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Abstract

We develop a theory of Morse homology and cohomology with coef-
ficients in a derived local system, for manifolds and also more generally
for colimits of spaces that have the homotopy type of manifolds, with
a view towards Floer theory. The model that we adopt for derived,
or differential graded (DG) local systems is that of DG modules over
chains on the based loop space of a manifold. These encompass both
classical (non DG) local systems and chains on fibers of Hurewicz fi-
brations. We prove that the Morse homology and cohomology groups
that we construct are isomorphic to DG Tor and Ext functors. The
key ingredient in the definition is a notion of twisting cocycle obtained
by evaluating into based loops a coherent system of representatives for
the fundamental classes of the moduli spaces of Morse trajectories of
arbitrary dimensions. From this perspective, our construction sits
midway between classical Morse homology with twisted coefficients
and more refined invariants of Floer homotopical flavor.

The construction of the twisting cocycle is originally due to Bar-
raud and Cornea with Z/2-coefficients. We show that the twisting
cocycle with integer coefficients is equivalent to Brown’s universal
twisting cocycle. We prove that Morse homology with coefficients
in chains on the fiber of a Hurewicz fibration recovers the homology of
the total space of the fibration. We study several structural properties
of the theory: invariance, functoriality, and Poincaré duality, also in
the nonorientable case.
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1 Introduction and main results

Given a based and path-connected topological spaceX, we denote by C∗(ΩX)
the DGA of cubical chains on the based Moore loop space ΩX. A DG local
system on X is a chain complex F which is a DG right C∗(ΩX)-module.
The purpose of this paper is to lay down the foundations of Morse homology
and cohomology theory with coefficients in F for smooth manifolds. The
main source of DG local systems are fibrations over X (see below), but
our setup also includes classical (non-DG) local systems, in which case we
recover homology with local coefficients (see §5.1.2). As explained below,
this is equivalent to giving Morse models for the DG Tor and Ext functors

TorC∗(ΩX)(F ,Z), ExtC∗(ΩX)(Z,F).

The Morse complex with DG coefficients. Assume that X is a smooth closed
manifold and choose auxiliary data consisting of a Morse function f : X → R,
a Morse-Smale negative pseudo-gradient vector field ξ, and an embedded tree
Y ⊂ X rooted at a basepoint and containing the set Crit(f) of critical points
of f . Denote |x| the Morse index of a critical point x. Following Barraud-
Cornea [BC07], we associate to the triple (f, ξ,Y) a collection of chains on
the based loop space (mx,y), x, y ∈ Crit(f), mx,y ∈ C|x|−|y|−1(ΩX) such that

∂mx,y =
∑
z

(−1)|x|−|z|mx,zmz,y,

where the multiplication of chains is understood with respect to the Pontrya-
gin product in C∗(ΩX). We call (mx,y) the Barraud-Cornea twisting cocycle.
Roughly speaking mx,y is obtained by evaluating into Ω(X/Y) ≃ ΩX the
fundamental class rel boundary of the compactified moduli space L(x, y) of
pseudo-gradient trajectories from x to y. Given a DG local system F , we
further define a chain complex

C∗(X;F) = F ⊗ ⟨Crit(f)⟩,

with differential

∂(α⊗ x) = ∂α⊗ x+ (−1)|α|
∑
y

αmx,y ⊗ y.

We refer to C∗(X,F) as being the Morse complex with DG-coefficients, or the
enriched Morse Complex. Its homology H∗(X;F) is called Morse homology
with coefficients in F , or enriched Morse homology.
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This construction is due to Barraud and Cornea forr F = C∗(ΩX;Z/2),
with module structure given by right multiplication. In that case H∗(X;F)
is the homology of a point and the original point of view of [BC07] was to
emphasize the associated spectral sequence as being the object of interest.
In the current paper we insist on the target of the spectral sequence as being
an object of interest in its own right, and view the spectral sequence as a tool
to approach it. Regardless of the module of coefficients used, we will refer in
the sequel to the previous construction as the Barraud-Cornea construction.

Fibrations. The main source of DG-local systems are Hurewicz fibrations
F ↪→ E → X. The holonomy of such a fibration is encoded in a holonomy
map F ×ΩX → F determined by a (unique up to homotopy) choice of lifting
function. This induces a right C∗(ΩX)-module structure on F = C∗(F ).

Theorem A (Fibration theorem). Let E → X be a Hurewicz fibration
and let F be the associated DG-local system on X. There is a chain map

Ψ : C∗(X;F) −→ C∗(E)

which induces an isomorphism between the canonical spectral sequence of the
Morse complex determined by the index filtration, and the Leray-Serre spectral
sequence of the fibration E. In particular Ψ induces an isomorphism

Ψ∗ : H∗(X;F) ≃−→ H∗(E).

We discuss lifting functions in §7 and prove Theorem A as Theorem 7.2.
This statement was proved previously with Z/2-coefficients, for the path-
loop fibration by Barraud and Cornea in [BC07, Theorem 1.1.d] and for
Hurewicz fibrations by Charette in [Cha17].

A hybrid construction. We find it important to emphasize the hybrid char-
acter of this construction: Morse data on X is combined with the DGA
of cubical chains on the space of based loops ΩX. For the purpose of the
discussion in this paragraph, we emphasize this by denoting F = F cubical,
C∗(ΩX) = Ccubical

∗ (ΩX), C∗(X;F) = CMorse
∗ (X;F cubical). This construction

sits midway between two other ones:

Ccubical
∗ (X;Fcubical) CMorse

∗ (X;Fcubical) CMorse
∗ (X;FMorse)

Cubical chains on X Morse theory on X Morse theory on X

Ccubical
∗ (ΩX)-module Ccubical

∗ (ΩX)-module CMorse
∗ (ΩX)-module

As shown in the table, one could consider a theory which uses cubical chains
on both X and ΩX, and also a theory which uses Morse data on both X
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and ΩX. These theories would be equivalent models for the use of DG local
coefficients, but their implementation would require different techniques of
varying levels of complexity. The “all cubical” theory on the first column
is classical and is essentially due to Brown [Bro59]. The “all Morse” theory
on the third column has not yet been fully constructed, though parts of it
can be recovered from the existing literature, e.g. the A∞-algebra structure
on CMorse

∗ (ΩX), which can be emulated from the A∞-algebra structure of
wrapped Floer homology [Abo12].

One important motivation for considering a theory involving Morse data on
X is that it admits a direct symplectic generalization in Floer theory. Among
the two options represented by the second and third column in the previous
table, the one that we study in this paper is by far technically simpler. We
will apply it to Floer theory in a sequel paper [BDHO].

Range of applicability of the Barraud-Cornea construction. This construc-
tion applies to any Floer theory (Lagrangian, instanton etc.) and can be
used to enrich Floer maps in a variety of settings, for example in the con-
text of Lagrangian correspondences. It constitutes an efficient way of ex-
tracting algebraic information from the higher dimensional moduli spaces of
Morse/Floer/instanton trajectories. Barraud and Cornea used it in a La-
grangian setting in [BC07], and in a sequel paper we will give applications in
a Hamiltonian setting [BDHO]. One of the roles of this paper is to serve as a
blueprint for the expected structural properties of enriched Floer complexes.

Relation to Brown’s universal twisting cocycle. The Brown cocycle of X,
traditionally viewed as a degree −1 map φ : C∗(X) → C∗−1(ΩX), can be
interpreted [Bro59, Gug60] as an element

mφ ∈ End−1(C∗(ΩX)⊗ C∗(X))

which satisfies the relation

(∂ +mφ)
2 = 0,

where ∂ is the tensor differential on C∗(ΩX)⊗C∗(X). We view mφ as defining
a perturbation of the tensor differential ∂ on C∗(ΩX)⊗C∗(X). An equivalent
point of view stems from the differential graded Lie algebra (dgLa) structure
on End∗(C∗(ΩX)⊗C∗(X)). Denoting the differential D and the bracket [·, ·],
the previous relation for mφ is equivalent to

Dmφ +
1

2
[mφ,mφ] = 0.

We say that mφ is a Maurer-Cartan element.
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Similarly, subtracting from the Barraud-Cornea cocycle m = (mx,y) the con-
tribution of the differential of the classical Morse complex C∗(f) we obtain
a Maurer-Cartan element

m′ ∈ End−1(C∗(ΩX)⊗ C∗(f))

which satisfies the relation

(∂ +m′)2 = 0,

where ∂ is the tensor differential on C∗(ΩX)⊗C∗(X). We view therefore m′

as defining a perturbation of the tensor differential ∂ on C∗(ΩX)⊗ C∗(f).

The modified Barraud-Cornea cocycle m′ and the Brown cocycle mφ can
be interpreted from a unifying perspective in the context of differential ho-
mological algebra: they both provide semi-free C∗(ΩX)-resolutions of the
trivial C∗(ΩX)-module Z (see Definition 3.2). This follows from Theorem A,
respectively [Bro59, Theorem 4.2], which provide quasi-isomorphisms

(C∗(ΩX)⊗ C∗(f), ∂ +m′)
≃−→ C∗(P⋆→XX)

and
(C∗(ΩX)⊗ C∗(X), ∂ +mφ)

≃−→ C∗(P⋆→XX),

where P⋆→XX is the space of paths in X starting at the basepoint. This
space is contractible, so that C∗(P⋆→XX) is chain homotopy equivalent to
the trivial C∗(ΩX)-module Z.
Let C∗ be a complex of free Z-modules. A Maurer-Cartan element m ∈
End−1(C∗(ΩX)⊗C∗) is said to be a universal cocycle if (C∗(ΩX)⊗C∗, ∂+m)
is a semi-free resolution of the trivial C∗(ΩX)-module Z. With this definition
at hand, our second main result reads as follows.

Theorem B (Equivalence of Barraud-Cornea and Brown cocycles).
The Barraud-Cornea and Brown cocycles are universal, and therefore equiv-
alent in the sense that they give rise to chain homotopy equivalent semi-free
resolutions of the trivial C∗(ΩX)-module Z.
That universality implies equivalence is a consequence of the fact that any
two semi-free resolutions of the same C∗(ΩX)-module are chain homotopy
equivalent. In §3 we prove Theorem B as Theorem 3.6.

Brown’s twisting cocycle is a foundational discovery which paved the way for
the development of homotopical algebra. It plays a key role in Koszul duality,
which is in turn the conceptual path to defining algebraic structures up to
homotopy [LV12]. See §3.2 for further references. Our Theorem B places its
Morse theoretic analogue, the Barraud-Cornea cocycle, on an equal footing.
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Tor, Ext, and Poincaré duality. As a consequence of this discussion, we see
that the Morse chain complex with DG-coefficients is a model for the derived
tensor product with the trivial C∗(ΩX)-module Z,

C∗(X;F) ≃ F
L
⊗C∗(ΩX) Z,

denoted also TorC∗(ΩX)
∗ (−,Z). In §11 we define the Morse cochain complex

C∗(X;G)

with DG coefficients in a (cohomological) right C−∗(ΩX)-module G, and
we show in Proposition 11.7 that it can be interpreted as a derived Hom
functor. More precisely, given a right C−∗(ΩX)-module G, we denote G the

right C∗(ΩX)-module obtained by regrading in opposite degree, and G left the
left C∗(ΩX)-module obtained from G using the canonical involution on ΩX
given by parametrizing the loops backwards. Then

C∗(X;G) ≃ RHomC∗(ΩX)(Z,G
left

).

Our main result in this context is the following Poincaré duality theorem.
A direct proof in the orientable case starting from the algebraic definitions
of homology as derived ⊗ and cohomology as derived Hom was previously
given by Malm in his thesis [Mal10, Theorem 3.1.2].

Theorem C (Poincaré duality). Let X be a closed manifold of dimension
n and let ℴX be its orientation local system supported in degree 0. Given F a
homological DG local system, let F be the cohomological local system obtained
from F by reversing the sign of the grading. There is an isomorphism

PD : H∗(X;F) ≃−→ Hn−∗(X;F ⊗ ℴX).

We prove Theorem C in the orientable case as Theorem 11.9, and in the
general case as Theorem 12.5.

Homology vs. homotopy. Homology with DG local coefficients stands midway
between homology theory and homotopy theory. At a conceptual level, this
comes from the role played by universal cocycles in homotopical algebra.

The following example is significant. We consider X = S2, for which usual
homology is unable to see homotopical information beyond degree 2. It is
well-known that π3(S

2) ≃ Z, with a generator represented by the Hopf fibra-
tion S3 → S2. The fibration gives rise to a DG local system with fiber C∗(S

1)
and H∗(S

2;C∗(S
1)) ≃ H∗(S

3) by Theorem A. The top dimensional generator
of this homology group is an instantiation of the generator of π3(S

2).
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Connection to Floer homotopy theory and previous related work. The con-
struction of the Morse complex with DG coefficients relies heavily on the
original ideas of Barraud and Cornea [BC07] and connects to Floer homo-
topy theory. This is a rapidly unfolding field envisioned by Cohen-Jones-
Segal [CJS95] and going back to Floer [Flo89]. For recent results inspired
by this perspective, see Abouzaid-Blumberg [AB21], Large [Lar21], Por-
celli [Por22], Hirschi-Porcelli [HP22], Abouzaid-McLean-Smith [AMS23].

Floer observed in [Flo89, §2, pp. 212-213] that “the trajectory spaces are
framed rather than only oriented” and that, as a consequence, “it should
be possible to obtain [generalized Floer cohomology theories]” in which “[the
boundary operator], in contrast to the singular case, would depend on trajec-
tory spaces of arbitrary dimension”. Floer homotopy theory aims to extract
generalized cohomology theories, or spectra, from higher dimensional tra-
jectory spaces. Using the terminology of Cohen-Jones-Segal [CJS95], the
ensemble of all trajectory spaces has the structure of a flow category, see also
Pardon [Par16] and Abouzaid [Abo22].

One can place our paper in context by discussing how much information one
retains from the Morse or Floer trajectory spaces: classical Morse and Floer
theory use 0-dimensional moduli spaces; Floer homotopy theory uses the full
moduli spaces together with their framing; our Morse homology with DG-
coefficients, and the Floer homology with DG-coefficients from [BDHO], uses
(representatives of) the fundamental classes rel boundary of all the compact-
ified moduli spaces. This gives further meaning to the previous statement
that our construction stands midway between homology and homotopy.

The original construction of Barraud-Cornea has been also revisited in recent
years by Zhou [Zho19, Zho23], Rezchikov [Rez21], Charette [Cha17]. There
is a substantial overlap between our §7 and the work of Charette, who proves
essentially the same theorem as our Theorem A, but with Z/2-coefficients.

Morse homology with classical (non DG) local coefficients has been widely
used in the literature. We refer to the recent article by Banyaga-Hurtubise-
Spaeth [BHS19] for a recent treatment and a comprehensive list of references.

Functoriality. The bulk of the technical work in this paper goes into defining
over Z the Barraud-Cornea twisting cocycle, and also continuation cocy-
cles associated to homotopies of Morse functions and pseudo-gradient vector
fields, and homotopy cocycles associated to homotopies of such homotopies,
and in proving their functoriality properties. The general structure obtained
in this way is laid out in §2, and the structural properties of the resulting
homology theory are summarized in the following statement.
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Theorem D (Functoriality). A continuous map between smooth closed
manifolds φ : X → Y induces in homology a canonical map

φ∗ : H∗(X;φ∗F)→ H∗(Y ;F),

where φ∗F denotes the C∗(ΩX)-module structure induced on F by the DG
map (Ωφ)∗ : C∗(ΩX)→ C∗(ΩY ). The map φ∗ has the following properties:

1. (Identity) We have Id∗ = Id.

2. (Composition) Given maps X
φ−→ Y

ψ−→ Z and a DG local system
F on Z, we have

(ψφ)∗F = φ∗ψ∗F

and
(ψφ)∗ = ψ∗φ∗ : H∗(X;φ∗ψ∗F)→ H∗(Z;F).

3. (Homotopy) A homotopy of maps φ[0,1] = (φt), t ∈ [0, 1] induces a
canonical isomorphism

φ[0,1]∗ : H∗(X;φ∗
0F)

≃−→ H∗(X;φ∗
1F)

such that φ1∗ ◦ φ[0,1]∗ = φ0∗.

4. (spectral sequence) The morphism φ∗ is the limit of a morphism
between spectral sequences that are canonically associated to the corre-
sponding enriched complexes, given at the second page by

φp,∗ : Hp(X;φ∗Hq(F))→ Hp(Y ;Hq(F))

i.e., the usual direct map induced by φ in (Morse) homology with coef-
ficients in Hq(F).

We prove Theorem D as Theorem 8.2. Similar properties hold for shriek
maps φ! in homology (Theorem 8.2) and for maps φ∗ induced in cohomology
(Proposition 11.10). These are related to each other via Poincaré duality,
and this whole discussion is carried over in §§8-10.

Further developments and questions. There are many directions of study
which open up from the current paper. We mention the following.

� Floer theory. This paper on Morse theory serves as a blueprint for Floer
theory. The authors will address Floer homology with DG-coefficients
in their forthcoming work [BDHO].
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� Quantitative aspects. Morse and Floer complexes with DG-coefficients
are naturally filtered. It would be interesting to develop applications,
including in interaction with barcodes.

� Relation to homotopy theory. (i) How much of the homotopy of X can
be seen by fibrations over X and their chain complexes? (ii) Study
homology with DG coefficients in relation with generalized homology
theories like stable homotopy theory and K-theory. This connects to
the previous discussion on Floer homotopy theory.

� String topology. The homology H∗(X;C∗(ΩX)ad) with DG-coefficients
in C∗(ΩX) seen as a module over itself via the adjoint action, denoted
C∗(ΩX)ad, is isomorphic to the homology of the free loop space LX.
Robin Riegel is developing in his Ph.D. thesis a model for string topol-
ogy using Morse theory with DG-coefficients. Relevant references for
this perspective are [GS08, Mal10].

We end this introduction with a discussion of our setup involving C∗(ΩX)-
modules.

Based loop vs. paths, DG-algebra vs. DG-category. Morse trajectories eval-
uate naturally into Moore paths and they can be used to define morphisms
in the DG-category Path described as follows: the objects are given by the
critical points of the Morse function, and the morphisms are given by (cubi-
cal) chains on the spaces of paths connecting these points. DG-local systems
can be described as derived representations of the category Path, and it is
possible to recast the results presented in this paper in that language.

In contrast, we use a DGA instead of a DG-category (chains on based loops
instead of the category Path), and we use DG-modules instead of derived
representations of Path. This results in a drastic simplification at the level of
homological algebra. The price to pay is that we need to choose as additional
data an embedded tree that connects the basepoint to the critical points
of the Morse function. This choice results in evaluation maps that have a
slightly more cumbersome form, involving a homotopy inverse of the map
which collapses the tree to a point. Also, we need to additionally prove
invariance of our constructions with respect to that choice of tree.

C∗(ΩX)-modules vs. representations of the infinity groupoid. It is a well-
known fact that classical local systems on a manifold X can equivalently
be viewed either as Z[π1(X)]-modules, or as bundles of groups with triv-
ial holonomy. In a similar fashion, DG-local systems, which we defined as
differential graded C∗(ΩX)-modules, should be equivalently viewed as repre-
sentations of the full homotopy type of X, i.e. representations of the infinity
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groupoid π∞(X). We do not know whether this is true in such a generality,
but it was proved to be true for perfect complexes by Holstein [Hol15, The-
orem 26]. The topic is discussed from a broader perspective by Arias Abad
and Schätz [AS18]. See also Porta and Teyssier [PT22, Corollary 1.5].

Structure of the paper. We start in §2 with a comparison between the clas-
sical Morse homology and the DG Morse homology toolsets. This section
can serve as a reading guide for sections §§5-6, in which we construct the
Morse chain complex with DG coefficients and prove its invariance. In §3
we prove Theorem B, showing the equivalence between the Barraud-Cornea
twisting cocycle and the Brown cocycle. This gives topological meaning and
context for the construction of the Morse complex with DG coefficients. Sec-
tion §4 is of preparatory nature, and we discuss therein various algebraic
properties of complexes of DG Morse type. In §7 we prove Theorem A,
showing that DG Morse homology recovers the homology of total spaces of
fibrations. This is a fundamental result, which is also used in the proof of
Theorem B. In §8 we spell out various functoriality properties of Morse ho-
mology with DG-coefficients, involving both direct and shriek maps. These
maps are constructed and their properties are established from two equiva-
lent perspectives in §§9-10, which cover in particular Theorem D. In §10.6
we discuss the functoriality properties of maps between closed manifolds of
equal dimensions. In §11 we define cohomology and prove the Poincaré du-
ality Theorem C in the orientable case. In §12 we construct shriek maps and
prove the Poincaré duality Theorem C for non-orientable manifolds. In §13
we extend our constructions (in particular Theorems A and D) to topological
spaces which are homotopically equivalent to finite dimension manifolds and
to colimits of such spaces; we then apply this to free loop spaces.

Disclaimer and acknowledgements. The debt owed to [BC07] by this paper
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the main construction from [BC07], the second, third, and fourth authors of
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we refer to it as the “Barraud-Cornea construction/cocycle”.

The authors were able to meet in excellent conditions during the Covid pan-
demic at CIRM Marseille in February 2021 and at IHP Paris in May-June
2021. They acknowledge partial funding from the ANR, grants no. 18-CE40-
0009 (ENUMGEOM ) and 21-CE40-0002 (COSY). The third author is also
partially supported by Institut Universitaire de France. The fourth author
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2 Morse vs DG Morse homology toolset

In this section we present the structure of the enriched theory at homology
level, which we call “the DG Morse homology toolset” (we do not address
higher chain level structures in this paper). It consists of data defining the
differential, continuation maps, and homotopy maps. We start the discussion
with a few definitions involving Maurer-Cartan elements. These allow us to
place on the same formal footing the classical Morse toolset and the DG one,
in the hope that this will render the new objects more familiar to the reader.

2.1 End and Hom complexes

Let (C∗, ∂) be a chain complex graded by the integers Z, with differential ∂
of degree −1. The graded End complex End(C∗) is a differential graded Lie
algebra (dgLa). The degree k component Endk consists of degree k linear
maps C∗ → C∗+k, the bracket is [f, g] = f ◦ g − (−1)|f |·|g|g ◦ f , and the
differential is D = [∂, ·].
Let (C±

∗ , ∂
±) be chain complexes. The Hom complex Hom(C+

∗ , C
−
∗ ) is a

differential graded module, whose degree k component is the space of degree
k linear maps C+

∗ → C−
∗+k, and with differential D given on a homogeneous

element by Df = ∂−f − (−1)|f |f∂+. We denote symbolically Df = [∂, f ].
The Hom complex is a left Lie module over End(C−) by post-composition
and a right Lie module over End(C+) by pre-composition.

Twisted differential. A Maurer-Cartan element for (C∗, ∂0) is an element
m ∈ End−1(C∗) satisfying the Maurer-Cartan equation

Dm+
1

2
[m,m] = 0.

This relation is equivalent to (∂0+m)2 = 0, so that Maurer-Cartan elements
can (and should) be viewed as perturbations of the differential ∂0 on C∗. We
refer to ∂ = ∂0 +m as the twisted differential.

This is the most trivial instance of a very general philosophy initiated by
Deligne [Del86], according to which any deformation problem is “controlled”
by a dgLA through the intermediate of its Maurer-Cartan elements.

Chain maps. Consider now complexes (Ci
∗, ∂

i
0) with Maurer-Cartan ele-

ments mi for i = 0, 1, denote ∂i = ∂i0+mi the corresponding perturbed differ-
entials and denote D the differential on the complex Hom((C0

∗ , ∂
0), (C1

∗ , ∂
1)).

Since we use on Ci, i = 0, 1 the twisted differentials, we refer to this as the
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twisted Hom complex. A degree 0 chain map Ψ : (C0
∗ , ∂

0)→ (C1
∗ , ∂

1) satisfies
by definition ∂1Ψ = Ψ∂0, and this is equivalent to

DΨ = 0,

i.e., Ψ ∈ Hom0((C
0
∗ , ∂

0), (C1
∗ , ∂

1)) is a cycle in the twisted Hom complex.

Homotopies. Given chain maps Ψ0,Ψ1 ∈ Hom0((C
0
∗ , ∂

0), (C1
∗ , ∂

1)) so that
DΨ0 = DΨ1 = 0, a chain homotopy between Ψ0 and Ψ1 is a degree 1 map
h : (C0

∗ , ∂
0)→ (C1

∗ , ∂
1) such that Ψ1 −Ψ0 = ∂1h+ h∂0. Equivalently

Ψ1 −Ψ0 = Dh,

i.e., Ψ1 − Ψ0 is a boundary in the twisted Hom complex with primitive
h ∈ Hom1((C

0
∗ , ∂

0), (C1
∗ , ∂

1)).

2.2 The Morse toolset

LetX be a closed manifold. The standard toolset in classical Morse homology
consists of the differential, continuation maps and homotopy maps, see for
example [AD14]. With a view towards the DG setup, we explain how to
interpret these in the language of Maurer-Cartan elements and twisted Hom
complexes of the previous subsection.

Differential. Let (f, ξ) be a regular pair consisting of a Morse function f
and a Morse-Smale pseudo-gradient ξ, and denote

C• = ⟨Crit(f)⟩,

the free Z-module generated by the critical points of f .

The Morse differential ∂ can be seen as a perturbation of the zero differential
∂0 = 0 by a Maurer-Cartan element m ∈ End(C•). This Maurer-Cartan
element is the matrix m = (nx,y), x, y ∈ Crit(f) whose entries are given by
the signed count of gradient trajectories between points x and y such that
|x| − |y| = 1, and are zero otherwise. The Maurer-Cartan relation amounts
to the fact that this matrix squares to zero, and we have ∂ = m.

The resulting twisted complex

MC∗(f, ξ) = (⟨Crit(f)⟩, ∂)

is the Morse complex.
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Continuation maps. Let (ft, ξt), t ∈ [0, 1] be a regular homotopy interpo-
lating between two regular pairs (fi, ξi), i = 0, 1. To this data we associate
a degree 0 continuation map

Ψ :MC∗(f0, ξ0)→MC∗(f1, ξ1).

This is a chain map, i.e., a cycle in Hom(MC∗(f0, ξ0),MC∗(f1, ξ1)).

The map Ψ is a matrix whose rows and columns are indexed by Crit(f1),
resp. Crit(f0). The entries of this matrix can be defined as signed counts of
pseudo-gradient trajectories in [0, 1]×X for the function (t, x) 7→ g(t)+ft(x),
where g : [0, 1] → R is smooth with a critical maximum at 0 and a critical
minimum at 1.

Homotopies. Let {(fτ,t, ξτ,t)}, τ ∈ [0, 1] be a regular homotopy of ho-
motopies connecting two regular homotopies (f0,t, ξ0,t) and (f1,t, ξ1,t) which
interpolate between (f0, ξ0) and (f1, ξ1). To this data we associate a degree
1 map

h :MC∗(f0, ξ0)→MC∗+1(f1, ξ1)

which is a chain homotopy between the continuation chain maps Ψ0 and Ψ1

determined by (f0,t, ξ0,t), resp. (f1,t, ξ1,t). Thus Ψ1−Ψ0 is a boundary in the
twisted Hom complex Hom(MC∗(f0, ξ0),MC∗(f1, ξ1)), and h is a primitive
of Ψ1 −Ψ0.

The map h is a matrix whose rows and columns are indexed by Crit(f1),
resp. Crit(f0). The entries of this matrix can be defined as signed counts of
pseudo-gradient trajectories in [0, 1] × [0, 1] ×X for the function (τ, t, x) 7→
g(τ) + g(t) + fτ,t(x), where g : [0, 1]→ R is smooth with a critical maximum
at 0 and a critical minimum at 1.

2.3 The DG Morse toolset

The DG Morse homology toolset consists of the same kind of data as the
Morse homology one, i.e., the differential, continuation maps and homotopies,
except that the coefficients are enriched in cubical chains R∗ = C∗(ΩX), and
more generally in a DG right R∗-module F∗.

Differential. To a Morse-Smale pair (f, ξ) consisting of a Morse function
and a generic pseudo-gradient, we associate a Maurer-Cartan element m ∈
End−1(R∗ ⊗ C•), where C• = ⟨Crit(f)⟩ is endowed with the zero differential
as in the previous subsection.

We view m as a square matrix (mx,y) acting from the right with coefficients in
R∗ and indexed by the set Crit(f) which constitutes the distinguished basis
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of C•; in other words we write

m(a⊗ x) =
∑

y∈Crit(f)

amx,y ⊗ y.

Intuitively, the chain mx,y ∈ C|x|−|y|−1(ΩX) is obtained by evaluating into
based loops a chain level representative of the compactified moduli space
L(x, y) of connecting gradient trajectories of arbitrary index which run from
x to y. We call m the Barraud-Cornea cocycle. See §5.2 for the details of the
construction.

Proposition 2.1. The Maurer-Cartan equation

Dm+
1

2
[m,m] = 0

is equivalent to the relation

∂mx,y =
∑
z

(−1)|x|−|z|mx,zmz,y. (1)

Proof. Let a ∈ R∗ be homogeneous of degree |a| and x ∈ Crit(f). The
twisted differential acts by ∂(a ⊗ x) = ∂a ⊗ x + (−1)|a|

∑
y amx,y ⊗ y. We

have

∂m(a⊗ x) = (∂m+m∂)(a⊗ x)
= ∂

(
(−1)|a|a⊗m(x)

)
+m(∂a⊗ x)

= (−1)|a|∂(
∑
y

amx,y ⊗ y) + (−1)|a|−1
∑
y

(∂a)mx,y ⊗ y

=
∑
y

a∂mx,y ⊗ y.

On the other hand 1
2
[m,m] = m ◦m computes to

(m ◦m)(a⊗ x) = m((−1)|a|
∑
z

amx,z ⊗ z)

=
∑
z

(−1)|x|−|z|−1
∑
y

amx,zmz,y ⊗ y

=
∑
y

a(
∑
z

(−1)|x|−|z|−1mx,zmz,y)⊗ y.

It is clear now that the relation ∂mx,y =
∑

z(−1)|x|−|z|mx,zmz,y implies the
Maurer-Cartan equation. The converse is seen to be true by taking a to be
the unit (basepoint).
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Given a right R∗-module F∗, we induce tautologically a Maurer-Cartan ele-
ment

mF ∈ End−1(F∗ ⊗ C•).

The resulting twisted complex

C∗(f, ξ;F) = (F∗ ⊗ C•, ∂),

∂(α⊗ x) = ∂α⊗ x+ (−1)|α|
∑
y

αmx,y ⊗ y

is the Morse complex with coefficients in the DG local system F∗.

There are choices involved in the construction of the Barraud-Cornea cocycle,
and we discuss the ambiguity in §§5.2–6.

Remark 2.2. An inspection of the proof of Proposition 2.1 shows that, in
this context, the Maurer-Cartan relation (1) can be replaced with the slightly
weaker one

∀α ∈ F , α · (∂mx,y −
∑
z

(−1)|x|−|z|mx,zmz,y) = 0.

Continuation maps. Let (ft, ξt), t ∈ [0, 1] be a regular homotopy interpo-
lating between two regular pairs (f0, ξ0) and (f1, ξ1). Let mi, i = 0, 1 be a
choice of Barraud-Cornea cocycles. To this data we associate a continuation
map, also called continuation cocycle,

Ψ : C∗(f0, ξ0;R∗)→ C∗(f1, ξ1;R∗).

This is a degree 0 cycle in Hom(C∗(f0, ξ0;R∗), C∗(f1, ξ1;R∗)), i.e., a chain
map.

We view Ψ as a matrix (νx0,y1) acting from the right with columns indexed
by x0 ∈ Crit(f0) and rows indexed by y1 ∈ Crit(f1). Intuitively, the chain
νx0,y1 ∈ C|x0|−|y1|(ΩX) is obtained by evaluating into based loops a chain level
representative of the fundamental class of the compactified moduli space of
pseudo-gradient trajectories of arbitrary index in [0, 1] × X, running from
(0, x0) to (1, y1), for the function (t, x) 7→ g(t)+ ft(x), where g : [0, 1]→ R is
smooth with a critical maximum at 0 and a critical minimum at 1. See §6.2
for the details of the construction.

