ε.

The above inequalities together with (10) give

ζ(φ1) = cL(φ1)− cL′(φ1)

6 cL(h) + cL(φ2) + ε+ cL′(h
−1)− cL′(φ2) + ε

= ζ(φ2) + 2ε.

Switching the roles of φ1 and φ2, we obtain |ζ(φ1) − ζ(φ2)| 6 2ε, which shows that ζ is uniformly
continuous.

Proof of Proposition 3.4. As in the previous proof, we start by letting ε > 0 and fix a closed B ⊂
Σ0 \ (L ∪ L′). We then follow step by step the same argument until we arrive at Inequality 11:

cL(φ1) 6 cL(h) + cL(φ2) + ε.

Since the Calabi homomorphism is 1-Lipschitz with respect to Hofer’s distance, inequality (9) yields

Cal(φ1) 6 Cal(φ2) + Cal(h) + ε.

Now, by the Shift property from Theorem 1.13, cL(h) = −Cal(h), as can be seen by choosing a
Hamiltonian for h that vanishes outside B and then mean normalizing. Thus we obtain from the two
previous inequalities:

cL(φ1) + Cal(φ1) 6 cL(φ2) + Cal(φ2) + 2ε.

We conclude by switching the roles of φ1 and φ2 as in the proof of Proposition 3.3.

3.3 Infinite twists on positive genus surfaces

We can now prove Theorem 1.3.

Proof of Theorem 1.3. We showed in Proposition 2.2 that FHomeo is a normal subgroup of Ham. It
remains to show that it is proper. To do this, we adapt the strategy from [14, Thm. 1.7], namely we
construct an example of a Hamiltonian homeomorphism that does not have finite energy.

We first consider the case where Σ is closed. Let Lm be an equidistributed sequence of Lagrangian
links. Define ζm : Ham(Σ, ω)→ R by

ζm(ϕ) = cLm(ϕ)− cL1(ϕ).

By Proposition 3.3, ζm admits a continuous extension to Ham(Σ, ω).
We now claim that if φ ∈ FHomeo, then ζm(φ) remains bounded as m varies. To see this, let

φi = ϕ1
Hi

be a sequence of diffeomorphisms converging to φ such that the Hi are mean normalized and
have Hofer norm bounded by C. Then by the Hofer Lipschitz property from Theorem 1.13, applied
with H ′ = 0, we have that the ζm(φi) are also bounded by C. Hence, by continuity, the ζm(φ) are
bounded as well.

Next, let D ⊂ Σ \ ∪k1i=1L
1
i be a smoothly embedded closed disc, which we identify with the disc of

radius R in R2 centered at the origin with its standard area form. We now define an “infinite twist”
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homeomorphism ψ supported in D as follows. Let (θ, r) denote polar coordinates. Let f : (0, R]→ R
be a smooth function which vanishes near R, is decreasing, and satisfies∫ 1

0
r3f(r) dr =∞. (12)

We now define ψ by ψ(0) = 0 and

ψ(r, θ) = (r, θ + 2πf(r)) (13)

for r > 0. The heuristic behind the condition (12) is that it forces ψ to have “infinite Calabi invariant”.
Indeed, if f was defined on the closed interval [0, R], then ψ would be a Hamiltonian diffeomorphism
with Calabi invariant

∫ 1
0 r

3f(r) dr.
We now claim that ψ is a Hamiltonian homeomorphism with the property that ζm(ψ) diverges as

m varies. By [14, Lem. 1.14]9, there are Hamiltonians Fi, compactly supported in the interior of D,
with the following properties:

1. The sequence ψ1
Fi

converges in C0 to ψ.

2. Fi ≤ Fi+1.

3. limi→∞
∫ 1

0

∫
Σ Fiω =∞.

By the first property above, ψ is a Hamiltonian homeomorphism. We now apply several properties
from Theorem 1.13. By the Shift property, ζm(ψ1

Fi
) = cLm(Fi)− cL1(Fi), and by the Support control

property from the same theorem, cL1(Fi) = 0. It then follows by continuity and the Monotonicity
property that

ζm(ψ) ≥ cLm(Fi),

hence by the Calabi property from Theorem 1.1,

limm→∞ζm(ψ) ≥
∫ 1

0

∫
Σ
Fi ω

for any i. Hence by the third property above, the ζm(ψ) diverge.
In the case when Σ is not closed, we reduce to the above by embedding Σ into a closed surface Σ′.

Now define an infinite twist exactly as above, except in addition the infinite twist is supported in Σ:
by the above, this map is not in FHomeo(Σ′, ω′), hence can not be in FHomeo(Σ, ω).

Remark 3.5. The infinite twist ψ, introduced above in (13), is the time-1 map of the 1-parameter
subgroup ψt of Homeo0(Σ, ω) defined by ψt(0) = 0 and

ψt(r, θ) := (r, θ + 2πtf(r)).

It follows immediately from the above proof that ψt is not a finite-energy homeomorphism for
t 6= 0. This yields an injective group homomorphism from the real line R into the quotient
Ham(Σ, ω)/FHomeo(Σ, ω).

Since Hameo(Σ, ω) ⊂ FHomeo(Σ, ω), we see that ψt yields an injective group homomorphism from
R into the quotient Ham(Σ, ω)/Hameo(Σ, ω), as well.

One can show that the above injections are not surjections; see [55]. However, we have not been
able to determine whether or not the quotients are isomorphic to R as abelian groups. J

9[14, Lem. 1.14] uses the condition
∫ 1

0

∫ 1

r
sf(s) ds r dr = ∞, but this is equivalent to (12) since

∫ 1

0

∫ 1

r
sf(s) ds r dr =

1
2

∫ 1

0
r3f(r) dr by integration by parts.
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3.4 Calabi on Hameo

We will now provide a proof of Theorem 1.4. The proof closely follows the argument from [14, Section
7.4], except that we use the Lagrangian spectral invariants defined here instead of the PFH spectral
invariants studied in [14].

Proof. Let φ ∈ Hameo(Σ, ω), and take an H ∈ C0([0, 1]× Σ) such that

φ1
Hi

C0

−−→ φ, and ‖H −Hi‖(1,∞) → 0,

where the Hi are smooth Hamiltonians as in Definition 2.1. For future use, we record H in the notation
by writing φ = φH .

We now define

Cal(φ) :=

∫ 1

0

∫
Σ
H ω dt. (14)

We claim this is well-defined. To show this, it suffices to show that if φ = Id, then∫ 1

0

∫
Σ
H ω dt = 0, (15)

since Cal is a homomorphism on Ham(Σ, ω). In other words, we will show that if φ1
Hi

C0

−−→ Id and
‖H −Hi‖(1,∞) → 0, then (15) holds.

As in Proposition 3.4, embed Σ into a closed surface Σ′, choose a sequence of equidistributed
Lagrangian links Lm in Σ′, and consider ξm : Ham(Σ, ω)→ R by

ξm(ϕ) = cLm(ϕ) + Cal(ϕ).

By Proposition 3.4, ξm extends continuously to Ham(Σ, ω). This in particular implies that

lim
j→∞

ξm(φ1
Hj ) = 0. (16)

For any fixed m, i, we can write∣∣∣∣∫ 1

0

∫
Σ
H ω dt

∣∣∣∣ 6 ∣∣∣∣∫ 1

0

∫
Σ
H ω dt − Cal(φ1

Hi)

∣∣∣∣
+
∣∣Cal(φ1

Hi)− ξm(φ1
Hi)
∣∣+
∣∣ξm(φ1

Hi)
∣∣ .

The right hand side of the above inequality is a sum of three terms. We know that∣∣∣∣∫ 1

0

∫
Σ
H ω − Cal(φ1

Hi) dt

∣∣∣∣ ≤ ||H −Hi||(1,∞),

since Hi are smooth and compactly supported Hamiltonians and so Cal(φ1
Hi

) =
∫ 1

0

∫
ΣHi ω dt. We

claim that the third term has the same bound. Indeed, by the Hofer Lipschitz property from Theorem
1.13, we have |ξm(φ1

Hj
)− ξm(φ1

Hi
)| ≤ ||Hj −Hi||(1,∞) for all i, j, and then fixing i and taking the limit

as j →∞ gives
|ξm(φ1

Hi)| ≤ ||H −Hi||(1,∞)

by (16). Hence, whatever m, the first and third terms of the above inequality can be made arbitrarily
small by choosing i sufficiently large. As for the second term, for fixed i, this can be made arbitrarily
small by choosing m sufficiently large, by the Calabi property proved in Theorem 1.1.

Hence, Cal is well-defined. It remains to show that it is a homomorphism. The fact that Cal is
a homomorphism if well-defined was in fact previously shown in [45] so we will be brief. Let ψ1 and
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ψ2 be elements of Hameo(Σ, ω), and choose corresponding H, G. By reparametrizing, we can assume
that H and G vanish near 0 and 1, and we can then form the concatenation

K(t, x) =

{
2H(2t, x), if t ∈ [0, 1

2 ]

2G(2t− 1, x), if t ∈ [1
2 , 1]

.

One now checks that φK = φG ◦φH , and it now follows immediately from this formula for K and (14)
that Cal(φG ◦ φH) = Cal(φH) + Cal(φG). The proof that Cal((φH)−1) = −Cal(φH) is similar.

4 Heegaard tori and Clifford tori

The proof of Theorem 1.13 occupies the next three sections of the paper. Recall from the introduction
that this result will be obtained by studying a Floer cohomology for symmetric product Lagrangians
Sym(L) in the symmetric products of the surface. This section is mainly devoted to the proof of
a monotonicity result (Lemma 4.19), which will later on guarantee that we have a well-defined La-
grangian Floer cohomology. Section 5 computes the potential function of Sym(L) and Section 6 defines
the Floer cohomology and spectral invariants.

4.1 Set-up and outline

We recall the set-up. Fix a closed genus g surface Σ, and equip Σ with a symplectic form ω. We
can choose a complex structure JΣ on Σ such that ω is a Kähler form. Consider a Lagrangian link
L = ∪ki=1Li consisting of k pairwise-disjoint circles on Σ, with the property that Σ \ L consists of
planar domains B◦j , with 1 6 j 6 s, whose closures Bj ⊂ Σ are also planar. Let Bj have kj boundary
components. Since the Euler characteristic of a planar domain D with kD boundary components is
2− kD, the Euler characteristic of Σ is 2− 2g =

∑s
j=1(2− kj) = 2s− 2k, and hence s = k− g+ 1. We

assume throughout that s ≥ 2. Finally, for 1 6 j 6 s, let Aj denote the ω-area of Bj .

Let (M,ωM ) = (Σk, ω⊕k). Let X := Symk(Σ) be the k-fold symmetric product. It has a complex
structure JX induced from JΣ making X a complex manifold and the quotient map π : M → X
holomorphic. We equip X with the singular Kähler current ωX which naturally descends from (M,ωM )
under π. Let Sym(L) be the Lagrangian submanifold in X given by the image of L1 × · · · ×Lk under
π. The spectral invariant cL of Theorem 1.13 will be constructed using a variant of Lagrangian Floer
cohomology of Sym(L) in X, ‘bulk deformed’ by η times the diagonal divisor.

Remark 4.1. In Heegaard Floer theory for links in 3-manifolds, one begins with a surface Σ of genus
g, two sets of attaching circles α1, . . . , αk and β1, . . . , βk and two sets of base-points z1, . . . , zl and
w1, . . . , wl, where k = g + l − 1, see [50, Definition 3.1]. This data encodes a link in a 3-manifold;
one can take g = 0 for links in S3. Link Floer homology is obtained from a version of Lagrangian
Floer cohomology of product-like tori associated to α and β in Symk(Σ). For link invariants the
crucial topological information is contained in the filtrations associated to the intersection numbers
with divisors Dp = p+ Symk−1(Σ), for p ∈ {zi, wj} one of the base-points, which play no role in this
paper. Our ‘quantitative version’ instead keeps track of holonomies of local systems and of intersection
number with the diagonal divisor. We also work with ‘anchored’ or ‘capped’ Floer generators, so that
the action functional becomes well-defined. J

Remark 4.2. It is crucial for our purposes that our Floer cohomology is invariant under Hamiltonian
isotopies (at least those inherited from isotopies of the link L), whereas in Heegaard Floer homology the
important invariance properties are those which give different presentations of a fixed link (handleslide
moves and stabilisations, which one shows respect the topological information held by the filtrations
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determined by the Dp). The following illustrative example may be helpful. Consider two circles
on P1 whose complementary domains have closures (disjoint) discs B1 of area A1, B2 of area A2

and an annulus B3 of area A3. The Maslov index two discs on Sym(L) are given by B1, B2 and a
double covering of B3. The fact that such branched covers arise makes it natural to keep track of
branch points, and hence intersections with the diagonal divisor; this is the role of our bulk parameter
η. If A1 6= A2 then the link is displaceable, even though its Heegaard Floer cohomology would be
defined (over Z/2) and non-vanishing. It is well-known that Floer cohomology over C is Hamiltonian
invariant only under monotonicity hypotheses, which is where the hypothesis of Theorem 1.13 arises.
Hamiltonian invariance for the bulk-deformed version relies on restricting to values η > 0. Our analysis
of the curvature in the Floer complex of Sym(L) would apply equally well over the Novikov field, cf.
Definition 5.4. J

The unobstructedness of Sym(L) follows broadly as in its Heegaard Floer counterpart. (More
precisely, in the link setting, a ‘weak admissibility’ condition is imposed on Heegaard diagrams to rule
out bubbling which would obstruct the Floer complex over Z/2, whereas we compute the curvature
in the Floer complex directly.) To compute Floer cohomology, we first consider the special case in
which Σ = P1 and the Bj are discs for j = 1, . . . , k. We show the corresponding Sym(L) is isotopic
to a Clifford-type torus in X = Symk(P1) = Pk, and use that isotopy to compare the holomorphic
discs they bound. In the general case, the fact that the regions Bj ⊂ Σ are planar domains enables
us to reduce aspects of the holomorphic curve theory to the case Σ = P1. Our proof incorporates
local systems because non-vanishing of Floer cohomology is detected, as in [11, 13], by considering
the Floer boundary operator under variation of the local system. We obtain a spectral invariant cE
for any local system E → Sym(L) with respect to which Floer cohomology is non-trivial. In fact Floer
cohomology is non-zero for the trivial local system on Sym(L), and (after rescaling by the number of
components) it is the spectral invariant cE for the trivial local system which is the cL which appears
in Theorem 1.13.

For unobstructedness of the Floer cohomology of Sym(L), we will need control over the Maslov
indices of holomorphic discs with boundary on that torus. To that end, we next show that when
Σ = P1 and the circles Lj bound pairwise disjoint discs Bj , with 1 6 j 6 k = s− 1, the torus Sym(L)
is isotopic to a Clifford-type torus in projective space.

4.2 Co-ordinates on the symmetric product

The symmetric product Symk(P1) is naturally a complex manifold, biholomorphic to Pk. To fix
notation, we recall that isomorphism. Let x0,i, x1,i denote homogeneous co-ordinates on the i-th
factor of (P1)k. Define Q0(x), . . . , Qk(x) ∈ C[x0,1, x1,1, . . . , x0,k, x1,k] by the identity

k∏
j=1

(x0,jX + x1,jY ) =
k∑
j=0

Qj(x)Xk−jY j .

Let Y0, . . . , Yk be the homogenous co-ordinates of Pk. We define π : (P1)k → Pk by

[Y0 : · · · : Yk] = π([x0,1 : x1,1], . . . , [x0,k : x1,k]) = [Q0(x) : · · · : Qk(x)].

It is an Sk-invariant holomorphic map which descends to a biholomorphism Symk(P1) ' Pk.

Let a1, . . . , ak+1 be k + 1 pairwise distinct points in P1. We identify P1 as C ∪ {∞} and assume
that ak+1 =∞. For each i = 1, . . . , k + 1, we define

D̃i :=


k∏
j=1

(x1,j − aix0,j) = 0

 ⊂ (P1)k.
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Note that D̃i is Sk-invariant and it descends to

Di := π(D̃i) =


k∑
j=0

(−ai)k−jYj = 0

 ⊂ Pk.