Proposition 2.3. The relation

DΨ = 0

is equivalent to

∂νx0,y1 =
∑
z0

m0
x0,z0

νz0,y1 +
∑
z1

(−1)|x0|−|z1|−1νx0,z1m
1
z1,y1

. (2)

18



Proof. Note that DΨ = ∂1Ψ − Ψ∂0 since Ψ has degree 0. The map Ψ acts
by Ψ(a⊗ x0) =

∑
y1
aνx0,y1 ⊗ y1, and we have

DΨ(a⊗ x0)
= ((∂ +m1)Ψ−Ψ(∂ +m0))(a⊗ x0)

= (∂ +m1)(
∑
y1

aνx0,y1 ⊗ y1)

−Ψ(∂a⊗ x0)−Ψ((−1)|a|
∑
z0

am0
x0,z0
⊗ z0)

=
∑
y1

(∂a)νx0,y1 ⊗ y1 +
∑
y1

(−1)|a|a(∂νx0,y1)⊗ y1

+
∑
y1

∑
z1

(−1)|a|(−1)|x0|−|z1|aνx0,z1m
1
z1,y1
⊗ y1

−
∑
y1

(∂a)νx0,y1 ⊗ y1 −
∑
y1

∑
z0

(−1)|a|am0
x0,z0

νz0,y1 ⊗ y1

= (−1)|a|
∑
y1

a
(
∂νx0,y1 −

∑
z0

m0
x0,z0

νz0,y1

+
∑
z1

(−1)|x0|−|z1|νx0,z1m
1
z1,y1

)
⊗ y1.

The conclusion follows.

Given a right R∗-module F∗, we induce a continuation cycle ΨF in the twisted
Hom complex Hom(C∗(f0, ξ0;F∗), C∗(f1, ξ1;F∗)). This in turn induces a con-
tinuation chain map

ΨF : C∗(f0, ξ0;F∗)→ C∗(f1, ξ1;F∗),

which acts by

ΨF(α⊗ x0) =
∑
y1

ανx0,y1 ⊗ y1.

There are choices involved in the construction of the continuation cocycle,
and we discuss the ambiguity in §6.3.

Homotopies. Let {(fτ,t, ξτ,t)}, τ ∈ [0, 1] be a regular homotopy of homo-
topies connecting two regular homotopies (f0,t, ξ0,t) and (f1,t, ξ1,t) which inter-
polate between (f0, ξ0) and (f1, ξ1). Let m

i = (mi
x,y) be a choice of Barraud-

Cornea cocycles for (fi, ξi), i = 0, 1, and let Ψ0 = (ν0x0,y1), Ψ1 = (ν1x0,y1) be
a choice of continuation cocycles for (f0,t, ξ0,t) and (f1,t, ξ1,t) respectively. To
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this data we associate a degree 1 element

h ∈ Hom1(C∗(f0, ξ0;R∗), C∗(f1, ξ1;R∗))

such that Ψ1 −Ψ0 = Dh. We refer to it as the homotopy cocycle.

We view h as a matrix (hx0,y1) acting from the right with columns indexed
by x0 ∈ Crit(f0) and rows indexed by y1 ∈ Crit(f1). Intuitively, the chain
hx0,y1 ∈ C|x0|−|y1|+1(ΩX) is obtained by evaluating into based loops a chain
level representative of the fundamental class of the compactified moduli space
of pseudo-gradient trajectories of arbitrary index in [0, 1]×[0, 1]×X, running
from (0, 0, x0) to (1, 1, y1), for the function (τ, t, x) 7→ g(τ) + g(t) + fτ,t(x),
where g : [0, 1] → R is smooth with a critical maximum at 0 and a critical
minimum at 1. See §6.3 for the details of the construction.

Proposition 2.4. The relation

Dh = Ψ1 −Ψ0

is equivalent to

∂hx0,y1 = ν1x0,y1 − ν
0
x0,y1

+
∑
z0

(−1)|x0|−|z0|m0
x0,z0

hz0,y1 (3)

+
∑
z1

(−1)|x0|−|z1|hx0,z1m
1
z1,y1

.

Proof. The map h acts by h(a⊗ x0) = (−1)|a|
∑

y1
ahx0,y1 ⊗ y1. Assume first

that (3) is satisfied. We then obtain

(h∂0 + ∂1h)(a⊗ x)

= h(∂a⊗ x+ (−1)|a|a
∑
z

m0
x,z ⊗ z) + (−1)|a|∂1(a

∑
y

hx,y ⊗ y)

= (−1)|a|−1∂a
∑
y

hx,y ⊗ y + (−1)|a|
∑
z,y

(−1)|a|+|x|−|z|−1am0
x,zhz,y ⊗ y

+ (−1)|a| ∂a
∑
y

hx,y ⊗ y + (−1)|a| (−1)|a| a
∑
y

∂hx,y ⊗ y

+ (−1)|a|a
∑
y,w

(−1)|a|+|x|−|y|−1hx,ym
1
y,w ⊗ w.
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After simplifying and interchanging y and w in the last sum we get using (3)

(h∂0 + ∂1h)(a⊗ x)

= a
∑
y

(∂hx,y −
∑
z

(−1)|x|−|z|m0
x,z hz,y −

∑
w

(−1)|x|−|w|hx,wm
1
w,y)⊗ y

= a
∑
y

(ν1x,y − ν0x,y)⊗ y

= (Ψ1 −Ψ0)(a⊗ x).

This proves the relation Dh = Ψ1 − Ψ0. The converse is proved using the
same computation by taking a to be the unit.

Given a right R∗-module F∗, we induce an element

hF ∈ Hom1(C∗(f0, ξ0;F∗), C∗(f1, ξ1;F∗))

which gives rise to a chain homotopy between the continuation maps ΨF
0 and

ΨF
1 determined respectively by (f0,t, ξ0,t) and (f1,t, ξ1,t), i.e., Ψ

F
1 −ΨF

0 = DhF .
The map hF acts by

hF(α⊗ x0) = (−1)|α|
∑
y1

αhx0,y1 ⊗ y1.

There are choices involved in the construction of the homotopy map h. How-
ever, unlike for the Barraud-Cornea cocycles and for the continuation cocy-
cles, we will not discuss the ambiguity because it would amount to developing
a theory of higher homotopies. See the work of Mazuir [Maz21] for the non-
enriched setting.

2.4 Vista on the DG Floer toolset

Although we do not address Floer theory in this paper, it is instructive to
spell out the analogue of the previous discussion in that context, with a view
towards future applications.

In its classical formulation, the Floer toolset at homology level consists of
the following data.

� to a regular pair (H, J) consisting of an admissible Hamiltonian and
an admissible almost complex structure, associate the Floer differ-
ential ∂ (degree −1), which is a square zero degree −1 map from
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C• = ⟨Per1(H)⟩ to itself. Here Per1(H) is the set of 1-periodic or-
bits of H.

The differential ∂ can be seen as a perturbation of the zero differential
∂0 = 0 by a Maurer-Cartan element m ∈ End−1(C•). The resulting
twisted complex FC∗(H, J) = (⟨Per1(H)⟩, ∂) is the Floer complex.

� to a regular homotopy (Hs, Js) interpolating between regular pairs
(H±, J±) at ±∞, associate a continuation map

Ψ : FC∗(H+, J+)→ FC∗(H−, J−)

of degree 0. This is a chain map, i.e., ∂−Ψ−Ψ∂+ = 0.

This is equivalent to saying that Ψ is a cycle in the twisted Hom com-
plex Hom(FC∗(H+, J+), FC∗(H−; J−)).

� to a regular homotopy of homotopies {(Hλ, Jλ)} connecting two regu-
lar homotopies (H i, J i), i = 0, 1 which interpolate between (H±, J±),
associate a degree 1 map

h : FC∗(H+, J+)→ FC∗+1(H−, J−)

which is a chain homotopy between the continuation chain maps Ψi

determined by (H i, J i) for i = 0, 1, i.e., Ψ1 −Ψ0 = ∂−h+ h∂+.

This is equivalent to saying that Ψ1 −Ψ0 is a boundary in the twisted
Hom complex Hom(FC∗(H+, J+), FC∗(H−; J−)), and h is a primitive
of Ψ1 −Ψ0.

The DG Floer toolset consists of the same kind of data, but enriched with
coefficients in cubical chains R∗ = C∗(ΩLX), where LX stands for the free
loop space of X, and more generally enriched with coefficients in any DG
local system over LX, i.e., DG complex F∗ which is a right R∗-module.

� to a regular pair (H, J) consisting of an admissible Hamiltonian and
an admissible almost complex structure, associate a Maurer-Cartan ele-
ment m in the End complex End(R∗⊗C•) endowed with the differential
inherited from R∗.

Given a right R∗-module F∗, we induce a Maurer-Cartan element mF

in the End complex End(F∗ ⊗ C•) endowed with the differential ∂ in-
herited from F∗. The Floer differential ∂ is the twist of this differential
by the Maurer-Cartan element mF . The resulting twisted complex
FC∗(H, J ;F) = (F∗ ⊗ C•, ∂) is the Floer complex with coefficients in
the DG local system F∗.
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� to a regular homotopy (Hs, Js) interpolating between regular pairs
(H±, J±) at ±∞, associate a degree 0 continuation element Ψ. This is
a cycle in Hom(FC∗(H+, J+;R∗), FC∗(H−, J−;R∗)).

Given a right R∗-module F∗, we induce tautologically a continuation
cycle ΨF in Hom(FC∗(H+, J+;F∗), FC∗(H−; J−;F∗)). This induces a
continuation map ΨF : FC∗(H+, J+;F∗)→ FC∗(H−; J−;F∗) such that
∂−ΨF −ΨF∂+ = 0.

� to a regular homotopy of homotopies {(Hλ, Jλ)} connecting two regu-
lar homotopies (H i, J i), i = 0, 1 which interpolate between (H±, J±),
associate a degree 1 parametrized continuation element

h ∈ Hom1(FC∗(H+, J+;R∗), FC∗(H−; J−;R∗))

which realizes a chain homotopy between the continuation maps Ψi

determined by (H i, J i), i.e., Ψ1 −Ψ0 = ∂−h+ h∂+.

Given a right R∗-module F∗, we induce tautologically an element hF ∈
Hom1(FC∗(H+, J+;F∗), FC∗(H−; J−;F∗)) which realizes a chain homo-
topy between the continuation maps ΨF

i determined by (H i, J i), i.e.,
ΨF

1 −ΨF
0 = ∂−hF + hF∂+.
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3 Comparison between the Barraud-Cornea

cocycle and the Brown cocycle

Understanding the homology of fibrations F ↪→ E → X was historically a
driving question in algebraic topology. The fundamental piece of structure
is the Leray-Serre spectral sequence [Ser51], and we warmly recommend Mc-
Cleary’s book [McC01] for a comprehensive panorama of the subject. For
us, the case in point is Brown’s chain level description of the total space E
in terms of chains on X and chains on F , see [Bro59]. The key ingredient is
“Brown’s universal twisting cocycle”

φ ∈ C∗(X;C∗(ΩX))

which satisfies the Maurer-Cartan equation

[∂, φ] + φ ∪ φ = 0. (4)

Our purpose in this section is to explain the precise sense in which Brown’s
twisting cocycle is equivalent to the Barraud-Cornea twisting cocycle. In the
sequel we fix an arbitrary ring of coefficients A.

3.1 The Barraud-Cornea cocycle as a Maurer-Cartan
element

Let X be a closed manifold and f : X → R a Morse function together with
a choice of regular pseudo-gradient vector field and a choice of collapsing
embedded tree as in the previous sections. Denote R∗ = C∗(ΩX) the dga
of cubical chains, denote C• = ⟨Crit(f)⟩ the free Z-module generated by the
critical points of f , viewed as a complex with zero differential, and denote
C∗ the Morse complex, with underlying Z-module C• and endowed with the
Morse differential.

As explained in §2.3, the Barraud-Cornea cocycle may be interpreted as a
Maurer-Cartan element in m ∈ End−1(R∗ ⊗ C•). We provide below a slight
modification that allows to obtain a Maurer-Cartan element in End(R∗⊗C∗).
This will be useful to establish a relation with the Brown twisting cocycle.

Given x, y ∈ Crit(f) such that |x| − |y| = 1 we denote nx,y the alge-
braic number of pseudo-gradient trajectories connecting x to y, so that
the differential in C∗ acts by ∂x =

∑
|y|=|x|−1 nx,yy. Let e be the constant

loop at the basepoint. We modify the m = (mx,y) ∈ End−1(R∗ ⊗ C•) to
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m′ = (m′
x,y) ∈ End−1(R∗ ⊗ C∗) given by

m′
x,y =

{
mx,y, if |x| − |y| ≠ 1,
mx,y − nx,ye, if |x| − |y| = 1.

The following result is proved by a computation similar to that of Proposi-
tion 2.1, which we omit.

Proposition 3.1. The relation

∂mx,y =
∑
z

(−1)|x|−|z|mx,zmz,y

is equivalent to the Maurer-Cartan equation

Dm′ +
1

2
[m′,m′] = 0,

i.e., m′ is a Maurer-Cartan element in the dgLa End(R∗ ⊗ C∗).

From this perspective, the Morse complex enriched with coefficients in R∗ is

(R∗ ⊗ C∗, ∂ +m′),

where ∂ is the tensor differential.

3.2 The Brown cocycle as a Maurer-Cartan element

Brown’s twisting cocycle has played a key role both in the development of the
theory of the bar-cobar adjunction (see [Bro59, §10], as well as Felix-Halperin-
Thomas [FHT95] or Loday-Vallette [LV12, §2] for modern developments),
and in the theory of homological perturbation (see Gugenheim [Gug60] and
McCleary [McC01, §6.4], as well as the references therein). Our discussion
will focus on the perturbative aspects.

Brown’s twisting cocycle φ ∈ C∗(X;C∗(ΩX)) acts as

φ : C∗(X)→ C∗−1(ΩX).

Using the coalgebra structure on C∗(X) with Alexander-Whitney coproduct
λ, and the algebra structure on C∗(ΩX) with Pontryagin product µ, Brown
defines further [Bro59, Gug60]

mφ = (µ⊗ 1)(1⊗ φ⊗ 1)(1⊗ λ) ∈ End−1(C∗(ΩX)⊗ C∗(X)).
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The Maurer-Cartan relation (4) for φ turns out to be equivalent to

(∂ +mφ)
2 = 0.

This is in turn equivalent to saying that mφ is a Maurer-Cartan element in
the dgLa End(C∗(ΩX)⊗ C∗(X)), i.e.,

Dmφ +
1

2
[mφ,mφ] = 0.

We view therefore mφ, and hence φ, as defining a perturbation of the tensor
differential on C∗(ΩX)⊗ C∗(X).

3.3 Semi-free resolutions

The Barraud-Cornea cocycle and the Brown cocycle can be interpreted from
a unifying perspective in the context of differential homological algebra. For
this we need the following definition from [FHT95, §2].

Definition 3.2. Let R∗ be a DGA. A DG module T∗ over R∗ is called semi-
free if it admits a filtration

0 = T (−1) ⊂ T (0) ⊂ T (1) ⊂ · · · ⊂ T (k − 1) ⊂ T (k) ⊂ · · ·

such that, for all k ≥ 0, the module T (k)/T (k − 1) is R∗-free on a basis of
cycles. A semi-free R∗-resolution of an R∗-module M∗ is a semi-free module
T∗ with a quasi-isomorphism T∗

≃−→M∗.

We refer to [FHT95, §2] for terminology and material regarding semi-free
resolutions, which play in differential graded homological algebra the role
played by projective resolutions in the study of modules over commutative
rings. In particular, any two semi-free resolutions of the same R∗-module are
chain homotopy equivalent.

Example 3.3. Let R∗ be a DGA over a ring A and C∗ a chain complex
which is free over A with a distinguished basis B. Let m ∈ End−1(R∗ ⊗ C∗)
be a Maurer-Cartan element which is defined by a strictly lower triangular
matrix with respect to the degree in the basis B, i.e., mx,y = 0 if x, y ∈ B
and |x| ≤ |y|. Then the R∗-module (R∗ ⊗ C∗, ∂ + m) is semi-free. Indeed,
the filtration T (k) = R∗ ⊗ C∗≤k satisfies the requirements in the previous
definition.1 In particular, by Sections 3.1 and 3.2:

1Note that this is precisely the filtration that will be used in Definition 4.1 to define
the spectral sequence for the twisted complex.
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� Given a manifold X, the Barraud-Cornea twisted complex with coeffi-
cients in C∗(ΩX) is semi-free.

� Given a topological space X, the Brown cocycle mφ gives rise to a semi-
free C∗(ΩX)-module [Bro59].

The key fact is that the Barraud-Cornea cocycle and the Brown cocycle both
provide (semi-free) C∗(ΩX)-resolutions of the trivial C∗(ΩX)-module Z. This
is the content of the main theorems of Barraud and Cornea from [BC07,
Theorem 1.1.d] (enhanced to Z-coefficients by our Theorem 7.2, see also
Theorem A) and of Brown from [Bro59, Theorem 4.2], which provide quasi-
isomorphisms2

(C∗(ΩX)⊗ C∗(f), ∂ +m′)
≃−→ C∗(P⋆→XX)

and
(C∗(ΩX)⊗ C∗(X), ∂ +mφ)

≃−→ C∗(P⋆→XX).

Here P⋆→XX is the space of paths in X starting at the basepoint. This
space is contractible, so that C∗(P⋆→XX) is chain homotopy equivalent as a
C∗(ΩX)-module to the trivial C∗(ΩX)-module Z.

Definition 3.4. Let C∗ be a complex of free Z-modules and consider a
Maurer-Cartan element m ∈ End−1(C∗(ΩX) ⊗ C∗). We say that m is a
universal cocycle if (C∗(ΩX) ⊗ C∗, ∂ + m) is a semi-free resolution of the
trivial C∗(ΩX)-module Z.

Definition 3.5. Two Maurer-Cartan elements m ∈ End−1(C∗(ΩX) ⊗ C∗)
and m′ ∈ End−1(C∗(ΩX) ⊗ C ′

∗) are said to be equivalent if the complexes
(C∗(ΩX)⊗C∗, ∂+m) and (C∗(ΩX)⊗C ′

∗, ∂+m′) are chain homotopy equiv-
alent.

We therefore have:

Theorem 3.6. The Barraud-Cornea cocycle and the Brown cocycle are uni-
versal, and therefore equivalent.

Proof. We have already seen that these two cocycles are universal. On the
other hand, any two universal cocycles are equivalent because any two semi-
free resolutions of the trivial C∗(ΩX)-module Z are chain homotopy equiva-
lent.

2Brown actually proves a chain homotopy equivalence, and this can also be proved in
the Morse setup with more work.
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We close this section with two questions for further study.

Question 3.7. Realize the above chain homotopy equivalence by a map that
preserves the filtrations.

Question 3.8. The Brown cocycle φ is a Maurer-Cartan element in the con-
volution algebra Hom(C,A), with C = C∗(X) the DG coalgebra of chains on
X and A = C∗(ΩX) the DG algebra of chains on the space of based Moore
loops. See [Bro59, Gug60, LV12]. In the previous discussion we rephrased φ
as a Maurer-Cartan element mφ in the dgLa End(C∗(ΩX)⊗C∗(X)), bypass-
ing in this way the definition of the dgLa in terms of the coalgebra structure
on C∗(X) and allowing for a comparison with the Barraud-Cornea cocycle.
We find it an interesting question to reinterpret the Barraud-Cornea cocycle
as a Maurer-Cartan element in a convolution algebra Hom(C,A), with C the
Morse complex endowed with a structure of coalgebra up to homotopy.

Remark 3.9. From the perspective adopted in this section, the Morse chain
complex C∗(f ;F) is a model for the derived tensor product with the trivial
C∗(ΩM)-module Z:

C∗(f ;F) ≃ F
L
⊗C∗(ΩM) Z,

or, in another notation,

H∗(f ;F) ≃ TorC∗(ΩM)
∗ (F ,Z).

These identifications should be compared with [Mal10, Definition 3.1.1].
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4 Algebraic properties of twisted complexes

In this section we single out and discuss a number of algebraic properties of
twisted complexes, as defined in the previous section.

4.1 Algebraic setup

We recap the notation from the previous section in a slightly more abstract
setting, which we adopt for the rest of §4.

Our construction uses the following data.

(1) A differential graded algebra (DGA) R = (R∗, ∂), with unit 1 ∈ R0

over an ungraded ring A. The degree of a homogeneous element a ∈ R∗ is
denoted by |a|. We work in homological convention and assume that the
differential on R∗ has degree −1.
Our main example is R∗ = C∗(ΩX), the DGA of based Moore loops on a
manifold X.

(2) A differential graded (DG) right R∗-module F = (F∗, ∂). This
means that (F∗, ∂) is a chain complex endowed with a right R∗-module action

F∗ ⊗R∗ → F∗, α⊗ a 7→ α · a

which is a chain map of degree 0. Having in mind the fundamental example
R∗ = C∗(ΩX), we call such an object derived, or DG, local system, and we
refer to the Introduction for a discussion of this terminology.

Our privileged source of examples is provided by fibrations over X, see §7.
Upon choosing a lifting function, the cubical chains on the fiber inherit the
structure of a right C∗(ΩX)-module.

(3) A Maurer-Cartan element (or twisting cocycle) m. Given C• =
(Cp)p≥0 a graded free A-module which is based, i.e., endowed with a preferred
basis B, we see m as a matrix (mx,y), x, y ∈ B consisting of an element
mx,y ∈ R|x|−|y|−1 for any two elements x, y ∈ B with |x| > |y| (and set
mx,y = 0 if |x| ≤ |y|), and satisfying the Maurer-Cartan (MC) relation

∂mx,y =
∑

|x|>|z|>|y|

(−1)|x|−|z|mx,z ·mz,y. (5)

We implicitly assume that, for any x, y ∈ B with |x| > |y|, the set {z ∈ B :
mx,z and mz,y are nonzero} is finite.
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Given this data, the twisted chain complex on C• with DG-coefficients
in F is

C∗ = C∗(C•,F∗) = F∗ ⊗A C•,

with differential (of degree −1)

∂(α⊗ x) = ∂α⊗ x+ (−1)|α|
∑
y

α ·mx,y ⊗ y. (6)

Here α ∈ F , x ∈ B and the differential is extended by A-linearity in
the second variable. The homology of C∗ is called homology with DG-
coefficients in F and is denoted H∗(C•;F).

4.2 Canonical filtration, spectral sequence and lifted
complex

Unless otherwise mentioned we will suppose that the DGA R and the DG-
local systems F considered in this paper are supported in nonnegative de-
grees. This condition ensures that the spectral sequences that appear in the
sequel converge.

Definition 4.1. The canonical filtration on the complex (C∗, ∂) is given by

Fp(C∗) =
⊕
i≤p

F ⊗ Ci, p ≥ 0.

Since F is supported in a range of degrees that is bounded from below, the
spectral sequence (Er

p,q, d
r) associated to this filtration converges to H∗(C∗).

We will now describe its first pages.

Its 0-th page is

E0
p,q = Fp(Cp+q)/Fp−1(Cp+q) = Fq ⊗ Cp

and d0 : E0
p,q → E0

p,q−1 is given by d0(α ⊗ x) = ∂α ⊗ x. As a consequence,
the first page is

E1
p,q = Hq(F∗ ⊗ Cp) = Hq(F∗)⊗ Cp.

The differential d1 : E1
p,q → E1

p−1,q is given by

d1(α̂⊗ x) = (−1)q
∑

|y|=|x|−1

α̂ · m̂x,y ⊗ y,
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where α̂ ∈ Hq(F), m̂x,y is the image of mx,y in H0(R∗) and α̂ · m̂x,y is the
class of the cycle α ·mx,y in Hq(F).
In order to describe the second page of the spectral sequence, we need to
introduce the following complex.

Definition 4.2. The lifted complex of C• is the free graded left H0(R∗)-
module

C̃p = H0(R∗)⊗A Cp
endowed with the differential

δ(x) =
∑

|y|=|x|−1

m̂x,yy.

The terminology is motivated by the discussion in §5.1.1: for the fundamental
example where R∗ = C∗(ΩX) and m is the Barraud-Cornea cocycle, this is
precisely the lifted Morse complex from [Dam12]. We may now describe the
second page of the spectral sequence.

Lemma 4.3. The second page of the spectral sequence associated to C∗ =
C∗(C•,F∗) is given by

E2
p,q = Hp(C̃∗;Hq(F)),

where Hq(F) carries the induced right H0(R∗)-module structure.

Proof. Recall that E2
p,q is the homology of E1

p,q = Hq(F∗) ⊗A Cp, whose dif-
ferential is given by:

d1(α̂⊗ x) = (−1)q
∑

|y|=|x|−1

α̂ · m̂x,y ⊗A y.

Up to sign change this is exactly the differential of the complex

Hq(F∗)⊗H0(R∗) (H0(R∗)⊗A Cp) = Hq(F∗)⊗H0(R∗) C̃p,

whose homology is the claimed one.

4.3 Functoriality with respect to the DG-module

Our construction satisfies the following functoriality property.
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Proposition 4.4. Let F and F ′ be two DG-modules over a DGA R∗ endowed
with a twisting cocycle (mx,y) associated to a free based complex C•. Let Γ :
F → F ′ be a morphism of DG-modules over R∗. Then Γ yields a functorial
chain map

Γ̃ : C∗(C•,F)→ C∗(C•,F ′).

If Γ is a quasi-isomorphism then so is Γ̃.

Proof. We define Γ̃ by Γ̃(a ⊗ x) = Γ(a) ⊗ x. It is easy to check that Γ̃

is a chain map which preserves the canonical filtrations, hence Γ̃ induces a
morphism between the corresponding spectral sequences. If the map Γ is a
quasi-isomorphism then Γ̃ induces an isomorphism between the first pages of
the spectral sequences, hence an isomorphism between the limits of the two
spectral sequences.

Example 4.5. The degree 0 homology H0(F) is a right H0(R)-module and we
can view H0(F) as a DG-module F ′ over R∗ by setting F ′

0 = H0(F), F ′
k = 0

for all k ̸= 0 and using the canonical projection R∗ → H0(R∗), which is an
algebra map. There is an obvious morphism F → F ′ defined by the canonical
projection π : F0 → F ′

0 = H0(F) (and 0 elsewhere). Proposition 4.4 yields a
natural map

π∗ : H∗(C•;F)→ H∗(C̃•;H0(F)). (7)

The last assertion of Proposition 4.4 implies that, if Hk(F) = 0 for k ̸= 0,
then π∗ is an isomorphism. In fact, we will see in the proof of Proposi-
tion 4.12 below (see (10)) that π∗ is always an isomorphism in degree 0.

In the previous statement we used the same DGA for both modules F and
F ′, but sometimes we will have to deal with different modules over different
DGAs. The following remark will be helpful.

Remark 4.6. (push-forward of twisting cocycle = pull-back of DG-module
structure) Let R∗ be a DGA endowed with (mx,y) as above, Φ : R∗ → R′

∗ a
DGA-map and F ′ a DG-module over R′

∗. We may build twisted complexes
from this data by either:
1. pushing forward the twisting cocycle into R′

∗ by defining m′
x,y = Φ(mx,y)

and using this new twisting cocycle to define C∗(C•,F ′), or
2. pulling back via Φ the R′

∗-module structure on F ′ into an R∗-module struc-
ture denoted Φ∗F ′, and using it to define the twisted complex C∗(C•,Φ∗F ′)
using the original cocycle (mx,y).

As one can easily see these two twisted complexes coincide. We denote their
common homology by H∗(C•; Φ∗F ′).
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Example 4.7. Let ϕ : X → Y be a continuous map between pointed topolog-
ical spaces. It naturally induces a map Ωϕ : ΩX → ΩY hence a DGA mor-
phism between the cubical chain complexes R∗ = C∗(ΩX) and R′

∗ = C∗(ΩY ).

Using this remark we get the following generalization of Proposition 4.4.

Proposition 4.8. Let F , resp. F ′, be right DG-modules over the DGAs R∗,
resp. R′

∗, and let
(Γ,Φ) : F → F ′

be a morphism of DG-modules, i.e., Γ : F → F ′ is a morphism of complexes,
Φ : R∗ → R′

∗ is a morphism of DGAs and

Γ(α · a) = Γ(α) · Φ(a) ∀a ∈ R∗, ∀α ∈ F . (8)

Let (mx,y) be a twisting cocycle on R∗ and (m′
x,y) = Φ(mx,y) be its push-

forward in R′
∗. Then (Γ,Φ) induces a functorial map

Γ̃ : C∗(C•,F)→ C∗(C•,F ′).

Morerover, if Γ is a quasi-isomorphism then so is Γ̃.

Proof. Our assumptions imply that Γ : F → Φ∗F ′ is a morphism of DG-
modules over R∗, which therefore induces a functorial map

Γ̃ : C∗(C•,F)→ C∗(C•,Φ∗F ′)

by Proposition 4.4. The identification C∗(C•,Φ∗F ′) ≡ C∗(C•,F ′) discussed
in Remark 4.6 yields the result.

Example 4.9. In the particular case where F∗ = R∗, F ′
∗ = R′

∗ and Γ = Φ,
condition (8) in Proposition 4.8 is automatically satisfied and we obtain a

map Φ̃ : C∗(C•, R∗) → C∗(C•, R′
∗) which is a quasi-isomorphism whenever Φ

is a quasi-isomorphism.

4.4 A criterion for quasi-isomorphism between twisted
complexes

The goal of this section is to show that certain maps between twisted com-
plexes are quasi-isomorphisms if the induced maps between the lifted com-
plexes (in the sense of Definition 4.2) are quasi-isomorphisms. To state
this result, we consider two complexes C•, D•, with preferred bases BC, BD,
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twisted by a DG-module F over a DGA R∗ using respective twisting cocyles
mC

(·,·) and m
D
(·,·).

Recall from Proposition 2.3 that a collection of elements νx,y ∈ R|x|−|y| for
x ∈ BC, y ∈ BD such that

∂νx,y =
∑
z∈BC

mC
x,z · νz,y −

∑
w∈BD

(−1)|x|−|w|νx,w ·mD
w,y (9)

gives rise to a chain map Ψ : C∗(C•,F) → C∗(D•,F) defined by Ψ(α ⊗
x) = α

∑
y∈BD νx,y ⊗ y. Our result applies to such maps, which include the

continuation maps of §2.3.

Proposition 4.10. Let (C̃∗, δC) and (D̃∗, δ
D) be the respective lifted complexes

of C• and D• (See Definition 4.2). Let Ψ̃ : C̃∗ → D̃∗ be the morphism of

H0(R∗)-complexes defined by Ψ̃(x) =
∑

|y|=|x| nx,yy, where nx,y denotes the

class of νx,y in H0(R∗) for any x ∈ BC and y ∈ BD with |x| = |y|. Then, if

Ψ̃ is a quasi-isomorphism, so is Ψ.

Proof. Note that Ψ clearly preserves the filtrations of the twisted complexes.
It induces therefore a morphism between the two corresponding spectral se-
quences. In order to prove that it is an isomorphism in the limit we show
that it induces an isomorphism on the second page.

We saw in §4.2 that the first page of the spectral sequence for C∗(C•,F) is

E1
p,q
∼= Hq(F)⊗H0(R∗) C̃p.

Since nx,y represents νx,y in H0(R∗), one can easily see by looking at page 0
that Ψ acts on the first page as

Ψ(1)(α̂⊗ x) =
∑
|x|=|y|

α̂ · nx,y ⊗ y.

Thus Ψ(1) = Id⊗ Ψ̃ and we deduce that Id⊗ Ψ̃ induces in homology the map
Ψ(2) from the second page. That Ψ(2) is an isomorphism then follows from
Lemma 4.11 below, applied with H = H0(R∗) to the free left H-modules C̃∗
and D̃∗.

Lemma 4.11. Let C̃∗ and D̃∗ be complexes of free left modules over a ring
H. Given a quasi-isomorphism Ψ̃ : C̃∗ → D̃∗, the map

Id⊗ Ψ̃ :M ⊗H C̃∗ →M ⊗H D̃∗

is a quasi-isomorphism for any right H-module M .
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Proof. This is a consequence of the existence of the spectral sequence for a
change of coefficients (see for instance [God73, Théorème 5.5.1]). In the case

ofM⊗H C̃∗, the spectral sequence (F r
p,q) converges towards H∗(M⊗H C̃∗) and

its second page is
F 2
p,q = TorHp (M ;Hq(C̃∗)).

The spectral sequence is associated to the bicomplex P∗ ⊗H C̃∗, where P∗ is
a free H-resolution of M , and it is functorial. As such, the morphism Id⊗ Ψ̃
naturally induces a morphism between the corresponding spectral sequences.
By assumption it is an isomorphism at the second page and therefore it
induces an isomorphism between the limits.

4.5 The degree 0 homology of the twisted complex

The next result shows that the degree 0 homology of the twisted complex is
the tensor product of the degree 0 homologies of the DG-module F and of
the lifted complex C̃•.

Proposition 4.12. We have

H0(C•;F) = H0(F)⊗H0(R∗) H0(C̃•),

where C̃• is the lifted complex of C• from Definition 4.2.

Proof. Using the spectral sequence from §4.2 we get

H0(C•;F) = E∞
0,0 = E2

0,0 = H0(C̃•;H0(F)). (10)

The term on the right hand side is computed by the change of coefficients
spectral sequence F r

p,q from the proof of Lemma 4.11:

H0(C̃•;H0(F)) = F∞
0,0 = F 2

0,0 = Tor
H0(R∗)
0 (H0(F), H0(C̃•))

= H0(F)⊗H0(R∗) H0(C̃•).
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5 Morse homology with DG-coefficients: con-

struction

5.1 (Non-DG) local coefficients as DG local coefficients

In this section we explain how the standard homology with (non-DG) local
coefficients can be interpreted as a particular case of homology with DG
coefficients.

As a first step towards this goal, we recall the definition of the lifted Morse
complex from [Lat94, Dam12]. This section is mainly of a motivational nature
and for this reason we keep the technicalities to a minimum. These can be
recovered from the detailed discussion in §5.2.

5.1.1 The lifted Morse complex

Let X be a manifold endowed with a Morse function f and a negative
generic pseudo-gradient ξ (we use descending flows in this paper meaning
that df(ξ) ≤ 0). As usual in Morse theory “generic” means here that ξ is
Morse-Smale, i.e., its stable and unstable manifolds intersect transversely.
For each x ∈ Crit(f) we fix a lift x̃ in the universal cover X̃.

We consider the complex of free Z[π1(X)]-modules (C∗(X̃), δ) spanned by
these lifts. Its differential δ is given by the lifts of the gradient trajecto-
ries. More precisely, after fixing an orientation of each unstable manifold,
any Morse trajectory between critical points of consecutive indices x and y
is naturally oriented. It lifts to a trajectory from x̃ to gỹ in X̃ for some
g ∈ π1(X): we will count it as ±g in the definition of δ, depending on its
orientation.

It is well-known that the definition of the usual Morse complex relies on the
fact that the broken trajectories λ#λ′ between points of consecutive indices
|x| = |z| + 1 = |y| + 2 are the boundary points of a compact manifold of
dimension 1 whose interior is formed by the unbroken trajectories from x to
y; this is still valid for their lifts to the universal cover and therefore δ2 = 0.

We will call (C∗(X̃), δ) lifted complex and name its homology lifted homology.
As for the usual Morse theory, this homology does not depend on the choices
of f , ξ, nor on the lifts of the critical points and on the orientations of the un-
stable manifolds [Lat94, §2.16]: it is actually known to be isomorphic to the

singular homology of the universal cover H∗(X̃;Z), and this is a Morse theo-

retic manifestation of the well-known fact that H∗(X̃;Z) ≃ H∗(X;Z[π1(X)]).
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In fact the unstable manifolds of the critical points yield a CW-decomposition
of the manifold X (see for instance [AD14, Theorem 4.9.3]) and it is easy to

infer that the complex defined by its lifting to the universal cover X̃ coincides
with the lifted complex.

Note that this lifted Morse complex is an example of what we defined as
(algebraic) lifted complex in Definition 4.2. To see this we set R∗ = C∗(ΩX),
so that H0(R∗) = Z[π1(X)]. We fix a spanning tree from a basepoint in X
to the critical points of f (such a tree will also play a key role in §5), and we
also fix a lift in X̃ of the basepoint. These two choices allow on the one hand
to see Morse trajectories between critical points as based loops by collapsing
the tree, and on the other hand they determine lifts to X̃ of all the critical
points of f by transporting along the branches of the tree the chosen lift of
the basepoint. Given a critical point x, we denote x̃ its lift. If mx,y ∈ R0

is a Morse trajectory from x to y viewed as a 0-chain on based loops, and
if we denote its image in H0(R0) = Z[π1(X)] by m̂x,y, then the endpoint of
the lift of mx,y starting at x̃ is precisely m̂x,yỹ, so that the differential in
the geometric lifted complex described in this section is identified with the
differential in the algebraic lifted complex from Definition 4.2.

5.1.2 Homology with local coefficients

Let M be a right Z[π1(X)]-module. By definition, the homology with local
coefficients in M is the homology of the complex

(M ⊗Z[π1(X)] C∗(X̃), Id⊗ δ),

where (C∗(X̃), δ) is the lifted Morse complex. Our goal here is to reinterpret
it as a twisted complex.

We consider the Z-module C• spanned by the critical points of f and the
DGA R∗ defined by the cubical chains on ΩX modulo the degenerate ones.
We also let F be the DG right R∗-module defined by F0 = M and Fk = 0
for k ̸= 0. The action of R∗ in positive degree is trivial, and the action of
R0 = C0(ΩX) factors through that of Z[π1(X)] via the canonical projection
C0(ΩX) → Z[π1(X)]. We will now define an appropriate twisting cocycle,
and this construction can be seen as a baby case of the construction of the
Barraud-Cornea cocycle discussed in §5.

Take a basepoint ⋆ on X and fix an embedded rooted tree Y whose root is
the basepoint ⋆ and such that the critical points of f are external vertices.
Choose a lift of the basepoint to the universal cover X̃ and use Y to fix a lift
of each critical point. Notice that any trajectory λ between critical points
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x, y of f yields a based loop γx#λ#γ
−1
y by concatenation with the paths to

the basepoint along the tree Y .
If x and y have consecutive indices then we define mx,y ∈ R0 = C0(ΩX)
as the algebraic sum of all loops associated to all the Morse trajectories
between x and y – these trajectories are naturally oriented (see the proof
of Proposition 5.4). It is easy to see that the projection of this sum in
H0(R∗) = Z[π1(X)] is exactly the (x, y) entry of the matrix given by the

differential δ of the lifted complex C∗(X̃) described above.

Now take a broken trajectory λ#λ′ between points of consecutive indices
|x| = |z| + 1 = |y| + 2. Connect it by a segment of paths from x to y to
λ#γ−1

z #γz#λ
′. Concatenating all these segments with the ones given by the

1-manifold of unbroken trajectories from x to y we get disjoint segments of
paths from x to y connecting all the broken trajectories modified by inserting
γ−1#γ at their intermediate point. All these segments are oriented in the
same way as the unbroken Morse trajectories between x and y. Now using
γx and γy we transform these segments of paths into segments of based loops
in ΩX. Their sum defines a 1-chain mx,y ∈ C1(ΩX) and one can easily see
that by construction

∂mx,y = −
∑
z

mx,z ·mz,y.

The sign “−” is given by the fact that with our conventions the orientations
of a broken trajectory λ#λ′ as a product and as a boundary of the 1-manifold
above are opposite. These conventions are detailed in §5.2.1 and in the proof
of Proposition 5.4 from §5.2.2.

For |x|− |y| ≥ 3 we can choose mx,y arbitrarily; since the module F vanishes
in nonzero degrees the Maurer-Cartan relation of Remark 2.2 is automatically
satisfied and the differential ∂ of the twisted complex will be independent of
these choices. Relation (2.2) was checked above for the case |x| − |y| = 2,
while the case |x| − |y| = 1 is obvious. Therefore, we have defined a twisting
cocycle.

By construction, the twisted complex C∗(C•, R∗) associated to this data co-

incides with (M ⊗Z[π1(X)] C∗(X̃), Id ⊗ δ), where the lifted complex C∗(X̃) is
constructed using the lifts of the critical points given by Y and orientations of
the gradient lines between critical points of consecutive indices which are the
same as those of the 0-chains mx,y. As a consequence, this twisted complex
recovers the homology of X with local coefficients in M .
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5.2 The Morse complex with DG-coefficients

In this section we explain the construction of the Morse complex with DG-
coefficients. We essentially follow [BC07, §2.4], with two additions: we
construct the Barraud-Cornea twisting cocycle over Z, and we discuss the
uniqueness of representing chain systems (Proposition 5.8).

The setting is that of §2.3. We now recall it and give details. We let X be a
closed manifold with a fixed basepoint ⋆, we pick a Morse function f : X → R
and a generic pseudo-gradient ξ associated to f . We consider the free graded
Z-module C• = ⟨Crit(f)⟩ and the DGA R∗ of cubical chains on the space of
Moore loops ΩX.

The space of Moore loops ΩX consists of pairs (L, γ) with L ≥ 0 and γ :
[0, L]→ X a loop based at ⋆ ∈ X. This space has the same homotopy type
as the space of based loops parametrized by I = [0, 1]. For each degree k, Rk

is by definition the quotient

Rk =
Ck(ΩX)

C0
k(ΩX)

where Ck(ΩX) is spanned by the continuous maps σ : Ik → ΩX (“cubes”)
and C0

k(ΩX) is spanned by the degenerate cubes, i.e., the cubes that factor
through a face Ij for some j < k. The differential in the cubical complex is
given by an alternating sum over the faces of a cube. It is known that the
resulting cubical homology is isomorphic to singular homology. 3 The algebra
structure of R∗ is given by the canonical Pontryagin product induced by the
concatenation of loops #:

(σ · σ′)(x, y) = σ(x)#σ′(y), (x, y) ∈ Ik+ℓ = Ik × Iℓ.

It is easy to check that R∗ is a DGA. We refer to it as the algebra of cubical
chains, or cubical algebra. We will often abuse notation and write R∗ =
C∗(ΩX) for short.

The definition of the twisting cocycle mx,y will take the rest of this section.

In order to define it denote by L(x, y) the space of (unparametrized) tra-
jectories of ξ between x, y ∈ Crit(f) endowed with the usual topology; it is
a smooth manifold of dimension |x| − |y| − 1. A choice of orientations on
the unstable manifolds W u(x) associated to the critical points of f naturally
determines an orientation on L(x, y).

3Note that without taking the quotient by the degenerate cubes the cubical homology
of a point would be infinitely generated.
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It is a classical fact in Morse theory that L(x, y) admits a compactification
L(x, y) given by the space of broken trajectories

L(x, y) = L(x, y) ∪
⋃

z1,··· ,zk−1∈Crit(f)

L(x, z1)× L(z1, z2)× · · · × L(zk−1, y),

with
∂L(x, y) =

⋃
|x|>|z|>|y|

L(x, z)× L(z, y).

The following theorem was proved by various authors (Latour [Lat94, Propo-
sition 2.11], Qin [Qin10, Theorem 3.4]).

Theorem 5.1. The space L(x, y) admits the structure of manifold with
boundary and corners whose interior is L(x, y). Near a boundary point

λ = (λ1, λ2, . . . λk) ∈ L(x, z1)× L(z1, z2)× · · · × L(zk−1, y)

the space L(x, y) is locally diffeomorphic to (a neighborhood of (λ, 0) in)
L(x, z1)× L(z1, z2)× · · · × L(zk−1, y)× [0,∞)k.

In addition, once we fix an orientation of the unstable manifolds, L(x, y)
becomes oriented, cf. [Lat94, 2.15] (see also the proof of Proposition 5.4
below). In particular, L(x, y) possesses a well-defined fundamental class

[L(x, y)] ∈ H|x|−|y|−1(L(x, y), ∂L(x, y)).

Before going further we need to fix some orientation conventions.

5.2.1 Orientation conventions

Given y ∈ Crit(f) we denote W u(y) its unstable manifold with respect to ξ
and W s(y) its stable manifold with respect to ξ. We denote Ss(y) its stable
sphere defined by

Ss(y) = W s(y) ∩ f−1(f(y) + ϵ)

for some small ϵ > 0. We fix an orientation for W u(y), and this yields a
co-orientation for W s(y). We co-orient Ss(y) ⊂ W s(y) at a point p using the
exterior normal which is the opposite of the vector field ξ(p). This choice
gives therefore

Coor(Ss(y)) = −(ξ,Coor(W s(y)). (11)
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We also use the following conventions. We orient the boundary ∂Y of some
manifold Y using “its outward normal”, meaning any vector n pointing to-
wards the exterior of the boundary:

(n,Or(∂Y )) = Or(Y ). (12)

We orient a transverse intersection between an oriented manifold X and a
co-oriented manifold Y as follows:

(Or(X ∩ Y ),Coor(Y )) = Or(X). (13)

We will also need to consider the compactifications W
u
(x) of the unstable

manifolds. These appeared first in Latour [Lat94] and were also considered
in Barraud-Cornea [BC07], see also [Qin10]. We will refer to them as Latour
cells and discuss them in the following subsection.

5.2.2 Latour cells

Definition 5.2. For x ∈ Crit(f) the unstable Latour cell is defined by

W
u
(x) = W u(x) ∪

⋃
y∈Crit(f)

L(x, y)×W u(y).

There is a natural topology on these spaces which makes them compact.
Moreover Latour [Lat94, Proposition 2.11] and Qin [Qin10, Theorem 3.4]
prove the following theorem (see also Barraud-Cornea [BC07] and Audin-
Damian [AD14] for slightly weaker statements).

Theorem 5.3. The space W
u
(x) is a compact manifold with boundary and

corners of dimension |x| whose interior is W u(x). Near a boundary point

(λ, p) = (λ1, λ2, . . . λk, p) ∈ L(x, z1)× L(z1, z2)× · · · × L(zk−1, y)×W u(y)

the space W
u
(x) is locally diffeomorphic to (a neighborhood of (λ, p) in)

L(x, z1)× L(z1, z2)× · · · × L(zk−1, y)×W u(y)× [0,∞)k.

Moreover W
u
(x) is homeomorphic to the closed disk D

|x|
.

There is a natural extension

ϕx : W
u
(x)→ X

of the inclusion W u(x) ↪→ X defined by

ϕx(λ, p) = p.
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Figure 1: The Latour cell W
u
(x) of the maximum of the height function on

a deformed 2-sphere.

This actually defines a CW-decomposition of X and provides a proof of the
fact that (lifted) Morse homology is isomorphic to singular homology of X

(resp. of its universal cover X̃). In fact, with our orientation conventions
the Morse differential is the opposite of the cellular differential: this is a
consequence of the relation (17) below by considering the particular case
|x| − |z| = 1.

Proposition 5.4 ([Lat94, 2.15]). Let x, z, y be three critical points of f with
|x| > |z| > |y|. The orientation induced from L(x, y) by the outward normal
vector on the 1-codimensional stratum L(x, z)×L(z, y) of the boundary differs
from the product orientation by (−1)|x|−|z|.

The same result was reproved in [Qin10, Theorem 3.6] and [Zho19, Proposi-
tion 5.1]. Since Latour uses in [Lat94] positive gradients and different orienta-
tion conventions we choose to write a self-contained proof for this statement.

Proof. Let x, y, z be critical points of f as in the statement of the proposition.
We will use the identification

L(x, y) = W
u
(x) ∩ Ss(y), (14)
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meaning that we see L(x, y) ⊂ W
u
(x) as the preimage of Ss(y) by the map

ϕx. Now ϕx is transverse to Ss(y) on the interior W u(x) and also along
any stratum of the boundary of W

u
(x). In particular ϕx ⋔ Ss(y) on the

component L(x, z)×W u(z) of the stratum of maximal dimension. Therefore
near a point (λ, p) ∈ L(x, z) × W u(z), we have that L(x, y) is a genuine
boundary submanifold ofW

u
(x).4 As such, it is clear that an outward normal

vector n of W
u
(x) at (λ, p) is also outward normal for L(x, y). We thus have

by (12):
(n,Or ∂W

u
(x)) = OrW

u
(x) (15)

and
(n,Or ∂L(x, y)) = OrL(x, y). (16)

Let us now denote by ξ− the outward normal vector to W
u
(x) at (λ, z)

obtained by continuously extending a tangent vector5 to the curve λ at the
point λ(t) as t→ +∞. We have

(n,OrL(x, z),OrW u(z)) = (ξ−,OrL(x, z),OrW u(z))

= (−1)|x|−|z|−1(OrL(x, z), ξ−,OrW u(z)).

The first equality above should be seen as an equivalence between orientations
of the boundary at the points (λ, p) and (λ, z).

Now OrW u(z) = CoorW s(z) and, using (11), we obtain

(n,OrL(x, z),OrW u(z)) = (−1)|x|−|z|−1(OrL(x, z), ξ−,CoorW s(z))

= (−1)|x|−|z|(OrL(x, z),CoorSs(z)).

For the transverse intersection L(x, z) = W u(x) ⋔ Ss(z) we infer from our
orientation convention (13) that

(n,OrL(x, z),OrW u(z)) = (−1)|x|−|z|(OrW u(x))

= (−1)|x|−|z|(OrW
u
(x)).

Combining this with (15) we get

Or(L(x, z)×W u(z)) = (−1)|x|−|z|(Or ∂W
u
(x)). (17)

Let us prove that the orientations of ∂L(x, y) and L(x, z)×L(z, y) differ by
the sign claimed in our statement. Recall that L(x, y) = W

u
(x) ⋔ Ss(y), so

(OrL(x, y),CoorSs(y)) = OrW
u
(x), (18)

4By “boundary submanifold” we mean a transverse intersection between a manifold
with boundary and a manifold without boundary.

5For instance, one can take ξ(λ(t))/∥ξ(λ(t))∥ for a given norm.
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Figure 2: Comparing orientations.

and using (16)

(n,Or ∂L(x, y),CoorSs(y)) = OrW
u
(x). (19)

On the other hand L(y, z) = W u(z) ⋔ Ss(y) and therefore

(n,OrL(x, z),OrL(z, y),CoorSs(y))
= (n,OrL(x, z),OrW u(z))

= (−1)|x|−|z|(n,Or ∂W
u
(x))

= (−1)|x|−|z|OrW
u
(x), (20)

using (17) and (15). Finally, (19) and (20) yield

Or ∂L(x, z) = (−1)|x|−|z|Or(L(x, z)× L(z, y))

as claimed.

Remark 5.5. The above proof yields the following orientation rule derived
from (11) and (18)(

OrL(x, y),−ξ(p),OrW u(y)
)
= OrW

u
(x), (21)

where ξ(p) is the gradient vector field at some point p ∈ W u
(x) lying on a

gradient line λ ∈ L(x, y).
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We will use this result to prove the following (see [BC07, Lemma 2.2]).

Proposition 5.6 (Existence). Let C∗(L(x, y)), x, y ∈ Crit(f) be the complex
of cubical chains on the space L(x, y) of broken trajectories. There exists a
collection {sx,y} with sx,y ∈ C|x|−|y|−1(L(x, y)) satisfying the following prop-
erties:

1. sx,y is a cycle relative to the boundary and represents the fundamental
class [L(x, y)],

2. the following equation holds

∂sx,y =
∑
z

(−1)|x|−|z|sx,z × sz,y, (22)

where the product of chains is defined via the inclusions L(x, z) ×
L(z, y) ⊂ ∂L(x, y) ⊂ L(x, y).

Proof. Barraud and Cornea prove this result in [BC07] over Z/2. For arbi-
trary coefficients the proof follows exactly the same lines, taking in addition
into account orientations. The key idea is to build the chain representatives
sx,y inductively over ℓ = |x|− |y|− 1 ≥ 0: at the induction step, an arbitrary
representative of the fundamental class is modified by a chain supported on
the boundary so that it satisfies the Maurer-Cartan equation (22).

For ℓ = 0 the moduli spaces L(x, y) are compact, 0-dimensional, and oriented.
We define sx,y to be the unique 0-chain which represents the fundamental
class.

Let ℓ ≥ 1. Assuming that we have constructed {sx,y} for |x|− |y|−1 ≤ ℓ−1,
we construct {sx,y} for |x| − |y| − 1 = ℓ as follows.

The space ∂L(x, y), oriented as the boundary of L(x, y), carries a fundamen-
tal class [∂L(x, y)]. Orient each top-dimensional stratum L(x, z)×L(z, y) ⊂
∂L(x, y) as the boundary of L(x, y). As such, it carries a fundamental class

[L(x, z)× L(z, y)] ∈ H|x|−|y|−2

(
L(x, z)× L(z, y), ∂

(
L(x, z)× L(z, y)

))
.

The chain (−1)|x|−|z|sx,z × sz,y ∈ C|x|−|y|−2(L(x, z) × L(z, y)) is a cycle rel
boundary and, by the induction assumption and Proposition 5.4, it represents
the fundamental class [L(x, z)× L(z, y)] seen as a class rel boundary.

On the other hand, by the induction assumption using (22) one can easily
check that the chain∑

z

(−1)|x|−|z|sx,z × sz,y ∈ C|x|−|y|−2(∂L(x, y))
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is a genuine cycle (not only a cycle rel boundary). Therefore the previous
paragraph implies that it represents the fundamental class [∂L(x, y)].
We now pick any cubical chain representative s′x,y of the fundamental class

[L(x, y)]. In particular, s′x,y is a cycle rel boundary. Since the fundamental

class [∂L(x, y)] is the image of [L(x, y)] under the boundary homomorphism
H|x|−|y|−1(L(x, y), ∂L(x, y)) → H|x|−|y|−2(∂L(x, y)), we infer that it is repre-
sented by ∂s′x,y. Thus ∂s′x,y and

∑
z(−1)|x|−|z|sx,z × sz,y are homologous as

representatives of [∂L(x, y)], i.e., there exists px,y ∈ C|x|−|y|−1(∂L(x, y)) such
that

∂s′x,y −
∑
z

(−1)|x|−|z|sx,z × sz,y = ∂px,y.

We then set sx,y = s′x,y − px,y.

Definition 5.7. Following Barraud and Cornea we will call the family (sx,y)
a representing chain system for the Morse moduli spaces.

Proposition 5.8 (Uniqueness). Any two representing chain systems (s′x,y)
and (sx,y) are homologous in the following sense: there exists a family (κx,y)
of chains κx,y ∈ C|x|−|y|(L(x, y)) such that:

1. κx,x is the constant 0-chain for all x and κx,y = 0 for |x] = |y|, x ̸= y.

2. for all x, y we have

∂κx,y =
∑
z

s′x,z × κz,y − (−1)|x|−|z|κx,z × sz,y. (23)

In (23) the product of chains should be understood via the inclusion L(x, z)×
L(z, y) ⊂ ∂L(x, y) ⊂ L(x, y) for |x| > |z| > |y|, while s′x,y × point and
point × sx,y are identified with s′x,y and sx,y. Also, the right hand side does
not involve κx,y since s′x,x = 0 and sy,y = 0. Thus Equation (23) reads
equivalently

∂κx,y = s′x,y − sx,y +
∑

|x|>|z|>|y|

s′x,z × κz,y − (−1)|x|−|z|κx,z × sz,y.

Proof of Proposition 5.8. We construct the chains κx,y inductively over ℓ =
|x| − |y| ≥ 0. For ℓ = 0 we set κx,x to be the constant 0-chain at x and
κx,y = 0 for x ̸= y.

Let now ℓ ≥ 1. Assuming that {κz,w} have been constructed for |z| − |w| ≤
ℓ− 1, we will construct {κx,y} for |x| − |y| = ℓ. A direct computation shows
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that the right hand side of (23), denoted

rx,y =
∑
z

s′x,z × κz,y − (−1)|x|−|z|κx,z × sz,y,

is a cycle in C|x|−|y|−1(L(x, y)), i.e.,

∂rx,y = 0.

Indeed, by the induction assumption we have

∂(
∑
z

s′x,z × κz,y − (−1)|x|−|z|κx,z × sz,y)

=
∑
z,u

(−1)|x|−|u|s′x,u × s′u,z × κz,y

+ (−1)|x|−|z|−1
∑
z,u

s′x,z × s′z,u × κu,y − (−1)|z|−|u|s′x,z × κz,u × su,y

− (−1)|x|−|z|
∑
z,u

s′x,u × κu,z × sz,y − (−1)|x|−|u|κx,u × su,z × sz,y

− (−1)|x|−|z|(−1)|x|−|z|
∑
z,u

(−1)|z|−|u|κx,z × sz,u × su,y

=0.

We now write this cycle as a sum rx,y =
∑

α r
α
x,y over connected components

Lα(x, y) of L(x, y), so that each rαx,y ∈ C|x|−|y|−1(L
α
(x, y)) is a cycle. We

construct κx,y =
∑

α κ
α
x,y component-wise, with καx,y ∈ C|x|−|y|(L

α
(x, y)).

� For a connected component Lα(x, y) with empty boundary we have
rαx,y = s′αx,y − sαx,y. Since s′αx,y and sαx,y both represent the fundamental

class of Lα(x, y) they are necessarily homologous and we choose καx,y
such that ∂καx,y = rαx,y.

� For a connected component of Lα(x, y) with non-empty boundary we
have H|x|−|y|−1(L

α
(x, y)) = 0. Since rαx,y is a cycle we infer the existence

of καx,y such that ∂καx,y = rαx,y.

In order to define a twisting cocycle in R∗ = C∗(ΩX) we need the following
lemma (see also [BC07, §2.2.1]).
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Lemma 5.9. There exists a family of continuous maps

qx,y : L(x, y)→ ΩX

such that:

1. If |x| − |y| = 1, then for any λ ∈ L(x, y) = L(x, y) the homotopy class
[qx,y(λ)] ∈ π1(X) coincides with the one that is assigned to λ in the
lifted Morse complex, constructed using a fixed lift of the tree Y to the
universal cover X̃ (see §5.1.1).

2. For any (λ, λ′) ∈ L(x, z)× L(z, y) we have

qx,y(λ, λ
′) = qx,z(λ)#qz,y(λ

′),

where # stands for the concatenation of paths.

Proof. For x, y ∈ Crit(f) consider the natural map

Γ : L(x, y)→ Px→yX

which sends each broken orbit λ to the path from x to y parametrised by the
values of f . More precisely Γ(λ) = γ : [0, f(x)− f(y)]→ X is defined by

γ(t) = λ ∩ f−1(f(x)− t).

We clearly have
Γ(λ, λ′) = Γ(λ)#Γ(λ′).

Consider now the projection

p : X → X/Y ,

where Y is the chosen tree that connects the basepoint to the critical points.
We use this projection in order to avoid the conjugation with the paths γx
from §5.1.1. Since Y is contractible the projection p is a homotopy equiva-
lence; pick a homotopy inverse

θ : (X/Y , ⋆)→ (X, ⋆).

The homotopy between θ◦p and Id can be assumed without loss of generality
to preserve the basepoint ⋆. We define

qx,y = θ ◦ p ◦ Γ.
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These maps clearly satisfy condition 2 since Γ does and θ and p act point-wise.
Condition 1 is also fulfilled by construction, since θ ◦ p is homotopic to the
identity. Indeed, given λ ∈ L(x, y) = L(x, y) we denote γx, γy the branches of
Y between the root ⋆ and x, resp. y, and consider λ⋆ = γx#Γ(λ)#γ−1

y ∈ ΩX.
We then have

[qx,y(λ)] = [θ ◦ p ◦ Γ(λ)] = [θ ◦ p(λ⋆)] = [λ⋆],

and [λ⋆] is by definition the homotopy class assigned to λ in the lifted com-
plex.

We are now in position to define the twisting cocycle. We denote

Ξ = (f, ξ, o, sx,y,Y , θ)

the data consisting of the following objects, as above:

� the Morse function f .

� the Morse-Smale negative pseudo-gradient vector field ξ.

� the orientation o = (ox)x∈Crit(f) of the unstable manifolds of the critical
points of f .

� the representing chain system (sx,y), depending in particular on the
choice of the orientation o.

� the tree Y with root at the basepoint ⋆.

� the map θ : (X/Y , ⋆) → (X, ⋆) homotopy inverse to the projection
p : X → X/Y .

Definition 5.10 (twisting cocycle and twisted Morse complex).

The Barraud-Cornea twisting cocycle (mx,y) associated to Ξ is defined by

mx,y = (qx,y)∗sx,y ∈ C|x|−|y|−1(ΩX). (24)

The twisted Morse complex with coefficients in a right DG-module F over
C∗(ΩX) is defined using equation (6) and is denoted

C∗(X,Ξ;F).
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The definition is sustained by the fact that the family (mx,y) satisfies the MC
equation (5), cf. Proposition 5.6 (2) and Lemma 5.9 (2):

∂mx,y = ∂(qx,y)∗sx,y = (qx,y)∗∂sx,y = (qx,y)∗

(∑
z

(−1)|x|−|z|sx,z × sz,y

)
=
∑
z

(−1)|x|−|z|(qx,y)∗(sx,z × sz,y)

=
∑
z

(−1)|x|−|z|(qx,z)∗sx,z · (qz,y)∗sz,y

=
∑
z

(−1)|x|−|z|mx,z ·mz,y.

We include in the notation of the twisted Morse complex the auxiliary data
Ξ in order to stress the dependence at chain level on all the choices consti-
tuting Ξ.

Using Lemma 5.9 (1) we immediately infer that the cocycle (mx,y) is com-
patible with the lifted complex, meaning that for |x| = |y|+ 1 the homology
classes m̂x,y of mx,y in H0(ΩX) = Z[π1X] are the entries of the matrix of the
lifted differential.

Remark 5.11. Once the twisted Morse complex has been defined, we can
realize it as the limit of a spectral sequence as in the algebraic section §4.2.
According to Lemma 4.3 the second page of this spectral sequence is

E2
pq = Hp(C∗(X̃);Hq(F)) := Hp(X;Hq(F))

i.e., the homology of X with local coefficients in Hq(F) as defined in §5.1.

5.3 DG-Morse homology for manifolds with boundary

In the case of a manifold with boundary (X, ∂X) we proceed as follows. We
start by fixing in a collar neighborhood V = [−δ, 0] × ∂X of the boundary
∂X ≡ {0}×∂X a vector field ξ which is transverse to {0}×∂X. We choose f
on V to be strictly decreasing along the flow lines of ξ and then we extend it
to a Morse function on X. Finally we extend ξ on X to a (negative) pseudo-
gradient for f . See [AD14, §3.5] for a similar discussion on the definition of
usual Morse homology for manifolds with boundary. We choose the other
elements needed to construct the enriched complex in a similar way and
get a set of data Ξ as in the closed case. There is no difference in the
construction of the representing chain system: the gradient lines between
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critical points stay away from the boundary and thus the structure of the
trajectory spaces L(x, y) is the same. Therefore we may define the enriched
complex C∗(X; Ξ;F) analogously. However its homology will depend on the
choice of the direction of ξ (inwards or outwards) along the boundary:

It is convenient to write ∂X as the disjoint union ∂−X ⊔ ∂+X of its compo-
nents along which ξ respectively points inwards and outwards; we may think
of X as a cobordism. We use the notation

H∗(X, ∂+X;F)

for the homology of C∗(X,Ξ;F), motivated by the fact that, in the case
where F is the trivial local system (viewed as DG-module), we get the usual
singular homology H∗(X, ∂+X) with integer coefficients, as shown in [AD14].
However, to justify the notation above, we still have to prove that this homol-
ogy only depends on the cobordism (X, ∂−X, ∂+X) and on the DG-module
F over C∗(ΩX). This is the purpose of the next section §6.

Finally note that, as in the case of closed manifolds (Remark 5.11), we have a
spectral sequence which converges to H∗(X, ∂+X;F) and whose second page
is in this case

E2
pq = Hp(X, ∂+X;Hq(F)).
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6 Morse homology with DG-coefficients: in-

variance

The previous construction of the enriched Morse complex with coefficients
in a C∗(ΩX)-module F depend on all the choices involved in the set of
auxiliary data Ξ = (f, ξ, o, sx,y,Y , θ). The goal of this section is to show
that the homology of the enriched complex does not depend on any of these
choices, see Theorem 6.7 below. There is no difference between the closed
case and the boundary case in the proofs below.

6.1 Invariance for the usual and for the lifted Morse
homology

We recall in this subsection the proof of invariance in the classical setting of
Morse homology, where the auxiliary data consists of f , ξ, the orientation of
the unstable manifolds o, and — in the case of lifted Morse homology — the
choice of lifts of the critical points of f to the universal cover X̃.

Let (f0, ξ0), (f1, ξ1) be two Morse-Smale pairs on X and fix orientations
o0 respectively o1 of the corresponding unstable manifolds. The proof of the
invariance of usual Morse homology, as discussed for example in [AD14, §3.4],
involves the choice of a homotopy (ft)t∈[−ϵ,1+ϵ] between f0 and f1, supposed
to be stationary for |t| ≤ ϵ and for |t − 1| ≤ ϵ. Here ϵ > 0 is some small
positive real number. One then defines a function

F : [−ϵ, 1 + ϵ]×X → R

by the formula
F (t, x) = ft(x) + g(t),

where g : [−ϵ, 1+ϵ]→ R has exactly two critical points (a maximum at t = 0
and a minimum at t = 1) and satisfies g′(t)≪ 0 for t ∈ [ϵ, 1− ϵ], so that

Crit(F ) = ({0} × Crit(f0)) ∪ ({1} × Crit(f1)) .