When i = k + 1, the divisors D̃k+1 and Dk+1 are understood as {
∏k
j=1 x0,j = 0} and {Y0 = 0}

respectively.

Remark 4.3. The divisor Di is precisely the image of Symk−1(Σ) → Symk(Σ) = X under the
map D 7→ ai + D (i.e. (p1, . . . , pk−1) 7→ (p1, . . . , pk−1, ai) but written in a form that regards D =
p1 + · · ·+ pk−1 = (p1, . . . , pk−1) as a divisor in Σ). In particular, the Di are pairwise homologous, and
∪k+1
i=1Di is an anticanonical divisor of X. J

Note that (P1)k\D̃k+1 = Ck and π|Ck : Ck → Ck is a Sk-invariant holomorphic map which descends
to a biholomorphism Symk(C) ' Ck. For i = 1, . . . , k, we define xi :=

x1,i
x0,i

and yi := Yi
Y0

, which give

coordinates on the complements of D̃k+1 and Dk+1 respectively. Since qj :=
Qj
Q0

is precisely the jth

elementary symmetric polynomial of {xi}ki=1, the map π|Ck can be written as

(y1, . . . , yk) = π(x1, . . . , xk) = (q1(x), . . . , qk(x))

qj(x) =
1

j!(k − j)!
∑
σ∈Sk

xσ(1) . . . xσ(j).

In affine coordinates, for i = 1, . . . , k, we have

D̃i \ D̃k+1 =


k∏
j=1

(xj − ai) = 0

 and Di \Dk+1 =


k∑
j=0

(−ai)k−jyj = 0

 .

Since the {ai} are pairwise distinct, the Vandermonde matrix

A =


(−a1)k−1 (−a1)k−2 . . . 1
(−a2)k−1 (−a2)k−2 . . . 1

...
...

(−ak)k−1 (−ak)k−2 . . . 1


is non-degenerate. We define gi =

∑k
j=0(−ai)k−jyj so that Di \Dk+1 = {gi = 0}; the non-degeneracy

of A implies that {gi}ki=1 is an invertible linear change of coordinates of {yi}ki=1.

4.3 Relation to the Clifford torus

For ε > 0 small, we define the Clifford torus in X as

Lε := {(g1, . . . , gk) ∈ Ck : |gi| = ε for each i}.

The main result of this section, Corollary 4.5 below, asserts that when ε is small, Lε is C1 close to
Sym(L) for an appropriate L.

For a small neighborhood G of (g1, . . . , gk) = 0, π|π−1(G) : π−1(G) → G is a trivial covering map
with k! sheets. For example,

π−1({(g1, . . . , gk) = 0}) =
⋃
σ∈Sk

{xi = aσ(i) for 1 6 i 6 k}.
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Therefore, when ε > 0 is small, π−1(Lε) is a collection of k! pairwise-disjoint totally real k-tori in
(P1)k. More explicitly, we have

π−1(Lε) =


∣∣∣∣∣∣
k∏
j=1

(xj − ai)

∣∣∣∣∣∣ = ε for each i = 1, . . . , k

 .

Let G̃ be the connected component of π−1(G) containing the point with co-ordinates xi = ai for
each i. For ε > 0 sufficiently small, there exists δ > ε such that

{|xi − ai| < δ for each i, 1 6 i 6 k} ⊂ G̃

L̃ε := π−1(Lε) ∩ G̃ =


∣∣∣∣∣∣
k∏
j=1

(xj − ai)

∣∣∣∣∣∣ = ε and |xi − ai| < δ for each i, 1 6 i 6 k


If x ∈ L̃ε and i 6= j, then |xi − aj | > 3δ.

Lemma 4.4. For κ > 0, there exists a small ε > 0 and a family of diffeomorphisms (Φt)t∈[0,1] of

(P1)k supported inside G̃ with the following properties:

� Φ0 is the identity;

� the C1-norm of Φt is less than κ for all t ∈ [0, 1];

� Φ1({|xi − ai||
∏
j 6=i(aj − ai)| = ε for all i}) = L̃ε;

� Φt(D̃i ∩ G̃) = D̃i ∩ G̃ for all t ∈ [0, 1] and all i = 1, . . . , k.

Proof. For simplicity of notation, we will give the proof in the case in which ai ∈ R for each i.

Let ui +
√
−1vi = xi − ai. Then D̃i ∩ G̃ = {(u, v) ∈ G̃ : ui = vi = 0}. The system of equations

(xi − ai)

(1− t)
∏
j 6=i

(aj − ai) + t
∏
j 6=i

(xj − ai)

 = αi +
√
−1βi 1 6 i 6 k (17)

for t ∈ [0, 1] and αi, βi ∈ R becomes, in the ui, vi co-ordinates,

(ui +
√
−1vi)

(1− t)
∏
j 6=i

(aj − ai) + t
∏
j 6=i

(uj +
√
−1vj + aj − ai)

 = αi +
√
−1βi. (18)

Taking real and imaginary parts, we obtain

ui
∏
j 6=i

(aj − ai) + tHui(u, v) = αi,

vi
∏
j 6=i

(aj − ai) + tHvi(u, v) = βi,

where Hui(u, v) and Hvi(u, v) are polynomials in uj , vj in which each term has degree at least two.

Let ρ : R≥0 → R≥0 be a cut-off function such that ρ(s) = 1 for s < ε2

2 , ρ(s) = 0 for s > ε2 and
|ρ′(s)| < C

ε2
for some constant C independent of ε and for all s. We denote

∑
i u

2
i + v2

i by |(u, v)|2. Let

F tui(u, v, α, β) := ui
∏
j 6=i

(aj − ai) + tρ(|(u, v)|2)Hui(u, v)− αi,

F tvi(u, v, α, β) := vi
∏
j 6=i

(aj − ai) + tρ(|(u, v)|2)Hvi(u, v)− βi.
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The 2k × 2k square matrix

Du,vF
t :=


∂F tu1
∂u1

∂F tu1
∂v1

. . .
∂F tu1
∂vk

∂F tv1
∂u1

∂F tv1
∂v1

. . .
∂F tv1
∂vk

...
...

∂F tvk
∂u1

∂F tvk
∂v1

. . .
∂F tvk
∂vk


can be written as a sum A+ tρB1 + tρ′B2, where A is the diagonal matrix with entries

∏
j 6=i(aj − ai)

at both the (2i− 1, 2i− 1)th and (2i, 2i)th positions, for each i = 1, . . . , k, and where the entries of B`
are polynomials, with each non-zero term having degree at least 1 when ` = 1 and degree at least 3
when ` = 2.

Since the support of ρ is [0, ε2], when ε > 0 is small we have

‖Du,vF
t −A‖ = tO(ε)

for all t ∈ [0, 1] and for all points (u, v). By the implicit function theorem, there exists a unique
gt(α, β) such that

F tui(g
t(α, β), α, β) = 0 (19)

F tvi(g
t(α, β), α, β) = 0 (20)

for all i = 1, . . . , k. Define a smooth isotopy starting at the identity by

Φt(u, v) := gt ◦ (g0)−1(u, v).

We can control the C1-norm of the isotopy as follows. We have DΦt = D(gt) ◦ D((g0)−1). Since gt

solves the equations (19) and (20) for each i, by differentiating with respect to α and β, we have

Dgt = −(Du,vF
t)−1


∂F tu1
∂α1

∂F tu1
∂β1

. . .
∂F tu1
∂βk

∂F tv1
∂α1

∂F tv1
∂β1

. . .
∂F tv1
∂βk

...
...

∂F tvk
∂α1

∂F tvk
∂β1

. . .
∂F tvk
∂βk

 = (Du,vF
t)−1.

As a result, we have

‖Dgt −A−1‖ =
tO(ε)

‖A‖2
.

Moreover, when t = 0, we have exactly Dg0 = A−1. Therefore, we have

‖DΦt − Id‖ =
tO(ε)

‖A‖

so the C1-norm of Φt is smaller than the prescribed κ whenever ε is sufficiently small.

We now check the remaining conditions. Equation (18) implies that

(gt)−1({ui = vi = 0}) ⊂ {αi = βi = 0},

so
Φt(D̃i ∩ G̃) = D̃i ∩ G̃
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for every t, i. It is also clear from the construction, cf. (17), that there exists 0 < ε′ � ε such that

Φ1

|xi − ai|
∣∣∣∣∣∣
∏
j 6=i

(aj − ai)

∣∣∣∣∣∣ = ε′ for all i


 = L̃ε′ .

Therefore, replacing ε by ε′, the final claim of the statement holds.

Corollary 4.5. If ε > 0 is sufficiently small, and if La1,...,ak,ε is the union of circles

La1,...,ak,ε =
k⋃
i=1

|xi − ai|
∣∣∣∣∣∣
∏
j 6=i

(aj − ai)

∣∣∣∣∣∣ = ε

 ⊂ C,

there is a C1-small isotopy Φt
G supported in G ⊂ Pk, with

Φ1
G(Sym(La1,...,ak,ε)) = Lε and Φt

G(Di) = Di for all i, t.

Proof. The submanifold

L̃a1,...,ak,ε :=

|xi − ai|
∣∣∣∣∣∣
∏
j 6=i

(aj − ai)

∣∣∣∣∣∣ = ε for all i

 ∩ G̃
is a product of circles, and π(L̃a1,...,ak,ε) is precisely Sym(La1,...,ak,ε). Since the isotopy Φt constructed

in Lemma 4.4 is supported in G̃ and π|G̃ : G̃→ G is a diffeomorphism, we can descend Φt to a family
of diffeomorphisms Φt

G supported in G such that Φ1
G(Sym(La1,...,ak,ε)) = Lε and Φt

G(Di) = Di for all
i.

We will use Corollary 4.8 to obtain control over holomorphic discs on Sym(La1,...,ak,ε). We will
discuss how to extend that control from La1,..,ak,ε to a more general L associated to a collection of
disjoint discs in Corollary 4.8 and Proposition 5.6.

4.4 Tautological correspondence

We return to the general setting, in which the Riemann surface Σ has genus g and L ⊂ Σ comprises k
pairwise disjoint circles. Let S denote the unit disc. We can understand holomorphic discs in Symk(Σ)
with boundary on Sym(L) via the ‘tautological correspondence’ between a holomorphic map

u : (S, ∂S)→ (X,Sym(L)) (21)

and a pair of holomorphic maps (v, π
Ŝ

), where

v : (Ŝ, ∂Ŝ)→ (Σ, L) (22)

and π
Ŝ

: (Ŝ, ∂Ŝ) → (S, ∂S) is a k : 1 branched covering with all the branch points lying inside the
interior of S. The correspondence arises as follows (see also [38, Section 13], [39, Section 3.1] and the
references therein). Let ∆ ⊂ X be the ‘big diagonal’ comprising all unordered k-tuples of points in Σ
at least two of which co-incide. We denote by JX the standard complex structure on X induced by
JΣ. Given a continuous map u : (S, ∂S) → (X,Sym(L)) that is JX -holomorphic near ∆, we have a
pull-back diagram

S̃
V //

π
S̃

��

Σk

π

��
S u

// X

(23)
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By construction, V is Sk-equivariant, and there is a unique conformal structure J
S̃

on S̃ such that π
S̃

is holomorphic. Moreover, V is J
S̃

holomorphic if and only if u is JX holomorphic.

Let π1 : Σk → Σ be the projection to the first factor. The map π1◦V is invariant under the subgroup
Sk−1 ⊂ Sk which stabilises that first factor, so π1 ◦V factors through a (k−1)!-fold branched covering
S̃ → Ŝ. We denote the induced map Ŝ → Σ by v. We also have an induced k-fold branched covering
π
Ŝ

: Ŝ → S, which is holomorphic with respect to the induced complex structure J
Ŝ

on Ŝ. Note

that ∂Ŝ has k connected components and different connected components are mapped to different
connected components of L under v.

On the other hand, given a k-fold branched covering π
Ŝ

and a continuous map v as in (22) such

that different connected components of ∂Ŝ are mapped to different connected components of L, we
define a map as in (21) by u(z) = v(π−1

Ŝ
(z)). The map v is J

Ŝ
holomorphic if and only if u is JX

holomorphic.

Remark 4.6. Note that if z is a branch point of π
Ŝ

, then u(z) ∈ ∆. In general, u(z) ∈ ∆ does not
guarantee that z is a branch point of π

Ŝ
. J

Remark 4.7. Fix two collections of pairwise-disjoint circles L and K (there may however be inter-
sections between circles from L and ones from K). A continuous map

u : (R× [0, 1],R× {0},R× {1})→ (X,Sym(L),Sym(K))

that is JX -holomorphic near ∆ analogously gives rise to a tautologically corresponding pair, comprising
a k-fold branched covering π

Ŝ
: Ŝ → R× [0, 1] together with a map v : (Ŝ, ∂0Ŝ, ∂1Ŝ)→ (Σ, L,K) where

∂iŜ = π−1

Ŝ
(R× {i}). J

4.5 Basic disc classes

The identification of the Heegaard torus Sym(La1,...,ak,ε) with a Clifford-type torus in Corollary 4.5
yields a helpful basis of H2(X,Sym(L)).

Corollary 4.8. Suppose that Σ = P1 and the Bi are discs for i = 1, . . . , k = s− 1. Suppose also that
ai ∈ B◦i for i = 1, . . . , k+1. Then H2(X,Sym(L)) is freely generated by k+1 primitive classes {[ui]}k+1

i=1

such that [ui] ·Dj = δij. Moreover, each of these primitive classes has Maslov index µ(ui) = 2.

Proof. First we consider the special case that L = La1,...,ak,ε for small ε. Since Sym(L) is smoothly
isotopic to Lε, there is an isomorphism of relative homology groups

H2(X,Sym(L)) ∼= H2(X,Lε). (24)

Since Φt
G is C1-small we can take the isotopy to be through totally real tori, in which case the

isomorphism (24) preserves the Maslov class. Furthermore, the isotopy Φt
G is supported away from

the anticanonical divisor ∪k+1
i=1Di, so the isomorphism (24) does not change the intersection number

with Di. Since Lε is a Clifford torus, it is known that H2(X,Lε) admits a basis {[ui]}k+1
i=1 such that

[ui] ·Dj = δij . Moreover, it is also known that µ(ui) = 2 for all i. Hence, the same is true for Sym(L).
For general L in P1 such that Bi are discs for i = 1, . . . , k = s− 1, we can find a smooth family of

(Lt)t∈[0,1] in P1 such that L0 = L and L1 = La1,...,ak,ε for some small ε > 0. Moreover, we can assume
that Lt is disjoint from {a1, . . . , ak} for all t. Therefore, we get a smooth family of Lagrangian tori
Sym(Lt) that is disjoint from Di for all i and all t. The result follows.

In the course of the proof of the next lemma, we explain how to construct the disc classes [ui] in
Corollary 4.8 from the tautologically corresponding pairs of maps (vi, πŜi), and use this to compute
the intersection numbers [ui] ·∆.

24



Lemma 4.9. Suppose Σ = P1 and the Bi are discs for i = 1, . . . , k = s − 1. Suppose also that
ai ∈ B◦i for i = 1, . . . , k + 1 and [ui] is as in Corollary 4.8. We have [ui] ·∆ = 0 for 1 6 i 6 k and
[uk+1] ·∆ = 2(k − 1).

Proof. Let Ŝ′ = tkj=1Sj where Sj = S is a unit disc for each j. For i = 1, . . . , k, let v′i : Ŝ′ → S2 be a
map such that v′i|Sj is a constant map to a point in Lj if j 6= i and v′i|Si is a biholomorphism to Bi. Let

π
Ŝ′ : Ŝ′ → S be the trivial covering map. Since [v′i] · aj = δij for j = 1, . . . , k+ 1 (see Remark 4.3), the

map u′i : S → X obtained from the tautological correspondence from (v′i, πŜ′) satisfies [u′i] ·Dj = δij for
j = 1, . . . , k + 1. Therefore, u′i represents the class [ui]. Since π

Ŝ′ is a trivial covering and {v′i|Sj}kj=1

have pairwise disjoint images, the image of u′i is disjoint from ∆ so we have [u′i] ·∆ = 0 for i = 1, . . . , k.