We define a negative pseudo-gradient ξ for F by setting it to be equal to
ξ0 − ∇g on [−ϵ, ϵ] × X, equal to ξ1 − ∇g on [1 − ϵ, 1 + ϵ] × X, and by
interpolating between these two vector fields on the remaining part of the
product space, where we have in particular dF (ξ) < 0. By construction the
Morse complex associated to (F, ξ) satisfies

Ck(F ) = Ck−1(f0)⊕ Ck(f1).
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In order to define the differential we first have to orient the unstable manifolds
of (F, ξ). If x ∈ {0} × Crit(f0) then notice that at a point q of a Morse
neighborhood of x in [−ϵ, 1+ϵ]×X the tangent space TqW

u
F (x) is the product

R×TqW u
f0
(x) where the factor R stands for the tangent space to the interval

[−ϵ, 1 + ϵ]. We choose the natural orientation

OrW u
F (x) =

(
∂
∂t
,OrW u

f0
(x)
)
. (25)

For x ∈ {1} × Crit(f1) we have W u
F (x) = W u

f1
(x) and we keep the same

orientation
OrW u

F (x) = OrW u
f1
(x). (26)

It is easy to check (one may also apply the more general Lemma 6.2 below)
that the Morse differential ∂ : Ck+1(F )→ Ck(F ) has the form

∂ =

(
−∂f0 0
ΨF ∂f1

)
.

The relation ∂2 = 0 implies that ΨF : C∗(f0, ξ0, o0)→ C∗(f1, ξ1, o1) is a chain
map. It has the following two properties:

1. For (f0, ξ0, o0) = (f1, ξ1, o1), if we take F (t, x) = f0(x) + g(t) and
ξ(t, x) = ξ0(x)− g′(t) ∂∂t , we get

ΨF = −Id. (27)

Indeed one easily notices that for this choice of the pair (F, ξ) the
gradient lines joining critical points of consecutive indices and lying
on the slices {0} × X or {1} × X only depend on t: there is one
of them from each critical point x0 = (0, x) ∈ {0} × Crit(f0) to its
correspondent x1 = (1, x) ∈ {1} × Crit(f0); we will denote it by cx.
With our conventions cx is equipped with the negative sign orientation.
Indeed, the orientation rule (21) implies here that(

Or cx,−
∂

∂t
,OrW u

F (x1)

)
= OrW u

F (x0),

and using (25) and (26) we get(
Or cx,−

∂

∂t
,OrW u

f0
(x)

)
=

(
∂

∂t
,OrW u

f0
(x)

)
,

which yields a negative sign for cx.

We denote the function F above by Id to emphasize that it corresponds
to the trivial homotopy from f0 to itself. The discrepancy between the
notation Id and the map −Id above will be resolved in §6.2, where the
continuation cocycle will be defined with a minus sign (see (32)).
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2. (See the third step in the proof of [AD14, Theorem 3.4.2 ]) The chain
maps ΨF , ΨG and ΨH produced by arbitrary homotopies from f0 to
f1, from f1 to f2 respectively from f0 to f2 have the property that
ΨG ◦ΨF and ΨH are chain homotopic, and in particular they are equal
in homology.

From these two properties it is obvious that the particular case f0 = f2 and
H = Id gives the invariance.

This proof adapts to the case of lifted homology, showing that the latter
is also invariant with respect to the choice of the pair (f, ξ, o). Actually,
the lifted complex also depends on a lift l of the critical points of the Morse
function to the universal cover, therefore one also needs to prove the indepen-
dence of the homology with respect to l. To this end one considers the lifted
complex on the universal cover of [−ϵ, 1 + ϵ] × X, denoted [−ϵ, 1 + ϵ] × X̃,
associated to (F, ξ, oF , l0 ∪ l1), where oF is the orientation of the unstable
manifolds given by (25) and (26), and l0 ∪ l1 are the obvious lifts of the crit-
ical points of F to the universal cover given by the lifts li for fi. This lifted
complex gives rise to a morphism of complexes

Ψ̃F : C̃∗(f0, ξ0, o0, l0)→ C̃∗(f1, ξ1, o1, l1)

which also satisfies properties 1 and 2 above by an analogous argument.
Based on these two properties, the invariance of lifted homology is straight-
forward.

Remark 6.1. If we change all the orientations of the unstable manifolds
into the opposite ones, the orientation rule (21) implies that the (lifted)
Morse complex stays unchanged C∗(f, ξ, o, l) = C∗(f, ξ,−o, l). However, the
invariance morphism

Ψ̃F op

: C̃∗(f0, ξ0, o0, l0)→ C̃∗(f1, ξ1,−o1, l1)

has an opposite sign

Ψ̃F op

= −Ψ̃F .

Indeed, the orientation of the unstable manifold W u
F changes in (26), but

remains the same in (25), so that the rule (21) yields opposite orientations

for the trajectories which define Ψ̃F op
.

We get the same result when we change o0 into −o0 while leaving o1 un-
changed.
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6.2 Invariance for DG Morse homology

Take two sets of data Ξ0 = (f0, ξ0, o0, s
0
x,y,Y0, θ0), Ξ1 = (f1, ξ1, o1, s

1
x,y,Y1, θ1),

and define the associated twisted complexes with coefficients in the same
DG-module F over C∗(ΩX). We assume that the root of both trees is the
basepoint ⋆. Take a homotopy from f0 to f1 and define a function

F : [−ϵ, 1 + ϵ]×X → R

and a pseudo-gradient ξ as in §6.1. Then pick a homotopy (Yt)t∈[0,1] between
Y0 and Y1 consisting of trees with common root ⋆ and put

Y =
⋃
t∈[0,1]

({t} × Yt) ⊂ [0, 1]×X.

Next, choose a homotopy inverse Θ of the canonical projection

p : [0, 1]×X →
⋃
t∈[0,1]

{t} ×X/Yt,

that coincides with θ0 on {0} ×X and with θ1 on {1} ×X.

Finally, orient the Latour cells W
u

F (x) using (25–26) and choose a represent-
ing chain system (sFx,y) compatible with (the fundamental classes given by)
these orientations as indicated in the following lemma.

Lemma 6.2. (i) With our orientation conventions we have

OrLF (x, y) = (−1)|x|−|y|OrLf0(x, y)

for any x, y ∈ {0} × Crit(f0), and

OrLF (x, y) = OrLf1(x, y)

for any x, y ∈ {1} × Crit(f1).
(ii) There exists a representing chain system of F associated to these orien-
tations such that

sF,0x,y = (−1)|x|−|y|s0x,y and sF,1x,y = s1x,y,

where sF,ix,y is the chain associated to the critical points x, y ∈ {i} × Crit(fi)
for i = 0, 1.
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Proof. (i) Consider first the case x, y ∈ {0}×Crit(f0). Recall that LF (x, y) is
oriented as the intersection between the oriented manifoldW

u

F (x) and the co-
oriented manifold SsF (y) (see (14) in §5.2.2). Let us compare the orientations
of LF (x, y) and Lf0(x, y) at some point p ∈ L(x, y) lying on a gradient
line with gradient vector ξ(p). Following our orientation convention (13)
from §5.2.1 we have(

OrLF (x, y),CoorSsF (y)
)
= OrW

u

F (x),

which becomes using (11)(
OrLF (x, y),−ξ(p),CoorW

s

F (y)
)
= OrW

u

F (x)

and then (
OrLF (x, y),−ξ(p),OrW

u

F (y)
)
= OrW

u

F (x), (28)

as stated in the orientation rule (21)

Now using (25) we infer(
OrLF (x, y),−ξ(p), ∂∂t ,OrW

u

f0
(y)
)
=
(
∂
∂t
,OrW

u

f0
(x)
)
,

which implies

(−1)|x|−|y| ( ∂
∂t
,OrLF (x, y),−ξ(p),OrW

u

f0
(y)
)
=
(
∂
∂t
,OrW

u

f0
(x)
)

and therefore

(−1)|x|−|y| (OrLF (x, y),−ξ(p),OrW
u

f0
(y)
)
= OrW

u

f0
(x).

On the other hand the relation (21) for f0 instead of F writes(
OrLf0(x, y),−ξ(p),OrW

u

f0
(y)
)
= OrW

u

f0
(x).

Comparing with the above we get

(−1)|x|−|y|OrLF (x, y) = OrLf0(x, y),

which proves the first relation between the orientations.

For the proof of the second relation consider two critical points x, y ∈ {1} ×
Crit(f1) and use an analogous argument. The difference is that in this case

W
u

F (x) = W
u

f1
(x)
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as oriented manifolds (and the same for y), so the vector ∂
∂t

does not show
up in the orientation computation which therefore leads to

OrLF (x, y) = OrLf1(x, y).

This finishes the proof of (i).
(ii) Let us point out that if X has a non-empty boundary, (F, ξ) is defined on
the manifold with boundary and corners [−ϵ, 1+ϵ]×X. However the gradient
lines between critical points are far from its boundary ∂([−ϵ, 1+ ϵ]×X) and
therefore we have the same structure for the trajectory spaces LF (x, y). We
may therefore construct a representing chain system (sFx,y) for the Morse
moduli spaces of (F, ξ) using the inductive method of Proposition 5.6. We
do it in a slightly different way: we construct it first for any pair of critical
points x, y belonging to the same slice {i} ×X for i = 0, 1. The first part of
the lemma ensures that we may choose

sF,0x,y = (−1)|x|−|y|s0x,y and sF,1x,y = s1x,y

for x, y ∈ {0}×Crit(f0), respectively x, y ∈ {1}×Crit(f1), in the construction
from Proposition 5.6 which produces the representing chain system. Then,
for x ∈ {0} × X and y ∈ {1} × X critical points of F , the same inductive
method enables us to complete the construction of the representing chain
system (sFx,y). The proof of our lemma is now complete.

Proposition 6.3. The continuation data Ξ = (F, ξ, oF , s
F
x,y,Y ,Θ) defines a

quasi-isomorphism of complexes

ΨΞ : C∗(X,Ξ0;F)→ C∗(X,Ξ1;F).

Remark 6.4. Proposition 6.3 will be superseded by the Invariance Theo-
rem 6.7 from the next section, which states in particular that ΨΞ is a chain
homotopy equivalence whose chain homotopy type is determined by Ξ0 and
Ξ1. We find it worthwhile to state and prove Proposition 6.3 separately
for two reasons: it gives an immediate flavor of invariance, and its proof is
considerably simpler than that of Theorem 6.7. This simplification is made
possible by the use of invariance for lifted Morse homology. The proof of
Theorem 6.7 circumvents the use of lifted Morse homology, it follows a more
standard pattern in Morse-Floer theory, but it is also more involved.

Proof of Proposition 6.3. We use the algebraic recipe from Proposition 4.10
to define the morphism ΨΞ. Recall that

Crit(F ) = ({0} × Crit(f0)) ∪ ({1} × Crit(f1)) .

For a point x ∈ {i} × Crit(fi), i = 0, 1, we denote by |x| the Morse index of
x as a critical point of fi. We will use the following notation:
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� For x ∈ {0} × Crit(f0) and y ∈ {1} × Crit(f1), the chain sFx,y ∈
C|x|−|y|(LF (x, y)) will be denoted σx,y,

� For x, y ∈ {i} × Crit(fi) for the same i = 0, 1, the chain sFx,y ∈
C|x|−|y|−1(LF (x, y)) will be denoted sF,ix,y, as in the previous lemma.

With this notation, (22) gives in particular

∂σx,y =
∑

z∈Crit(f0)

(−1)|x|−|z|sF,0x,z × σz,y −
∑

w∈Crit(f1)

(−1)|x|−|w|σx,w × sF,1w,y. (29)

The negative sign between the sums in the right hand side comes from the fact
that the indices of x and z as critical points of F are respectively |x|+1 and
|z|+ 1, whereas the index of w is |w|. Now we apply item (ii) of Lemma 6.2
to (29) which becomes

∂σx,y =
∑

z∈Crit(f0)

s0x,z × σz,y −
∑

w∈Crit(f1)

(−1)|x|−|w|σx,w × s1w,y. (30)

This relation looks very much like relation (2) in Proposition 2.3 (or, equiv-
alently, relation (9) from Proposition 4.10) – the algebraic Maurer-Cartan
equation which enables one to define a morphism between twisted complexes.
In order to precisely get this relation we need to convert (30) into a relation
on ΩX. To this end, we follow the line of proof of Lemma 5.9 and construct
a continuous map qx,y : LF (x, y)→ ΩX as follows.

We first define a map

ΓF : LF (x, y)→ Px,y([0, 1]×X)

as in the proof of Lemma 5.9, by parametrizing each gradient trajectory as
a Moore path by the values of F . We then recall the projection

p : [0, 1]×X →
⋃
t∈[0,1]

{t} ×X/Yt

which collapses the trees Yt to the basepoint in their respective slices {t}×X,
and the choice of a homotopy inverse for p denoted

Θ :
⋃
t∈[0,1]

{t} ×X/Yt → [0, 1]×X.

The map Θ can — and will — be chosen such that it sends every slice
({t} ×X/Yt, {t} × {⋆}) onto ({t} ×X, {t} × {⋆}) (all the trees Yt, t ∈ [0, 1]
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are assumed to have the same root ⋆ in X). Finally, we consider the projec-
tion

π : [0, 1]×X → X,

and define the map qx,y : LF (x, y)→ ΩX by

qx,y = π ◦Θ ◦ p ◦ ΓF . (31)

Note that Y is contractible and therefore admits a lift to the universal cover
[0, 1]× X̃. A fixed lift defines in particular a lift for the critical points of F

and therefore a lifted complex C̃∗(F, ξ). By construction we have (compare
to Lemma 5.9):

Lemma 6.5. The maps qx,y satisfy the following properties:

1. If x ∈ Crit(f0) and y ∈ Crit(f1) have the same index then, for any
λ ∈ LF (x, y), the homotopy class g = [qx,y(λ)] in π1(X) is exactly the

one assigned to λ in the lifted Morse complex C̃∗(F, ξ).

2. For any (λ, λ′) ∈ LF (x, z)× LF (z, y) we have

qx,y(λ, λ
′) = qx,z(λ)#qz,y(λ

′).

3. If x, y ∈ {i} × Crit(fi) for the same i = 0 or i = 1, then qx,y is exactly
the map constructed in Lemma 5.9 for (fi, ξi).

Now denote νx,y = −qx,y,∗(σx,y) and m(i)
x,y = (qx,y)∗s

i
x,y for i = 0, 1. Remark

that item 3 of the above statement implies that m
(i)
x,y is the twisting cocycle

associated to (fi, ξ). We infer from (30) using item 2:

∂νx,y =
∑

z∈Crit(f0)

m(0)
x,z · νz,y −

∑
w∈Crit(f1)

(−1)|x|−|w|νx,w ·m(1)
w,y. (32)

This is exactly the relation (9) corresponding to (2) in Proposition 2.3. We
deduce the existence of a canonical morphism

ΨΞ : C∗(X,Ξ0;F)→ C∗(X,Ξ1;F)

defined by

ΨΞ(α⊗ x) = α
∑

y∈Crit(f1)

νx,y ⊗ y. (33)

Item 1 of the previous lemma shows that it is compatible with Ψ̃ = −Ψ̃F

from §6.1 in the sense of Proposition 4.10. Moreover, since we know that
−Ψ̃F is a quasi-isomorphism by the invariance of the lifted homology, we
may apply Proposition 4.10 and infer that ΨΞ is a quasi-isomorphism. This
finishes the proof of Proposition 6.3.
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Remark 6.6. The reason why we chose the minus sign in front of q∗ to
define νx,y above will be clear in §6.3: we want ΨΞ to induce the identity
in homology for the constant homotopy; recall from §6.1 that at the level of
usual and lifted homology our orientation conventions gave Ψ̃Id = −Id.

We may conclude therefore that the enriched Morse homology only depends
on the manifold X and the DG-module F , which justifies the use of the
notation H∗(X;F) (resp. H∗(X, ∂+X;F) in the boundary case): given two
different sets of auxiliary data Ξ0 and Ξ1, we constructed a morphism of
complexes ΨΞ which induces an isomorphism in homology. In the next section
we show that the “continuation” morphism is a homotopy equivalence whose
chain homotopy type only depends on Ξ0 and Ξ1.

6.3 Invariance of the continuation morphism

The goal of this section is to prove the following

Theorem 6.7 (Invariance). 1) Let Ξ0, Ξ1 be two sets of data for the con-
struction of the enriched Morse complex with coefficients in a given DG-
module F over C∗(ΩX). The continuation morphism

ΨΞ : C∗(X,Ξ0;F)→ C∗(X,Ξ1;F)

from Proposition 6.3 is a homotopy equivalence, and its chain homotopy type
does not depend on the choice of continuation data Ξ between Ξ0 and Ξ1.
The map ΨΞ induces in particular an isomorphism in homology.

2) Given another set of data Ξ2 and denoting by Ψij, i, j ∈ {0, 1, 2} the
continuation maps determined by continuation data Ξij between Ξi and Ξj,
we have that Ψ00 is homotopic to the identity and Ψ12 ◦Ψ01 is homotopic to
Ψ02. In particular we have in homology

Ψ00 = Id and Ψ12 ◦Ψ01 = Ψ02.

As noted in Remark 6.4, this statement implies that of Proposition 6.3.

Proof of Theorem 6.7. We will break the proof into two steps which are the
counterparts of properties 1 and 2 from §6.1.

Step 1. The case Ξ = Id.

Consider a set of data Ξ0 and the constant homotopy

(ft,Yt, θt = Θ|{t}×X/Yt) = (f0,Y0, θ0).
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We consider on [0, 1]×X the Morse function given by

F (t, x) = f0(x) + g(t)

and the pseudo-gradient

ξ(t, x) = ξ0(x)− g′(t)
∂

∂t
.

We orient the unstable manifolds of F according to (25) and (26) and denote
oF this set of orientations.

Proposition 6.8. There exists a representing chain system (sFx,y) for the
triple (F, ξ, oF ) satisfying condition (ii) of Lemma 6.2 and such that, for

Ξ = (F, ξ, oF , s
F
x,y,Y ,Θ),

the chain map ΨΞ constructed in Proposition 6.3 is chain homotopic to the
identity. We will denote Ξ = Id (with an abuse of notation since Ξ is not
necessarily unique).

Proof of Proposition 6.8. The morphism Ψ was defined previously using the
chains νx,y = −qx,y,∗(σx,y), where

σx,y = sFx,y

for x ∈ {0}×X and y ∈ {1}×X critical points of F . Since both x and y are
also critical points of f0 we denote by xi the critical points of F on {i} ×X
for i ∈ {0, 1} in order to avoid any confusion. We denote by LId(x0, y1)
the spaces of trajectories in this particular case, motivated by the notation
F = Id from §6.1. Let us describe next the choice of the representing chain
system (σx0,y1) = (sFx0,y1). (For critical points lying on the same slice {i}×X
the choice of the representing chain system is imposed by Lemma 6.2.)

If |x| = |y| then
LId(x0, y1) = ∅

except for the case x = y, when LId(x0, x1) consists of a single gradient line
that only depends on t and connects the maximum of g to its minimum.
In §6.1 we denoted this gradient line by cx and we proved the following:

Lemma 6.9. With our orientation conventions the chain

σx0,x1 ∈ C0(LId(x0, x1))

is the opposite of the constant chain. Therefore νx0,x1 = −qx0,x1,∗(σx0,x1) is a
constant chain in C0(ΩX).

61



If |x| > |y| there is a natural projection

π : LId(x0, y1)→ Lf0(x, y),

and also an inclusion

i : Lf0(x, y)→ LId(x0, y1),

the latter being defined by

i(λ) = (λ, cy).

We therefore have
π ◦ i = Id.

Lemma 6.10. There exists a representing chain system (σx0,y1) on
LId(x0, y1) such that, for |x| > |y|, we have

π∗(σx0,y1) = 0.

The heuristic explanation for this statement is the following: in the cubical
complex the degenerate cubes are by definition equal to zero. Whenever
|x| > |y|, the cubical chain π∗(σx0,y1) has dimension |x| − |y| and lives on a
space of dimension |x| − |y| − 1. Thus it “wants” to be degenerate, and the
proof consists in showing that we can indeed choose σx0,y1 such that π∗(σx0,y1)
is degenerate, and therefore zero.

Proof of Lemma 6.10. We proceed by induction on |x|−|y|. For |x|−|y| = 1
the trajectories in Lf0(x, y) are isolated points and therefore

π∗(σx0,y1) ∈ C1(Lf0(x, y))

is formed by (constant) degenerate 1-chains and therefore it equals 0.

Suppose that we constructed (σx0,y1) for |x| − |y| ≤ k − 1 and consider the
case |x| − |y| = k. As in the proof of Proposition 6.3 we find a chain

σ′
x0,y1

∈ C|x|−|y|(LId(x0, x1))

which satisfies relation (30). In the current setting this writes

∂σ′
x0,y1

=
∑

z∈Crit(f0)

s0x0,z0 × σz0,y1 −
∑

w∈Crit(f0)

(−1)|x|−|w|σx0,w1 × s0w1,y1
. (34)
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By the induction hypothesis we have

∂(π∗(σ
′
x0,y1

)) = π∗(∂σ
′
x0,y1

) = 0.

We use here the fact that, in the above sum, the terms s0x0,y0 × σy0,y1 and
σx0,x1 × s0x1,y1 occur with opposite signs and have the same image −s0x,y
through the projection π∗.

We infer that π∗(σ
′
x0,y1

) is a cycle in C|x|−|y|(Lf0(x, y)). Since the dimension

of Lf0(x, y) is |x| − |y| − 1, it follows that there is some

bx,y ∈ C|x|−|y|+1(Lf0(x, y))

such that
∂bx,y = π∗(σ

′
x0,y1

).

We then define
σx0,y1 = σ′

x0,y1
− ∂i∗(bx,y).

Since we only added a boundary to σ′
x0,y1

we infer that σx0,y1 still satisfies (34)

and represents the fundamental class of LId(x0, y1). Moreover

π∗(σx0,x1) = π∗(σ
′
x0,x1

)− π∗i∗(∂bx,y) = 0

as claimed.

We now continue the proof of Proposition 6.8 and show that, for this choice
of representing chain system, we obtain a chain homotopy to the identity.

Following our usual pattern, we evaluate the representing chain system in
ΩX. Define continuous maps qx0,y1 : LId(x0, y1)→ ΩX by

qx0,y1(λ) =

{
⋆ if x = y,

qx,y ◦ π(λ) otherwise,

where qx,y : Lf0(x, y)→ ΩX is the evaluation defined in Lemma 5.9 and ⋆ is
the constant Moore loop parametrized by a single point {0}. Set

νx0,y1 = −qx0,y1,∗(σx0,y1).

It is clear from the definition that the evaluations qx0,y1 satisfy the concate-
nation relation

q(λ, λ′) = q(λ)#q(λ′), (35)
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which together with (34) implies that the family (νx0,y1) satisfies (32) and
therefore defines an automorphism of C∗(X,Ξ0;F). On the other hand Lem-
mas 6.9 and 6.10 imply that this morphism is nothing but the identity.

This however does not yet conclude the proof of Proposition 6.8, since the
evaluation maps qx0,y1 do not coincide with the evaluation maps qx0,y1 defined
by (31), that we used to define the continuation cocycle and then the con-
tinuation morphism by (33). The next lemma shows that they are actually
homotopic.

Lemma 6.11. There is a homotopy qsx0,y1 : LId(x0, y1)→ ΩX between q and
q such that, for each s ∈ [0, 1], we have

qsx0,y1(λ, λ
′) = qx,z(λ)#q

s
z0,y1

(λ′) (36)

for any (λ, λ′) ∈ LId(x0, z0)× LId(z0, y1) = Lf0(x, z)× LId(z0, y1), and

qsx0,y1(λ, λ
′) = qsx0,w1

(λ)#qw,y(λ
′) (37)

for any (λ, λ′) ∈ LId(x0, w1)× LId(w1, y1) = LId(x0, w1)× Lf0(w, y)

Proof of Lemma 6.11. First note that the evaluation q satisfies the rela-
tions (36) and (37) as a consequence of the fact that the evaluations qx,y
defined in Lemma 5.9 on Lf0(x, y) do satisfy a concatenation relation.

Then recall that the evaluations qx0,y1 : LId(x0, y1) → ΩX were defined in
(31) by the formula

qx0,y1 = π ◦Θ ◦ p ◦ ΓId
x0,y1

,

where π : [0, 1]×X → X is the projection, p : [0, 1]×X →
⋃
t∈[0,1]{t}×X/Yt

is the projection on the quotient space and Θ :
⋃
t∈[0,1]{t}×X/Yt → [0, 1]×X

is a homotopy inverse for p which is the same on every slice {t} ×X (recall
that the homotopy of trees (Yt) is constant). Therefore we have

π ◦Θ ◦ p = θ0 ◦ p0 ◦ π

where p0 : X → X/Y0 is the projection and θ0 : X/Y0 → X is its chosen
homotopy inverse.

Recall also that

ΓId
x0,y1

: LId(x0, y1)→ Px0→y1([0, 1]×X)

was defined by parametrizing the broken orbits using the Morse function
F (t, x) = f0(x) + g(t). More precisely, assuming w.l.o.g. that g(0) = A > 0
and g(1) = 0, the map

ΓId
x0,y1

(λ) : [0, f0(x)− f0(y) + A]→ [0, 1]×X
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was defined by

ΓId
x0,y1

(λ)(r) = λ ∩ (f0 + g)−1(−r + f0(x) + A).

For s ∈ (0, 1] we define a homotopy Γs : LId(x0, y1)→ Px0→y1([0, 1]×X) by
parametrizing the broken orbits using the values of f0 + sg, namely

Γs(λ) : [0, f0(x)− f0(y) + sA]→ [0, 1]×X

is given by

Γs(λ)(r) = λ ∩ (f0 + sg)−1(−r + f0(x) + sA).

This formula is not valid for s = 0 since the values of f0 do not strictly
decrease along the constant orbits cz ∈ LId(z0, z1) which may appear in
the broken orbits of LId(x0, y1). However, we may extend the composition
π ◦ Γs : LId(x0, y1)→ Px→yX to s = 0 as we will now show. Denote

Γs(λ)(r) = (δs(r), γs(r)) ∈ [0, 1]×X.

We therefore have

f0(γs(r)) + sg(δs(r)) = −r + f0(x) + sA.

Since γs(r) ∈ π(λ) ∈ Lf0(x, y) we can write

π ◦ Γs(λ)(r) = γs(r) = π(λ) ∩ f−1
0 (−r + f0(x) + sA− sg(δs(r)))

for r ∈ [0, f0(x) − f0(y) + sA]. When s tends to 0 the right hand term
converges towards

π(λ) ∩ f−1
0 (−r + f0(x)),

which is exactly the parametrization of π(λ) via the values of f0, i.e.,

Γx,y(π(λ)) : [0, f0(x)− f0(y)]→ Px→yX.

We may therefore define a continuous map

Q : [0, 1]× LId(x0, y1)→ ΩX

by the formulas

Q(s, ·) = qs =

{
θ0 ◦ p ◦ π ◦ Γs = π ◦Θ ◦ p ◦ Γs for s ∈ (0, 1],

θ0 ◦ p ◦ Γx,y ◦ π = qx,y ◦ π = q for s = 0.

By construction q0 = q and q1 = q. Moreover, the maps qs satisfy the
relations (36) and (37); we have already noticed it for s = 1, whereas the
case s > 0 is analogous to the case s = 1. The proof of the lemma is now
complete.
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To finish the proof of Proposition 6.8 it suffices now to prove

Lemma 6.12. The chains

νx0,y1 = −qx0,y1,∗(σx0,y1) and νx0,y1 = −qx0,y1,∗(σx0,y1)

satisfy the homotopy relation (3). Therefore the morphism ΨId defined by
νx0,y1 is chain homotopic to the one defined by νx0,y1 (which was proved to be
the identity).

Proof of Lemma 6.12. Let (σx0,y1) be the representing chain system from
Lemma 6.10 with σx0,y1 ∈ C|x|−|y|(LId(x0, y1)), and denote by

Sx0,y1 ∈ C|x|−|y|+1([0, 1]× LId(x0, y1))

the chain defined by
Sx0,y1 = Id[0,1] × σx0,y1 .

We therefore have

∂Sx0,y1 = {1} × σx0,y1 − {0} × σx0,y1 − Id× ∂σx0,y1 ,

which using (30) becomes

∂Sx0,y1
= {1} × σx0,y1 − {0} × σx0,y1

− Id×

 ∑
z∈Crit(f0)

sf0x0,z0 × σz0,y1 −
∑

w∈Crit(f0)

(−1)|x|−|w|σx0,w1 × sf0w1,y1


= {1} × σx0,y1 − {0} × σx0,y1
−

∑
z∈Crit(f0)

Id× sf0x0,z0 × σz0,y1 +
∑

w∈Crit(f0)

(−1)|x|−|w|Sx0,w1 × sf0w1,y1
.

We denote by I the map

Lf0(x0, z0)× [0, 1]× LId(z0, y1)

→ [0, 1]× Lf0(x0, z0)× LId(z0, y1) ⊂ ∂LId(x0, y1)

which switches the first two variables. We get

∂Sx0,y1 ={1} × σx0,y1 − {0} × σx0,y1
−

∑
z∈Crit(f0)

(−1)|x|−|z|−1I∗(s
f0
x0,z0
× Id× σz0,y1)

+
∑

w∈Crit(f0)

(−1)|x|−|w|Sx0,w1 × sf0w1,y1
,
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and therefore

∂Sx0,y1 ={1} × σx0,y1 − {0} × σx0,y1
+

∑
z∈Crit(f0)

(−1)|x|−|z|I∗(s
f0
x0,z0
× Sz0,y1)

+
∑

w∈Crit(f0)

(−1)|x|−|w|Sx0,w1 × sf0w1,y1
.

Now consider the homotopy

Q : [0, 1]× LId(x0, y1)→ ΩX

between q and q from Lemma 6.11 and apply Q∗ to the relation above.
Setting

hx0,y1 = Q∗(Sx0,y1) ∈ C|x|−|y|+1(ΩX),

using (37) and taking into account that Q ◦ I = (q,Q) by (36), we infer

∂hx0,y1 = νx0,y1 − νx0,y1 +
∑

z∈Crit(f0)

(−1)|x|−|z|mf0
x0,z0

hz0,y1

+
∑

w∈Crit(f0)

(−1)|x|−|w|hx0,w1m
f0
w1,y1

,

which is relation (3) as claimed.

The proof of Proposition 6.8 is now complete.

Lemma 6.12 is valid in the following more general framework with a sim-
ilar proof. Let (M(x0, y1)) be a family of moduli spaces indexed by the
critical points of two Morse functions f0 and f1, and assume given a repre-
senting chain system (σx0,y1) which satisfies equation (30). Let qx0,y1 , qx0,y1 :

M(x0, y1) → ΩY be two collections of evaluation maps which satisfy the
concatenation relations (36) and (37) above, so that νx0,y1 = −qx0,y1,∗(σx0,y1)
and νx0,y1 = −qx0,y1,∗(σx0,y1) are continuation cocycles that satisfy (2).

Lemma 6.13. Assume that the evaluation maps q and q are homotopic in
the following sense: there exists a collection of homotopies (qτx0,y1)τ∈[0,1] such
that q0x0,y1 = qx0,y1, q

1
x0,y1

= qx0,y1, and for each τ ∈ [0, 1] the family of maps
(qτx0,y1) satisfies the concatenation relations (36) and (37). Then the cocycles
(νx0,y1) and (νx0,y1) satisfy the algebraic homotopy equation (3), and therefore
yield homotopic continuation maps.

67



Proof of Theorem 6.7, Step 2: composition of continuation maps.

We now prove that continuation maps are compatible with composition. Take
three sets of data Ξ0, Ξ1 and Ξ2 which correspond to three Morse functions
f0, f1 and f2. For a given DG-module F and some arbitrary choices of
continuation data Ξ, Ξ′ and Ξ′′ consider the continuation morphisms between
the corresponding enriched complexes

ΨΞ : C∗(X,Ξ0;F)→ C∗(X,Ξ1;F),

ΨΞ′
: C∗(X,Ξ1;F)→ C∗(X,Ξ2;F),

and
ΨΞ′′

: C∗(X,Ξ0;F)→ C∗(X,Ξ2;F).
Proposition 6.14. The maps ΨΞ′ ◦ ΨΞ and ΨΞ′′

are chain homotopic. In
particular, the following relation holds in homology:

ΨΞ′ ◦ΨΞ = ΨΞ′′
.