On the other hand, if Ŝ′′ = P1, the Riemann-Hurwitz formula shows that a simple k-fold branched
covering π

Ŝ′′ : Ŝ′′ → P1 has 2(k − 1) branch points. Let v′′ : Ŝ′′ → P1 be a biholomorphism,
and u′′ : P1 → X be the JX -holomorphic map tautologically corresponding to (v′′, π

Ŝ′′). We know

that u′′ represents the class
∑k+1

i=1 [ui], because [v′′] · aj = [u′′] · Dj = 1 for every j. Since v′′ is a
biholomorphism, u′′(z) ∈ ∆ if and only if z is a branch point of π

Ŝ′′ . The assumption that π
Ŝ′′ is

a simple branched covering guarantees that the intersection multiplicity between u and ∆ at every
branch point of π

Ŝ′′ is 1 (this fact can be checked by a local calculation). Therefore, we know that
[u′′] ·∆ = 2(k− 1) because π

Ŝ′′ is a simple branched covering with 2(k− 1) branch points. As a result,

[uk+1] ·∆ = ([u′′]−
∑k

i=1[u′i]) ·∆ = 2(k − 1).

In the situation of Lemma 4.9, ki = 1 for i 6 k and kk+1 = k, so one can write the conclusion as
saying that

[ui] ·∆ = 2(ki − 1) for i = 1, . . . , s = k + 1. (25)

We next establish the analogue of Corollary 4.8, and in particular establish (25), for general Σ and
L. Recall that B1, . . . , Bs enumerate the closures of the planar regions comprising Σ\L. Pick a point
ai ∈ B◦i ⊂ Bi for each i. Let Di be the divisor of Symk(Σ) which is the image of the map (cf. Remark
4.3)

Symk−1(Σ)→ Symk(Σ)

D 7→ D + ai.

Let ∆ be the diagonal.

For each i, we can construct a continuous map ui : S → (X,Sym(L)) using a pair of maps vi and
π
Ŝi

as in the proof of Lemma 4.9. More precisely, let

Ŝi = Bi t tk−kij=1 Sj where Sj = S for all j.

Let π
Ŝi

: Ŝi → S be a k-fold branched covering such that π
Ŝi
|Sj is a biholomorphism and π

Ŝi
|Bi is a

ki-fold simple branched covering to S. Let vi : Ŝi → Σ be such that vi|Bi is the identity map to Bi
and the vi|Sj are constant maps to the various connected components of L that are not boundaries of

Bi. We define ui := vi ◦ π−1

Ŝi
. It is clear that [ui] ·Dj = δij .

Lemma 4.10. The image of π2(X,Sym(L)) → H2(X,Sym(L)) is freely generated by {[ui]}si=1. The
image of π2(X)→ H2(X,Sym(L)) is freely generated by

∑s
i=1[ui].

Proof. By considering intersection numbers with the Di, it is clear that {[ui]}si=1 is a linearly indepen-
dent set of primitive elements in H2(X,Sym(L)). We have the following commutative diagram with
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exact rows.

0 //

��

π2(X) //

��

π2(X,Sym(L)) //

��

π1(Sym(L)) //

��

π1(X)

��
H2(Sym(L)) // H2(X) // H2(X,Sym(L)) // H1(Sym(L)) // H1(X)

Let I := im(π2(X) → π2(X,Sym(L))) and K := ker(π1(Sym(L)) → π1(X)) so we have a short exact
sequence

0→ I → π2(X,Sym(L))→ K → 0.

The image of π2(X) → H2(X) is isomorphic to Z (see [4, Theorem 9.2]). Therefore, the rank of the
image of I → H2(X,Sym(L)) is at most 1.

On the other hand, the map π1(Sym(L)) → π1(X) = H1(X) = H1(Σ) (see e.g. [49, Lemma 2.6])
can be identified with the following map (induced by the inclusion L→ Σ)

H1(L)→ H1(Σ).

The latter one sits inside the relative long exact sequence for the pairs (Σ, L)

H2(Σ)
f1−→ H2(Σ, L)

f2−→ H1(L)
f3−→ H1(Σ)

where H2(Σ) = Z, H2(Σ, L) = Zs and f1 is injective. Therefore, we have K = ker(f3) = im(f2) =
coker(f1) = Zs−1.

Since K is free, we have π2(X,Sym(L)) ' I ⊕ K. Therefore, image of π2(X,Sym(L)) →
H2(X,Sym(L)) is isomorphic to the image of a linear map Zs → H2(X,Sym(L)). It implies that
the rank of the image of π2(X,Sym(L))→ H2(X,Sym(L)) is at most s and if the rank is s, then the
map is injective and hence the image has no torsion. Since {[ui]}si=1 is a linearly independent set of
primitive elements, we conclude that it freely generates the image of π2(X,Sym(L))→ H2(X,Sym(L)).
Moreover, we know that the image of I → H2(X,Sym(L)) is isomorphic to Z. To conclude the proof,
it suffices to find a continuous map u : P1 → X representing the class

∑s
i=1[ui].

We can construct u using tautological correspondence. Let Ŝ = Σ and v : Ŝ → Σ be the identity
map. Let π

Ŝ
: Ŝ → P1 be a topological k-fold simple branched covering. The map u = v ◦π−1

Ŝ
satisfies

[u] ·Di = 1 for all i = 1, . . . , s, so we have [u] =
∑s

i=1[ui].

Remark 4.11. π2(Symk(Σ)) may have rank > 1 (see [6, Theorem 5.4]). The hypothesis on the link
L (that the Bj are planar) implies that the number of components k > g + 1. If we restrict to links
with k > 2g− 1 components, then Symk(Σ) is a projective bundle over Jac(Σ), and π2(Symk(Σ)) = Z
(see [1, Ch VII, Proprosition 2.1]); this gives a simpler proof of Lemma 4.10 for such cases. J

In [52, Section 7], Perutz explains how, given an open neighbourhood V ⊃ ∆ of the diagonal, one
can modify ωX inside V , and in particular away from Sym(L) if V is sufficiently small, to get a smooth
Kähler form ωV such that

[ωV ] = (1/k!)π∗[ωM ] =: [ωX ]. (26)

The space of Kähler forms one obtains in this way (as V varies) is connected. We will refer to such
forms as being of ‘Perutz-type’.

Definition 4.12 (Topological energy). Let ωV be a Perutz-type Kähler form smoothing the current
ωX . Then we set

ωX(u) := ωV (u) (27)

for any u ∈ H2(X,Sym(L)) in the span of the {[ui]}si=1.
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The following definition is a variant of that from [49].

Definition 4.13. Let V be an open neighborhood of ∆∪∪si=1Di. The space J (V ) of nearly symmetric
almost complex structures on X consists of those J such that

� J = JX in V

� J tames ωX outside V .

If V is only an open neighborhood of ∆, then we use J∆(V ) to denote the space satisfying the two
conditions above.

Remark 4.14. Note that ωV tames J for any J ∈ J∆(V ) and any choice of Perutz-type Kähler form
ωV as above. J

When we consider J-holomorphic maps with boundary on Sym(L) for some J ∈ J (V ) or J ∈
J∆(V ), we always assume that the open neighborhood V is disjoint from Sym(L). When the particular
choice of V is not important, we will write J and J∆ for J (V ) and J∆(V ), respectively. Since Sym(L)
is totally real with respect to any J ∈ J∆, a smooth disc (S, ∂S) → (X,Sym(L)) has a well-defined
Maslov index with respect to any such J .

Lemma 4.15. If u : (S, ∂S) → (X,Sym(L)) has class [u] =
∑

i ci[ui] ∈ H2(X,Sym(L)), its Maslov
index is 2

∑
i ci = 2

∑
i[u] ·Di with respect to J ∈ J∆.

Proof. It suffices to prove that µ(ui) = 2 for all i. Since J∆ is connected, it suffices to consider JX .
Let (vi, πŜi) tautologically correspond to ui. Recall that Ŝi = Bi tk−kij=1 Sj , vi|Bi is the identity

map and the vi|Sj are constant maps. It follows that ui factors through the following holomorphic
embedding (i.e. Im(ui) lies inside the image of the following map)

Symki(Bi)×
∏

Lj*∂Bi

D∗Lj → Symk(Σ) = X (28)

([x1, . . . , xki ], p1, . . . , pk−ki) 7→ [x1, . . . , xki , p1, . . . , pk−ki ] (29)

where D∗Lj is a neighborhood of Lj ⊂ Σ such that {Bi} ∪ {D∗Lj}Lj*∂Bi are pairwise disjoint. With
respect to the product decomposition of the LHS of (28), we can write ui = (ūi, c1, . . . , ck−ki) where
ūi : (S, ∂S) → (Symki(Σ),Sym(∂Bi)) and ci are constant maps. It follows that u∗i (TX, T Sym(L))
has k − ki trivial factors, which contribute 0 to the Maslov index. Therefore, it suffices to prove
that µ(ūi) = 2. Notice that ūi tautologically corresponds to the pair (vi|Bi , πŜi |Bi). Since Bi is a

planar domain, we may choose an embedding Bi ↪→ P1 to obtain a map (of the same Maslov index)
ūi : S → (Symki(Bi),Sym(∂Bi)) ⊂ (Symki(P1),Sym(∂Bi)). By Corollary 4.8, the Maslov index of ūi
is 2.

Lemma 4.16. For ui as in Lemma 4.10, we have [ui] ·∆ = 2(ki − 1) for i = 1, . . . , s.

Proof. We use the notation of the proof of Lemma 4.15. Since vi|Sj are constant maps, we have

[ui] · ∆ = [ūi] · ∆̄ where ∆̄ is the diagonal in Symki(Bi). By regarding ūi as a map from S to
Symki(Bi) ⊂ Symki(P1), we can apply Lemma 4.9 and (25) to conclude the result.

Corollary 4.17. If u : P1 → X is a non-constant J-holomorphic map for some J ∈ J∆, then µ(u) ≥ 4
and [u] ·∆ ≥

∑s
i=1 2(ki − 1).
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Proof. Suppose J ∈ J . By Lemma 4.10, [u] is a multiple of
∑s

i=1[ui]. By positivity of intersection
with Di, u is a positive multiple of

∑s
i=1[ui]. Hence the result follows from Lemma 4.15 because Bi

being all planar implies that s ≥ 2.
Now suppose J ∈ J∆. If the image of u is contained in ∆, then u is actually JX -holomorphic

and we reduce to the previous case. If the image of u is not contained in ∆, we have positivity of
intersection between u and ∆, so [u] is still a positive multiple of

∑s
i=1[ui]. The result follows from

Lemma 4.16.

Remark 4.18. Let x be Poincaré dual to the divisor Dp = {p} × Symk−1(Σ) and θ be the pullback
of the theta-divisor from the Jacobian under the Abel-Jacobi map. The first Chern class of X is
−θ − (g − k − 1)x (see [1, Ch VII, Section 5]). When s ≥ 2 and hence k + 1 − g ≥ 2, we have
〈c1(X), [u]〉 = [u] · (−θ − (g − k − 1)x) = −(g − k − 1)[u] · x ≥ 2. This gives a more direct proof that
µ(u) ≥ 4 for sphere components u. J

Lemma 4.19 (Monotonicity). Suppose that there is an η ≥ 0 such that Aj +2(kj−1)η is independent
of j and denote this common value by λ. Then for all u ∈ π2(X,Sym(L)), we have

ωX(u) + η[u] ·∆ =
λ

2
µ(u). (30)

As a result, Sym(L) does not bound any non-constant J-holomorphic disc of non-positive Maslov index
for any J ∈ J∆.

Proof. It is easy to check that ωX(ui) = Ai (see Definition 4.12 and (26)). Therefore, (30) is a direct
consequence of applying Lemmas 4.10, 4.15 and 4.16 to all the [ui]. The last sentence follows from the
positivity of ωX(u) and non-negativity of η[u] ·∆ for a non-constant J-holomorphic disc u such that
J ∈ J∆.

If L is not η-monotone, we still have the following.

Lemma 4.20. The Lagrangian Sym(L) does not bound any non-constant J-holomorphic disc of non-
positive Maslov index for any J ∈ J .

Proof. For J ∈ J , we have positivity of intersection between Di and a J-holomorphic disc u with
boundary on Sym(L). Therefore, Lemma 4.15 guarantees that u has non-positive Maslov index if and
only if [u] = 0. In this case, u is a constant map.

Remark 4.21. Suppose Σ = P1 and L ⊂ P1 is an η-monotone link. Suppose moreover that the total
ω-area of Σ is 1. If the link has a unique component, necessarily it is an equator, which is 0-monotone
for η = 0. If k > 1, there is at least one planar domain Bj with kj > 2, from which one sees that the
monotonicity constant λ := Aj+2(kj−1)η > 2η. On the other hand, considering

∑s
j=1Aj+2(kj−1)η

shows that s(2η − λ) = 4η − 1, so η-monotone links can only exist for η ∈ [0, 1
4). Moreover, links

consisting of k > 2 parallel circles on the sphere can take any value of η ∈ [0, 1
4). Hence, we see that

the set of all values of (k, η) for which there exists a k-component η-monotone link L with k ≥ 2 is
exactly

{
(k, η) : k ∈ N≥2, η ∈ [0, 1

4)
}
. J

Remark 4.22. If L is a 0-monotone link (i.e. the areas of the Bi are the same for all i), then Sym(L)
is a monotone Lagrangian submanifold with respect to a Perutz-type Kähler form ωV as in Definition
4.12 for any V ⊃ ∆ disjoint from Sym(L).

When g = 0 and L is an η-monotone link for η > 0, we can ‘inflate’ the symplectic form on X near
the diagonal to make Sym(L) a monotone Lagrangian submanifold, as follows.
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Let V ⊃ ∆ be disjoint from Sym(L) and ωV be a Perutz-type Kähler form. Since Symk(P1) = Pk,
we know that ∆ is a very ample divisor and its complement is affine. In particular, we can find a
neighborhood V ′ of ∆ such that its closure V̄ ′ ⊂ V and V̄ ′ admits a concave contact boundary (see
e.g. [57, Section 4b] for the existence of V ′).

Let X− := X \ V ′ be equipped with the restricted symplectic form ωV |X− . For R > 1, let
X0,R := ([1, R] × ∂V̄ ′, d(rθ)) where r is the coordinate on [1, R] and θ is the contact form on ∂V̄ ′

induced by ωV . Let X+,R := (V̄ ′, RωV |V̄ ′). We can form a symplectic manifold by gluing their
boundaries

(X(R), ωX(R)) := X− ∪{1}×∂V̄ ′ X0,R ∪{R}×∂V̄ ′ X+,R.

We can also find a diffeomorphism F : X → X(R) such that F is the identity map over X− and
near ∆. The symplectic form F ∗ωX(R) lies in the cohomology class [ωV ] + f(R)PD[∆] for a strictly
increasing function f such that f(1) = 0 and limR→∞ f(R) = ∞. Therefore, it is clear that Sym(L)
is a monotone Lagrangian in (X,F ∗ωX(Rη)) for the Rη such that f(Rη) = η.

We denote F ∗ωX(Rη) by ωV,η. The dependence on the choices made in the construction will not
be important in the paper. J

Remark 4.23. When Σ = P1, the symplectic forms ωV,η have cohomology class varying with η,
cf. Remark 7.4, but they can be rescaled to be cohomologous and hence isotopic, even as one varies
η. They are therefore related by a global smooth isotopy, by Moser’s theorem, so if ω(Σ) = 1 then
(X,ωV,η) is symplectomorphic to the Fubini-Study form normalized so that the symplectic area of [P1]
is (k + 1)λ, where λ = Aj + 2(kj − 1)η.

However, this isotopy will not respect the diagonal, and the resulting isotopy of Sym(L) ⊂ Pk is
not through Lagrangian submanifolds associated to links. For the purposes of studying links and the
geometry of Σ, it therefore makes sense to keep track of η even in this case. J

Remark 4.24. Suppose k > 2g − 1, so Symk(Σg) is a projective bundle P(V ) over the Jacobian.
We follow the notation of Remark 4.18. If ω is an integral Kähler form on Σ of area 1, the current
ωX defines the cohomology class x. (This is ample, and indeed the tautological class OP(V )(1).) The

diagonal divisor ∆ has class 2[(k+ g− 1)x− θ]. Cones of divisors of Symk(Σ) were studied in [31, 51];
the diagonal is on the boundary of the pseudo-effective cone. It follows that [ωX ] + η ·PD[∆] will not
lie in the ample cone for sufficiently large η � 0. J

5 Curvature and unobstructedness

Our next goal is to define a version of Floer cohomology for the torus Sym(L), and to determine when
it is non-zero. As in many examples of this nature, the non-triviality of the Floer cohomology will be
determined by the disc potential function associated to Sym(L) (see Definition 5.2 and Lemma 6.10).
We are going to compute the disc potential function in this section.

5.1 The disc potential

We recall the spaces of almost complex structures J (V ) and J∆(V ) from Definition 4.13. For a fixed
L ⊂ Σ and hence Sym(L) ⊂ X, we continue to use J (resp. J∆) to denote J (V ) (resp. J∆(V )) for
an open neighborhood V for ∆∪∪si=1Di (resp. ∆) that is disjoint from Sym(L). For J ∈ J , consider
the moduli space MA(Sym(L); J) of Maslov index 2 J-holomorphic discs u : (S, ∂S) → (X,Sym(L))
with 1 boundary marked point and in the relative homology class A ∈ H2(X,Sym(L)). The evaluation
map at the boundary marked point defines a map ev :MA(Sym(L); J)→ Sym(L).
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Lemma 5.1. If J ∈ J is generic, MA(Sym(L); J) is a compact manifold of dimension k. The same
is true for generic J ∈ J∆ if L is η-monotone.

Proof. By Lemma 4.19 and 4.20, Sym(L) does not bound non-constant J-holomorphic discs with non-
positive Maslov index, so the Gromov compactification of MA(Sym(L); J) is the space itself. The
condition µ(A) = 2 implies that A is primitive because Sym(L) cannot bound discs of Maslov index 1.
Therefore discs in class A are necessarily somewhere injective, by [33]. The existence of a somewhere
injective point implies that elements inMA(Sym(L); J) are regular for a generic J ∈ J and a generic
J ∈ J∆ (see [46, Theorem 10.4.1, Corollary 10.4.8]). In this case, MA(Sym(L); J) is a manifold of
dimension the same as the virtual dimension which equals to (k − 3) + µ(A) + 1 = k.

A choice of orientation and spin structure on Sym(L) defines an orientation of MA(Sym(L); J),
with respect to which the evaluation map has a well-defined degree. (Equivalently, the fiber product
betweenMA(Sym(L); J) and a generic point in Sym(L) under the evaluation map therefore defines a
compact oriented zero dimensional manifold.) In a minor abuse of notation, we denote the algebraic
count of points of this 0-manifold by #MA(Sym(L); J).

Definition 5.2. For η-monotone L and generic J ∈ J∆, the disc potential function

W := WSym(L)(x, J) : H1(Sym(L);C∗) −→ C

is defined by

WSym(L)(x, J) =
∑

A∈H2(X,Sym(L))

(#MA(Sym(L); J))x∂A. (31)

The notation x∂A can be written in a more explicit way as follows. Let {q1, . . . , qk} be a basis of
H1(Sym(L),Z). We have ∂A =

∑k
i=1 ciqi for some ci ∈ Z. In this case, we have x∂A =

∏k
i=1 x

ci
i .

Remark 5.3. When elements inMA(Sym(L); J) are regular off a set of real codimension 2, the degree
of the evaluation map is still well-defined (see [41, Chapter 6.5 and 6.6]). In this case, #MA(Sym(L); J)
is well-defined and the potential function is defined in the same way (31). J

The potential function depends on the choice of orientation and spin structure on Sym(L), but
these choices will not play a significant role in the sequel (we will be interested in the existence of
critical points of the disc potential; a different choice of orientation or spin structure will change the
value of the critical point, not the existence of critical points). Concretely, we will fix an orientation
by orienting and ordering the constituent circles Li ⊂ L, and will take the unique translation-invariant
spin structure (this follows the usual convention for Lagrangian toric fibres from [12, 13]).

We compute WSym(L)(x, J) in the subsequent sections.

Definition 5.4. Let Λ be the Novikov field with real exponent. That is

Λ :=

{ ∞∑
i=0

ciT
bi |ci ∈ C, bi ∈ R, b0 < b1 < . . . , lim

i→∞
bi =∞

}
.

The non-Archimedean valuation val : Λ∗ := Λ \ {0} → R is defined to be val(
∑∞

i=0 ciT
bi) =

inf{bi|ci 6= 0}. For not necessarily η-monotone L and generic J ∈ J , we define the η-disc potential
function as a function H1(Sym(L);UΛ)→ Λ∗, where UΛ = val−1(0) is the unitary subgroup of Λ.

In that case, the η-disc potential is given by

W η
Sym(L)(x, J) =

∑
A∈H2(X,Sym(L))

(#MA(Sym(L); J))TωX(A)+ηA·∆ x∂A.

When L is η-monotone, then WSym(L) = W η
Sym(L)|T=1.
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5.2 Potential in the Clifford-type case

We return to the running example in which L = La1,...,ak,ε = ∪ki=1{|x − ai||
∏
j 6=i(aj − ai)| = ε} from

above. The general case will be explained in the next section.

We orient the circles as boundaries of complex discs in C, and take the product orientation on
Sym(L). The fundamental classes of the circles Li ⊂ L also give us preferred basis co-ordinates xi on
H1(Sym(L);C∗).

Proposition 5.5. Let L = La1,...,ak,ε. For sufficiently small ε > 0, sufficiently small open sets
V ⊃ ∆ ∪ ∪si=1Di that is disjoint from Sym(L) and generic J ∈ J (V ), we have W η

Sym(L)(x, J) =∑k
i=1 T

Aixi + TAk+1+2(k−1)η

x1...xk
.

Proof. We return to the setting and notation of Lemma 4.4, Corollary 4.5 and their proofs. Recall
that this introduced a small ε > 0 and an open neighbourhood G of Lε. Moreover, since (Φt

G)∗ is
C1-small when ε is small, we can assume that (Φt

G)∗ωX tames the standard complex structure JX for
all t. We fix once and for all such an ε, and recall that Φt

G is supported away from ∆. The idea of the
proof is to show that under the identification H2(X,Sym(L)) = H2(X,Lε) induced by Φt

G, we have
#MA(Sym(L); J) = #MA(Lε; J

′) for appropriate almost complex structures J and J ′.

The 4-tuple (X, JX , (Φ
t
G)∗ωX ,Φ

−t
G (Lε)) is isomorphic to (X, (Φt

G)∗JX , ωX , Lε), so we can take
the perspective that Φt

G induces a one-parameter family of ωX -tamed almost complex structures
(Φt

G)∗JX , and that we work with a fixed Lagrangian and a fixed symplectic form (more properly, a
fixed symplectic current which is singular along ∆). Note that (Φt

G)∗JX = JX near ∆ and ∪k+1
i=1Di

is preserved under Φt
G. Therefore, we may fix an open neighborhood V of ∆ ∪ ∪k+1

i=1Di such that
(Φt

G)∗JX = JX in V . It follows that (Φt
G)∗JX ∈ J (V ) for all t.

For any J ∈ J (V ) a J-holomorphic disc u with boundary on Lε has Maslov index

µ(u) = 2

k∑
j=0

[u] · [Dj ]. (32)

By positivity of intersections, Lε cannot bound non-constant J-holomorphic discs with non-positive
Maslov index for any J ∈ J (V ).

It remains to relate the (Φt
G)∗JX -holomorphic discs with Maslov index 2 for t = 0, 1. When t = 0,

we have (Φt
G)∗JX = JX and the Maslov 2 discs with boundary on Lε are well-known to be regular

[12, 13].

At this point, we do not know that the Maslov two discs for (Φ1
G)∗JX are regular. We instead

choose a generic C2-small perturbation J ′t of the path ((Φt
G)∗JX)t∈[0,1] relative to the end-point t = 0

(but not necessarily fixing the end-point at t = 1). In particular, J ′1 is a generic perturbation of
(Φ1

G)∗JX .

The parametrized moduli space of Maslov 2 J ′t-holomorphic discs u with boundary on Lε for some t
could in general fail to be regular: there can be finitely many interior times t where bifurcation occurs.
A necessary condition for bifurcation to occur at time t0 is that there are at least two non-constant
J ′t0-holomorphic discs v, v′ with µ(v) + µ(v′) 6 2. At least one of v, v′ then has Maslov index strictly
less than 2, and hence (by orientability of Sym(L)) index less than or equal to 0, which contradicts
(32). Therefore, there is no bifurcation and the parametrized moduli space for a generic path J ′t is a
smooth compact cobordism between the moduli spaces for t = 0, 1.

Since J ′1 is a generic perturbation of (Φ1
G)∗JX , it implies that for generic J ∈ J (V ), the algebraic

counts of Maslov 2 J-holomorphic discs with boundary on Sym(L) are the same as those of the Clifford-
type torus Lε. The result now follows from the fact that #M[ui](Lε; JX) = 1 for all i = 1, . . . , k + 1
and #MA(Lε; JX) = 0 for A 6= [ui] (see [12]).
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Now we consider a slightly more general class of L in Σ = P1. We still assume that Bj are
topological discs with smooth boundary for j = 1, . . . , k but we do not require that L = La1,...,ak,ε.

Proposition 5.6. For sufficiently small open sets V ⊃ ∆ ∪ ∪si=1Di and generic J ∈ J (V ), we have

W η
Sym(L)(x, J) =

∑k
i=1 T

Aixi + TAk+1+2(k−1)η

x1...xk
.

Moreover, if L is η-monotone, then for generic J ∈ J∆ we have WSym(L)(x, J) =
∑k

i=1 xi+
1

x1...xk
.

Proof. Similar to the proof of Corollary 4.8, we can find a smooth family of (Lt)t∈[0,1] such that L0 = L
and L1 = La1,...,ak,ε for some ai and small ε. We can assume that Lt is disjoint from {a1, . . . , ak} for
all t ∈ [0, 1]. We can assume that V is disjoint from Sym(Lt) for all t. By Lemma 4.20, Sym(Lt) does
not bound non-constant J-holomorphic disc with non-positive Maslov index for all J ∈ J (V ). As in
the proof of Proposition 5.5, we can form a smooth compact cobordism between the moduli spaces of
Maslov 2 holomorphic discs for t = 0, 1. This proves the first statement.

For the second statement, we want to show that the potential function can be computed for generic
J ∈ J∆ that are not necessarily in J (V ). It follows from applying a further cobordism argument,
using Lemma 4.19 instead of 4.20, to a family of almost complex structures in J∆.

5.3 Regularity

We can upgrade Proposition 5.6 to a statement for the canonical complex structure JX if JΣ is chosen
appropriately relative to L10. This (as well as its generalization to the cases Σ 6= P1) will be explained
in Section 5.4. The key result we prove in this subsection is that elements in M[ui](Sym(L); JX) are
regular off a set of codimension at least 2 (see Corollary 5.9) when the complex structure on Bi is
appropriate in the same sense. We do not assume L = La1,...,ak,ε in this section.

The tautological correspondence of Section 4.4 shows that Sk-equivariant maps of any regularity
V : (S̃, ∂S̃) → (Σk, π−1(Sym(L))) can be identified with maps (of the same regularity) from v :
(Ŝ, ∂Ŝ)→ (Σ, L), see [39, Section 3.1] for more details. There is a similar dictionary for maps valued
in vector fields or endomorphisms. In particular, we have

Hj

∂̄
((S̃, ∂S̃), (V ∗TΣk, V |∗

∂S̃
T (π−1(Sym(L)))))Sk = Hj

∂̄
((Ŝ, ∂Ŝ), (v∗TΣ, v|∗

∂Ŝ
TL)) (33)

for all j, where Hj

∂̄
denotes Dolbeault cohomology.

Proposition 5.7. Let u : (S, ∂S)→ (X,Sym(L)) be a JX-holomorphic map and (v, π
Ŝ

) : Ŝ → Σ× S
the map tautologically corresponding to u. Suppose that v is regular and that π

Ŝ
is a simple branched

covering with [u] ·∆ simple branch points. Then u is regular.

Before the proof, we formulate a lemma comparing virtual dimensions of the maps u and v. Let
Ŝ be a Riemann surface (so its conformal structure is fixed). Let vdim(v, Ŝ) be the virtual dimension
of the space of maps v : Ŝ → Σ with boundary on L. Let vdim(u) be the virtual dimension of the
moduli space of discs u, where we divide out by the action of the 3-dimensional automorphism group
PSL(2,R) of S.

Lemma 5.8. Let u and (v, π
Ŝ

) be as in Proposition 5.7, then

vdim(u) + 3 = vdim(v, Ŝ) + 2[u] ·∆. (34)

Proof. We can write [u] as a sum
∑s

i=1 ci[ui] where ci ≥ 0 for all i. The LHS of (34) is

vdim(u) + 3 = k + µ(u) = k + 2
s∑
i=1

ci. (35)

10A similar claim is made in [49, Proposition 3.9]
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On the other hand, we have [v] =
∑s

i=1 ci[vi] and

vdim(v, Ŝ) = χ(Ŝ) +
s∑
i=1

ciµ(vi) = χ(Ŝ) + 2
s∑
i=1

(2− ki)ci. (36)

where µ(vi) is the Maslov index of the class [vi] ∈ H2(Σ, L) and it is given by 2(2 − ki) because
the inclusion Bi ↪→ Σ represents [vi] and the Maslov index of a planar domain with ki boundary
components is 2(2−ki). By Lemma 4.16, we have [u] ·∆ =

∑s
i=1 2(ki−1)ci. Since we assume that π

Ŝ
is a simple branched covering with [u] ·∆ many branch points, the Riemann-Hurwitz formula yields

χ(Ŝ) = k −
s∑
i=1

2(ki − 1)ci. (37)

Combining (35), (36) and (37), we get (34).

Proof of Proposition 5.7. Recall from (23) the pull-back diagram

S̃
V //

π
S̃

��

Σk

π

��
S u

// X.

We have a short exact sequence of sheaves over S̃

0→ V ∗TΣk → π∗
S̃

(u∗TX)→ Z → 0

where under the identification V ∗(π∗TX) = π∗
S̃

(u∗TX), the second arrow is induced by π∗ : TΣk →
π∗TX and Z is defined to be the cokernel. Since π is a ramified covering, Z is supported on the
critical points of π

S̃
; at each critical point, the stalk has complex rank equal to the ramification index

minus 1, see [27, Ch IV, Prop 2.2]. Consider the induced long exact sequence in cohomology (where
for simplicity we omit the boundary condition from the notation)

0→ H0
∂̄(S̃, V ∗TΣk)→ H0

∂̄(S̃, π∗
S̃

(u∗TX))→ H0
∂̄(S̃, Z)→ H1

∂̄(S̃, V ∗TΣk)→ . . .

Taking Sk-invariants is an exact functor over C, so we have

0→ H0
∂̄(S̃, V ∗TΣk)Sk → H0

∂̄(S̃, π∗
S̃

(u∗TX))Sk → H0
∂̄(S̃, Z)Sk → H1

∂̄(S̃, V ∗TΣk)Sk

By (33) and the assumption that v is regular, this reduces to

0→ H0
∂̄(Ŝ, v∗TΣ)→ H0

∂̄(S̃, π∗
S̃

(u∗TX))Sk → H0
∂̄(S̃, Z)Sk → 0

Since π
S̃

is a branched covering, we have

H0
∂̄(S̃, π∗

S̃
(u∗TX))Sk = H0

∂̄(S, u∗TX).

Since π
Ŝ

is simply branched, the complex rank of H0
∂̄
(S̃, Z)Sk is precisely the number of critical points,

so it has real dimension 2[u] ·∆. Therefore, we have

dimRH
0
∂̄(S, u∗TX)

= dimRH
0
∂̄(Ŝ, v∗TΣ) + dimRH

0
∂̄(S̃, Z)Sk

= vdim(v, Ŝ) + 2[u] ·∆
= vdim(u) + 3,

where the last equality comes from Lemma 5.8. Given that we have not divided out by the automor-
phism group of S, this exactly says that u is regular.
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Corollary 5.9. Suppose that the non-simple ki-fold branched coverings from (Bi, JΣ|Bi) to S form a
set of real codimension two among all ki-fold branched coverings. Then M[ui](Sym(L), JX) is regular
off a set of real codimension 2 and #M[ui](Sym(L), JX) = 1.