Proof. First we construct a representing chain system adapted to this sit-
uation. We proceed as in [AD14] (third step of Theorem 3.4.2). Take
g : [−ϵ, 1 + ϵ] → R as before with a maximum at 0 and a minimum at
1. Then pick a Morse function

K : [−ϵ, 1 + ϵ]× [−ϵ, 1 + ϵ]×X → R

of the form
K(τ, t, x) = kτ,t(x) + g(τ) + g(t),

and a negative generic pseudo-gradient ξK , where kτ,t interpolates between
f0, f1 and f2 (as explained below), such that the following conditions are
satisfied:

� for t ∈ [−ϵ, ϵ] we have

K(τ, t, x) = F (τ, x) + g(t),

where F = fτ + g(τ) is the Morse function on [−ϵ, 1 + ϵ] × X which
was used to define ΨΞ. We define the pseudo-gradient by ξK(τ, t, x) =
ξF (τ, x)− g′(t) ∂∂t in this region.

� for t ∈ [1− ϵ, 1 + ϵ] we have

K(τ, t, x) = f2(x) + g(τ) + g(t).

We take ξK(τ, t, x) = ξf2(x)− g′(τ) ∂∂τ − g
′(t) ∂

∂t
in this region.
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� for τ ∈ [−ϵ, ϵ] we have

K(τ, t, x) = H(t, x) + g(τ),

where H : [−ϵ, 1 + ϵ] × X → R is the Morse function interpolating
between f0 and f2 which was used to define ΨΞ′′

. We define ξK(τ, t, x) =
ξH(t, x)− g′(τ) ∂∂τ in this region.

� for τ ∈ [1− ϵ, 1 + ϵ] we have

K(τ, t, x) = G(t, x) + g(τ),

where G : [−ϵ, 1 + ϵ] × X → R is the Morse function interpolating
between f1 and f2 which was used to define ΨΞ′

. Finally, we take the
pseudo-gradient ξK(τ, t, x) = ξG(t, x)− g′(τ) ∂∂τ in this region.

The function g is chosen to have negative enough slope on [ϵ, 1−ϵ] so that the
only critical points of K are the critical points of f0, f1 or f2 on {(i, j)}×X
for i, j ∈ {0, 1}. More precisely

Crit(K) = {(0, 0)}×Crit(f0) ⊔ {(1, 0)} × Crit(f1)

⊔ {(0, 1)} × Crit(f2) ⊔ {(1, 1)} × Crit(f2).

The index of a critical point of K of the form (i, j, x) is equal to i + j plus
the index of x as a critical point of the corresponding Morse function f0, f1
or f2.

We orient the unstable manifolds of the critical points of K in a manner
analogous to the one described in (25) and (26), namely

� for x ∈ {(0, 0)} × Crit(f0),

OrW u
K(x) =

(
∂
∂τ
, ∂
∂t
,OrW u

f0
(x)
)
.

� for x ∈ {(1, 0)} × Crit(f1),

OrW u
K(x) =

(
∂
∂t
,OrW u

f1
(x)
)
.

� for x ∈ {(0, 1)} × Crit(f0),

OrW u
K(x) =

(
∂
∂τ
,OrW u

f0
(x)
)
.

� for x ∈ {(1, 1)} × Crit(f2),

OrW u
K(x) = OrW u

f2
(x).
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Denote this set of orientations by oK . We will choose a representing chain
system (sKx,y) for (K, ξ, oK) associated with this orientation in Lemma 6.15
below. The fact that the manifold [−ϵ, 1+ ϵ]× [−ϵ, 1+ ϵ]×X has boundary
and corners is again not an issue since all the gradient lines between critical
points stay away from the boundary. We will use different notations for the
chains of the system (sKx,y) depending on the type of critical points which are
involved. As previously, we will use the Morse indices of the functions f0, f1
and f2 for the critical points of K.

� for x, y ∈ {(0, 0)} ×X critical points of f0 we will use the notation

sK,0x,y ∈ C|x|−|y|−1(LK(x, y)) = C|x|−|y|−1(Lf0(x, y))

� for x, y ∈ {(1, 1)} ×X critical points of f2 we will use the notation

sK,2x,y ∈ C|x|−|y|−1(LK(x, y)) = C|x|−|y|−1(Lf2(x, y))

� for x ∈ {(0, 0)} × X critical point of f0 and y ∈ {(1, 0)} × X critical
point of f1 we will use the notation

σK,0,1x,y ∈ C|x|−|y|(LK(x, y)) = C|x|−|y|(LF (x, y))

� for x ∈ {(1, 0)} × X critical point of f1 and y ∈ {(1, 1)} × X critical
point of f2 we will use the notation

σK,1,2x,y ∈ C|x|−|y|(LK(x, y)) = C|x|−|y|(LG(x, y))

� for x ∈ {(0, 0)} × X critical point of f0 and y ∈ {(0, 1)} × X critical
point of f2 we will use the notation

σK,0,2x,y ∈ C|x|−|y|(LK(x, y)) = C|x|−|y|(LH(x, y))

� for x ∈ {(0, 1)} × X critical point of f2 and y ∈ {(1, 1)} × X critical
point of f2 we will use the notation

σK,2,2x,y ∈ C|x|−|y|(LK(x, y)) = C|x|−|y|(LId(x, y))

� finally, for x ∈ {(0, 0)} × X critical point of f0 and y ∈ {(1, 1)} × X
critical point of f2 we will denote

SKx,y ∈ C|x|−|y|+1(LK(x, y))

the corresponding chain.
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With this notation and taking into account the differences between the Morse
indices of the critical points of K considered as critical points of fi, the
defining relation of the representing chain system (22) writes here for SKx,y:

∂SKx,y

=
∑

z∈Crit(f0)

(−1)|x|−|z|sK,0x,z × SKz,y +
∑

w∈Crit(f2)

(−1)|x|−|w|+2SKx,w × sK,2w,y

+
∑

u∈Crit(f1)

(−1)|x|−|u|+1σK,0,1x,u × σK,1,2u,y +
∑

v∈Crit(f2)

(−1)|x|−|v|+1σK,0,2x,v × σK,2,2v,y .

We now make precise the choice of the representing chain system (sKx,y). We
proceed as in Lemma 6.2: we extend the representing chain systems of f0,
f2, F etc., with some sign changes due to different orientations.

Lemma 6.15. Denote by σFx,y, σ
G
x,y and σHx,y the representing chain systems

for the functions F , G and respectively H. Denote σId
x,y the representing chain

system constructed in the proof of Proposition 6.8 for the constant homotopy
from f2 to f2.

There exists a representing chain system (sKx,y) for (K, ξ, oK) such that:

sK,0x,z = sf0x,z, sK,2w,y = sf2w,y, σK,0,1x,u = (−1)|x|−|u|σFx,u,

σK,1,2u,y = σGu,y, σK,0,2x,v = (−1)|x|−|v|+1σHx,v, σK,2,2v,y = σId
v,y.

Proof. We proceed as in the proof of Lemma 6.2. By construction many of
the trajectory spaces LK(x, y) coincide with those of fi, F , G or H. But
their orientations may differ and the sign difference corresponds exactly to
the one between the corresponding chains in the statement of our lemma.
Let us check this in each case.

Recall the orientation rule (21) for the spaces of broken orbits of K:(
OrLK(x, y),−ξ(p),OrW u

K(y)
)
= OrW

u

K(x), (38)

where ξ(p) is the gradient vector at a point p on a broken orbit in LK(x, y).
We apply it for each situation to deduce the sign differences between the
orientations of the representing chains:

1. If x, z ∈ {(0, 0)} ×X are both critical points of f0 note that analogously
to (25) we have

OrW
u

K(x) =
(
∂
∂τ
, ∂
∂t
,OrW

u

f0
(x)
)
,

71



the same being true for W u
K(z) and W

u
f0
(z). Inserting this in (38) we get(

OrLK(x, z),−ξ(p), ∂
∂τ
, ∂
∂t
,OrW u

f0
(z)
)
=
(
∂
∂τ
, ∂
∂t
,OrW

u

f0
(x)
)
,

which, using again the orientation rule for Lf0(x, z), yields

OrLK(x, z) = OrLf0(x, z).

One may therefore use the construction procedure from Lemma 5.6 to choose

sK,0x,z = sf0x,z.

2. If w, y ∈ {(1, 1)} ×X are both critical points of f2 then

OrW
u

K(w) = OrW
u

f2
(w),

and the same is true for y. By (38) we obtain

OrLK(w, y) = OrLf2(w, y)

and we may therefore choose

sK,2w,y = sf2w,y.

3. If x ∈ {(0, 0)}×X is a critical point of f0 and u ∈ {(1, 0)}×X is a critical
point of f1 we have

OrW
u

K(x) =
(
∂
∂τ
, ∂
∂t
,OrW

u

f0
(x)
)
= −

(
∂
∂t
, ∂
∂τ
,OrW

u

f0
(x)
)

= −
(
∂
∂t
,OrW

u

F (x)
)

and
OrW u

K(u) =
(
∂
∂t
,OrW u

f1
(u)
)
=
(
∂
∂t
,OrW u

F (u)
)
.

By (38) this yields

OrLK(x, u) = (−1)|x|−|u|+2 OrLF (x, u),

and we may therefore choose

σK,0,1x,u = (−1)|x|−|u|σFx,u.

4. If u ∈ {(1, 0)}×X is a critical point of f1 and y ∈ {(1, 1)}×X is a critical
point of f2 we have

OrW
u

K(u) =
(
∂
∂t
,OrW

u

f1
(x)
)
= OrW

u

G(u)
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and
OrW u

K(y) = OrW u
f2
(y) = OrW u

G(y).

By (38) we get
OrLK(u, y) = OrLG(u, y),

so we may choose
σK,1,2u,y = σGu,y.

5. If x ∈ {(0, 0)}×X is a critical point of f0 and v ∈ {(0, 1)}×X is a critical
point of f2 we have

OrW
u

K(x) =
(
∂
∂τ
, ∂
∂t
,OrW

u

f0
(x)
)

=
(
∂
∂t
,OrW

u

H(x)
)

and
OrW u

K(v) =
(
∂
∂τ
,OrW u

f2
(v)
)
=
(
∂
∂τ
,OrW u

H(v)
)
.

By (38) this implies again

OrLK(x, v) = (−1)|x|−|v|+1 OrLf0(x, z),

hence we may choose

σK,0,2x,v = (−1)|x|−|v|+1σHx,v.

6. Finally, if v ∈ {(0, 1)} ×X and y ∈ {(1, 1)} ×X are both critical points
of f2 we get

OrW
u

K(v) =
(
∂
∂τ
,OrW

u

f2
(v)
)
= OrW

u

Id(v)

and
OrW u

K(y) = OrW u
f2
(y) = OrW u

Id(y).

Once again by (38) we obtain

OrLK(v, y) = OrLId(v, y),

which enables us to choose
σK,1,2v,y = σId

v,y

using the recipe of Lemma 5.6.

To finish the proof of Lemma 6.15 it remains now to construct SKx,y. This is
done inductively as in the proof of Lemma 5.6.
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We now get back to the proof of Proposition 6.14. From Lemma 6.15 we get
the relation

∂SKx,y =
∑

z∈Crit(f0)

(−1)|x|−|z|sf0x,z × SKz,y +
∑

w∈Crit(f2)

(−1)|x|−|w|SKx,w × sf2w,y

−
∑

u∈Crit(f1)

σFx,u × σGu,y +
∑

v∈Crit(f2)

σHx,v × σId
v,y.

(39)

As previously we convert this relation into one in C∗(ΩX). To this purpose
we choose a family of trees (Yτ,t)τ,t∈[0,1]2 with fixed root ⋆, which is constant
for t = 1 (where our homotopy of functions is constant between f2 and itself)
and which extends the homotopies of trees already defined by Ξ, Ξ′ and Ξ′′

on (τ, t) ∈ ∂([0, 1]2). Then we consider the projection

p : [0, 1]2 ×X →
⋃

(τ,t)∈[0,1]2
{(τ, t)} ×X/Yτ,t = [0, 1]2 ×X/Y ,

where Y =
⋃
τ,t Yτ,t, and finally choose a homotopy inverse for p denoted

Θ :
⋃

(τ,t)∈[0,1]2
{(τ, t)} ×X/Yτ,t → [0, 1]2 ×X

and formed by a family θτ,t : {(τ, t)}×X/Yτ,t → {(τ, t)}×X which is constant
for t = 1 and extends what is already defined by Ξ, Ξ′ and Ξ′′ on ∂([0, 1]2).

Now, as in the initial construction of the enriched complex, we parametrize
the broken orbits of LK(x, y) by the values of K and get continuous maps

Γx,y : LK(x, y)→ Px→y([0, 1]
2 ×X)

and evaluations
qx,y : LK(x, y)→ ΩX

defined by
qx,y = π ◦Θ ◦ p ◦ Γx,y

where π : [0, 1]2 × X → X is the projection. These evaluations satisfy as
usual

qx,y(λ, λ
′) = qx,z(λ)#qz,y(λ

′).

By applying qx,y,∗ to (39) and denoting

hx,y = q∗(S
K
x,y) ∈ C|x|−|y|+1(ΩX)
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we therefore get

∂hx,y =
∑

z∈Crit(f0)

(−1)|x|−|z|mf0
x,z · hz,y +

∑
w∈Crit(f2)

(−1)|x|−|w|hx,w ·mf2
w,y

−
∑

u∈Crit(f1)

(−νΞx,u) · (−νΞ
′

u,y) +
∑

v∈Crit(f2)

(−νΞ′′

x,v) · (−νIdv,y),

which simplifies into

∂hx,y =
∑

z∈Crit(f0)

(−1)|x|−|z|mf0
x,z · hz,y +

∑
w∈Crit(f2)

(−1)|x|−|w|hx,w ·mf2
w,y

−
∑

u∈Crit(f1)

νΞx,u · νΞ
′

u,y +
∑

v∈Crit(f2)

νΞ
′′

x,v · νIdv,y.

Here νΞx,y, ν
Ξ′
x,y and ν

Ξ′′
x,y are the chains in C|x|−|y|(ΩX) which we used to define

the continuation morphisms ΨΞ, ΨΞ′
respectively ΨΞ′′

by (33); remember that
they are obtained by evaluating the corresponding representing chain systems
(σx,y) by the map −qx,y. Remember also that the morphism ΨId defined by
νId is homotopic to the identity at chain level and therefore induces the
identity in homology by Proposition 6.8 in Step 1; this was the reason of
choosing the “−” sign in front of the evaluation.

Remark also that the above relation is quite similar to (3) – the relation which
defines the algebraic homotopy between enriched complexes. Taking all this
into account and using the definition of the continuation morphism (33), we
infer that ΨΞ′◦ΨΞ and ΨId◦ΨΞ′′

are homotopic. Taking into account that ΨId

is homotopic to the identity, we infer that ΨΞ′ ◦ΨΞ and ΨΞ′′
are homotopic,

and in particular they induce the same maps in homology. This finishes the
proof of Proposition 6.14.

End of the proof of Theorem 6.7. We prove item 1. The independence of the

chain homotopy type of the continuation map ΨΞ with respect to the choice
of Ξ follows by applying Proposition 6.14 with Ξ0 arbitrary, Ξ1 = Ξ2, Ξ and
Ξ′′ arbitrary, and Ξ′ given by Proposition 6.8. That ΨΞ is a chain homotopy
equivalence follows by applying Proposition 6.14 with Ξ2 = Ξ0 and Ξ′′ the
continuation data given by Proposition 6.8.

We prove item 2. The first half of item 2) follows by applying Proposition 6.14
with Ξ0 = Ξ1 = Ξ2, Ξ arbitrary and Ξ′, Ξ′′ given by Proposition 6.8. The
second half of item 2) follows directly from Proposition 6.14.

This theorem enables us to define Morse homology with DG-coefficients more
accurately than just up to a isomorphism: there is a precise identification
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Ψ01 between the homologies defined with two sets of data Ξ0 and Ξ1. This
will be particularly useful in §8 in order to define morphisms between the
enriched Morse homologies of two different manifolds X and Y which are
associated to continuous maps φ : X → Y .

Remark 6.16. The statement of Remark 6.1 is still valid in the DG-setting.
The same arguments show that if we replace the set of data Ξ by Ξop, which
coincides with Ξ except for the fact that the orientations of the unstable
manifolds are chosen to be opposite, then C∗(X,Ξ

op;F) = C∗(X,Ξ;F)
but the identification morphism Ψop

0,1 : C∗(X,Ξ0;F) → C∗(X,Ξ
op
1 ;F) differs

from Ψ0,1 : C∗(X,Ξ0;F)→ C∗(X,Ξ1;F) by a sign, consequence of the change
of orientation in all the trajectory spaces which define this morphism: we
therefore have Ψop

01 = −Ψ01.

We get the same effect when we change Ξ0 into Ξop
0 with Ξ1 left unchanged.

6.4 Identification of twisted complexes defined at dif-
ferent basepoints

Let ⋆0 and ⋆1 be two basepoints in X and denote Ω0X and Ω1X the loop
spaces based at ⋆0, respectively at ⋆1. Consider two sets of data Ξ0 and Ξ1

defined respectively at these two basepoints. The problem one faces when
trying to compare twisted complexes defined with these two sets of data is
that — unlike in the case of usual local systems — there is no canonical ring
morphism between C∗(Ω0X) and C∗(Ω1X) associated to a path γ between ⋆0
and ⋆1, and therefore we have a priori no means to identify the DG-modules
F0 and F1 over these rings. To overcome this difficulty we will consider
a situation where F0 and F1 are related. Namely suppose that there is a
continuous map η : X → Y with values in some topological space Y with
basepoint ⋆Y such that

η(⋆0) = η(⋆1) = ⋆Y .

This defines η0 : Ω0X → ΩY and η1 : Ω1X → ΩY . We will work under the
assumption that

Fi = η∗iF for i = 0, 1, (40)

where F is a DG-module over C∗(ΩY ).

Proposition 6.17. (compare with Theorem 6.7) Let Ξ0 and Ξ1 be as above
and let Fi be two DG-modules over ΩiX for i = 0, 1 which satisfy (40).
We consider continuation data Ξ from Ξ0 to Ξ1 as before (note that the
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homotopy of trees moves their respective roots from ⋆0 to ⋆1). Each such
choice determines a continuation map which is a chain homotopy equivalence

Ψ01 : C∗(X,Ξ0;F0)→ C∗(X,Ξ1;F1)

whose chain homotopy type only depends on Ξi, F and η. Moreover:
a) If ⋆0 = ⋆1 then Ψ01 coincides with the continuation map defined in Propo-
sition 6.3 (for F0 = F1 = η∗F).
b) Given three basepoints ⋆0, ⋆1 and ⋆2 such that η(⋆i) = ⋆Y , three sets of
data Ξi respectively corresponding to these points, and three sets of continu-
ation data from Ξ0 to Ξ1, from Ξ1 to Ξ2, and from Ξ0 to Ξ2, with associated
continuation maps Ψ01, Ψ12, respectively Ψ02, the composition Ψ12 ◦ Ψ01 is
chain homotopic to Ψ02. In particular we have in homology

Ψ12 ◦Ψ01 = Ψ02.

Proof. Proceeding exactly as in the proof of Proposition 6.3 we get a cocycle
(νx,y) which satisfies equation (32):

∂νx,y =
∑

z∈Crit(f0)

m(0)
x,z · νz,y −

∑
w∈Crit(f1)

(−1)|x|−|w|νx,w ·m(1)
w,y.

The difference here is that, since ⋆0 and ⋆1 may not coincide, this cocycle is
a chain on the space of paths from ⋆0 to ⋆1, namely

νx,y ∈ C|x|−|y|(P⋆0→⋆1X).

We use η to transform it into a chain over a space of loops and write

µx,y = η∗(νx,y) ∈ C|x|−|y|(ΩY ).

The equation above then becomes

∂µx,y =
∑

z∈Crit(f0)

η∗(m
(0)
x,z) · µz,y −

∑
w∈Crit(f1)

(−1)|x|−|w|µx,w · η∗(m(1)
w,y). (41)

To get the desired morphism Ψ01 we use the canonical identification from
Remark 4.6 for i = 0, 1, namely C∗(X,Ξi;Fi) ≡ C∗(X, η∗(m

(i)
x,y);F), and also

the morphism of complexes C∗(X, η∗(m
(0)
x,y);F)→ C∗(X, η∗(m

(1)
x,y);F) defined

by the cocycle (µx,y) via Proposition 2.3 (equation (41) is of type (2)).

It is obvious from the construction that for ⋆0 = ⋆1 we get the usual contin-
uation morphism. In particular Ψ00 is homotopic to the identity. The fact
that Ψ01 only depends on Ξi, η and F is proved exactly in the same way as
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in Theorem 6.7, using an analogue of Proposition 6.14 in the proof of which
we need to convert chains on paths in X into chains on the loop space of Y
using η. Item b) and the fact that Ψ01 is a chain homotopy equivalence are
proved as in Theorem 6.7.

Remark 6.18. The following particular case of the previous general result
is instructive: we consider an embedded path γ : [0, 1] → X between ⋆0
and ⋆1 and let η be the projection η : X → X/γ. Denote ⋆ the basepoint
of X/γ and consider a DG-module F over the loop space Ω(X/γ) based
at this point. Then, for Fi = η∗iF as in (40), we get a chain homotopy
equivalence Ψ01 : C∗(X,Ξ0;F0)→ C∗(X,Ξ1;F1) whose chain homotopy type
only depends on Ξi, γ and F .

Remark 6.19. Consider a non-DG local systemM on a connected manifold
X, viewed as a representation of the fundamental groupoid of X. For a
choice of basepoint x, the local system can be equivalently described as the
Z[π1(X, x)]-module given by the fiber at x, denoted Mx. While this module
structure on any fiberMx is canonical, the identification between the modules
corresponding to two different basepoints ⋆0 and ⋆1 is not: it depends on the
choice of a (homotopy class of) path γ from ⋆0 to ⋆1. Subsequently, the same
is true for the corresponding homologies with local (non-DG) coefficients.

This type of identification can be retrieved as a particular case of the con-
struction from Proposition 6.17. Assume that γ is embedded. Following up
on the notation from Remark 6.18, choose a homotopy inverse χ : (X/γ, ⋆)→
(X, ⋆0) for the projection η : X → X/γ and take for F the pullback χ∗M0 of
M0 = M⋆0 – the fiber at ⋆0 of our local system. Seeing F as a DG-module
over C∗(Ω0X) supported in degree 0 we claim that the identification Ψ01

given by the previous remark is the same as the one given by the path γ
between the homologies with local coefficients at ⋆0 and ⋆1. Since χ is a
homotopy inverse for η, the Z[π1(X, ⋆0)]-action on F0 = η∗0F is the same
as the one on M0, and it is easy to check that the Z[π1(X, ⋆1)]-action on

F1 = η∗1F is the same as the one on M1 = Φγ(M0), where Φγ : M0
≃−→ M1

is the identification given by the monodromy of the local system along the
path γ and M1 is the fiber of that same local system at ⋆1. Then, taking the
same Morse function, pseudo-gradient and tree in the data Ξ0 and Ξ1, it is
quite straightforward that the two identifications coincide.
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6.5 Canonical identification between twisted complexes
defined by an isotopy

We discuss in this subsection a particular case of continuation morphism in
the context of isotopies.

We first need a piece of preliminary notation. Let Ξ = (f, ξ, o, sx,y,Y , θ) be a
set of data constructed at a basepoint ⋆ ∈ X. Let ϕ be a diffeomorphism of
X which is isotopic to the identity; we do not require ϕ(⋆) = ⋆. The critical
points of f ◦ ϕ−1 are the images through ϕ of the critical points of f , and if
we choose as a pseudo-gradient for f ◦ ϕ−1 the vector field ϕ∗ξ we obviously
obtain Lf◦ϕ−1(ϕ(x), ϕ(y)) = ϕ(Lf (x, y)). We denote

Ξϕ =
(
f ◦ ϕ−1, ϕ∗(ξ), ϕ(o), ϕ∗(sx,y), ϕ(Y), θϕ = ϕ ◦ θ ◦ ϕ−1

)
.

Since θϕ is a homotopy inverse of the projection ϕ ◦ p ◦ ϕ−1 : X → X/ϕ(Y),
we conclude that Ξϕ is a set of Morse data associated to the basepoint ϕ(⋆).

Let now Ξ0 and Ξ1 be two sets of data constructed at the basepoint ⋆ ∈ X.
Let also (ϕt) be an isotopy on X starting at the identity, and denote ϕ = ϕ1.
Our goal is to describe a continuation cocycle from Ξ0 to Ξϕ1 .

We denote Φ : [0, 1]×X → [0, 1]×X the diffeomorphism defined by Φ(t, x) =
(t, ϕt(x)). Given Ξ = (F, ξ, oF , s

F
x,y,Y ,Θ) Morse continuation data from Ξ0 to

Ξ1 on [0, 1]×X, let ΞΦ =
(
F ◦ Φ−1,Φ∗(ξ), oF◦Φ,Φ∗(s

F
x,y),Φ(Y),Φ ◦Θ ◦ Φ−1

)
be the induced continuation data from Ξ0 to Ξϕ1 . The following proposition
is proved by inspection of the definitions.

Proposition 6.20. Given x ∈ Crit(f0) and y ∈ Crit(f1), the continuation
data Ξ and Ξϕ determine as in Proposition 6.3 (see (31)) chains

νx,y = −(Θ ◦ p ◦ ΓF )∗(sFx,y) ∈ C|x|−|y|
(
P(0,⋆)→(1,⋆)[0, 1]×X

)
and

νx,ϕ(y) ∈ C|x|−|y|
(
P(0,⋆)→(1,ϕ(⋆))[0, 1]×X

)
,

which give rise in turn to continuation cocycles νx,y = π∗(νx,y) and νx,ϕ(y) =
π∗(νx,ϕ(y)). These chains are related by the formula

νx,ϕ(y) = Φ∗(νx,y). (42)

Remark 6.21. Note that we could have chosen Ξ0 and Ξ1 to be associated
to different basepoints ⋆i. This would have given rise to a cocycle

νx,y ∈ C|x|−|y|
(
P(0,⋆0)→(1,⋆1)[0, 1]×X

)
satisfying an analogous conclusion.
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7 Fibrations

In this section we analyze the important example of Hurewicz fibrations and
prove Theorem A from the Introduction.

7.1 Lifting functions

Given a topological space X we denote as above PX the space of Moore
paths with free endpoints in X, and ev0, ev1 : PX → X the evaluation maps
at the initial point, respectively at the endpoint of the path. Recall that by
definition, the elements of PX are continuous paths γ : [0, a] → X defined
on intervals of arbitrary length a ≥ 0 (see for example [CM95, §5.1]). Given
a basepoint ⋆ ∈ X we denote P⋆→XX = ev−1

0 (⋆) the space of Moore paths
starting at ⋆, and ΩX = Ω⋆X the space of Moore loops based at ⋆. The
latter is a topological monoid with respect to concatenation.

A fibration, or Hurewicz fibration, is a continuous map that is surjective and
has the homotopy lifting property with respect to all spaces. If the homotopy
lifting property only holds for finite-dimensional cells (or, equivalently, for all
CW-complexes), we speak of a Serre fibration. The notion of a Serre fibration
is strictly weaker than that of a Hurewicz fibration [Bro66]. However, any
Serre fibration is homotopy equivalent and fiber weakly homotopy equivalent
to a Hurewicz fibration [SG11]. This can be seen by applying the general
procedure of turning a map π : E → X into a fibration π = pr2 ◦ ev1 :
E π×ev0PX → X. Seen through this equivalence, our discussion for fibrations
can be adapted to Serre fibrations.

Following Hurewicz [Hur55], the homotopy lifting property with respect to
all spaces for a map π : E → X is equivalent to the existence of a lifting
function, i.e., a map

Φ : E π×ev0 PX → PE

such that ev0 ◦Φ = pr1 and π ◦Φ = pr2. Moreover, any two lifting functions
are homotopic through lifting functions (Fadell [Fad59, Proposition 1]).

Brown [Bro59] uses a stronger form of lifting function which he calls “(weakly)
transitive” (see also [Fad60]). Let π : E → X be a fibration and fix a
basepoint ⋆ ∈ X. A transitive (resp. weakly transitive) lifting function for
π is a map

Φ : E π×ev0 PX → E

such that π ◦Φ = ev1 ◦pr2, such that Φ(e, b) = e for any constant path b ∈ X
and any e ∈ E, and such that for any e ∈ E (resp. for any e ∈ π−1(⋆))
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and any two Moore paths γ, δ ∈ PX such that the starting point of γ is
π(e) (resp. is π(e) = ⋆) and the endpoint of γ equals the starting point of δ,
denoting γ#δ their concatenation we have

Φ(Φ(e, γ), δ) = Φ(e, γ#δ). (43)

It is proved in [DK69, Proposition 5.5] that any fibration is fiber homotopy
equivalent to a fibration that admits a transitive lifting function. For the
purpose of studying chains on the total space of a fibration we can therefore
assume w.l.o.g. that there exists a transitive lifting function.

A transitive lifting function gives rise to a map

Φ : F × ΩX → F, F = π−1(⋆),

such that
Φ(Φ(e, γ), δ) = Φ(e, γ#δ)

for all e ∈ F and γ, δ ∈ ΩX. In other words, the lifting function exhibits F as
a topological right module over the topological monoid ΩX. The composition

Cp(F )⊗ Cq(ΩX)
EZ−→ Cp+q(F × ΩX)

Φ∗−→ Cp+q(F ),

with EZ the Eilenberg-Zilber map [Mac67, §VIII.8] defined on the canonical
basis by (σ⊗τ) 7→ (σ, τ) defines a right C∗(ΩX)-module structure on C∗(F ).
Here we work with non-degenerate cubical chains and arbitrary coefficients.
We will sometimes abuse notation and denote this composition Φ∗. More
generally, the lifting function Φ : F × P⋆→XX → E determines the compo-

sition Cp(F ) ⊗ Cq(P⋆→XX)
EZ−→ Cp+q(F × P⋆→XX)

Φ∗−→ Cp+q(E), which we
will also denote simply by Φ∗.

We interpret the above C∗(ΩX)-module structure on C∗(F ) as a DG-local
system on X, which we denote F . Since any two lifting functions are ho-
motopic through lifting functions, we infer that the DG-local system F is
canonically defined up to homotopy on any path-connected component of X.
To summarize:

Proposition 7.1. A Hurewicz fibration π : E → X with path-connected
base determines a DG-local system on X which is canonically defined up to
homotopy. The fiber of the local system is given by cubical chains on the fiber
of π, and the C∗(ΩX)-right module structure is determined by the choice of
a lifting function.
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7.2 Homology with DG-coefficients for fibrations

We now assume that X is a closed manifold and we choose a Morse func-
tion f : X → R with a unique minimum at the basepoint ⋆. We also
choose regular auxiliary data Ξ for the definition of the Morse chain com-
plex with DG-local coefficients, consisting of a Morse-Smale pseudo-gradient
vector field and of a particular embedded tree Y whose branches are gradi-
ent trajectories joining the critical points of f to the minimum ⋆ (one for
each critical point). The next result is a restatement of Theorem A from the
Introduction.

Theorem 7.2. Let E → X be a Hurewicz fibration and let F be the asso-
ciated DG-local system on X. For any Morse function f : X → R with a
unique minimum at the basepoint ⋆ and for a choice of the tree Y as above,
there is a chain map

Ψ : C∗(X,Ξ;F) −→ C∗(E)

which induces an isomorphism between the spectral sequence of the enriched
Morse complex and the Leray-Serre spectral sequence of the fibration E. In
particular Ψ induces an isomorphism in homology

Ψ∗ : H∗(X;F) ≃−→ H∗(E).

Remark 7.3. With a little bit more work one can prove that Ψ is a chain
homotopy equivalence, and even a deformation retract. This is essentially
equivalent to proving that the Morse complex is a deformation retract of the
cubical or singular chain complex. See [Hut08] for a relevant construction.

Theorem 7.2 was proved with Z/2-coefficients by Charette [Cha17]. It is a
generalization of the seminal result of Barraud-Cornea [BC07, Theorem 2.14]
which deals with the path-loop fibration ev : P⋆→XX → X. We now provide
a few examples to which it applies.