Proof. If u is a holomorphic map which gives rise to an element in M[ui](Sym(L), JX) and (v, πŜ) is
tautologically corresponding to u, then [v] = [vi]. By the open mapping theorem, Im(v)∩B◦j is either
a point or the entire B◦j for each j. Therefore, the Lagrangian boundary condition of v together with

[v] = [vi] implies that there is a connected component Ŝ0 of Ŝ such that v|
Ŝ0

is a degree 1 map to Bi.

Moreover, the other connected components of Ŝ are biholomorphic to S and v restricts to a constant
map on these components. Clearly, v is regular.

By Proposition 5.7, to show that M[ui](Sym(L), JX) is regular off a set of real codimension 2, it

suffices to show that among all the k-fold branched coverings Ŝ → S, the ones that are not simply
branched with [u] ·∆ many critical points form a subset of real codimension at least 2. The Riemann-
Hurwitz formula shows that all k-fold branched coverings Ŝ → S have [u] · ∆ many critical points
when counted with multiplicity. Therefore, we just need to show that the locus of non-simple branched
coverings forms a subset of real codimension at least 2. This immediately follows from our assumption
because Ŝ = Ŝ0 t tk−kij=1 S = Bi t tk−kij=1 S.

Therefore, #M[ui](Sym(L), JX) is well-defined (see Remark 5.3). Moreover, it can be computed
using the algebraic count of the tautologically corresponding pair (v, π

Ŝ
), which can in turn be com-

puted by embedding Bi into P1 so we have #M[ui](Sym(L), JX) = 1 by Proposition 5.6.

Note that there exists a complex structure on Bi such that the hypothesis of Corollary 5.9 is
satisfied. It is because branched coverings of S correspond to a choice of (branch) points in S with
monodromy data. In particular, 2(ki − 1) branch points in S (counted with multiplicity) together
with a monodromy representation into Ski (the symmetric group on ki elements) determines a com-
plex structure on Bi. Non-simple branched coverings arise when branch points co-incide, which is a
codimension two phenomenon. Therefore, by a dimension count, the hypothesis of Corollary 5.9 holds
for the generic complex structure on Bi.

We are going to make use of Corollary 5.9 to calculate the potential function in the next subsection.

5.4 Potential in general

We return to the case in which Σ is a closed surface with arbitrary genus, and is equipped with a
symplectic form ω. In contrast to the previous sections, we do not fix the conformal structure on Σ
at this point. Let L ⊂ Σ be a k-component η-monotone link whose complement comprises s domains
with planar closures Bi. Recall s = k − g + 1.

Theorem 5.10. Let Σ and L ⊂ (Σ, ω) be as above. There is a complex structure JΣ on Σ, for which
ω is a Kähler form, and moreover, for the induced complex structure JX on X, the Maslov 2 JX-
holomorphic discs with boundary on Sym(L) are regular (off a set of real codimension two) and the
disc potential is given by

WSym(L)(x, JX) =
s∑
i=1

x∂Bi , (38)

where the term x∂Bi should be understood via the isomorphism H1(L) ' H1(Sym(L))11.
Furthermore, x = (1, . . . , 1) is a critical point of WSym(L)(x, JX).

11Let ci be a point in Li and γi(t) : [0, 1] → Li be a loop representing the fundamental class of Li. Then the
isomorphism is given by sending [γi(t)] to [Γi(t)] where Γi(t) = [c1, . . . , ci−1, γi(t), ci+1, . . . , cs] and extending linearly.
The isomorphism is independent of the choice of ci and γi.
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Proof. We can find a Hamiltonian diffeomorphism ϕ of (Σ, ω) supported near the connected compo-
nents of L such that ϕ(L) consists of real analytic curves. Therefore, it suffices to consider the case
that L consists of real analytic curves.

For each i = 1, . . . , s, we pick a complex structure on Bi such that the set of non-simple ki-fold
branched coverings to the unit disc is of real codimension at least two among all ki-fold branched
coverings. We can glue the complex structures on Bi for all i because their common boundaries are
real analytic. It gives a complex structure on Σ.

Choose a Kähler form ω′ on Σ, and let g′ be the Kähler metric on Σ induced by ω′. For any
smooth funciton f : Σ → R>0, the metric fg′ is also a Kähler metric on Σ. We can pick f such
that the Kähler form ω′′ induced by fg′ has area Ai over Bi. By applying Weinstein neighborhood
theorem to L in (Σ, ω) and (Σ, ω′′), we can find a diffeomorphsim G : Σ → Σ such that G(L) = L,
G∗ω′′ = ω near L and G∗ω′′(Bi) = Ai for all i. By Moser argument, G∗ω′′ is isotopic to ω relative
to L. Therefore, we can find a symplectomorphism F : (Σ, ω) → (Σ, ω′′) such that F (L) = L. The
pull-back of the complex structure on Σ along F is the JΣ we need. It has the property that JΣ|Bi
satisfies the hypothesis of Corollary 5.9 for all i.

Notice that if A ∈ H2(X,Sym(L)), µ(A) = 2 and A 6= [ui], then Lemma 4.15 implies that
A =

∑
ci[ui] with some ci being negative. Therefore, by positivity of intersection, we have

MA(Sym(L), JX) = ∅. On the other hand, by our choice of JΣ, we have #M[ui](Sym(L), JX) = 1 by
Corollary 5.9. All this together give us (38).

For each i, there are precisely two terms involving xi, one with exponent 1 and the other with
exponent −1. From this, it is straightforward to check that x = (1, . . . , 1) is a critical point of
WSym(L)(x, JX).

In the next section, we will only consider the Floer cohomology between Sym(L) and its Hamil-
tonian translates. We will always assume that JΣ is chosen as in Theorem 5.10 so that the potential
function of Sym(L) is given by (38).

Remark 5.11. A cobordism argument, as in Proposition 5.5 and 5.6, implies that for generic J ∈ J∆,
the potential function of Sym(L) (as well as its Hamiltonian translates) will also be given by the RHS
of (38). J

Remark 5.12. In the more general setting of Definition 5.4, when Ai + 2(ki− 1)η is not independent
of i, the η-disc potential function is

W η
Sym(L)(x, JX) =

s∑
i=1

TAi+2(ki−1)ηx∂Bi .

J

Lemma 5.13. Suppose that Σ = P1 and L is η-monotone. Then the critical points of WSym(L)(x, JX)
are non-degenerate.

Proof. First we consider the case that η = 0. When B1, . . . , Bk are discs, WSym(L)(x, JX) is given

by
∑k

i=1 xi + 1
x1...xk

(cf. Proposition 5.6 and Theorem 5.10). One sees that all the critical points of
WSym(L)(x, JX) are non-degenerate. It remains to see how changing the configuration of circles affects
the disc potential.

Consider two components L1, L2 of L which are boundary components of a planar domain B1.
There is a ‘handleslide’ move, depending on a choice of arc connecting L1 and L2 (and lying in
the complement of other other circles Li), which replaces (L1, L2) by the pair (L′1, L2) where L′1 is
obtained as the connect sum of L1 and L2 along the arc. Let B′1 denote the planar component after
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the handleslide which contains L′1 but not L2, and B′2 the component containing both L′1 and L2. By
smoothly isotoping L′1 appropriately (in the complement of Li for i ≥ 2), we can assume that the area
of B1, B′1 and B′2 are the same.

Let L′ = L′1 ∪ ∪ki=2Li. By the assumption on the area, L′ is also a 0-monotone link. The disc
potential functions WSym(L) and WSym(L′) differ in the two terms which previously contained the
monomial x1, which is replaced by a monomial x′1 and which arises from the two terms in the potential
given by the regions B′i. More precisely, for ε ∈ {−1, 1} depending on the orientation of L2, the
modified potential WSym(L′) is obtained from WSym(L) by setting x′1 = x1x

ε
2 and x′i = xi for i 6= 1.

Direct computation shows that such a change of coordinates preserves non-degeneracy of the critical
points. Finally, any two planar unlinks can be related by a sequence of such handleslide moves.

For general η, we can find a smooth family of Lt such that L0 is η-monotone and L1 is 0-monotone.
There is a cobordism between the Maslov 2 holomorphic discs that Sym(L0) and Sym(L1) bound. We
can hence deduce the result for the η > 0 case from the η = 0 case.

6 Quantitative Heegaard Floer cohomology

In this section, we assume that L is η-monotone. We now introduce the version of Lagrangian Floer
cohomology that will underlie our link spectral invariant, which will be introduced in Equation (54).

6.1 The Floer complex

Let E be a rank 1 C∗-local system over Sym(L) associated to an element x ∈ Hom(π1(Sym(L)),C∗).
Let H ∈ C∞([0, 1] × Σ) and ϕ = φ1

H . The associated homeomorphisms Sym(φtH) of the symmetric
product are only Lipschitz along the diagonal ∆, but they are smooth away from ∆ and they induce
a well-defined Hamiltonian flow away from ∆. That flow extends as a continuous flow to Symk(X)
(induced from the globally smooth Sk-equivariant flow on Σk), and in particular the flow exists for all
times on the open stratum Symk(X)\∆. There is accordingly an induced rank 1 local system ϕ(E) on
Sym(ϕ(L)), with monodromy ϕ(x) ∈ Hom(π1(Sym(ϕ(L))),C∗). Suppose that Sym(L) t Sym(ϕ(L)).

Fix a base point x ∈ Sym(L). Let y(t) := Sym(φ1−t
H )(x), so y is a path from Sym(ϕ(L)) to

Sym(L). Let P denote the connected component of the space of continuous paths from Sym(ϕ(L))
to Sym(L) that contains y. Let y ∈ Sym(L) ∩ Sym(ϕ(L)) be such that it lies inside P as a constant
path from Sym(ϕ(L)) to Sym(L). A capping of y is a smooth map ŷ : [0, 1] × [0, 1] → X such that
ŷ(1, t) = y(t), ŷ(0, t) = y and ŷ(s, i) ∈ Sym(φ1−i

H (L)) for i = 0, 1.

For y0, y1 ∈ Sym(L) ∩ Sym(ϕ(L)) with cappings ŷ0 and ŷ1 respectively, we say that ŷ0 and ŷ1 are
equivalent if y0 = y1 and ωX(ŷ0) + η[ŷ0] ·∆ = ωX(ŷ1) + η[ŷ1] ·∆. We denote the set of equivalence
classes by S. Let u : [0, 1]×[0, 1]→ X represents an element in π2(X,Sym(L)) such that u(i, t) = x for
i = 0, 1. We can form the concatenation ŷ[u] := ŷ#(φ1−t

H (u(s, t))) and the equivalence class ŷ[u] ∈ S
is independent of the choice of u reprenseting [u]. Since Sym(L) is monotone in the sense of Lemma
4.19, we have a free Z action on S given by nŷ 7→ ŷ(n[uj ]) where [uj ] is one of the basic classes in
Corollary 4.8.

Writing Ey for the stalk of the local system at y, let

CF◦(E ; Sym(H)) =
⊕
ŷ∈S

Hom(ϕ(E)y, Ey)ŷ

where Hom(ϕ(E)y, Ey)ŷ = HomC(ϕ(E)y, Ey). The Z action on S induces a free C[T, T−1]-module
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structure on CF◦(E ; Sym(H)). Let

R = C[[T ]][T−1] =

{ ∞∑
i=0

aiT
bi |ai ∈ C, bi ∈ Z, b0 < b1 < . . .

}
(39)

and define
CF (E , Sym(H)) = CF◦(E ; Sym(H))⊗C[T,T−1] R (40)

which is a free R-vector space whose rank is the number of intersection points in Sym(L)∩Sym(ϕ(L))
that lie in P.12

Remark 6.1. Since we only consider Floer cohomology for a Lagrangian and its Hamiltonian translate,
the usual relative grading in Floer cohomology gives a well-defined absolute Z/N -grading, for N the
minimal Maslov index (in our case N = 2). Although not needed in this section, we can give a
well-defined Z-grading on CF (E , Sym(H)) by grading the Novikov variable T with deg(T ) = 2. J

Definition 6.2. Let f ∈ Hom(ϕ(E)y, Ey)ŷ. Then the action of (f, ŷ) with respect to Sym(H) is

AηH(f, ŷ) :=

∫ 1

t=0
Sym(Ht)(x)dt−

∫
ŷ∗ωX − η[ŷ] ·∆. (41)

The action spectrum of Sym(H) is Spec(Sym(H) : L) := {AηH(f, ŷ)
∣∣ (f, ŷ) ∈ CF (E , Sym(H))}.

We also define Spec(H : L) := 1
kSpec(Sym(H) : L) which will be the spectrum where the spectral

invariant cL in Theorem 1.13 lies.

Remark 6.3. We have AηH((f, ŷ)T ) = AηH(f, ŷ[uj ]) = AηH(f, ŷ)− ωX(uj)− η[uj ] ·∆ = AηH(f, ŷ)− λ,
where λ is the monotonicity constant of the link L as defined in Definition 1.12. J

Remark 6.4. The integral
∫ 1
t=0 Sym(Ht)(x)dt is a constant which is independent of y and ŷ. Note

that
∫
ŷ∗ωX is well-defined even though ωX is singular along ∆, cf. Definition 4.12. J

Remark 6.5. The action spectrum Spec(H : L) is a closed and nowhere dense subset of R; this can
be proven by adapting the arguments from [44]. J

Since Sym(φtH(L)) is disjoint from all of ∆ for all t, we can choose an open neighborhood V of ∆
that is disjoint from Sym(φtH(L)) for all t.

Let {Jt}t∈[0,1] be a path of almost complex structures such that Jt ∈ J∆(V ) for all t. Let
M(y0; y1; {Jt}t∈[0,1]) be the moduli space of smooth maps u : R× [0, 1]→ X such that

u(s, 0) ∈ Sym(ϕ(L)), u(s, 1) ∈ Sym(L)
lims→−∞ u(s, t) = y0, lims→∞ u(s, t) = y1

∂su+ Jt∂tu = 0

 (42)

modulo the R-action by translation in the s-coordinate.
For generic {Jt}t∈[0,1], every solution u ∈ M(y0; y1; {Jt}t∈[0,1]) with virtual dimension 0 (modulo

translation) is regular (see e.g. [47, Proposition 15.1.5]). Let ωX(u) be defined as in Definition 4.12.

By the monotonicity Lemma 4.19, there is a uniform upper bound for the energy of Maslov index
1 solutions u with given asymptotics. Therefore, we can apply Gromov compactness to constrain

12The differential (see (43)) of CF (E , Sym(H)) will only involve finitely many terms due to monotonicity (Lemma
4.19) so the Floer complex CF◦(E ; Sym(H)) is well-defined. However, we would like to work over a field instead in order
to be in line with the literature on spectral invariants.
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the structure of the zero dimensional subset M(y0; y1; {Jt})◦ of M(y0; y1; {Jt}t∈[0,1]). For every non-
constant irreducible component u′ of a pseudo-holomorphic stable strip arising from the Gromov
compactification, we have ωX(u′) + η[u′] ·∆ > 0. Therefore, monotonicity implies the Gromov com-
pactification of M(y0; y1; {Jt})◦ is the space itself, which is therefore a finite set.

For each u ∈M(y0; y1; {Jt}t∈[0,1]) and f ∈ Hom(ϕ(E)y1 , Ey1)ŷ1 , we define

u(f) := P−1
E,u(s,1) ◦ f ◦ Pϕ(E),u(s,0) ∈ (Hom(ϕ(E)y0 , Ey0))u#ŷ1

where P denotes the appropriate parallel transport map.

For f ∈ Hom(ϕ(E)y1 , Ey1)ŷ1 , the differential on CF (E , Sym(H)) is defined by

m1(f, ŷ1) =
∑
y0

∑
u∈M(y0;y1;{Jt})◦

(−1)ε(u)(u(f), u#ŷ1) (43)

and extending R-linearly, where ε(u) ∈ {0, 1} is the orientation sign of u.

Lemma 6.6. (m1)2 = 0.

Proof. By construction, the Hamiltonian isotopy Sym(φtH) maps (Sym(L), E) to (Sym(ϕ(L)), ϕ(E)),
compatibly with the orientations and spin structures on the Lagrangians. As explained in Remark
5.11, we chose JΣ such that Theorem 5.10 applies. In this case, WSym(L)(−, J) and WSym(ϕ(L))(−, J)
are given by (38) for generic J ∈ J∆. Therefore, the Floer complexes associated to (Sym(L), E) and
(Sym(ϕ(L)), ϕ(E)) have the same curvature, given by WSym(L)(x, J) = WSym(ϕ(L))(ϕ(x), J).

The boundary of the Gromov compactification of the 1 dimensional component of the moduli space
M(y0; y1; {Jt}) has two strata, arising from stable maps which comprise a constant strip glued to a
Maslov 2 disc bubble, which can form on either boundary Sym(L) or Sym(ϕ(L)). These configu-
rations are counted algebraically by the terms WSym(L)(x, J1)(f, ŷ1) and WSym(ϕ(L))(ϕ(x), J0)(f, ŷ1),
respectively.

Taking account of the (standard) orientation signs, we therefore have

(m1)2(f, ŷ1) = (WSym(L)(x, J1)−WSym(ϕ(L))(ϕ(x), J0))(f, ŷ1) = 0

as required.

A routine argument shows that the homology of (CF (E ,Sym(H)),m1), which we denote by
HF (E , Sym(H)), is independent of the choice of generic (Jt)t∈[0,1] with Jt ∈ J∆(V ).

Remark 6.7. (Comparison with the standard monotone Floer theory) Given an open neighbourhood
V ⊃ ∆ as in the paragraph after Remark 6.5, one can pick a smooth Kähler form ωV on Symk(Σ) as
in Definition 4.12 making Sym(φtH(L)) Lagrangian for all t ∈ [0, 1]. If Σ = P1 (or η = 0), one can then
inflate this along the diagonal (or do nothing) to obtain a symplectic form ωV,η making Sym(φtH(L))
monotone Lagrangian submanifolds for all t ∈ [0, 1], cf. Remark 4.22. Let CF (E ,Sym(H), ωV,η) =
CF (E , Sym(H)) as R-vector spaces and equip the former one with the usual Floer differential defined
as in (42). If we define the action of elements in CF (E ,Sym(H), ωV,η) by

AηH,ωV,η(f, ŷ) :=

∫ 1

t=0
Sym(Ht)(x)dt−

∫
ŷ∗ωV,η

then there is an equality AηH,ωV,η(f, ŷ) = AηH(f, ŷ). Therefore, if the Floer differentials of

CF (E , Sym(H), ωV,η) and CF (E , Sym(H)) agree, then we conclude that there is an action preserving
chain isomorphism between them. This is the case if Jt is ωV,η-tamed for all t.
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If Jt is not ωV,η-tamed, we can still get an action preserving quasi-isomorphism between the two by
a routine homotopy argument, which we sketch here. Without loss of generality, we can assume that
the inflation is realised by a smooth family of symplectic forms ωV,e, for e ∈ [0, η]. We can pick a smooth
family Jt,e such that Jt,e equals JX near ∆ and is ωV,e-tamed for all t ∈ [0, 1] and e ∈ [0, η]. Moreover,
we assume Jt,0 = Jt ∈ J∆(V ). For every e ∈ [0, η], there is an open subset I ⊂ [0, η] containing e
such that Jt,e′ is ωV,e-tamed for all e′ ∈ I. This homotopy of almost complex structures parametrized
by I gives us an action-preserving chain map CF (E ,Sym(H), ωV,e′)→ CF (E , Sym(H), ωV,e) for every
e′ ∈ I. With respect to the action filtration, this chain map is an upper triangular matrix with 1’s on
the diagonal, so it is a quasi-isomorphism. Since [0, η] is compact, we obtain an action-preserving quasi-
isomorphim CF (E , Sym(H)) → CF (E , Sym(H), ωV,η) by composing finitely many action-preserving
quasi-isomorphims. J

6.2 A direct system and Hamiltonian invariance

We have set up the Floer complex and its action filtration using the unperturbed Cauchy-Riemann
equation, to avoid discussing the vector field XSym(H), since the Hamiltonian Sym(H) is only Lipschitz
continuous and the corresponding C0-flow is only stratum-wise smooth (relative to the stratification
by partition type) along ∆. For simplicity, we are going to modify Sym(H) near ∆ to rewrite the
action filtration in more familiar terms, cf. (47), whilst working only with smooth functions and flows.

Since Sym(φtH) preserves the diagonal ∆, the moving Lagrangian Sym(φtH)(Sym(L)) is disjoint
from ∆ for all t. We say a Hamiltonian K ∈ C∞([0, 1] × X) compatible with H if there is an open
neighborhood V ⊃ ∆ that is disjoint from ∪t∈[0,1] Sym(φtH)(Sym(L)) such that

K = Sym(H) outside V ;

Kt is a (t-dependent) constant near ∆.

Remark 6.8. It is possible to construct K as above such that it furthermore satisfies minX Sym(Ht) ≤
Kt ≤ maxX Sym(Ht) for all t. To do this, let χ : X → [0, 1] be a cut-off function which equals 1
outside V and equals 0 near ∆. Then we can define Kt = (Sym(Ht) − k

∫
ΣHtω)χ + k

∫
ΣHtω. It

satisfies minX Sym(Ht) ≤ Kt ≤ maxX Sym(Ht) because k
∫

ΣHtω ∈ [minX Sym(Ht),maxX Sym(Ht)].
The flexibility of having K equal to a constant near ∆ which is not necessarily 0 is used in the

proof of Lemma 6.14.
J

Let φtK be the time-t Hamiltonian diffeomorphism of Kt, which is well-defined because Kt is a
constant near ∆. Note that φtK(Sym(L)) = Sym(φtH)(Sym(L)) for all t ∈ [0, 1] so in particular, K is
non-degenerate because we have assumed Sym(L) t Sym(ϕ(L)).

There is a canonical way to define a filtered complex CF (E , XK) isomorphic to CF (E ,Sym(H)),
but in which the differential is given by counting solutions to an XK-perturbed equation instead of the
unperturbed J-holomorphic curve equation. We recall the construction of CF (E , XK). For each (y, ŷ)
as above, we let x(t) = (φt−1

K )(y) and x̂(s, t) := (φt−1
K )(ŷ(s, t)). Using the bijective correspondence

between (y, ŷ) and (x, x̂), we can use S to denote the equivalence classes of x̂ which are defined
analogous to that of ŷ. Since φtK is supported away from ∆, x̂(s, t) is a smooth map. We set

CF◦(E , XK) := ⊕x̂∈S(Hom(Ex, Ex))x̂. (44)

It carries a free C[T, T−1]-module structure, like its counterpart CF (E ,Sym(H)). We define

CF (E , XK) := CF◦(E , XK)⊗C[T,T−1] R. (45)
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By abuse of notation, we denote by (φt−1
K )∗ the isomorphism (Hom(Ex, Ex))x̂ → (Hom(ϕ(E)y, Ey))ŷ

induced by φt−1
K . It gives an isomorphism of R-vector spaces CF (E , XK) → CF (E ,Sym(H)). The

differential for the complex CF (E , XK) is given by counting rigid curves satisfying
uK(s, 0) ∈ Sym(L), uK(s, 1) ∈ Sym(L)

lims→−∞ u
K(s, t) = x0(t) := (φt−1

K )(y0), lims→∞ u
K(s, t) = x1(t) := (φt−1

K )(y1)
∂su

K + JKt (∂tu
K −XK(uK)) = 0

 .

These are in bijection with elements in M(y0; y1; {Jt}t∈[0,1]) via

uK(s, t) := (φt−1
K )(u(s, t)) where JKt = Jt ◦ (φ1−t

K )∗. (46)

We have a more familiar formula for the action of elements in CF (E , XK). Let f ∈ (Hom(Ex, Ex))x̂.

AηK(f, x̂) :=

∫ 1

t=0
Sym(Ht)(x(t))dt−

∫
x̂∗ωX − η[x̂] ·∆ (47)

=AηH((φt−1
K )∗ ◦ f, ŷ) (48)

because13 ∫
ŷ∗ωX =

∫ 1

t=0

∫ 1

s=0
ωX(∂sŷ, ∂tŷ)dsdt

=

∫ 1

t=0

∫ 1

s=0
ωX(∂sx̂, ∂tx̂−XKt(x̂(s, t)))dsdt

=

∫
x̂∗ωX +

∫ 1

t=0

∫ 1

s=0

∂Kt(x̂(s, t))

∂s
dsdt

=

∫
x̂∗ωX −

∫ 1

t=0
Kt(x(t))dt+

∫ 1

t=0
Kt(x)dt

=

∫
x̂∗ωX −

∫ 1

t=0
Sym(Ht)(x(t))dt+

∫ 1

t=0
Sym(Ht)(x)dt.

Notice that even though x̂ depends on the choice of K,
∫
x̂∗ωX is a topological quantity that is

independent of the choice of K, provided that K is compatible with H. This identification gives an
action preserving chain isomorphism

CF (E ,Sym(H)) ' CF (E , XK) (49)

for any K compatible with H.
The benefit of working with CF (E , XK), rather than CF (E , Sym(H)), is that for the globally

smooth Hamiltonian function K the standard proof applies to show that the PSS map (induced by
K)

ΦK : CF (E , E)→ CF (E , XK) (50)

is a quasi-isomorphism, where CF (E , E) is a Morse cochain complex underlying the pearl model for
the Floer cohomology of E → Sym(L). On the other hand, given non-degenerate H i = (H i

t)t∈[0,1] ∈
C∞([0, 1]×Σ) and Ki compatible with H i, we also have the continuation map (induced by a regular
homotopy Ks from K0 to K1 such that Ks

t equals to a (s, t)-dependent constant near ∆ for all (s, t))

ΦK0,K1 : CF (E , XK1)→ CF (E , XK0). (51)

These continuation maps satisfy ΦK0 = ΦK1,K0 ◦ΦK1 and ΦK2,K0 = ΦK1,K0 ◦ΦK2,K1 (and ΦK0,K0 =
Id). The upshot is that we have a direct system of filtered chain complexes indexed by pairs (H,K),
where H ∈ C∞([0, 1]× Σ) is non-degenerate and K is compatible with H.

13Recall that our convention is ω(XKt , ·) = dKt.
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Lemma 6.9. If H i ∈ C∞([0, 1] × Σ) is non-degenerate, for i = 0, 1, there is an isomorphism
HF (E ,Sym(H0)) ' HF (E , Sym(H1)).

Proof. Pick Ki compatible with H i for i = 0, 1. Invertibility of the continuation map ΦK0,K1 from
the direct system gives a chain of isomorphisms

HF (E ,Sym(H1)) ' HF (E , XK1) ' HF (E , XK0) ' HF (E , Sym(H0)).

The result follows.

6.3 The disc potential revisited

A standard criterion for non-vanishing of Floer cohomology for a Lagrangian torus is the existence of
a critical point of an appropriate potential (usually, a potential defined from the curved A∞-structure
on a space of weak bounding cochains, or a disc potential in the sense introduced previously). See [39]
for a rapid overview and references, [58, Section 5.3] for a ‘monotone’ version closely related to that
used here, and [11, Proposition 4.34] for a detailed treatment in a general formalism (which would
also apply over the Novikov field in the setting of Definition 5.4).

Recall the disc potential is a map

WSym(L)(−, J) : H1(Sym(L),C∗)→ C.

As explained in Remark 5.11, we chose JΣ such that Theorem 5.10 applies. In this case, WSym(L)(−, J)
is given by (38) for generic J ∈ J∆.

Lemma 6.10. Suppose x ∈ H1(Sym(L),C∗) ∼= (C∗)k is a critical point of WSym(L). Let E denote the
corresponding local system. Then for any non-degenerate H ∈ C∞([0, 1] × Σ), the Floer cohomology
HF (E , Sym(H)) ' HF (E , E) 6= 0 and is isomorphic to H∗(T k;R) as an R-vector space.

Proof. As in CF (E , E) above, we use a pearl model to compute m1; the equivalence of the pearl model
and the Hamiltonian model of Floer cohomology (for monotone Lagrangians, but non-existence of
discs of non-positive index suffices) is addressed in [5, Section 5.6] and [64]. Our set-up differs from
the usual one only because we use Lemma 4.19 to obtain the well-definedness of WSym(L); this has
no effect on the proof of the equivalence of the two models. To bring the comparison of Hamiltonian
model of Floer cohomology and the pearl model into the framework considered in [5], one can use a
globally smooth function K compatible to H to replace Sym(H) as in Section 6.2.

Given that, the same statement and proof as in [11, Proposition 4.33] applies in our case. The
result then follows from [11, Proposition 4.34], because Sym(L) is a Lagrangian torus so its classical
cohomology is generated by degree one classes.

When Σ = P1, Lemma 5.13 shows that the potential function has non-degenerate critical points.
Therefore, the Floer multiplicative structure on HF (E , E) can be derived as in [13].

Remark 6.11. In the situation of Definition 5.4 one can define Floer cohomology over Λ. If the po-
tential function from Remark 5.12 has critical points in (UΛ)k, Floer cohomology of the corresponding
rank one unitary local system is non-zero over Λ. J

6.4 Proof of Theorem 1.13

In this section, we define our spectral invariant cL; see Equation (54). The properties of cL, as
stated in Theorem 1.13, can be proven in a manner very similar to the case of classical monotone
Lagrangian spectral invariant. Hence, as an illustration, we only prove the Hofer-Lipschitz continuity,
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the spectrality and the homotopy invariance properties. Moreover, as stated earlier, when g = 0 or
η = 0, our spectral invariant coincides with the invariant from the classical monotone Lagrangian
Floer theory, see Lemma 7.2; this immediately implies Theorem 1.13 in the case where g = 0 or η = 0.

For a ∈ R, let CF (E ,Sym(H))<a be the C-subspace of CF (E , Sym(H)) generated by those (f, ŷ)
for which the action AηH(f, ŷ) is less than a.

Lemma 6.12. The differential on CF (E ,Sym(H)) preserves the C-subspace CF (E ,Sym(H))<a.

Proof. If u contributes to the (f0, ŷ0)-coefficient of m1(f1, ŷ1), then we have AηH(f1, ŷ1)−AηH(f0, ŷ0) =
ωX(u) + η[u] ·∆ which is positive.

We define CF (E , XK)<a ⊂ CF (E , XK) analogously and Lemma 6.12 holds by replacing
CF (E , Sym(H)) and CF (E , Sym(H))<a with CF (E , XK) and CF (E , XK)<a.

Definition 6.13. Suppose E is a local system corresponding to a critical point of the disc potential.
Let 0 6= eE ∈ HF (E , E) be the unit. Fix a Hamiltonian H for which Sym(L) t Sym(ϕ(L)) and a
Hamiltonian K compatible with H. Define

cE(K) := inf
{
a ∈ R |ΦK(eE) ∈ im(HF (E ;XK)<a → HF (E ;XK)

}
.

Noting that CF (E ;XK) is canonically action-preserving isomorphic to CF (E ,Sym(H)), we then define

cE(H) := cE(K)

which is independent of K.

Recall that whenever the assumption of Theorem 1.13 is satisfied, we know that the disc potential
has a critical point at the trivial local system E , corresponding in our earlier co-ordinates to x =
(1, . . . , 1). When E is the trivial local system on Sym(L), we denote

cSym(L) := cE .

Lemma 6.14. Let H i = (H i
t)t∈[0,1] ∈ C∞([0, 1] × Σ) for i = 0, 1 be such that Sym(ϕi(L)) t Sym(L)

for both i = 0, 1. Then∫ 1

0
min
X

(Sym(H0
t )− Sym(H1

t ))dt ≤ cE(H0)− cE(H1) ≤
∫ 1

0
max
X

(Sym(H0
t )− Sym(H1

t ))dt. (52)

Proof. We are going to prove cE(H
0)− cE(H1) ≤

∫ 1
0 maxX(Sym(H0

t )−Sym(H1
t ))dt. By interchanging

the role of H0 and H1, we also have the other inequality.
Let Ki be compatible with H i. It suffices to show that

cE(K
0)− cE(K1) ≤

∫ 1

0
max
X

(K0
t −K1

t )dt.