Example 7.4. (1) The fundamental example F∗ = R∗ = C∗(ΩX) endowed
with right multiplication corresponds to the path-loop fibration

ΩX ↪→ P⋆X
ev1
−−→ X

whose total space P⋆X = P⋆→XX is the space of paths in X starting at the
basepoint ⋆. Since P⋆ is contractible we obtain

H∗(X;C∗(ΩX)) ≃ H∗(point).
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(2) Given a subset C ⊂ X, the fibration

PC→⋆X ↪→ PC→XX
ev1
−−→ X

whose total space PC→XX is the space of paths with starting point on C de-
fines on C∗(PC→⋆X) — the cubical chains on Moore paths starting on C and
ending at the basepoint ⋆ — the right C∗(ΩX)-module structure determined
by concatenation. We have

H∗(X;C∗(PC→⋆X)) ≃ H∗(PC→XX).

(3) The loop-loop fibration

ΩX ↪→ LX → X

gives rise to the C∗(ΩX)-module structure on C∗(ΩX) induced by the adjoint
action of ΩX onto itself, ΩX × ΩX → ΩX, γ ⊗ g 7→ g−1γg. Denoting the
resulting local coefficients C∗(ΩX)ad, we have

H∗(X;C∗(ΩX)ad) ≃ H∗(LX).

(4) Let X ⊂ Y and F = C∗(ΩY ) seen as a right C∗(ΩX)-module via multipli-
cation and the embedding C∗(ΩX) ⊂ C∗(ΩY ), where the basepoint ⋆ belongs
to X. Then

H∗(X;F) ≃ H∗(P⋆→XY ),

where P⋆→XY is the space of paths in Y starting at the basepoint ⋆ and ending
in X.

7.3 Proof of the main theorem on fibrations

This section is devoted to the proof of Theorem 7.2, i.e. Theorem A in the
Introduction. We will need a preliminary result regarding the Latour cells
W

u
(x), x ∈ Crit(f) from §5.2.2. We denote as usual by C∗ complexes of

cubical chains.

Definition 7.5. Let (sx,y) be a representing chain system for the Morse mod-
uli spaces (see Definition 5.7). A compatible representing chain system for
the Latour cells is a collection {sx ∈ C|x|(W

u
(x)) : x ∈ Crit(f)} satisfying

the following properties:

1. each sx is a cycle rel boundary and represents the fundamental class
[W

u
(x)];
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2. each sx satisfies

∂sx =
∑
y

sx,y × sy, (44)

with the product of chains defined via the inclusions L(x, y)×W u
(y) ⊂

∂W
u
(x) ⊂ W

u
(x).

The next result is an analogue of Proposition 5.6.

Lemma 7.6. Given a representing chain system (sx,y) for the Morse moduli
spaces, there exists a compatible representing chain system (sx) for the Latour
cells.

Proof. Recall that our recipe for orienting the moduli spaces of connecting
Morse trajectories L(x, y) takes as input a choice of orientation for the un-
stable manifolds W u(x). (The latter clearly also determines orientations of
the Latour cells W

u
(x).) With these choices, the product orientation on

L(x, y)×W u
(y) ⊂ ∂W

u
(x) differs from the boundary orientation by the sign

(−1)|x|−|y|, see (17).

From this point on, the construction proceeds inductively much like in Propo-
sition 5.6. The resulting representing chains (s′x) will satisfy

∂s′x =
∑
y

(−1)|x|−|y|sx,y × s′y.

To conclude, we set sx = (−1)|x|s′x.

Proof of Theorem 7.2. Denote p : X → X/Y the canonical projection and let
θ : X/Y → X be a homotopy inverse for p. Consider the pull-back fibration

F ′ //

��

F

��
E ′ //

��

E

��
X/Y θ // X.

The desired isomorphism between H∗(X;F) and H∗(E) will be induced by
a composition of several chain maps which are quasi-isomorphisms:

C∗(f,F)
≃−→ C∗(f,F ′)

≃−→ C∗(E
′)

≃−→ C∗(E).
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Our proof will be decomposed in three steps, each step consisting in showing
that one of the above maps is a quasi-isomorphism. The DG local system
F ′ is the pull-back θ∗F over C∗(Ω(X/Y)) and the complex C∗(f,F ′) will
be made explicit in Step 2 below. We actually define a quasi-isomorphism
between the enriched complex and the total space of the pull-back fibration
over X/Y (Step 3) and convert it into the desired quasi-isomorphism using
the map θ : X/Y → X (Step 1 and 2).

Step 1. Chain homotopy equivalence C∗(E
′)

≃−→ C∗(E). The homotopy
equivalence θ induces a homotopy equivalence between the total space of the
pullback fibration E ′ = θ∗E and the total space of the original fibration E,
hence a quasi-isomorphism C∗(E

′)
≃−→ C∗(E).

Step 2. Identification C∗(f,F ′)
∼=←→ C∗(f,F).

We first define the complex C∗(f,F ′). Let q′x,y : L(x, y) → Ω(X/Y) be a
family of maps defined for x, y ∈ Crit(f) similarly to the maps qx,y from
Lemma 5.9, namely

q′x,y = p ◦ Γ,

where Γ : L(x, y)→ Px→yX is defined in Lemma 5.9. Let

m′
x,y = q′x,y,∗(sx,y) ∈ C|x|−|y|−1(Ω(X/Y)).

Obviously the family (m′
x,y) satisfies the Maurer-Cartan equation

∂m′
x,y =

∑
z∈Crit(f)

(−1)|x|−|z|m′
x,z ·m′

z,y. (45)

Let F ′ be the DG-module defined by the action of Ω(X/Y) on the fiber F ′

of E ′; via the natural identification between F ′ and F the module F ′ is the
pull-back θ∗F . Denote by C∗(f,F ′) the enriched complex corresponding to
the twisting cocycle (m′

x,y).

We remark that there is an obvious identification C∗(f,F) ∼= C∗(f,F ′). In-
deed, by definition, the twisting cocycles which define these complexes satisfy
the relation

mx,y = θ∗(m
′
x,y).

If α ∈ F ′ = θ∗F then α ·m′
x,y = α · θ∗(m′

x,y) = α ·mx,y, which implies the
claimed identification (see Remark 4.6).

Step 2 is proved and we now turn to the third and last step of the proof of
Theorem 7.2.
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Step 3. Quasi-isomorphism C∗(f,F ′)
≃−→ C∗(E

′).

We will construct a chain map Ψ′ : C∗(f ;F ′) → C∗(E
′) and show that it is

a quasi-isomorphism.

Consider a weakly transitive lifting function Φ for the fibration F ′ → E ′ →
X/Y . Also remark that since the tree Y has its root ⋆ at the unique minimum
of f and its branches formed by gradient lines, with one gradient line lx
between ⋆ and each x ∈ Crit(f) (considered with its endpoints included), we
have that W

u
(x)/lx is homeomorphic to a closed disk of dimension |x| and

moreover the canonical maps ix : W
u
(x) → X induce a CW-decomposition

of X/Y with cells
jx : W

u
(x)/lx → X/Y .

The map p : X → X/Y is then cellular. Now pick a representing chain
system (sx,y) for the Morse moduli spaces, and a compatible representing
chain system (sx) for the Latour cells. Again we will use evaluation maps
in order to transform the relation (44) into one in cubic chains. The next
statement is a counterpart to Lemma 5.9.

Lemma 7.7. There exists a family of continuous maps

qx : W
u
(x)→ P⋆→X/Y(X/Y)

such that:

a) For any (λ, a) ∈ L(x, y)×W u
(y) ⊂ ∂W

u
(x) we have

qx(λ, a) = q′x,y(λ)#qy(a).

b) The image ev1 ◦ qx(W
u
(x)) coincides with the image of the corresponding

cell jx(W
u
(x)/lx) in X/Y.

Proof of Lemma 7.7. Any element of W
u
(x) can be identified with the bro-

ken orbit between x and itself: for a ∈ W u
(x) and (λ, a) ∈ L(x, y)×W u(y)

this orbit is (λ, l(a)), where l(a) is the gradient line between y and a inW u(y).
As in the proof of Lemma 5.9 we parametrize this orbit by the values of f
and define Γ(λ, l(a)) ∈ Px→aX by the same formula. We see it as a map
Γ : W

u
(x)→ Px→X(X) and we obviously have

Γ(λ, l(a)) = Γ(λ)#Γ(l(a))

for any (λ, a) ∈ L(x, y) ×W u(y). We then define the family of continuous
maps

qx = p ◦ Γ,
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where p : X → X/Y is the projection. These maps satisfy Property a) by
construction.

We now prove property b). Denote px : W
u
(x) → W

u
(x)/lx the projection

and remark that we have by definition ev1 ◦ Γ = ix, where ix : W
u
(x)→ X

was defined above. Therefore,

ev1 ◦ qx = ev1 ◦ p ◦ Γ = p ◦ ev1 ◦ Γ = p ◦ ix = jx ◦ px,

which implies the desired statement and finishes the proof.

Proof of Theorem 7.2 - Step 3 continued. Define

mx = qx∗(sx) ∈ C|x|(P⋆→X/YX/Y)

for each x ∈ Crit(f). The previous lemma together with (44) immediately
imply

∂mx =
∑
y

m′
x,y ·my. (46)

Here the multiplication is determined by the left C∗(Ω(X/Y))-module struc-
ture on C∗(P⋆→X/YX/Y) given by the concatenation

Ω(X/Y)× P⋆→X/YX/Y → P⋆→X/YX/Y .

Using the lifting map Φ∗ : C∗(F
′) ⊗ C∗(P⋆→X/YX/Y) → C∗(E

′) for the
fibration F ′ → E ′ → X/Y , we define

Ψ′ : C∗(f ;F ′)→ C∗(E
′), Ψ′(σ ⊗ x) = Φ∗(σ ⊗mx).

We check that Ψ′ is a chain map:

∂Ψ′(σ ⊗ x) = ∂Φ∗(σ ⊗mx)

= Φ∗(∂(σ ⊗mx))

= Φ∗(∂σ ⊗mx + (−1)|σ|σ ⊗ ∂mx)

= Φ∗(∂σ ⊗mx + (−1)|σ|σ ⊗
∑

ym
′
x,y ·my)

= Φ∗(∂σ ⊗mx) + (−1)|σ|
∑

y Φ∗(Φ∗(σ ⊗m′
x,y)⊗my)

= Φ∗(∂σ ⊗mx) + (−1)|σ|
∑

y Φ∗(σ ·m′
x,y ⊗my)

= Ψ′(∂σ ⊗ x+ (−1)|σ|
∑

y σ ·m′
x,y ⊗ y)

= Ψ′∂(σ ⊗ x).
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The 5th equality makes use of the concatenation property (43) for the lifting
function. The 6th equality follows from the fact that the module structure
satisfies by definition σ ·m′

x,y = Φ∗(σ ⊗m′
x,y).

Now let us prove that Ψ′ is a quasi-isomorphism. To this end we consider
two spectral sequences which respectively converge to the homologies of our
complexes: on the domain we have the spectral sequence Er

pq associated to
the twisted complex (see §4.2), and on the target we have the Leray-Serre
spectral sequence Erpq associated to the filtration C∗(π

−1(Skp(X/Y)) ⊂ C∗(E
′)

by the pre-images of the skeleta Skp(X/Y) ⊂ X/Y defined as the union of
the cells jx(W

u
(x)/lx) with |x| ≤ p.

We are now close to conclude the proof of Theorem 7.2. Indeed, we defined a
chain morphism Ψ′ : C∗(f,F ′)→ C∗(E

′) and by Lemma 7.8 below it induces
a morphism of spectral sequences which is an isomorphism on the first page.
Therefore Ψ′ is a quasi-isomorphism, which finishes the proof of Step 3 in
the proof of Theorem 7.2.

Lemma 7.8. The map Ψ′ preserves the filtrations which define the two spec-
tral sequences. Moreover, it induces an isomorphism at the first page

E1
pq

≃−→ E1pq.

Proof. Let x ∈ Crit(f) and σ ∈ C∗(F
′). We prove that the projection of

Ψ′(σ ⊗ x) is contained in the singular complex of the corresponding cell
jx(W

u
(x)/lx). Using the properties of the lifting function we obtain

π∗(Ψ
′(σ ⊗ x)) = π∗(Φ∗(σ ⊗mx) = (π ◦ Φ)∗(σ ⊗mx) = ev1,∗(mx),

hence
π∗(Ψ

′(σ ⊗ x)) = ev1,∗(mx) = (ev1 ◦ qx)∗(sx).

Now by Lemma 7.7.b we know that the image of ev1 ◦ qx coincides with the
image of the cell W

u
(x)/lx in X/Y , so our first claim is proved.

In order to prove the second claim recall that the first pages of our spectral
sequences are given by

E1
pq = Hq(F

′)⊗ Cp(f)

and
E1pq = Hp+q(π

−1(Skp), π
−1(Skp−1)).

It is known that E1pq is isomorphic to Hq(F
′)⊗Hp(Skp, Skp−1), and therefore

by pull-back through the embeddings of the cells jx : W
u
(x)/lx → X/Y it is
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isomorphic to ⊕
x∈Crit(f), |x|=p

Hq(F
′)⊗Hp(W

u
(x)/lx, ∂(W

u
(x)/lx)).

This isomorphism can be described using the lifting function Φ in the fol-
lowing way: if γâ is a continuous family of paths from the basepoint ⋆ to the
points â ∈ W u

(x)/lx, the maps χx : F
′×W u

(x)/lx → π−1(Skp) ⊂ E ′ defined
by

χx(f
′, â) = Φ(f ′, jx(γâ))

induce the above isomorphism in homology. OnW
u
(x) we already considered

such a family of paths γa defined by the broken gradient lines l(a) from ⋆ = x
to a parametrized by the values of the function f . We define for â = px(a)
the path γâ = px(γa) and we infer

χx(f
′, â) = Φ(f ′, jx(γâ)) = Φ(f ′, jx ◦ px(γa)) = Φ(f ′, p ◦ ix(γa)),

where ix : W
u
(x) → X is the embedding of the corresponding cell and

p : X → X/Y is the canonical projection. Now remark that ix(γ(a)) = Γ(a),
where

Γ : W
u
(x)→ P⋆→XX

was defined in the proof of Lemma 7.7 above. We therefore get

χx(f
′, px(a)) = Φ(f ′, qx(a)),

which at chain level gives

χx,∗(σ ⊗ px,∗(sx)) = Φ∗(σ ⊗mx) = Ψ′(σ ⊗ x).
In other words, the map induced by Ψ′ on the first page is the same as the
one induced by χ in homology via the obvious bijection

Hp(W
u
(x)/lx, ∂(W

u
(x)/lx)) ≈ Z⟨x⟩.

As a consequence, it is an isomorphism. The proof of Lemma 7.8 is complete.

Remark 7.9. There is a version of Theorem 7.2 for manifolds with boundary.
Using the notation from §5.3 and Theorem 7.2, if ∂X = ∂−X ∪ ∂+X and
E+ = π−1(X+) is the total space of the restriction of the fibration to the part
of the boundary along which the negative pseudo-gradient points outwards,
we have

H∗(X, ∂+X;F) ≃ H∗(E,E+).

The proof is analogous to the closed case and is based on the fact that X
retracts onto ∂+X ∪

⋃
x∈Crit(f)W

u
(x), with the canonical maps ix : W

u
(x)→

X defining a CW-decomposition of ∂+X ∪
⋃
x∈Crit(f)W

u
(x) relative to ∂+X.
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8 Functoriality: general properties

We spell out in this section various functoriality properties of Morse homology
with DG-coefficients, involving both direct and shriek maps. In the subse-
quent sections §§9-10 we will give two different (but equivalent) constructions
for these maps, and prove their properties.

The following definition was already mentioned in §4.3; see Remark 4.6 and
Example 4.7.

Definition 8.1 (pull-back of a local system). Let Y be a based topological
space and F a DG local system on Y , i.e., F is a right C∗(ΩY )-module.
Given a continuous map φ : X → Y of based topological spaces, we induce a
DG local system φ∗F on X by viewing F as a right C∗(ΩX)-module via the
induced map of DG algebras (Ωφ)∗ : C∗(ΩX) → C∗(ΩY ). We call φ∗F the
pull-back of F via φ.

Let φ : X → Y be a continuous map between manifolds and F a right
C∗(ΩY )-module as above. We will suppose unless otherwise mentioned that

⋆Y = φ(⋆X), (47)

with ⋆X , ⋆Y the basepoints of X and Y respectively. Our goal in this section
is to define the following two functorial maps induced by φ between the
enriched homologies:

1. the direct morphism

φ∗ : H∗(X;φ∗F)→ H∗(Y ;F).

2. the shriek morphism (defined under the assumption that X and Y are
oriented)

φ! : H∗(Y ;F)→ H∗+dim(X)−dim(Y )(X;φ∗F).

These maps will be defined at the level of the enriched Morse complexes
built from some auxiliary data consisting of a Morse function, a negative
pseudo-gradient, a collapsing tree etc.

We denote ΞX , ΞY the auxiliary data on X, respectively Y . In order to get
well-defined maps, the definitions have to match with the identifications from
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Theorem 6.7, meaning that the following diagrams have to commute up to
homotopy:

C∗(X,Ξ
X
0 ;φ

∗F) φ∗ //

ΨX
01
��

C∗(Y,Ξ
Y
0 ;F)

ΨY
01
��

C∗(X,Ξ
X
1 ;φ

∗F) φ∗ // C∗(Y,Ξ
Y
1 ;F)

(48)

for the direct morphism, and

C∗(Y,Ξ
Y
0 ;F)

φ! //

ΨY
01
��

C∗+dim(X)−dim(Y )(X,Ξ
X
0 ;φ

∗F)

ΨX
01
��

C∗(Y,Ξ
Y
1 ;F)

φ! // C∗+dim(X)−dim(Y )(X,Ξ
X
1 ;φ

∗F)

(49)

for the shriek morphism.

The rest of this section is organized as follows. In §8.1 we state the expected
properties of direct and shriek maps. In §8.2 we further explain the meaning
of the (homotopy) property. In §8.3 we sketch our two equivalent construc-
tions for both the direct and for the shriek maps. The details are given in §9
for the first construction, and in §10 for the second one.

8.1 Properties

We state the expected properties of direct and shriek maps in the form of a
self-contained theorem.

Theorem 8.2. A continuous map between smooth closed manifolds φ : X →
Y induces in homology a canonical map

φ∗ : H∗(X;φ∗F)→ H∗(Y ;F),

and also, under the assumption that X and Y are oriented, a canonical map

φ! : H∗(Y ;F)→ H∗+dim(X)−dim(Y )(X;φ∗F),

with the following properties:

1. (Identity) We have Id∗ = Id and Id! = Id.

2. (Composition) Given maps X
φ−→ Y

ψ−→ Z and a DG local system
F on Z, noting that (ψφ)∗F = φ∗ψ∗F we have

(ψφ)∗ = ψ∗φ∗ : H∗(X;φ∗ψ∗F)→ H∗(Z;F)
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and

(ψφ)! = φ!ψ! : H∗(Z;F)→ H∗+dim(X)−dim(Z)(X;φ∗ψ∗F).

3. (Homotopy) Two homotopic maps induce the same direct and shriek
morphisms.

4. (Spectral sequence) The morphisms φ∗ and φ! are limits of mor-
phisms between the spectral sequences associated to the corresponding
enriched complexes, given at the second page by

φp,∗ : Hp(X;φ∗Hq(F))→ Hp(Y ;Hq(F))

and
φp,! : Hp(Y ;Hq(F))→ Hp+dim(X)−dim(Y )(X;φ∗Hq(F)),

i.e., the usual direct and shriek maps induced by φ in (Morse) homology
with coefficients in Hq(F).

Corollary 8.3. Let φ : X → Y be a homotopy equivalence and let F be a
DG local system on Y . The canonical maps

φ∗ : H∗(X;φ∗F)→ H∗(Y ;F) and φ! : H∗(Y ;F)→ H∗(X;φ∗F)

are isomorphisms.

Proof. This is a straightforward consequence of conditions 1., 2. and 3. from
Theorem 8.2.

As a matter of fact, much more is true:

Corollary 8.4. Let φ : X → Y be an orientation preserving homotopy equiv-
alence between closed oriented manifolds and let F be a DG local system on Y .
The canonical maps φ! : H∗(Y ;F) → H∗(X;φ∗F) and φ∗ : H∗(X;φ∗F) →
H∗(Y ;F) are isomorphisms inverse to each other.

We will prove this result as Corollary 10.17.

Remark 8.5. 1. If φ is a homeomorphism then (φ−1)∗ = φ−1
∗ and (φ−1)! =

φ−1
! . This is an immediate consequence of properties 1. and 2. above. Of

course, if φ is orientation preserving then it follows from the previous result
that we actually have φ! = φ−1

∗ .

2. The shriek map can also be constructed if the manifolds X and Y have
boundary (and are oriented). In this case it takes the form

φ! : H∗(Y, ∂Y ;F)→ H∗+dim(X)−dim(Y )(X, ∂X;φ∗F).

The functoriality properties are directly similar to those for the closed case.
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8.2 The meaning of the homotopy property

Let us comment on the homotopy invariance property above. As stated it
means that for two homotopic maps φ0 and φ1 the morphisms

(φi)∗ : H∗(X;φ∗
iF)→ H∗(Y ;F)

and
(φi)! : H∗(Y ;F)→ H∗+dim(X)−dim(Y )(X;φ∗

iF)
are the same for i = 0 and i = 1. For this to make sense we need a canonical
identification between the enriched homologies H∗(X;φ∗

0F) andH∗(X;φ∗
1F).

By Remark 4.6, this is equivalent to an identification between the homologies
of the complexes C∗(X,φi∗(mx,y);F) for i = 0, 1, i.e., the enriched complexes
on X with coefficients in the C∗(ΩY )-module F built using the twisted co-
cycles (φi∗(mx,y)).

In this section, we build such an identification Ψφ from a homotopy φ between
φ0 and φ1 (Proposition 8.6). We then prove that Ψφ does not depend on the
choice of homotopy φ (Proposition 8.8).

With these identifications in hand, the property of homotopy invariance
should be understood as the fact that the following diagrams should be com-
mutative in homology:

C∗(X,φ0∗(mx,y);F)

Ψφ

��

= // C∗(X,mx,y;φ
∗
0F)oo φ0∗ // C∗(Y ;F)

C∗(X,φ1∗(mx,y);F) = // C∗(X,mx,y;φ
∗
1F)oo

φ1∗

66

for the direct maps, and

C∗(X,φ0∗(mx,y);F)

Ψφ

��

= // C∗(X,mx,y;φ
∗
0F)oo T∗−dim(X)+dim(Y )(Y ;F)φ0!

oo

φ1!

tt
C∗(X,φ1∗(mx,y);F) = // C∗(X,mx,y;φ

∗
1F)oo

for the shriek maps.

A homotopy (φt)t∈[0,1] yields an identification between the chain complexes
C∗(X, (φ0∗(mx,y);F) and C∗(X, (φ1∗(mx,y);F) as follows:

Proposition 8.6. Let φ = (φt)t∈[0,1] be a homotopy which satisfies condi-
tion (47) at the endpoints, i.e.,

φi(⋆X) = ⋆Y
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for i = 0, 1. Then there exists a chain homotopy equivalence

Ψφ : C∗(X,φ0∗(mx,y);F)→ C∗(X,φ1∗(mx,y);F)

such that:
(i) If φ = Id is the constant homotopy at φ0 then ΨId is homotopic to the
identity and in particular Ψφ = Id in homology.
(ii) If two homotopies φ and φ′ are homotopic with fixed endpoints then Ψφ

and Ψφ′
are homotopic.

(iii) If φ01 is a homotopy between φ0 and φ1 and φ12 is a homotopy between
φ1 and φ2, then denoting φ02 the concatenation of φ01 and φ02 we have that
Ψφ12 ◦Ψφ01 and Ψφ02 are homotopic. Therefore

Ψφ12 ◦Ψφ01 = Ψφ02

in homology. In particular Ψφ is always an homotopy equivalence and thus
a quasi-isomorphism.

Proof. Take Ξ to be the data on X which produces (mx,y) and proceed as
in §6.2 where we defined the continuation morphism; here we consider ΨId

corresponding to the trivial homotopy Id between Ξ and Ξ. The construction
started with a representing chain system: if f is the Morse function of Ξ we
defined a chain

σx,y ∈ C|x|−|y|(LId(x, y))

for x ∈ {0} × Crit(f) and y ∈ {1} × Crit(f) which satisfies equation (30),
i.e.,

∂σx,y =
∑

z∈Crit(f)

sx,z × σz,y −
∑

w∈Crit(f)

(−1)|x|−|w|σx,w × sw,y, (50)

where (sx,y) is the representing chain system defined by Ξ. The evaluation
we use now is different from (31) of §6.2: instead of projecting [0, 1] × X
onto X we send it to Y via the homotopy φ : [0, 1]×X → Y ; more precisely
define

Qx,y : LId(x, y)→ ΩY

by
Qx,y = φ ◦Θ ◦ p ◦ ΓId

x,y

using the notation of (31); the condition (47) guarantees that Qx,y has values
in ΩY . Denoting νφx,y = −Qx,y,∗(σx,y) ∈ C|x|−|y|(ΩY ) we infer from (50) that

∂νφx,y =
∑

z∈Crit(f)

φ0∗(mx,z)× νφz,y −
∑

w∈Crit(f)

(−1)|x|−|w|νφx,w × φ1∗(mw,y). (51)
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This is exactly the algebraic equation (2) which gives rise to a chain map

Ψφ : C∗(X, (φ0∗(mx,y);F)→ C∗(X, (φ1∗(mx,y);F)

by setting

Ψφ(α⊗ x) =
∑

y∈Crit(f)

ανφx,y ⊗ y.

Let us now check properties (i), (ii) and (iii).

As a preliminary remark, note that the algebraic homotopy class of the iden-
tification morphism Ψφ does not depend on the choice of the representing
chain system σx,y ∈ C|x|−|y|(LId(x, y)). Indeed, Proposition 5.8 yields a ho-
motopy cocycle κx,y ∈ C|x|−|y|+1(LId(x, y)) between two representing chain
systems (σx,y) and (σ′

x,y) which satisfies equation (23) (one has to choose
κx,y = 0 for x, y critical points belonging to the same slice {i} ×X in order
to get this equation). Applying the evaluation Q above to (23), we get the
algebraic homotopy equation (3) which implies that the morphisms Ψφ and
Ψφ′

are homotopic.

(i) If φ = Id is the constant homotopy then φ : [0, 1] × X → Y satisfies
φ = φ0 ◦ π, where π : [0, 1] × X → X is the projection, and therefore
Qx,y = φ0 ◦ qx,y, where qx,y is the usual evaluation we used for the continu-
ation morphism corresponding to the trivial homotopy between Ξ and itself.
We get νφx,y = φ0∗(ν

Id
x,y) and, after the identification C∗(X,φ0∗(mx,y);F) =

C∗(X,mx,y;φ
∗
0F) from Remark 4.6, we see that ΨId corresponds to the con-

tinuation morphism between C∗(X,mx,y;φ
∗
0F) and itself, which was proved

to be the identity in Proposition 6.8.

(ii) Consider two homotopies φ and φ′ which are homotopic with fixed end-
points via a family (φτ,t)(τ,t)∈[0,1]2 . Take Ξ to be a set of data of the enriched
complex on X and construct as in the second step of the proof of Theo-
rem 6.7 a representing chain system SId

x,y ∈ C|x|−|y|+1L(x, y) corresponding
to the trivial homotopy of homotopies Ξτ,t = Ξ. As in the first part of the
proof we use a different evaluation which maps this chain into C|x|−|y|+1(ΩY ).
More precisely, if Φ : [0, 1]2 ×X → Y is obtained from (φτ,t) in the obvious
way, we define

Qx,y : L(x, y)→ ΩY

by
Qx,y = Φ ◦Θ ◦ p ◦ Γx,y.

Arguing as in the proof of 6.7 we get that the cocycle hΦx,y = Qx,y,∗(S
Id
x,y) thus

obtained defines a chain homotopy between ΨId ◦Ψφ and Ψφ′ ◦ΨId. Since by
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point (i) the morphism ΨId is homotopic to the identity we get the desired
result.

(iii) The argument is quite similar to the one of (ii) above. Start with a
homotopy of homotopies connecting the concatenations Id#φ02 and φ12#φ01.
We get a continuous map Φ : [0, 1]2 × X → Y such that Φ(·, 0, ·) = φ01,
Φ(1, ·, ·) = φ12, Φ(0, ·, ·) = Id (i.e. the constant homotopy, Φ(0, t, x) = φ0(x))
and Φ(·, 1, ·) = φ02. The cocycle hΦx,y defined by the same formula as above
yields now a homotopy between Ψφ12 ◦Ψφ01 and Ψφ02 ◦ΨId and the latter is
homotopic to Ψφ02 by (i).

Finally remark that (i), (ii) and (iii) imply that Ψφ is a homotopy equivalence,
its homotopy inverse being defined by φ̄ = (φ1−t), the reverse homotopy of
φ.

Remark 8.7. The identification morphism Ψφ was defined at the level of
complexes and therefore depends a priori on the chosen set of data Ξ. In
order to have a well-defined map induced in homology we still have to check
the compatibility with the continuation morphisms. Namely, if Ξ0 and Ξ1 are
two sets of data we have to prove that the following diagram is commutative
in homology :

C∗(X,Ξ0;φ
∗
0F)

Ψφ
0 //

Ψ0
01
��

C∗(X,Ξ0;φ
∗
1F)

Ψ1
01
��

C∗(X,Ξ1;φ
∗
0F)

Ψφ
1 // C∗(X,Ξ1;φ

∗
1F)

(52)

where Ψi
01 are the continuation morphisms between the sets of data Ξ0 and

Ξ1 for the DG-module φ∗
iF and Ψφ

i are the two identification morphisms of
the homotopy φ respectively defined for the sets of data Ξi. This is done
as usual by considering a set of data Ξ on [0, 1]2 × X which will produce
a chain homotopy between Ψ1

01 ◦ Ψ
φ
0 and Ψφ

1 ◦ Ψ0
01. To construct Ξ, start

with a set of data Ξt on [0, 1]×X which defines the continuation morphsims
Ψi

01 and extend it on [0, 1]2 × X constantly: Ξ(τ,t) = Ξt. As in the proof of
(ii) above (and in the second step of the proof of Theorem 6.7) construct
a representing chain system SΞ

x,y from this data. We evaluate it using the
application Φ : [0, 1]2×X → Y defined by Φ(τ, t, x) = φ(τ, x). More precisely,
the evaluation analogous to the one in the proof of (ii)

Qx,y = Φ ◦Θ ◦ p ◦ Γx,y

produces now a cocycle hΦ(x, y) = Qx,y,∗(S
Ξ
x,y) ∈ C|x|−|y|+1(ΩY ) which defines

the desired chain homotopy and implies the commutativity of the above
diagram in homology.
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Let us emphasize that the morphism of complexes Ψφ depends on the ho-
motopy φ. At this stage we only proved that when two homotopies are
homotopic with fixed endpoints, then the associated morphisms coincide in
homology (they are actually homotopic). However, it turns out that in ho-
mology the identification Ψφ is actually independent on the choice of the
homotopy φ between φ0 and φ1. Remarkably, we are only able to prove this
statement a posteriori, i.e., using the fact that direct maps satisfy all the
properties listed in Theorem 8.2, including homotopy invariance. Here is the
statement :

Proposition 8.8. Suppose that the direct maps are well defined and satisfy
Properties 1-3 from Theorem 8.2. Then, given two homotopic maps φ0, φ1 :
(X, ⋆X) → (Y, ⋆Y ), the map induced in homology by the identification map
Ψφ defined above is independent of the choice of the homotopy φ.

Proof. Suppose first that φ1∗ is a monomorphism in homology. Take two
homotopies φ and φ′ between φ0 and φ1. Then the diagram above implies

φ1∗ ◦Ψφ = φ1∗ ◦Ψφ′

and since φ1∗ is injective in homology this gives the equality Ψφ = Ψφ′
, also

in homology.

Let us now turn to the general case. Let φ = (φt) be a homotopy between
the given maps φ0 and φ1. Denote by φ̃ = (φ̃t) the homotopy of maps
X → X × Y given by the graphs

φ̃t(x) = (x, φt(x))

Remark that φ̃1∗ is injective in homology. Indeed, denoting πX : X×Y → X,
the composition and identity properties imply that πX∗ ◦ φ̃1∗ = Id. De-
note πY : X × Y → Y and consider the DG-module π∗

YF . According
to the homotopy property there is a map Ψφ̃ : C∗(X, φ̃0∗(mx,y);π

∗
YF) →

C∗(X, φ̃1∗(mx,y); π
∗
YF) such that φ̃0∗ = φ̃1∗ ◦ Ψφ̃ in homology; this map was

explicitly constructed above.

Then, our particular case above tells us that Ψφ̃ is independent of φ̃ (and
a fortiori of φ) in homology since φ̃1∗ is mono. On the other hand by Re-
mark 4.6 (which we have also used in the diagrams above), as πY ◦ φ̃ = φ,
there are obvious identifications

C∗(X, φ̃i∗(mx,y); π
∗
YF) = C∗(X,φi∗(mx,y);F)
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for i = 0, 1 and the maps Ψφ̃ and Ψφ are identical via these identifications.
Indeed by definition, using the same notation we have

Ψφ(α⊗ x) =
∑
y

ανφx,y ⊗ y,

where
νφx,y = −Qx,y,∗(σx,y)

and Qx,y = φ ◦Θ ◦ p ◦ ΓId
x,y. On the other hand

Ψφ̃(α⊗ x) =
∑
y

ανφ̃x,y ⊗ y

with
νφ̃x,y = −Q̃x,y,∗(σx,y),

where Qx,y = φ̃ ◦ Θ ◦ p ◦ ΓId
x,y. Therefore πY ◦ Q̃x,y = Qx,y which implies

πY ∗(ν
φ̃
x,y) = νφx,y. Now in the formula for Ψφ̃ the product α · νφ̃x,y is defined by

the module structure of π∗
YF , and so it equals α · πY ∗(ν

φ̃
x,y) = α · νφx,y. This

finishes the proof of our proposition.

Note that we could have used shriek maps instead of direct maps with epi-
morphisms instead of monomorphisms in the argument above.

Remark 8.9. Let φ0, φ1 : X → Y be homotopic continuous maps and
χ : Y → Z another continuous map. Consider a DG-module F over C∗(ΩZ).
If we denote by φ the homotopy between φ0 and φ1 and χ ◦ φ the com-
posed homotopy between χ ◦ φ0 and χ ◦ φ1, we have a priori two identi-
fication isomorphisms between H∗(X;φ∗

0χ
∗F) and H∗(X;φ∗

1χ
∗F): the one

defined by homotopy φ for the DG-module χ∗F and the one defined by the
homotopy χ ◦ φ for the DG-module F . We remark that by construction,
Ψφ,Ψχ◦φ : H∗(X;φ∗

0χ
∗F)→ H∗(X;φ∗

1χ
∗F) are equal. Indeed, by definition,

if νφx,y ∈ C|x|−|y|(ΩY ) is the cocycle which defines Ψφ then νχ◦φx,y = χ∗(ν
φ
x,y) ∈

C|x|−|y|(ΩZ). But on the other hand when we write the formula of Ψφ

Ψφ(α⊗ x) =
∑
y

ανφx,y ⊗ y,

the product α · νφx,y is defined by the module structure of χ∗F so it actually
equals α · χ∗(ν

φ
x,y) = α · νχ◦φx,y , which implies the claimed equality.

Remark 8.10. One can easily get rid of condition (47) for the endpoints of
the homotopy, which is impossible to satisfy when φ0 and φ1 have disjoint
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images. For that we need to identify the twisted complexes constructed
using φ0(⋆X) and φ1(⋆X) as basepoints. This is done like in §6.4, using a
map η : Y → Z such that η(φ0(⋆X)) = η(φ1(⋆X)) = ⋆Z and working under
the assumption (40), i.e., Fi = η∗F for i = 0, 1, where F is a DG-module
over C∗(ΩZ).

8.3 Sketch of the two equivalent constructions

We will present two constructions both for the direct and for the shriek
maps. The details will be given in §9 and §10, and the equivalence of the
two constructions will be proved in §10.2. Each of the two approaches has
its own advantages: the first one allows for an easier comparison of signs and
is suitable for explicit computations (for example, the map induced by an
embedding is directly seen to be an inclusion at chain level); the second one
is uniform for all maps and prone to generalizations in Floer theory. In order
to immediately provide the reader with an intuition, we give in this section
a sketch of these constructions which we intend as a reading guide for the
subsequent sections.

A common point of both constructions is that it is enough to treat smooth
maps. Indeed, any continuous map can be approximated by a smooth map,
and two such approximations which are close enough in C0-norm are neces-
sarily homotopic.

The first approach proceeds by constructing the direct and the shriek maps
in the following steps:

i. X ⊂ Y is codimension 0 submanifold (with boundary). In this case the
direct map is constructed by starting with a negative pseudo-gradient
on X which points inwards along the boundary, and then extending
it to Y . The shriek map is constructed by starting with a negative
pseudo-gradient on X which points outwards along the boundary, and
then extending it to Y .

ii. X ⊂ Y is a closed submanifold. In this case one starts with Morse data
on X, extends it to Morse data on a tubular neighborhood of X in Y ,
and then proceeds as in the previous step.

iii. φ : X → Y is an embedding. We view φ as the composition between
the diffeomorphism φ : X → φ(X) and the embedding φ(X)→ Y , we
define direct and shriek maps for diffeomorphisms and then refer to the
previous step.
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iv. φ : X → Y is a general smooth map. We pick an embedding χ : X →
Dm into an m-disc and further consider the embedding (χ, φ) : X →
Dm×Y . Since the Morse data on Dm×Y can be chosen such that the
Morse complex is identified to the Morse complex for Y , we reduce in
this way to the previous case.

While building from one step to the other we need to check that properties
1-4 from Theorem 8.2 are indeed satisfied, and in particular that the defini-
tions do not depend on the choice of auxiliary data. The details of the first
approach are contained in §9.

The second approach takes as input a smooth map φ : X → Y and proceeds
to define φ∗ and φ! at chain level directly in terms of suitable moduli spaces.

For the definition of φ∗ we use the moduli spaces

Mφ(x, y′) = W u(x) ∩ φ−1(W s(y′)),

where x is a critical point of the chosen Morse function on X, where y′

is a critical point of the chosen Morse function on Y , and we choose the
negative pseudo-gradients generically such that the intersection is transverse
(of dimension dimMφ(x, y′) = |x| − |y′|).
For the definition of φ! we use the moduli spaces

Mφ!(x′, y) = W s(y) ∩ φ−1(W u(x′)),

where x′ is a critical point of the chosen Morse function on Y and y is a
critical point of the chosen Morse function on X, and we again work with
generic Morse data such that the intersection is transverse (of dimension
dimM(x′, y) = |x′| − |y| + dim(X) − dim(Y )). The details of this second
approach are contained in §10.

The verification of signs is delicate and at times tedious. We give the full
details for the first approach in §9. For the second approach we explain the
orientation conventions and we compare them with those of the first approach
in §10.2, where we show that the two definitions are equivalent. Some other
details for the second approach are omitted.

Similarly, we give full details for the proof of Theorem 8.2 in the first ap-
proach, and we remain much more sketchy in the second approach (see §10.3).
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9 Functoriality: first definition

We develop in this section our first approach for the construction of direct
and shriek maps, as outlined in §8.3.

9.1 Functoriality for 0-codimensional submanifolds

Suppose U ⊂ Y is a codimension 0 submanifold with boundary ∂U ⊂ Y̊ .
Consider a DG-module F over C∗(ΩY ). We define i∗ and i! for the inclusion

i : U ↪→ Y.

1. The direct map. We start with a Morse-Smale pair (fU , ξU) on U with
ξU pointing inwards along the boundary (which means ∂+U = ∅). We then
extend it to f : Y → R (if Y has a boundary we have to proceed as in the
previous subsection). We orient the unstable manifolds of the critical points
of fU in the same way as the ones of f . Suppose that the basepoint ⋆ is in
U and take a tree YU ⊂ U with root in ⋆ and extend it to a tree Y ⊂ Y .
Finally consider θU : U/YU → U a homotopy inverse for the projection and
extend it to θ : Y/Y → Y homotopy inverse for p : Y → Y/Y . Denote by
ΞU and ΞY these two sets of data and define a morphism of enriched Morse
complexes

i∗ : C∗(U,Ξ
U ; i∗F)→ C∗(Y,Ξ

Y ;F)

by the formula
i∗(α⊗ x) = α⊗ x

for α ∈ F (viewed as a C∗(ΩU)-module on the left hand side and as a
C∗(ΩY )-module on the right hand side) and x ∈ Crit(fU) ⊂ Crit(f). Since
there is no flow line starting from a critical point in U and ending in Y \ U
it is clear that the first complex is a subcomplex of the last one and the
inclusion i∗ is a morphism of complexes. Moreover it satisfies (48); indeed a
homotopy of Morse-Smale pairs on U with pseudo-gradients pointing inward
can be extended to a homotopy on Y making the diagram (48) obviously
commutative. We therefore get a morphism in homology

i∗ : H∗(U ; i
∗F)→ H∗(Y ;F),

where the target space could be a relative enriched homology if Y has bound-
ary and the pseudo-gradient ξ is chosen accordingly.
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2. The shriek map. We repeat the entire construction except for the fact
that the gradient ξU is chosen to point outwards along the boundary of U .
We define

i! : C∗(Y,Ξ
Y ;F)→ C∗(U, ∂U,Ξ

U ; i∗F)

by

i!(α⊗ x) =

{
α⊗ x if x ∈ U,
0 if x ̸∈ U.

Again, since L(x, y) = ∅ for x ̸∈ U and y ∈ U it is easy to see that i!
is a morphism of complexes (as a matter of fact C∗(U, ∂U,Ξ

U ; i∗F) can be
interpreted as a quotient complex). This morphism fits into the commutative
diagram (49) by an argument similar to the one above, and therefore yields
a morphism in homology

i! : H∗(Y ;F)→ H∗(U, ∂U ; i
∗F).

Denote i : U ↪→ Y and j : Y \ U ↪→ Y the inclusions. By construction we
have an exact sequence of enriched complexes given by

0 // C∗(U,Ξ
U ; i∗F) i∗ // C∗(Y,Ξ

Y ;F) j! // C∗(Y \ U, ∂U,ΞY \U , j∗F) // 0. (53)

This gives rise to a long exact sequence

. . . H∗(U ; i
∗F) i∗ // H∗(Y ;F) j! // H∗(Y \ U, ∂U ; j∗F) δ // H∗−1(U ; i

∗F) . . . (54)

The basepoint should belong to the boundary ∂U in order for all the above
homologies to be well defined.

9.2 Functoriality for closed submanifolds

Let Xm be a closed submanifold of a compact manifold Y n. We define the
direct and shriek maps for the inclusion

i : X ↪→ Y.

1. The direct map. Consider a tubular neighborhood U of X and denote by
iU : U → Y the inclusion. Fix a basepoint ⋆ ∈ X and consider a DG-module
F over C∗(ΩY ). Choose a set of Morse data ΞX on X with Morse function
f . We extend f to U as χ · (f ◦ π), where χ is some cutoff function which
equals 1 near X and 0 near ∂U and π : U → X is the projection. Consider
a metric on the normal bundle of X in Y , assumed to be Euclidean in the
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Morse neighborhoods of the critical points of f , and denote h : U → R the
function which corresponds to ∥ · ∥2. For A > 0 large enough the function
F = χ · (f ◦π)+A ·h is Morse, and its critical points are those of f with the
same Morse indices. We extend the negative pseudo-gradient ξ of f to ξF
on U such that ξF = −A · ∇h near ∂U , so that ξF is in particular pointing
inwards along ∂U . We clearly have

LF (x, y) = Lf (x, y)

for all critical points x, y of f . We also have W
u

F (x) = W
u

f (x) and we choose

the same orientation for W
u

F (x) for any x ∈ Crit(f)

OrW
u

F (x) = OrW
u

f (x), (55)

so that the orientation rule (21) implies that the orientations of the above
trajectory spaces also coincide. Taking the same tree Y and the same map θ
on U and on X we obtain twisting cocycles mF

x,y and mf
x,y which satisfy

(iX)∗(m
f
x,y) = mF

x,y,

where iX : ΩX ↪→ ΩU is the inclusion. Therefore the associated enriched
Morse complexes coincide,

C∗(X,Ξ; i
∗F) = C∗(U,Ξ

U ; i∗UF).

This means that the morphism

(iU)∗ : H∗(U ; i
∗
UF)→ H∗(Y ;F)

defined in §9.1 yields a map

i∗ : H∗(X; i∗F)→ H∗(Y ;F),

which is by definition the morphism induced by the embedding i : X ↪→ Y
in enriched Morse homology.

Remark 9.1. The map i∗ : C∗(X,Ξ
X ; i∗F) → C∗(Y,Ξ

Y ;F) obviously pre-
serves the filtration given by the Morse indices and therefore induces a mor-
phism between the spectral sequences associated to this filtration. Thus the
map i∗ : H∗(X; i∗F) → H∗(Y ;F) induced in homology can be seen as the
limit of the map between the corresponding spectral sequences. One can
easily see that on the second page the morphism

i2pq,∗ : Hp(X; i∗Hq(F))→ Hp(Y ;Hq(F))

is the natural one induced by the inclusion i between the homologies with
coefficients in the local system Hq(F) (which induces i∗Hq(F) on X)

103



Remark 9.2. The long exact sequence for enriched Morse homology of a
manifold with boundary admits the following description. Let (Y, ∂Y ) be a
compact manifold and consider U = [−ϵ, 0] × ∂Y a collar neighborhood of
the boundary ∂Y ≡ {0} × ∂Y in Y . Take a basepoint ⋆Y = (−ϵ, ⋆) ∈ U
for Y and F a DG-module over C∗(Ω⋆Y Y ). Denote V = Y \ (−ϵ, 0] × ∂Y
with inclusion j : V ↪→ Y , and write the long exact sequence (54) for a
pseudo-gradient pointing outwards V and inwards Y ,

. . . H∗(U ; i
∗
UF)

(iU )∗// H∗(Y ;F) j! // H∗(V, ∂V ; j∗F) δ // H∗−1(U ; i
∗
UF) . . .

The inclusion j defines an isomorphism

j! : H∗(V, ∂V ; j∗F) ≃→ H∗(Y, ∂Y ;F)

since a Morse-Smale pair on (V, ∂V ) (with outward gradient) can be extended
to one on (Y, ∂Y ) without adding any critical point. Considering the inclusion
i0 : ∂Y → U defined by y 7→ (0, y) we have

H∗(U ; i
∗
UF) ≃ H∗(∂Y ; i∗0i

∗
UF) = H∗(∂Y ; i∗F).

Finally we get the long exact sequence of the pair

. . . H∗(∂Y ; i∗F) i∗ // H∗(Y ;F) // H∗(Y, ∂Y ;F) δ // H∗−1(∂Y ; i∗F) . . . (56)

When F → E → Y is a Hurewicz fibration and F = C∗(F ) with its C∗(ΩY )-
module structure defined using a lifting function as in §7, we retrieve the
long sequence of the pair (E,E|∂Y ), according to Remark 7.9.

2. The shriek map. Suppose that the submanifold Xm i
↪→ Y n is closed and

co-oriented. Starting from a set of Morse data Ξ on X we construct ΞU on
a tubular neighborhood U in the same way as above except for the fact that
the function h corresponds to −∥ · ∥2. We still have

Crit(F ) = Crit(f),

but now the Morse indices differ

|x|F = |x|f + n−m

and the gradient ξF points outwards U . The trajectory spaces are identical

LF (x, y) = Lf (x, y),
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but the unstable manifolds are not: one can identify W u
F (x) with W

u
f (x) ×

TxN where N → X is the normal bundle. We choose to orient them by

OrW u
F (x) =

(
OrW u

f (x),OrN
)

(57)

and applying the orientation rule (21), we obtain that the identification LF =
Lf preserves the orientation. Therefore sFx,y = sfx,y, hence

mF
x,y = mf

x,y.

Due to the difference of Morse indices we therefore have

C∗(X,Ξ; i
∗F) = C∗+n−m(U,Ξ

U ; i∗UF), (58)

and so applying the construction in §9.1 we finally get a chain map

i! : C∗(Y,Ξ
Y ;F)→ C∗+n−m(X,Ξ

X ; i∗F)

which yields the shriek morphism in homology

i! : H∗(Y ;F)→ H∗+n−m(X; i∗F).

Remark 9.3. Here again the shriek map i! at the level of complexes preserves
filtrations: it sends the filtration associated to Y to the one associated to X
shifted by n−m. Therefore i! can also be seen as the limit of a morphism of
spectral sequences which on the second page writes

i2pq,! : Hp(Y ;Hq(F))→ Hp+n−m(X; i∗Hq(F)).

This is the usual shriek morphism with local coefficients in Hq(F) induced
by the inclusion i : X ↪→ Y .

Remark 9.4. A particular situation of a co-oriented inclusion i : X ↪→ Y is
the one when X and Y are oriented. By convention we choose to orient the
normal bundle by

(OrX,OrN) = OrY (59)

Remark 9.5. Assume that Y → X is a disk bundle and X, Y are oriented
manifolds. Then we may take U = Y in the above construction and write
the equality (58) as

C∗(X,Ξ; i
∗F) = C∗+n−m(Y,Ξ

Y ;F),

where i : X ↪→ Y is the inclusion. One may think of the shriek map

i! : H∗+n−m(Y, ∂Y ;F) ∼= H∗(X; i∗F)

induced by i, as the Thom isomorphism for DG coefficients.
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9.3 Functoriality for embeddings

An embedding φ : X → Y is the composition between the diffeomorphism
φX = φ : X → φ(X) and the inclusion i : φ(X) ↪→ Y . It suffices therefore
to define the direct and shriek maps for diffeomorphisms and then apply the
composition rules

φ∗ = i∗ ◦ (φX)∗
and

φ! = (φX)! ◦ i!
in order to define the desired maps. The latter will be defined under the
assumption that X and Y are oriented.

1. The direct map for diffeomorphisms. Let φ : (X, ⋆) → (Y, ⋆) be a diffeo-
morphism. Given a set of data ΞX for the enriched Morse complex on X, we
can transform it through φ into a set of data φ∗(Ξ

X) on Y by taking f ◦ϕ−1

as Morse function, φ∗(ξ) as gradient, the orientations φ(o), the tree φ(Y)
etc. For these choices we obviously have

mY
φ(x),φ(y) = φ∗(m

X
x,y)

and therefore
α⊗ x 7→ α⊗ φ(x)

defines a morphism

φ∗ : C∗(X,Ξ
X ;φ∗F)→ C∗(Y, φ∗(Ξ

X);F)

which, by definition, is the direct map associated to the diffeomorphism φ
for enriched complexes. Note that it clearly satisfies the compatibility con-
dition (48) and therefore it defines an induced map in homology

φ∗ : H∗(X;φ∗F)→ H∗(Y ;F).

2. The shriek map for diffeomorphisms. Let X and Y be oriented manifolds
and φ : X → Y a diffeormorphism. The shriek map

φ! : H∗(Y ;F)→ H∗(X;φ∗F)

is defined by:

deg(φ) · φ−1
∗ : H∗(Y ;F) = H∗(Y ; (φ−1)∗φ∗F)→ H∗(X;φ∗F),
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i.e. ±φ−1
∗ depending on whether φ preserves orientations or not. At the level

of complexes, with the following appropriate choice of data on Y , we have
that

φ! := deg(φ) · φ−1
∗ : C∗(Y, φ∗(Ξ

X);F)→ C∗(X,Ξ
X ;φ∗F)

writes
φ!(α⊗ x) = deg(φ) · α⊗ φ−1(x).

Remark 9.6. We could have gotten rid of the above sign deg(φ) if we chose
the orientation of Y to be the one induced by φ. However, when φ : X → X
is an orientation reversing diffeomorphism it is unnatural to choose different
orientations for the same underlying manifold X.

Remark 9.7. An orientation reversing diffeomorphism φ : X → X can
be interpreted as an embedding between oriented manifolds in two ways:
either as the composition i ◦ φ between the orientation preserving inclusion
i = Id : X ↪→ X and the orientation reversing diffeomorphism φ : X → X,
or as the composition iX ◦ φX between the orientation reversing inclusion
iX = i : X ↪→ X and the orientation preserving diffeomorphism φX = φ :
X → X. Here we fix an orientation of X and denote X the manifold X
endowed with the opposite orientation.

Our definition is consistent with these two descriptions:

� Writing φ = i ◦ φ, the shriek map φ! is defined by the composition

C∗(X,ΞX ;F)
i!=Id // C∗(X,ΞX ;F)

φ!=−φ−1
∗ // C∗(X,φ

−1
∗ (ΞX);φ

∗F).

� Writing φ = iX ◦ φX , the shriek map φ! is defined as the composition

C∗(X, iX∗(ΞX);F)
iX!=Id // C∗(X,ΞX ;F)

φX!=φ
−1
∗ // C∗(X,φ

−1
∗ (ΞX);φ

∗F).

That the two compositions are equivalent means that the diagram

C∗(X, iX∗(ΞX);F)
iX!=Id // C∗(X,ΞX ;F)

φX!=φ
−1
∗ // C∗(X,φ

−1
∗ (ΞX);φ

∗F)

C∗(X,ΞX ;F)

Ψ

OO

−φ−1
∗

22

is commutative in homology, where Ψ is the invariance morphism on X be-
tween the data ΞX and iX∗(ΞX). Now, because the (rank 0) normal bundle
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of X ⊂ X is oriented by the sign “− ”, so that, by (57), the unstable man-
ifolds have opposite orientations on the domain and on the target, we find
that iX∗(ΞX) = Ξop

X , where Ξop
X differs from ΞX only by the orientation of the

unstable manifolds, which is chosen to be opposite. Therefore Ψ = ΨIdop , the
continuation morphism associated to the identity map on X, where the data
at the endpoints differs only by the orientations of the unstable manifolds,
which is chosen to be opposite. It then follows from Proposition 6.8 and
Remark 6.16 that ΨIdop = −ΨId = −Id in homology, i.e., the above diagram
is commutative in homology.

Remark 9.8. The previous definition implies φ∗φ! = deg(φ) · Id (= ±Id
since φ : X → Y is a diffeomorphism). This statement will be generalized
for arbitrary maps between oriented manifolds of the same dimension in
Proposition 10.14.

9.4 Properties of φ∗ and φ! for embeddings

In this section we check that the direct and shriek maps defined for embed-
dings satisfy conditions 1-4 from Theorem 8.2.

1. Identity. It is obvious by definition that Id∗ = Id and that Id! = Id.

2. Composition. This is straightforward too. Given two embeddings

X
φ−→ Y

ψ−→ Z,

the maps (ψφ)∗ and ψ∗φ∗ take by definition the same value on the generators
of the enriched complex of X:

α⊗ x 7→ α⊗ ψ(φ(x)).

The same is true for the shriek maps (recall that we only defined them for
X and Y oriented): if we choose the orientations induced by φ and by ψ ◦φ
respectively on the submanifolds φ(X) ⊂ Y and ψ(Y ) ⊂ Z then on the
generators α ⊗ x of the enriched complex of Z the maps (ψφ)! and φ!ψ! are
both defined as

α⊗ x 7→


α⊗ φ−1(ψ−1(x)), if x ∈ ψ(φ(X)),

0, if x ̸∈ ψ(φ(X)).

3. Homotopy. Let (φt) be a homotopy between two embeddings φ0, φ1 :
X → Y which satisfy

φi(⋆X) = ⋆Y .
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The meaning of the homotopy property was explained in §8.2. Denote as
in §8.2 by φ : [0, 1] × X → Y the map given by this homotopy and extend
it to [−ϵ, 1 + ϵ] × X by φ0 for t ≤ 0 and by φ1 for t ≥ 1. We may assume
w.l.o.g. that φ is smooth. The map

Φ : [−ϵ, 1 + ϵ]×X → [−ϵ, 1 + ϵ]× Y

defined by Φ(t, x) = (t, φt(x)) is an embedding and fits into the following
commutative diagrams

X

i0
��

φ0 // Y

i0
��

[−ϵ, 1 + ϵ]×X Φ // [−ϵ, 1 + ϵ]× Y,

X

i1
��

φ1 // Y

i1
��

[−ϵ, 1 + ϵ]×X Φ // [−ϵ, 1 + ϵ]× Y

where i0(x) = (0, x) and i1(x) = (1, x) are the inclusions. This means that if
we are able to prove that i0,∗ = i1,∗ as well as i0,! = i1,!, and moreover that all
these maps are quasi-isomorphisms, then the composition property we have
just proved above implies the claimed homotopy property. We need to be
more precise here since i0 and i1 cannot preserve a basepoint simultaneously.
Starting from the DG-module F over C∗(Ω⋆Y Y ) and denoting π : [−ϵ, 1 +
ϵ] × Y → Y the projection, the maps on the right hand side of the above
diagrams are

ij,∗ : H∗(Y ;F) = H∗(Y ; i∗jπ
∗
jF)→ H∗([−ϵ, 1 + ϵ]× Y ; π∗

jF)

and

ij,! : H∗([−ϵ, 1 + ϵ]× Y ; π∗
jF)→ H∗−1(Y ; i∗jπ

∗
jF) = H∗−1(Y ;F)

for j = 0, 1, where we denoted as in §6.4 by πj : Ω(j , ⋆Y )[−ϵ, 1+ϵ]×Y → Ω⋆Y Y
the maps induced by π on the loop spaces. As in loc. cit. we identify the
twisted complexes based at i0(x) = (0, x) and i1(x) = (1, x) in order to give a
meaning to the equalities between the two direct maps and two shriek maps
above. We will make this more precise in the following lemma which proves
the equalities between the direct and shriek maps induced by i0 and i1 in a
slightly more general setting. The discussion about the equalities i0,∗ = i1,∗
and i0,! = i1,! for ij : X → [−ϵ, 1 + ϵ] × X is analogous, except for the fact
that we replace π∗

jF by Φ∗π∗
jF and therefore we have

ij,∗ : H∗(X;φ∗
jF) = H∗(X; i∗jΦ

∗π∗
jF)→ H∗([−ϵ, 1 + ϵ]×X; Φ∗π∗

jF)

and

ij,! : H∗([−ϵ, 1 + ϵ]×X; Φ∗π∗
jF)→ H∗−1(X; i∗jΦ

∗π∗
jF) = H∗−1(X;φ∗

jF).
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We also need to identify the twisted complexes on X corresponding to the
two different DG-modules φ∗

jF = i∗jΦ
∗π∗

jF (both over C∗(Ω⋆XX)). This is
done using the homotopy identification from §8.2 via the homotopy (φt) or,
alternatively, using the homotopy it(x) = (t, x) combined with the identifi-
cation of basepoints from §6.4 with η = π ◦Φ. This will also be explained in
the proof of the following lemma.

Lemma 9.9. Let Xn be a closed manifold with a basepoint ⋆X and denote
Dm the closed m-disk.

(i) Given a ∈ D̊ we denote ia(x) = (a, x) the corresponding inclusion of X
into D ×X. The maps ia,∗ and ia! are quasi-isomorphisms.

(ii) Given a, b ∈ D̊, let η : D ×X → Y be a continuous map with values in
some based topological space Y such that

η(a, ⋆X) = η(b, ⋆X) = ⋆Y .

Then (ia)∗ = (ib)∗ and (ia)! = (ib)!.

Proof.

(i) We give explicit formulas for ia,∗ and ia,!. Let Ξ = (f, ξ, o, sx,y,Y , θ) be
a set of data on X. Take a function h : D → R with a unique minimum
at a. Consider the function (f + h) : D × X → R seen as an extension of
f : ia(X) → R. According to §9.2, the direct map is defined by completing
f + h to an appropriate set of data Ξa on D×X with basepoint (a, ⋆X) and
taking a DG-module F over the loop space of D × X based at this point.
Then ia,∗ : C∗(X,Ξ; i

∗
aF)→ C∗(D ×X,Ξa;F) is given by the formula

ia,∗(α⊗ x) = α⊗ (a, x).

This is obviously a bijection between the two complexes.

For the shriek map the proof is analogous except for the fact that we take h
to have a unique maximum at a, we choose an appropriate set of data Ξa on
D×X with f + h as Morse function as in §9.2 and we get the bijective map
ia,! : C∗(D ×X,Ξa;F)→ C∗−m(X,Θ; i∗aF) defined by

ia,!(α⊗ (a, x)) = α⊗ x.

(ii) The maps ia and ib are homotopic through i(t, x) = (γ(t), x), where γ
is a path that connects a and b in D, and any two homotopies of this type
are homotopic with fixed endpoints. The claimed equalities of maps should
be understood after, on the one hand the homotopy identification from §8.2,
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and on the other hand the identification for twisted complexes with different
basepoints described in §6.4. More precisely, the proof consists in checking
the commutativity of the following diagrams:

H∗(X; i∗aη
∗
aF)

Hab

��

ia,∗ // H∗(D ×X; η∗aF)
Iab
��

H∗(X, i
∗
bη

∗
bF)

ib,∗ // H∗(D ×X; η∗bF)

for the direct maps, and

H∗(D ×X; η∗aF)
Hab

��

ia,! // H∗−m(X; i∗aη
∗
aF)

Iab
��

H∗(D ×X; η∗bF)
ib,! // H∗−m(X; i∗bη

∗
bF)

for shriek maps. Here Hab represents the homotopy identification and Iab
the identification for different basepoints. Following §6.4 we denoted ηa :
Ωa,⋆X (D×X)→ Ω⋆Y Y and ηb : Ωb,⋆X (D×X)→ Ω⋆Y Y the maps defined by
η on the respective loop spaces.

We begin with the diagram for direct maps. Let Ξ = (f, ξ, o, sx,y,Y , θ) be a
set of data on X. As above we take a function h : D → R with a unique
minimum in a and the function (f + h) : D ×X → R seen as an extension
of f : ia(X) → R completed to an appropriate set of data Ξa on D × X
with basepoint (a, ⋆X). We thus get that ia,∗ : C∗(X,Θ; i∗aη

∗
aF) → C∗(D ×

X,Ξa; η
∗
aF) is defined by

ia(α⊗ x) = α⊗ (a, x)

for any α ∈ F and x ∈ Crit(f).

Consider now an isotopy (ϕt) on D such that ϕ = ϕ1 satisfies ϕ(a) = b, and
consider the function f + h ◦ ϕ−1 : D × X → R seen as an extension of
f : ib(X)→ R. Modifying the data Ξa by ϕ× IdX yields a set of data

Ξb = ΞIdX×ϕ
a

associated to the basepoint (b, ⋆X) which completes f + h ◦ ϕ−1. As above,
we get that the direct morphism ib,∗ : C∗(X,Θ; i∗bη

∗
bF)→ C∗(D×X,Ξb; η∗bF)

is given by
ib(α⊗ x) = α⊗ (b, x).
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We check the commutativity of the first diagram at the level of complexes:

C∗(X,Ξ; i
∗
aη

∗
aF)

Hab

��

ia,∗ // C∗(D ×X,Ξa; η∗aF)
Iab
��

C∗(X,Ξ; i
∗
bη

∗
bF)

ib,∗ // C∗(D ×X,Ξb; η∗bF)

Let us describe explicitly Hab and Iab. To define Hab the recipe given in §8.2
goes as follows: take the trivial continuation data Id between Ξ and Ξ and
define as in §6.5

νx,y = −(Θ ◦ p ◦ ΓId)∗(s
Id
x,y) ∈ C|x|−|y|(P(0,⋆X)→(1,⋆X)[0, 1]×X), (60)

then use the homotopy between ia and ib as a map [0, 1] × X → D × X
together with η : D ×X → Y to transform this chain into one in ΩY . Note
that we may use the homotopy[

(ϕ× IdX) ◦ (Id[0,1] × ia)
]
(t, x) = (ϕt(a), x),

where ϕ : [0, 1]×D → D is the isotopy on D that we considered above. We
therefore get the cocycle

νx,y =
[
η ◦ (ϕ× IdX) ◦ (Id[0,1] × ia)

]
∗ νx,y ∈ C|x|−|y|(ΩY )

for any x, y ∈ Crit(f) and by definition, we have that

Hab(α⊗ x) =
∑
y

ανx,y ⊗ y

for α ∈ F and x ∈ Crit(f).