The reason the above is sufficient is that there existKi compatible withH i such that maxX(K0
t−K1

t ) ≤
maxX(Sym(H0

t )− Sym(H1
t )) (cf. Remark 6.8). More explicitly, let V ⊃ ∆ be an open neighborhood

disjoint from Sym(φtH1(L)), Sym(φtH0(L)) and Sym(φtH0−H1(L)). We can find K ∈ C∞([0, 1]×X) such

that it is compatible withH0−H1, K = Sym(H0−H1) outside V and maxX Kt ≤ maxX Sym(H0
t −H1

t )
for all t. Note that Sym(H0 − H1) = Sym(H0) − Sym(H1) so for any K1 compatible with H1

such that K1 = Sym(H1) outside V , K0 := K + K1 will be compatible with H0 and we have
maxX(K0

t −K1
t ) ≤ maxX(Sym(H0

t )− Sym(H1
t )).

42



In turn, it suffices to find a continuation map (of the form (51)) CF (E ;XK1)→ CF (E ;XK0) which
restricts to

CF (E ;XK1)<a → CF (E ;XK0)<(a+b)

for

b :=

∫ 1

0
max
X

(K0
t −K1

t )dt.

As in the standard proof, we consider the homotopy of Hamiltonian functions

Ks := K0 + β(s)(K1 −K0)

for a smooth function β : R → [0, 1] satisfying β(s) = 0 for s ≤ 0 and β(s) = 1 for s ≥ 1. Note that
Ks
t equals to an (s, t)-dependent constant near ∆ for all (s, t).

Suppose that u is a solution contributing to the (f0, x̂0)-coefficient of ΦK0,K1(f1, x̂1).
Then we have

Aη
K0(f0, x̂0)−Aη

K1(f1, x̂1)

=

∫ 1

t=0
Sym(H0

t )(x1(t))dt−
∫
x̂∗0ωX − η[x̂0] ·∆−

∫ 1

t=0
Sym(H1

t )(x0(t))dt+

∫
x̂∗1ωX + η[x̂1] ·∆

=

∫ 1

t=0
K0
t (x0(t))dt−

∫
x̂∗0ωX −

∫ 1

t=0
K1
t (x1(t))dt+

∫
x̂∗1ωX − η[x̂0] ·∆ + η[x̂1] ·∆

≤b− η[x̂0] ·∆ + η[x̂1] ·∆
=b− η[u] ·∆

where the inequality is obtained from the energy estimate in the standard proof (see, for example, [37,
Sec. 3.2]14) and the last equality comes from the fact that [x̂0] = [u]#[x̂1]. Since u is JX -holomorphic
near ∆ and η ≥ 0, we have η[u] ·∆ ≥ 0 so the result follows.

By Lemma 6.14, we have (52). Therefore for H ∈ C0([0, 1]×Σ), we can define cE(H) as the limit
of cE(Hn) for a sequence of non-degenerate Hamiltonians Hn such that converging uniformly to H.

Lemma 6.15. For any H ∈ C∞([0, 1]× Σ), cE(H) belongs to the action spectrum of Sym(H).

Proof. Under the η-monotonicity assumption of Theorem 1.13, Lemma 4.19 implies that

{ωX(u) + η[u] ·∆ : u ∈ π2(X,SymL)} ⊂ R

is a discrete subset of R. The spectrality of cE then follows from [37, Proof of Theorem 27].

Lemma 6.16. If Hs is a family of mean normalized Hamiltonians such that φ1
Hs is independent of s,

then the action spectrum Spec(Sym(Hs) : Sym(L)) is independent of s. Hence, cE(H
s) is independent

of s.

Proof. Let (y0, ŷ0) be a critical point of the action functional Aη
H0 . Let (x0, x̂0) = (φt−1

H0 )(y0, ŷ0) and
let u(s, t) = φtHs(x0(0)). Let x̂1 = x̂0#u. It suffices to show that Aη

H0(x̂0) = Aη
H1(x̂1).

Note that the image of u is disjoint from ∆. As explained in [37, Step 1, Proof of Lemma 23], we
have

Aη
H0(x̂0)−Aη

H1(x̂1) =

∫
[0,1]×[0,1]

(∂s Sym(Hs
t )) ◦ u dsdt

14They use a different set of sign conventions.
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so it suffices to show that the right hand side vanishes. If H̃s
t := Sym(Hs

t ) ◦ π : Σk → R, we have∫
[0,1]×[0,1]

(∂s Sym(Hs
t )) ◦ u dsdt =

∫
[0,1]×[0,1]

(∂sH̃s
t ) ◦ ũ dsdt (53)

where, in the notation from (23), ũ is the restriction of the lift V of u to one of its k! many connected
components. The right hand side of (53) can be shown to vanish by applying the reasoning in [37,

Step 2 and End of the proof, Proof of Lemma 23], using the fact that H̃s
t is a family of normalized

Hamiltonians on Σk for which φ1
H̃s

is independent of s, and that ũ(s, t) = φt
H̃s

(ũ(0, 0)).
Finally, Lemmas 6.14 and 6.15, combined with the fact that the action spectrum is nowhere dense,

imply that cE(H
s) is independent of s.

We now define
cL := (1/k)cSym(L) (54)

(where L has k components), recalling that the right hand side denotes cE with E the trivial local
system over Sym(L). Since, for H0, H1 ∈ C0([0, 1] × Σ), the maximum and minimum values of
Sym(H1) − Sym(H0) are exactly k times the corresponding values for H1 − H0, the normalisation
(54) yields the Hofer continuity property∫ 1

0
min(Ht −H ′t) dt 6 cL(H)− cL(H ′) 6

∫ 1

0
max(Ht −H ′t) dt.

Of the properties listed in Theorem 1.13, spectrality is an immediate consequence of Lemma 6.15,
homotopy invariance follows from Lemma 6.16, monotonicity is a direct consequence of the Hofer
Lipschitz property, and Lagrangian control, support conntrol, and shift propeties can be derived via
formal, and standard, arguments from Lipschitz continuity and spectrality. The remaining property,
i.e. subadditivity, can be proved by following the arguments in [24], [37], using the compatible functions
to reduce to the case of globally smooth Hamiltonians as in the proof of Lemma 6.14. More precisely,
let H and H ′ be non-degenerate Hamiltonians. For ε > 0, let H ′′ be a non-degenerate Hamiltonian
whose C0-distance with H#H ′ is less than ε. We can find Hamiltonians K, K ′ and K ′′′ compatible
with H, H ′ and H ′′ respectively such that the C0-distance between K ′′ and K#K ′ is less than 2ε.
Now, as in [37, Triangle inequality, Proof of Theorem 35], for any solution u contributing to the
product CF (E , XK) × CF (E , XK′) → CF (E , XK′′) with input (f, ŷ), (f ′, ŷ′) and output (f ′′, ŷ′′), we
have

AηK(f, ŷ) +AηK′(f
′, ŷ′)−AηK′′(f

′′, ŷ′′) ≥ −4ε+ η[u] ·∆.

The non-negativity of η[u] ·∆ and the fact that the Floer product is compatible with PSS maps imply
that cE(K#K ′) ≤ cE(K) + cE(K

′). This will in turn give the subadditivity property.

7 Closed-open maps and quasimorphisms

In this section we prove that, when g = 0 or η = 0, our link spectral invariants coincide with the
spectral invariants of the classical monotone Lagrangian Floer theory. This allows us to use the closed-
open map to obtain upper bounds for our link spectral invariant cE(H) in terms of the Hamiltonian
Floer spectral invariant of Sym(H); see Corollary 7.3. We then use this inequality, in Section 7.3, to
prove our results on quasimorphisms.
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7.1 Notation review

If (X,ω) is any spherically monotone symplectic manifold, and L ⊂ X is a (connected orientable and
spin) monotone Lagrangian submanifold such that HF (L,L) 6= 0, there are classically constructed
Hamiltonian and Lagrangian spectral invariants, cf. [44, 37]

c(•, ω) : C0(S1 ×X)→ R, `(•, ω) : C0([0, 1]×X)→ R.

The values of these on a non-degenerate C∞-Hamiltonian H with time-one-flow ϕ are defined by
the infimal action values (with respect to the action functional associated to H) at which the unit lies
in the image of the PSS maps (we use the notation Φ′ to differentiate it from the PSS map Φ in (50).)

QH∗(X,ω)
Φ′H−−→ HF ∗(X,XH) ∼= HF ∗(X,H) respectively HF ∗(L,L)

Φ′H−−→ HF ∗(L,XH) ∼= HF ∗(L,H).

where HF ∗(−, XH) denotes the cohomology of the cochain complex generated by Hamiltonian or-
bits/chords and with differential counting solutions to an XH -perturbed equation, while HF ∗(−, H)
denotes the cohomology of the cochain complex generated by ϕ-fixed points with differential counting
solutions to an unperturbed Cauchy-Riemann equation. (Compare to the notation introduced for (40)
and (45).)

We remark that the value of the spectral invariants c(•, ω) and `(•, ω) depends on the choice of the
Novikov coefficients used in the constructions of the Floer complexes; we will work over the Novikov
field R = C[[T ]][T−1] introduced in (39), where the degree of the Novkiov variable T is the minimal
Maslov number of the Lagrangian L; in the case of our Lagrangian Sym(L) the degree of T will be 2
(cf. Remark 6.1).

One can always reparametrize H ∈ C∞([0, 1] × X) to be 1-periodic without affecting `(H) (the
spectral invariant depends only on the homotopy class of the path of associated Hamiltonian diffeo-
morphisms with fixed end-points). With that understood, there is an inequality

`(H,ω) 6 c(H,ω), (55)

cf. [37, Proposition 5], derived, for smooth H, from positivity of the action of solutions to the closed-
open map,

CO : HF ∗(X,XH)→ HF ∗(L,XH),

the commutativity of

QH∗(X)
CO //

Φ′H
��

HF ∗(L,L)

Φ′H
��

HF ∗(X,XH)
CO // HF ∗(L,XH),

and the unitality of the algebra map CO : QH∗(X) → HF ∗(L,L) for any monotone Lagrangian
L ⊂ X. The inequality extends to all (non-smooth) H by the Hofer Lipschitz property of spectral
invariants.

Lemma 7.1. Let H0, H1 ∈ C∞([0, 1]×X) be such that φtH0(L) = φtH1(L) for all t and H0 = H1 in
an open neighborhood containing ∪t∈[0,1]φ

t
Hi(L). Then `(H0, ω) = `(H1, ω).

Proof. Let Hs = (1 − s)H0 + sH1. We have φtHs(L) = φtH1(L) for all t, s ∈ [0, 1] so Spec(Hs : L)
does not depend on s. Since `(Hs, ω) depends continuously on s and Spec(Hs : L) = Spec(H1 : L) is
nowhere dense, we conclude that `(Hs, ω) is independent of s.

Via Remarks 4.22 and 6.7, we can use this theory to study the spectral invariant cL defined by a
Lagrangian link when η = 0 or g = 0.
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7.2 Link spectral invariants are monotone spectral invariants

Throughout this section, we assume that η = 0 or g = 0.

Fix an open neighborhoud V ⊃ ∆ in Symk(Σ), and (an inflation of) a Perutz-type form ωV,η. The
manifold (Symk(Σ), ωV,η) is spherically monotone, so there is a Hamiltonian spectral invariant

c(•;ωV,η) : C0(S1 × Symk(Σ))→ R.

Via the canonical embedding

C0(Σ)→ C0(Symk(Σ)), H 7→ Sym(H) (56)

this defines a spectral invariant
c(•, ωV,η) : C0(S1 × Σ)→ R.

Fix a k-component η-monotone Lagrangian link L ⊂ Σ such that Sym(L) ∩ V = ∅. As Sym(L) ⊂
(Symk(Σ), ωV,η) is a monotone Lagrangian submanifold, there is a Lagrangian spectral invariant, which
one can again restrict via (56) to give

`(•, ωV,η) : C0([0, 1]× Σ)→ R.

Fix a sequence of open neighbourhoods · · · ⊃ Vn ⊃ Vn+1 ⊃ · · · which shrink to ∆. Consider the
spectral invariant cSym(L) associated to the trivial local system over Sym(L), and its normalized cousin

cL =
1

k
cSym(L) : C0([0, 1]× Σ)→ R

from (54). Let H ∈ C∞([0, 1]× Σ) and φtH denote the associated Hamiltonian flow.

Lemma 7.2. Choose V sufficiently small such that Sym(φtH(L)) is disjoint from the closure of V for
0 6 t 6 1. Then cSym(L)(H) = `(H,ωV,η).

Proof. By Hofer-Lipschitz continuity, we can assume that Sym(φ1
H(L)) t Sym(L).

Let K be a function compatible with H and equal to a constant inside V . We have action-filtration-
preserving isomorphisms of complexes (see (49))

CF (E ,Sym(H)) ' CF (E , XK) (57)

for any local system, and in particular for the trivial local system. Remark 6.7 identifies the complex
on the LHS with CF (E , Sym(H), ωV,η).

The invariant cSym(L) is defined by the PSS map (see (50))

ΦK : CF (E , E)→ CF (E , XK). (58)

On the other hand, we have the classical PSS map with respect to the symplectic form ωV,η

Φ′K : CF (E , E)→ CF (E , XK , ωV,η). (59)

and CF (E , XK , ωV,η) is action-preserving isomorphic to CF (E ; Sym(H), ωV,η) as in (49).
Since φtK is supported away from V and ωV,η = ωX outside V , the two PSS maps commute with the

isomorphism CF (E , XK) ' CF (E , Sym(H)) ' CF (E , Sym(H), ωV,η) ' CF (E , XK , ωV,η). Therefore,
cSym(L)(H) is exactly computing `(K,ωV,η).

The invariant `(H,ωV,η) is defined by choosing a sequence of smooth functions Kn ∈ C∞([0, 1] ×
Symk(Σ)) which C0-approximate the Lipschitz function Sym(H) ∈ C0([0, 1] × Symk(Σ)), and taking
the limit of the `(Kn, ωV,η). We can take all the Kn to co-incide with K in a fixed open set containing
the Lagrangian isotopy φtH(Sym(L)). By Lemma 7.1, `(Kn, ωV,η) = `(K,ωV,η) so the result follows.
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The following inequality is crucial to the arguments of the following section. It follows immediately
from Lemma 7.2 combined with inequality (55), which, as we explained, holds for not necessarily time-
periodic H.

Corollary 7.3. For any H ∈ C∞([0, 1]× Σ), there is N(H) > 0 for which

cL(H) 6
1

k
c(H,ωVn,η)

for all n > N(H).

Remark 7.4. We remark that ωVn,η([P1]) = (k + 1)λ, where [P1] is the positive generator of
H2(X,Z) and λ is the monotonicity constant (see Definition 1.12). In particular, when η = 0, we
have ωVn,η([P1]) = 1, assuming ω gives P1 total area 1. J

If Σ = P1, the forms ωV,η can be scaled to be isotopic, so the quantum cohomology
QH∗(Symk(Σ), ωV,η) is independent (up to R-algebra isomorphism) of the choice of V and η. Re-
calling that we are working over R = C[[T ]][T−1], one has QH∗(Pk, ωV,η) = R[x]/(xk+1 − T k+1).

Remark 7.5. The spectral invariant c(•, ωV,η) : C0(S1 × Pk) → R satisfies the following inequality
for any (continuous) Hamiltonian H:

c(H,ωV,η;R) + c(H̄, ωV,η;R) 6 ωVn,η([P1]) = (k + 1)λ, (60)

where H̄(t, x) := −H(1− t, x). Here, we are writing c(•, ωV,η;R) instead of c(•, ωV,η) to emphasize the
choice of the Novikov field R = C[[T ]][T−1], which is important for what follows.

We will now explain how the above can be deduced from a similar inequality proven in [19]. Let
R̂ denote the Novikov field

R̂ = C[[S]][S−1] =

{ ∞∑
i=0

aiS
bi |ai ∈ C, bi ∈ Z, b0 < b1 < . . .

}
,

where the variable S has degree 2(k + 1) = 2c1(Pk)[P1].
Denote by c(•, ωV,η; R̂) : C0(S1 × Pk) → R the Hamiltonian Floer spectral invariant constructed

with the field R̂ as the choice of Novikov coefficients. It follows from [19, Section 3.3] (see also [54,
Example 12.6.3]) that there exists a constant D > 0 such that

c(H,ωV,η; R̂) + c(H̄, ωV,η; R̂) 6 D. (61)

The proof of this inequality relies on the fact that, with R̂ coefficients, we have

QH∗(Pk, ωV,η; R̂) = R̂[x]/(xk+1 − S)

which is a field; see [54, Example 12.1.3]15. Although not explicitly stated in [19], the arguments
therein imply that

D 6 ωVn,η([P1]) = (k + 1)λ. (62)

This upper bound on D is not essential to our main results and is only used below in the proof of
Proposition 7.9.

15We use the cohomological convention while [19] use the homological convention. Therefore, even though our S
corresponds to their s−1, the degree of S is 2(k + 1) in our convention but the degree of s−1 is −2(k + 1) in their
convention.
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Now, there exists an embedding of fields R̂ ↪→ R, induced by S 7→ T k+1, which in turn induces the
injective maps QH∗(Pk, ωV,η; R̂) ↪→ QH∗(Pk, ωV,η;R) and (when H ∈ C∞(S1×X) is non-degenerate)

HF ∗(X,H; R̂) ↪→ HF ∗(X,H;R), fitting into the commutative diagram

QH∗(Pk, ωV,η; R̂)
Φ′H //

� _

��

HF ∗(X,H; R̂)� _

��
QH∗(Pk, ωV,η;R)

Φ′H // HF ∗(X,H;R),

where the horizontal arrows denote the corresponding PSS maps. Since the map HF ∗(X,H; R̂) ↪→
HF ∗(X,H;R) respects the action filtration, we have

c(H,ωV,η;R) 6 c(H,ωV,η; R̂),

which proves (60).
In fact, since the vertical arrows in the diagram are injective and are given by − ⊗R̂ R, we can

further conclude that it preserves the action (not only the action filtration) and hence c(H,ωV,η;R) =

c(H,ωV,η; R̂). J

7.3 Quasimorphisms on S2

We will now use the contents of the previous section to prove our results on quasimorphisms, namely
Theorems 1.6 and Theorem 1.9. These will be immediate consequences of Theorems 7.6 and 7.7; see
Remark 7.8 below. It will be convenient for the remainder of the paper to fix S2 = {x2 + y2 + z2 =
1} ⊂ R3, with its standard area form scaled to have area 1.

Recall that cL : H̃am(S2, ω)→ R is defined by cL(ϕ̃) := cL(H), where H is any mean-normalized
Hamiltonian whose flow represents ϕ̃. For ϕ ∈ Ham(S2, ω) we define the homogenization

µL(ϕ) := lim
n→∞

cL(ϕ̃n)

n
, (63)

where ϕ̃ ∈ H̃am(S2, ω) is any lift of ϕ. The limit (63) exists in {−∞}∪R since the sequence (cL(ϕ̃n))

is subadditive. Now, Hofer continuity implies that the sequence (
cL(ϕ̃n)
n ) is bounded and so we see that

the limit exists. Moreover, the limit depends only on ϕ, and not the lift ϕ̃ because the fundamental
group of Ham(S2, ω) has finite order; see [19, Prop. 3.4].

Theorem 7.6. For any monotone Lagrangian link L, the map

µL : Ham(S2, ω)→ R

is a homogeneous quasimorphism with the following properties:

1. (Hofer Lipschitz) |µL(ϕ)− µL(ψ)| 6 dH(ϕ,ψ);

2. (Lagrangian control) Suppose H is mean-normalized. If Ht|Li = si(t) for each i, then

µL(H) =
1

k

k∑
i=1

∫ 1

0
si(t)dt.

Moreover,

1

k

k∑
i=1

∫ 1

0
min
Li

Ht dt 6 µL(H) 6
1

k

k∑
i=1

∫ 1

0
max
Li

Ht dt.
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3. (Support control) If supp(ϕ) ⊂ S2\ ∪j Lj, then µL(ϕ) = −Cal(ϕ).

The next theorem tells us how the quasimorphisms µL are related to each other.

Theorem 7.7. (i) Suppose that L,L′ are η-monotone links in S2 which have the same number of
components k. Then, the quasimorphisms µL and µL′ coincide and we denote by µk,η their
common value.

(ii) The family of quasimorphisms {µk,η} is linearly independent.

(iii) The difference µk,η − µk′,η′ is C0 continuous and extends continuously to Homeo0(S2, ω).

For the possible values of (k, η) in Theorem 7.7, see Remark 4.21.

Remark 7.8. The family of quasimorphisms {µk,η − µk′,η′} satisfies the conclusions of Theorems 1.6
and 1.9. J

We also remark that by combining these results with our Theorem 1.1, on S2, we can extend the
Calabi property from 1.1, to more general links, for example equally spaced horizontal links on S2, as
studied in [14, 55]. The precise statement is as follows.

Proposition 7.9. Let Lk be any sequence of k-component monotone links in S2 with ηk <
1

2k(k−1) .
Then, for any H we have

cLk(H)→
∫ 1

0

∫
S2

Htω dt

and for any φ we have
µk,ηk(φ)→ 0.

We now prove the results stated above.

Recall that we denote by λ the monotonicity constant of the link L; see Definition 1.12. The
following lemma will be useful.

Lemma 7.10. Let L be an η-monotone link on S2 with k components. Then, the value of λ is given
by

λ =
1 + 2η(k − 1)

k + 1
. (64)

Proof. First note that by induction on k, the number of components of S2 \ L is k + 1. Recall also
the Bj , kj , Aj with j ∈ {1, . . . , k + 1} from Theorem 1.13.

Now, by the definition of the monotonicity constant, we have λ = Aj + 2η(kj − 1) for each j.
Summing over j ∈ {1, . . . , k + 1} and using the fact that

∑
Aj = area(S2) = 1, we get

(k + 1)λ = 1 + 2η(2k − (k + 1)),

hence λ(k + 1) = 1 + 2η(k − 1) as claimed.

Proof of Theorem 7.6. The Hofer Lipschitz, Lagrangian control and Support control properties are
inherited from Theorem 1.13, so it remains to prove the quasimorphism property.

Let k denote the number of components in the monotone link L and denote by λ the monotonicity
constant of the link; see (1). We will prove that

cL(H) + cL(H̄) 6
k + 1

k
λ, (65)
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where H̄ is the Hamiltonian
H̄ = −H(1− t, x).

By [62, Theorem 1.4], this implies16 that µL is a homogeneous quasimorphism with defect 2k+1
k λ.

By Corollary 7.3, for every Hamiltonian H on S2, there exists a family of spectral invariants
c(H,ωV,η) with the property that

cL(H) 6
1

k
c(H,ωV,η). (66)

Recall that ωV,η is a Kähler form on Pk symplectomorphic to the standard Fubini-Study form ωFS ,
where that form is normalized so that the symplectic area of [P1] is (k + 1)λ, cf. Remark 4.23.

According to Remark 7.5, for any F ∈ C0([0, 1]× Pk we have the inequality

c(F, ωV,η) + c(F̄ , ωV,η) 6 D = (k + 1)λ. (67)

Taking F = Symk(H) and noting that F̄ = Symk(H̄) we obtain

c(H,ωV,η) + c(H̄, ωV,η) ≤ (k + 1)λ. (68)

Equation (65) follows by applying (66).

We next prove Theorem 7.7.

Proof of Theorem 7.7. We begin with the proof of part (i). Since the links L and L′ are both η-
monotone for the same η, by Corollary 7.3, we have for any Hamiltonian H a Perutz-type form ωV,η
such that

cL(H) 6
1

k
c(H,ωV,η), cL′(H̄) 6

1

k
c(H̄;ωV,η).

We can apply these inequalities in combination with (68) to obtain for every Hamiltonian H:

cL(H) + cL′(H̄) 6
1

k

(
c(H,ωV,η) + c(H̄, ωV,η)

)
6
k + 1

k
λ.

In view of this H-independent upper bound, it follows that after homogenization we have

µL(ϕ)− µL′(ϕ) 6 0.

Switching the roles of L and L′, we deduce that µL = µL′ .
We now turn to the proof of part (ii) of the theorem. Let E be the real vector space generated

by the quasimorphisms µk,η and for each λ, let Eλ denote the linear subspace generated by those µk,η
whose monotonicity constant is λ. We will first prove that we have a direct sum decomposition.

E =
⊕
λ

Eλ. (69)

For this purpose, let λ1 < · · · < λn and µ1, . . . , µn be quasimorphisms obtained from Lagrangian links
L1, . . . , Ln whose monotonicity constant are respectively λ1, . . . , λn. We will now show that all such
µ1, . . . , µn are linearly independent, which will imply (69).

So, assume we have
n∑
i=1

aiµi = 0, (70)

16In [62], the author uses a different definition of H̄, namely that H̄ = −H(t, φtH(x)). However, since both definitions

for H̄ determine the same element in H̃am(S2, ω), one can still cite [62].
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for some real numbers a1, . . . , an. We will show by induction on n that all ai vanish; the base case
n = 1 follows from the Support control property from Theorem 1.13. For the inductive step, by
part (i) of this theorem, we may assume without loss of generality that each Li consists of parallel
horizontal circles. Then the bottom circle Ci of Li bounds a disc of area λi, and so the Ci are all
disjoint. Now let ϕ be a Hamiltonian diffeomorphism generated by a mean normalized Hamiltonian H
which is supported in a small neighborhood of C1 and such that the restriction of H to C1 is constant
and equal to 1. We choose this neighborhood small enough so that the support of H does not intersect
any of the Ci for i > 2. By the Support control property from Theorem 7.6, we have µi(ϕ) = 0 and
by the Lagrangian control property of the same theorem we have µ1(ϕ) = 1. Thus, (70) yields a1 = 0,
and then by induction we deduce that all ai vanish, hence (69).

To finish the proof of Theorem 7.7, it remains to show that for each λ, the family of all µk,η

with (k, η) distinct such that λ = 1+2η(k−1)
k+1 is a linearly independent set . By Lemma 7.10, we may

order this family according to the value of η, because k is determined by λ and η. We denote by
η1 < · · · < ηm the values of η attained by this family and µ′i the quasimorphism corresponding to ηi.
We now argue as above. We may assume that for each i, we have µ′i = µL′i for some configuration of

horizontal parallel circles L′i. All these configurations have the same bottom circle, which bounds a
disc of area λ. However, they all have disjoint second from the bottom circles: the second from the
bottom circle C ′i of Li bounds a disc of area λ − 2ηi. We now choose a Hamiltonian supported near
C ′1 and argue by induction as above.

As for the third item, its proof is very similar to that of Proposition 3.3 and so we will not present
it; it can also be proven via the arguments given in [20].

We conclude with the promised proof of our result concerning recovering Calabi for more general
links.

Proof of Proposition 7.9. By the Shift property from Theorem 1.13, it suffices to assume that H is
mean-normalized and then show that both limits are zero. So, assume this. Write ϕ = φ1

H .
As in the proof of Theorem 7.6, each cLk is a quasimorphism with defect given by

Dk =
k + 1

k
λk,

where λk denotes the monotonicity constant of the link Lk. Hence

|cLk(H)− µLk(ϕ)| = |cLk(H)− µk,η(ϕ)| ≤ Dk, (71)

since the first equality here holds by the first part of Theorem 7.7 above. By (64) and the assumption
on ηk, we have that Dk tends to 0 with k. Assume first that the Lk are equidistributed; we can find
such a sequence via Example 3.1. Then by Theorem 1.1, cLk(H) converges to 0, hence by (71) the
sequence µk,η(ϕ) does as well. It now follows in addition, again applying (71), that cLk(H) converges
to 0 without the assumption that the links are equidistributed.

7.4 The commutator and fragmentation lengths

We collect here some final applications of our new quasimorphisms.
To start, as illustrated in Example 1.7, our quasimorphisms can be used to deduce a result about

the commutator length on Homeo0(S2, ω) that contrasts the situation for Homeo0(S2). Here is a
result in a similar vein. It has recently been shown in [7, Thm. 5.5] that for the group Homeo0(Σg) of
homeomorphisms of a closed surface in the component of the identity, the stable commutator length
is C0 continuous.

Proposition 7.11. The stable commutator length on Homeo0(S2, ω) is unbounded in any C0 neigh-
borhood of the identity. In particular, it is not C0 continuous on Homeo0(S2, ω).
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In a different direction, recall the quantitative fragmentation norm || · ||A on Homeo0(S2, ω)
associated to a positive real number A: ||ψ||A is the minimum N such that ψ = f1 . . . fN , where the
fi are supported in open discs of area no more than A. In applications of fragmentation, one often
assumes in addition that the discs are displaceable, in other words that A < 1/2. For more about
fragmentation norms, we refer the reader to (for example) [19, 8].

In contrast to Proposition 7.11, one expects that the quantitative fragmentation norm is bounded
in a C0 neighborhood of the identity. Indeed, this fact is known for diffeomorphisms by combining
[59, Prop. 3.1] with [36, Lem. 4.7] and one should be able to adapt these proofs without difficulty for
homeomorphisms; it should also be noted that we actually use this boundedness, for diffeomorphisms,
in our proof of Proposition 3.3 because [59, Prop. 3.1] and [36, Lem. 4.7] are used in [15, Lem. 3.11].
Nevertheless, it turns out that, just as with the stable commutator length, the fragmentation norm
over displaceable subsets is unbounded.

Proposition 7.12. When A < 1/2, || · ||A is unbounded.

We remark that in [8, Ex. 1.24], the authors show that the quantitative fragmentation norm
is unbounded on displaceable subsets of tori and raise the question of what happens on a complex
projective space. Proposition 7.12 gives a partial answer to this: the quasimorphism we construct in
the course of proving Proposition 7.12 shows that || · ||A is unbounded on Ham(S2, ω) for A < 1/2,
since this is a subgroup of Homeo0(S2, ω).

Proof of Proposition 7.11. Choose Hamiltonians Hn : S2 → R for n ≥ 2, depending only on z, such
that:

� Hn|z=−1+1/n = n,

� supp(Hn) ⊂ {−1 ≤ z ≤ −1 + 1.5
n },

�

∫
S2 Hnω = 0.

Then ϕ1
Hn

is C0 converging to the identity. Moreover, since Ham(S2, ω) is perfect, each ϕ1
Hn

is in the
commutator subgroup of Homeo0(S2, ω); however, we will show that the stable commutator length in
Homeo0(S2, ω) of ϕ1

Hn
is diverging.

To see this, we consider the family of quasimorphisms fn := µL1
−µLn , where L1 is the link {z = 0}

as above, and Ln is the link consisting of the circles {z = −1 + k/n} for 1 ≤ k ≤ 2n− 1. Since the fn
are homogeneous quasimorphisms, we have

scl(ϕ1
Hn) ≥

|fn(ϕ1
Hn

)|
D(fn)

,

where D(fn) denotes the defect of fn. Now, by the Lagrangian control property of Theorem 1.13,
we have that fn(ϕ1

Hn
) = n; on the other hand, as in the proof of Theorem 7.6, the quasimorphism

associated to an η-monotone link with k components has defect 21+2η(k−1)
k , our links are η-monotone

with η = 0, and so it follows that D(fn) remains bounded, as n → ∞. We therefore conclude that

scl(fn)→∞ although fn
C0

−−→ Id.

Proof of Proposition 7.12. The proposition is an immediate consequence of the fact that we can con-
struct a nontrivial homogeneous quasimorphism that vanishes on any map supported on a disc of area
A. To construct such a quasimorphism, let L2 denote the monotone link consisting of two horizontal
circles so close to the equator {z = 0} that they are disjoint from the disc of area A bounded by
a horizontal circle in the southern hemisphere and let L1 denote the one-component link consisting
of the equator itself. Then, by the Lagrangian control property of Theorem 1.13 and Theorem 7.7,
µL2
− µL1

vanishes on any map supported in a disc of area A.
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