Let us now give a formula for Iab. We follow the procedure of §6.4. We need
a continuation cocycle between a set of data based at (a, ⋆X) and one based
at (b, ⋆X): we pick Ξa and Ξb = ΞIdX×ϕ

a as above. Since these are related
through the diffeomorphism IdX × ϕ (which is isotopic to the identity), the
discussion from from §6.5 provides a definition for this cocycle. We start by a
continuation procedure using the constant homotopy between Ξa and itself.
All the critical points of f + h are of the form (a, x) for x ∈ Crit(f). As
above we first get a chain

ν(a,x),(a,y) ∈ C|x|−|y|
(
P(0,a,⋆X)→(1,a,⋆X)[0, 1]×D ×X

)
.

Since a is the unique critical point of h and we took the constant homotopy for
the continuation, the gradient lines from the slice {0}×D×X to {1}×D×X
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which define ν(a,x),(a,y) are constant equal to a on the D component and so
are the paths which we obtain after evaluating them through the composition
Θ ◦ p ◦ Γ. One can easily check that actually

ν(a,x),(a,y) = (Id[0,1] × ia)∗(νx,y),

where νx,y is the cocycle from the description of Hab. Now we use the dis-
cussion from §6.5 to see that, according to (42), we have

ν(a,x),(b,y) = (Φ× IdX)∗(ν(a,x),(a,y)),

where Φ : [0, 1]×D → [0, 1]×D is defined by

Φ(t, r) = (t, ϕt(r)).

Then, following the recipe from §6.4, we get first the identification cocycle
between Ξa and Ξb:

ν(a,x),(b,y) = (πD×X)∗ν(a,x),(b,y) = (ϕ× IdX)∗(ν(a,x),(a,y)),

which combined with the above yields

ν(a,x),(b,y) = (ϕ× IdX)∗(Id[0,1] × ia)∗(νx,y)
∈ C|x|−|y|(P(a,⋆X)→(b,⋆X)(D ×X)).

Finally we use η to transform this chain into one on ΩY . With the notation
of §6.4 we get

µ(a,x),(b,y) = η∗(ν(a,x),(b,y))

= η∗(ϕ× IdX)∗(Id[0,1] × ia)∗(νx,y) ∈ C|x|−|y|(ΩY ),

and therefore the basepoint identification morphism Iab is given by

Iab(α⊗ (a, x)) =
∑

y∈Crit(f)

αµ(a,x),(b,y) ⊗ (b, x).

According to the formulas above

µ(a,x),(b,y) = νx,y, (61)

and therefore the diagram for the direct maps commutes at the level of com-
plexes. This implies that ia,∗ = ib,∗.
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For the equality of the shriek maps ia,! = ib,! the proof is quite similar. The
only difference is that we choose the function h : D → R to have a unique
maximum at a. We thus have

ia,!(α⊗ (a, x)) = α⊗ x
and

ib,!(α⊗ (b, x)) = α⊗ x.
The formulas ofHab and Iab are the same and therefore using (61) the diagram

C∗(D ×X,Ξa; η∗aF)
Hab

��

ia,! // C∗−m(X,Ξ; i
∗
aη

∗
aF)

Iab
��

C∗(D ×X,Ξb; η∗bF)
ib,! // C∗−m(X,Ξ; i

∗
bη

∗
bF)

commutes, which leads to the desired conclusion.

The homotopy property for embeddings is now established.

4. Spectral sequence. We have already proved in Remarks 9.1 and 9.3 that
this property is satisfied for submanifolds. The generalization to the case of
embeddings is straightforward.

9.5 Functoriality for general smooth maps

We define in this section direct and shriek maps associated to a smooth map
φ : (X, ⋆X) → (Y, ⋆Y ) between based compact manifolds and a DG-module
F over C∗(Ω⋆Y Y ).

1. The direct map φ∗ : H∗(X;φ∗F)→ H∗(Y ;F). We consider an embedding
χ : X → Dm into a m-disk such that χ(⋆X) = 0. Obviously φχ = (χ, φ) :
X → Dm × Y is also an embedding. Denote D = Dm, denote i = i0 : Y ↪→
D × Y the inclusion y 7→ (0, y), and denote π : D × Y → Y the projection.
The maps

i∗ : H∗(Y ;F) = H∗(Y ; i∗π∗F)→ H∗(D × Y ; π∗F)
and

φχ∗ : H∗(X;φ∗F) = H∗(X; (φχ)∗π∗F)→ H∗(D × Y ; π∗F)
are well defined and the former is an isomorphism by Lemma 9.9. We define
the direct map φ∗ by the formula

φ∗ = (i∗)
−1 ◦ φχ∗ , (62)

and we check that this definition is independent of χ.
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Lemma 9.10. Let χ : X → Dm and ρ : X → Dm′
be two embeddings which

map the basepoint ⋆X to the centers of the respective disks. Denote D′ = Dm′

and denote j = i0 : Y ↪→ D′ × Y the inclusion of Y × {0}. Then

(i∗)
−1 ◦ φχ∗ = (j∗)

−1 ◦ φρ∗.

Proof. Denote by φ∗ the left-hand side and by φ∗ the right-hand side of
the equality above; we thus claim that φ∗ = φ∗. Also denote by φχ,ρ :
X → D × D′ × Y the map x 7→ (χ(x), ρ(x), φ(x)). Consider the inclusions
k : D × Y ↪→ D × D′ × X defined by (r, y) 7→ (r, 0, y) and l : D′ × Y →
D×D′×Y defined by (r′, y) 7→ (0, r′, y). We consider the following diagram,
in which we use the notation π(·) for the different projections (·)× Y → Y :

H∗(D × Y ; π∗
DF)

k∗

**
H∗(Y ;F)

i∗
66

j∗ ((

H∗(X;φ∗F)

φχ
∗

OO

φρ
∗

��

φ∗

oo
φχ,ρ
∗ //

φ∗oo H∗(D ×D′ × Y ; π∗
D×D′F)

H∗(D
′ × Y ; π∗

D′F)
l∗

44

Note that the upper left and lower left triangles are commutative by the
definitions of φ∗ and φ∗. Also remark that, by the composition property
and the homotopy invariance, the two triangles on the right side also com-
mute. Indeed, the embeddings k ◦ φχ(x) = (χ(x), 0, φ(x)) and φχ,ρ(x) =
(χ(x), ρ(x), φ(x)) are homotopic through embeddings by

Ht(x) = [(χ(x), tρ(x), φ(x))]t∈[0,1] .

Note that H∗
t π

∗
D×D′F = φ∗F is constant and therefore the identification

from §8.2 is not needed. A similar argument works for the lower right triangle.

From all this we infer that

k∗ ◦ i∗ ◦ φ∗ = k∗ ◦ φχ∗ = φχ,ρ∗ = l∗ ◦ φρ∗ = l∗ ◦ j∗ ◦ φ∗.

On the other hand we obviously have k ◦ i = l ◦ j and by Lemma 9.9, these
maps are isomorphisms in homology. This implies the desired conclusion
φ∗ = φ∗.

We also need to verify that the definition (62) matches with the one that we
have already given in the case where φ is an embedding.
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Lemma 9.11. Let φ : (X, ⋆X) → (Y, ⋆Y ) and χ : (X, ⋆X) → (D, 0) be
embeddings. Then, with the above notation, we have

φ∗ = (i∗)
−1φχ∗ ,

where φ∗ is defined as in §9.3.

Proof. We have a homotopy of embeddings (X, ⋆X) → (D ×X, (0, ⋆X)) be-
tween i ◦ φ and φχ given by

ht(x) = (tχ(x), φ(x)).

By the homotopy property we get that i∗ ◦ φ∗ = φχ∗ . Note that, because
h∗tπ

∗
DF = φ∗F is constant, the homotopy identification from §8.2 for (ht)∗ :

H∗(X;φ∗F)→ H∗(D ×X; π∗
DF) is not needed. This completes the proof of

the lemma.

Finally, for φ∗ to be well defined we need to prove that its definition satisfies
the compatibility with the continuation maps (48). For this purpose we give
a description of φ∗ at the level of twisted complexes. We start with sets of
data ΞX and ΞY on X, respectively Y . We complete ΞX to a set of data
on D × Y adapted to the embedding φχ = (χ, φ) as in §9.2 and §9.3: we
first extend to a tubular neighborhood U of φχ(X) (with gradient pointing
inwards), and then to the whole of D× Y . Denote by ΞD×Y

(χ,φ) this set of data.

If f is the Morse function on X, then for any x ∈ Crit(f) and α ∈ F we have

φχ∗ (α⊗ x) = α⊗ φχ(x) (63)

by the definition of

φχ∗ : C∗(X,Ξ
X ;φ∗F = φχ∗π∗F)→ C∗(D × Y,ΞD×Y

(χ,φ) ; π
∗F).

For the inclusion i : Y → D × Y , y 7→ (0, y), the map i∗ : C∗(Y,Ξ
Y ;F) →

C∗(D × Y,ΞD × ΞY ; π∗F) is defined by

i∗(α⊗ y) = α⊗ (0, y),

where y is critical point of the Morse function in ΞY and α ∈ F . Here
ΞD = (h,−∇h, o{0} = +,Y = {0}, θ = Id) is the set of Morse data on
the disc with Morse function h(x) = ∥x∥2, and ΞD × ΞY is the set of data
obtained canonically on D × Y from ΞD and ΞY . We have already observed
in Lemma 9.9 that i∗ is an isomorphism at the level of complexes. However,
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in order to write the composition (i∗)
−1 ◦ φχ∗ at the level of complexes we

need to identify the twisted complexes on D × Y corresponding to the sets
of data ΞD×Y

χ,φ and ΞD × ΞY . Denote by ΨD×Y : C∗(D × Y,Ξ(χ,φ); π
∗F) →

C∗(D × Y,ΞD × ΞY ; π∗F) a continuation morphism. Then a formula for
φ∗ : C∗(X,Ξ

X ;φ∗F)→ C∗(Y,Ξ
Y ;F) is

φ∗ = (i∗)
−1 ◦ΨD×Y ◦ φχ∗ . (64)

The compatibility diagram (48) writes here as follows, with the notation from
above and from (48):

C∗(X,ΞX
0 ;φ∗F)

φ∗

++

φχ
∗

//

ΨX
01

��

C∗(D × Y,ΞD×Y
χ,φ,0;π

∗F)
ΨD×Y

//

ΨD×Y
01

��

C∗(D × Y,ΞD × ΞY
0 ;π∗F)

(i∗)
−1

//

ΨD×Y
01

��

C∗(Y,ΞY
0 ;F)

ΨY
01

��
C∗(X,ΞX

1 ;φ∗F)

φ∗

33
φχ
∗ // C∗(D × Y,ΞD×Y

χ,φ,1;π
∗F)

ΨD×Y
// C∗(X,ΞD × ΞY

1 ;π∗F)
(i∗)

−1

// C∗(Y,ΞY
1 ;F)

This diagram is commutative: the left and right rectangles are commutative
in homology since the compatibility with the continuation maps was already
checked in §9.3 for φχ∗ and i∗, which are embeddings. The middle rectangle is
also commutative since it involves continuation maps and we proved in §6.3
that these only depend in homology on the domain and on the target.

This finishes the verification of the fact that the direct map φ∗ is well defined.

2. The shriek map φ! : H∗(Y ;F) → H∗+dim(X)−dim(Y )(X;φ∗F). We pro-
ceed in an analogous way under the assumption that X and Y are oriented
manifolds. By definition

φ! = φχ! ◦ (i!)
−1. (65)

Note that, according to §9.3, the assumption that is needed in order for the
right-hand side to be well defined is that the embedding φχ : X → D × Y
is co-oriented (the inclusion i : Y → D × Y is obviously cooriented). This is
the reason why we supposed that X and Y are oriented.

The proofs of the shriek versions of Lemmas 9.10 and 9.11, as well as the veri-
fication of the compatibility with the continuation maps (49), are completely
analogous to the case of direct maps. We omit the details and conclude that
the map φ! is well defined.
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9.6 Properties of φ∗ and φ! in the general smooth case

In this subsection we check that the direct and the shriek maps defined for
general smooth maps satisfy conditions 1-4 from §8.1.

1. Identity. This is obvious and was already remarked in §9.4.

2. Composition. We only treat the case of direct maps, as the argument
for shriek maps is analogous. Let φ : (X, ⋆X) → (Y, ⋆Y ) and ψ : (Y, ⋆Y ) →
(Z, ⋆Z) be smooth maps. Let F be a DG-module over C∗(Ω⋆Z ). In order
to define φ∗ and ψ∗ we choose as in the previous section embeddings χ :
(X, ⋆X) → (D, 0) and ρ : (Y, ⋆Y ) → (D′, 0). Consider then the following
diagram of direct maps in twisted homology:

H∗(D ×D′ × Z; π∗
D×D′F)

H∗(D × Y ; π∗
Dψ

∗F)

(Id×ψρ)∗
44

H∗(D
′ × Z; π∗

D′F)

k∗

OO

H∗(X;ψ∗ϕ∗F)

φχ
∗

55

φ∗ //

(ψ◦φ)χ,ρ
∗

00

H∗(Y ;ψ∗F)

i∗

OO
ψρ
∗

44

ψ∗ // H∗(Z;F)

j∗

OO
l∗

hh

Most of the notations are similar to those of the preceding section: the maps
i, j, k and l are inclusions defined by x 7→ (0, x); the maps π(·) are projections
(·)×Y → Y or (·)×Z → Z. As above we denote φχ(x) = (χ(x), φ(x)), then
ψρ(y) = (ρ(y), ψ(y)), and finally

(ψ ◦ φ)(χ,ρ)(x) = (χ(x), ρ(x), ψ(φ(x)))

This diagram is commutative. Indeed, the two lower triangles are commu-
tative by definition of the direct maps φ∗ and ψ∗. The other sub-diagrams
only contain embeddings and they are commutative at the level of maps (as
the reader may immediately check), and therefore also commutative in ho-
mology using the composition property for embeddings. Let us now check
the claimed formula (ψ ◦ φ)∗ = ψ∗ ◦ φ∗. By commutativity of the diagram
we have

ψ∗ ◦φ∗ = j−1
∗ ◦ψρ∗ ◦ i−1

∗ ◦φχ∗ = j−1
∗ ◦k−1

∗ ◦ (Id×ψρ)∗ ◦φχ∗ = l−1
∗ ◦ (ψ ◦φ)(χ,ρ)∗ .

The last expression is exactly the definition of (ψ ◦ φ)∗ corresponding to the
embedding (χ, ρ) : X → D × D′. Note that the product of D = Dm and
D′ = Dm′

is not exactly the disc Dm+m′
as required by the definition of
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(ψ◦φ)∗, but the two are homeomorphic with diffeomorphic interiors and this
is sufficient. (We could also have defined direct maps by replacing Dm with
[−1, 1]m endowed with a vector field which points outwards.) The composi-
tion property for direct maps is therefore established.

To prove the same property for shriek maps we proceed in a similar manner
by changing the direction of the arrows in the diagram above. The details
are straighforward and left to the reader.

3. Homotopy. Using the work we have done so far, the homotopy property
is quite easy to establish. Take a homotopy (φt) between two smooth maps
φ0, φ1 : (X, ⋆X) → (Y, ⋆Y ). Take the map φ : [−ϵ, 1 + ϵ]×X → Y obtained
from this homotopy by extending it with φ0 for t ∈ [−ϵ, 0) and with φ1

for t ∈ (1, 1 + ϵ]. Then, using the notation of §9.4, we have φ0 = φ ◦ i0
and φ1 = φ ◦ i1. This implies the homotopy property as a consequence of
the composition property that we have just established and of the equalities
i0,∗ = i1,∗ and i0,! = i1,!, which we proved in Lemma 9.9, item (ii) (in our case
the map η from that lemma is φ).

4. Spectral sequence. Consider a smooth map φ : (X, ⋆X) → (Y, ⋆Y ) to-
gether with a DG-module F over C∗(Ω⋆Y Y ) and then take an embedding
χ : (X, ⋆X)→ (D, 0) defining an embedding φχ : X → D × Y as above. By
definition we have φ∗ = i−1

∗ ◦φχ∗ and φ! = φχ! ◦ i
−1
! . Now, both the direct and

shriek maps of i−1 and φχ are defined on the level of (twisted) complexes and
they preserve the filtrations of these, yielding thus morphisms between the
corresponding spectral sequences. At the second page E2

p,q these morphisms
are given by

(i∗)
−1 ◦ φ∗ : Hp(X;φ∗Hq(F))→ Hp(Y ;Hq(F))

and

φχ! ◦ (i!)
−1 : Hp(Y ;Hq(F))→ Hp+dim(X)−dim(Y )(X;φ∗Hq(F)).

These morphisms are the Morse versions of the direct and shriek maps
between homologies with local coefficients defined by some smooth map
φ : X → Y . This is done for example in [AD14, §4.6] for direct maps in
homology with integer coefficients; the generalization to local coefficients, as
well as to shriek maps, is immediate.

9.7 Functoriality for continuous maps

Any continuous map φ : (X, ⋆X)→ (Y, ⋆Y ) can be approximated by a smooth
map φ which preserves the basepoints, and any two such approximations are
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homotopic by a homotopy which also preserves the basepoints. Let φ be
such a map and choose a homotopy between φ and ϕ which is C∗0- close
to the constant homotopy. We define φ∗ : H∗(X;φ∗F) → H∗(Y ;F) by the
composition

H∗(X;φ∗F)
φ∗

''
H∗(X;φ∗F)

Ψ

OO

φ∗
// H∗(Y ;F)

(66)

and similarly

H∗+dim(X)−dim(Y )(X;φ∗F)

Ψ−1

��

H∗(Y ;F)
φ!

oo

φ!uu
H∗+dim(X)−dim(Y )(X;φ∗F)

(67)

where Ψ is the identification isomorphism associated to the homotopy be-
tween φ and φ. Recall that the isomorphism Ψ was defined in Proposition 8.6
of §8.2. In the statement of Proposition 8.6 the applications were smooth,
but actually it is valid with exactly the same proof for continuous ones.

Let us prove that the definition is independent of the choices of φ and the
homotopy connecting φ to φ. For direct maps we use the following diagram

H∗(X;φ∗F)
φ∗

((
Ψ′′

&&

H∗(X;φ∗F)Ψ′

Ψ

OO

��

H∗(Y ;F)

H∗(X;φ′∗F)
φ′
∗

66

The isomorphism Ψ′′ is the identification isomorphism associated to the ho-
motopy defined by the concatenation of the reversed homotopy between φ
and φ with the homotopy between φ and φ′. Let us show that the diagram
above is commutative. The relation Ψ′ = Ψ′′ ◦ Ψ is the property (iii) of
Proposition 8.6. We also have φ∗ = φ′

∗; this is the homotopy property sat-
isfied by the smooth maps φ and φ′. We infer that φ∗ ◦ Ψ = φ′

∗ ◦ Ψ′ which
means that φ∗ is well defined. The proof for the shriek map is analogous.

Let us now check that the properties 1-4 from §8.1 are satisfied. We will only
do it for direct maps, the proofs for shriek maps being similar.

1. Identity: Id∗ = Id. Obvious.
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2. Composition: φ∗◦ζ∗ = (φ◦ζ)∗. We need the following naturality property
for identification morphisms:

Lemma 9.12. Let φ0, φ1 : Y → Z two continuous maps homotopic through
a homotopy φ, and ζ : X → Y another continuous map. Denote by φ ◦ ζ
the homotopy between φ0 ◦ ζ and φ1 ◦ ζ obtained by composition. Let F be a
DG-module over C∗(ΩZ). Then the following diagram is commutative :

H∗(X; ζ∗φ∗
0F)

ζ∗ //

Ψφ◦ζ

��

H∗(Y ;φ∗
0F)

Ψφ

��
H∗(X; ζ∗φ∗

1F)
ζ∗ // H∗(Y ;φ∗

1F)

Proof. Suppose first that ζ is a smooth embedding. We will prove the com-
mutativity of the diagram at the level of complexes. Recall the definition
of the direct maps for embeddings from section §9.3. We start with a set
of data ΞX = (f, . . .) on X and we choose an adapted set of data ΞYζ on
Y , at first on ζ(X) via ζ (with Morse function f ◦ ζ−1), then on a tubu-
lar neighbourhood of ζ(X) with inward pointing gradient and finally on the
whole Y . For these choices, if G is a DG-module over C∗(ΩY ) then the map
ζ∗ : C∗(X,Ξ

X ; ζ∗G)→ C∗(Y,Ξ
Y
ζ ;G) is given by the formula

ζ∗(α⊗ x) = α⊗ ζ(x)

for any α ∈ G and x ∈ Crit(f). Now recall the definition of Ψφ from the
proof of Proposition 8.6: at the level of complexes we have

Ψ(α⊗ x) =
∑
y

ανφx,y ⊗ y.

The cocycle νφx,y was obtained as follows: given a set of data ΞY on Y consider
the set of data ΞY,Id on [0, 1]× Y which defines the trivial continuation map
between C∗(Y,Ξ

Y ) and itself. It yields as in the relation (60) of §9.4 a cocycle

νYx,y = −(Θ ◦ p ◦ ΓId)∗(s
Id
x,y) ∈ C|x|−|y|(P(0,⋆Y )→(1,⋆Y )[0, 1]× Y )

which we transform into a cocycle on ΩZ by

νφx,y = φ∗(ν
Y
x,y).

In a similar way the cocycle νζ◦φx,y which defines the identification map Ψφ◦ζ

is given by
νζ◦φx,y = φ∗ ◦ (Id[0,1] × ζ)(νXx,y),
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where νXx,y ∈ C|x|−|y|(P(0,⋆X)→(1,⋆X)[0, 1] × X) is obtained from the trivial
continuation data ΞX,Id as above. This implies immediately

νYζ(x),ζ(y) = (Id[0,1] × ζ)∗(νXx,y)

and also νYζ(x),z = 0 if z is a critical point of the Morse function on Y which

is outside of ζ(X).

Now remember that in order to express ζ∗, we chose the adapted set of data
ΞYζ on Y and one can easily see that for this choice the set of data ΞY,Id on

[0, 1] × Y which corresponds to the trivial continuation is adapted to ΞX,Id

for the embedding Id[0,1] × ζ : [0, 1]×X → [0, 1]× Y. We infer that

νφ◦ζx,y = νφζ(x),ζ(y)

and νφζ(x),z = 0 for the other critical points z not belonging to ζ(X). This

is equivalent to Ψφ ◦ ζ∗ = ζ∗ ◦ Ψφ◦ζ , i.e. the fact that the diagram in our
statement is commutative.

Consider now the case where ζ is a general smooth map. We will use the def-
inition of ζ∗ given in §9.5: We take an embedding χ : X → D into some disc
of large dimension and set ζ∗ = (i∗)

−1 ◦ ζχ∗ , where ζχ = (χ, ζ) : X → D × Y
and i : Y ↪→ D×Y is the inclusion y 7→ (0, y).We get the following diagram:

H∗(X; ζ∗φ∗
0F)

ζ∗

**
ζχ∗ //

Ψφ◦ζ=Ψφ◦π◦ζχ

��

H∗(D × Y ; π∗φ∗
0F)

Ψφ◦π

��

H∗(Y ;φ∗
0F)

i∗oo

Ψφ=Ψφ◦π◦i

��
H∗(X; ζ∗φ∗

1F)

ζ∗

44
ζχ∗ // H∗(D × Y ; π∗φ∗

1F) H∗(Y ;φ∗
1F)

i∗oo

which is commutative. Indeed the upper and lower part are commutative by
definition of ζ∗ and the left and right square also commute by the particular
case of embeddings we have just proved. It follows that Ψφ ◦ ζ∗ = ζ∗ ◦ Ψφ◦ζ

as claimed.

Finally suppose that ζ is continuous. Choose a smooth approximation ζ.
Denote by Υ the homotopy between ζ and ζ. Once again we will use a
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commutative diagram:

H∗(X; ζ∗φ∗
0F)

Ψφ◦ζ

""

Ψφ0◦Υ

��

ζ∗

((
H∗(X; ζ

∗
φ∗
0F)

ζ∗ //

Ψφ◦ζ
��

H∗(Y ;φ∗
0F)

Ψφ

��
H∗(X; ζ

∗
φ∗
1F)

ζ∗ // H∗(Y ;φ∗
1F)

H∗(X; ζ∗φ∗
1F)

Ψφ1◦Υ

OO

ζ∗

66

To show that it is commutative remark first that the lower and upper trian-
gles are commutative by definition of ζ∗ and then that the right square is also
commutative by the previous proof of the naturality for smooth maps. Fi-
nally, for the commutativity of the left part, remark that the two-parameter
family φτ ◦Υt yields a homotopy of homotopies with fixed endpoints between
the concatenation of the homotopies φ0 ◦Υt and φt ◦ζ and the concatenation
of the homotopies φt ◦ζ and φ1 ◦Υt. We may therefore apply Proposition 8.6
parts (ii) and (iii).

We infer that the whole diagram above is commutative and in particular we
have the claimed relation Ψφ ◦ ζ∗ = ζ∗ ◦Ψφ◦ζ , which finishes the proof of the
lemma.

We are now ready to prove the composition property. Let ζ : X → Y and
φ : Y → Z be continuous maps and F a DG-module over C∗(ΩZ). Let ζ, φ
be smooth approximations of ζ respectively φ; obviously φ ◦ ζ is a smooth
approximation of φ ◦ ζ. Denote by Φ the homotopy between φ and φ, by Υ
the homotopy between ζ and ζ and by Φ◦Υ the homotopy Φt ◦Υt. Consider
the following diagram:

H∗(X; ζ
∗
φ∗F)

ζ∗

((

(φ◦ζ)∗

��

H∗(X; ζ
∗
φ∗F)

ΨΦ◦ζ

OO

ζ
∗

((

H∗(Y ;φ∗F)
φ∗

''
H∗(X; ζ∗φ∗F)

Ψφ◦Υ

OO

ζ∗ //

ΨΦ◦Υ

88

H∗(Y ;φ∗F)
φ∗ //

ΨΦ

OO

H∗(Z;F)

Again this diagram is commutative: The two lower triangles are commutative
by definition of ζ∗ resp. φ∗. The parallelogram above them is commutative
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by the previous lemma. The commutativity of the right upper part is the
composition property for smooth maps. Finally, the two parameter family
ΦτΥt provides a homotopy of homotopies with fixed end points between Φ◦Υ
and the concatenation of φ◦Υ with Φ◦ζ and we apply Proposition 8.6, items
(ii) and (iii) to get the commutativity of the left part of the diagram. We
infer that

(φ ◦ ζ)∗ ◦ΨΦ◦Υ = φ∗ ◦ ζ∗
and the right hand side is by definition (φ ◦ ζ)∗, so the composition property
is proved.

3. Homotopy: φ0,∗ = φ1,∗ ◦ Ψφ. The argument is quite similar to the one
which proves that φ∗ is well defined. To a homotopy φ between continuous
maps φ0, φ1 : X → Y we associate the following diagram :

H∗(X;φ∗
0F)

φ0,∗

��
Ψ

��

H∗(X;φ∗
0F)

φ0,∗ ''

Ψ0

OO

Ψφ

��

H∗(Y ;F)

H∗(X;φ∗
1F)

φ1,∗
77

Ψ1

��
H∗(X;φ∗

1F)

φ1,∗

??

Here Ψ is the identification isomorphism associated to the homotopy between
φ0 and φ1 obtained by concatenation. The desired homotopy property is

φ0,∗ = φ1,∗ ◦Ψφ.

To show it, note that the upper and lower right triangles are commutative
by definition of the maps φ0,∗ and φ1,∗ and that Ψ1 ◦ Ψφ = Ψ ◦ Ψ0, by
the property (iii) of Proposition 8.6. Note also that φ0,∗ = φ1,∗ ◦ Ψ by the
homotopy property for smooth maps. The conclusion is now straightforward.

4. Spectral sequence. By definition φ∗ = φ∗ ◦Ψ and both maps φ∗ and Ψ are
defined at the level of complexes and they preserve the filtrations given by the
index of critical points. Therefore we may also define φ∗ : C∗(X,Ξ

X ;φ∗F)→
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C∗(Y,Ξ
Y ;F) by the composition

C∗(X,Ξ
X ;φ∗F)

φ∗

((
C∗(X,Ξ

X ;φ∗F)

Ψ

OO

φ∗
// C∗(Y,Ξ

Y ;F)

and it obviously also preserves the filtration. The morphisms between the
corresponding spectral sequences write as follows at the second page :

Hp(X,φ
∗Hq(F))

φ2
p,q=φ∗

))
Hp(X,φ

∗Hq(F))

Ψ2
p,q

OO

φ2
p,q

// Hp(Y,Hq(F))

We know that φ2
p,q equals the direct map φ∗ in homology since smooth maps

satisfy the spectral sequence property. Then, by construction, Ψ2
p,q is the

identification map for the usual (Morse and therefore singular) homologies
with local coefficients in φ∗Hq(F) resp. φ∗Hq(F). The homotopy invariance
for continuous maps in singular homology with local coefficients implies that
φ∗ = φ∗ ◦Ψ2

p,q and therefore φ∗ = φ2
p,q, as claimed.

Remark 9.13. With all these properties satisfied, the proof of Proposi-
tion 8.8 is the same for continuous maps. This means that for homotopic
continuous maps φ0, φ1 : X → Y the identification isomorphism

Ψ : H∗(X;φ∗
0F)→ H∗(Y ;φ∗

1F)

does not depend on the homotopy between φ0 and φ1.

9.8 The direct map in the case of Hurewicz fibrations

We showed in Th.7.2 that given a Hurewicz fibration E : F → EY → Y there
is an isomorphism ΨE : H∗(Y ;C∗(F )) → H∗(EY ) between the enriched ho-
mology with coefficients in the chains on the fiber and the singular homology
of the total space. Let now φ : X → Y be a continuous map and consider the
pullback fibration φ∗E : F → EX → X. Via these isomorphisms the direct
map φ∗ induces a map between H∗(EX) and H∗(EY ). The following result
shows that this map is the expected one:

Proposition 9.14. Let φ̃ : EX → EY be the map induced by φ. Then
the map defined by φ∗ coincides with φ̃∗, the map induced by φ̃ in singular
homology.
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Proof. Denote by F the DG-module C∗(F ) over C∗(ΩY ). Our goal is to show
that the following diagram is commutative:

H∗(X;φ∗F) φ∗ //

≃ Ψφ∗E
��

H∗(Y ;F)
ΨE≃
��

H∗(EX)
φ̃∗ // H∗(EY )

(68)

The isomorphisms ΨE and Ψφ∗E involve lifting functions for the respective
fibrations. Writing EX = X φ×πY EY (where πY : EY → Y is the projection),
remark that any lifting function Φ : F × P⋆→Y Y → EY for the fibration E
defines a lifting function Φφ : F × P⋆→XX → EX by the following formula:

Φφ(f, γ) = [ev(γ),Φ(f, φ(γ))],

where ev is the evaluation at the endpoint of γ. In the writing of EX above,
the map φ̃ : EX → EY is the projection on the second factor, so that we
have

φ̃ ◦ Φφ(f, γ) = Φ(f, φ(γ)). (69)

We decompose our proof into three steps:

Step 1: φ : X → Y is an embedding. We may suppose w.l.o.g. that X ⊂ Y
is a submanifold and φ is the inclusion. Take a set of data ΞX = (f, ξ, . . . , )
on X and extend it to ΞY = (F, . . . , ) as in the definition of the direct map
for submanifolds in §9.2. We therefore have

φ∗(α⊗ x) = α⊗ x

for all α ∈ C∗(F ) and x ∈ Crit(f). We also may suppose that ΞX and ΞY are
as in Theorem 7.2 (Morse function with a unique minimum at the basepoint,
trees formed by gradient lines). For this particular choice the tree YX is
contained in YY and the homotopy inverse of the projection θY : Y/YY → Y
is an extension of θX : X/YX → X. We therefore have

X/YX

θX

��

� � φ // Y/YY

θY

��
X �
� φ // Y

(70)

Denote by Eθ
Y , E

θ
X the total spaces of the pull-backs by θY resp. θX of the

fibrations E and φ∗E . We remind that the isomorphism ΨE : H∗(Y ;F) →
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H∗(EY ) in the proof of Theorem 7.2 is induced by a composition of quasi-
isomorphisms:

C∗(Y,Ξ
Y ;F)

∼= // C∗(Y/YY ; θY ∗F) ≃ // C∗(E
θ
Y )

≃

θ̃Y∗

// C∗(EY ) (71)

(we will remind the definition of the second complex below) and the same
for X. We will show that the diagram (68) is commutative at the level of
complexes for each of the three horizontal arrows above. More precisely we
claim that the following diagram is commutative

C∗(X,Ξ
X ;φ∗F)

∼= //

φ∗
��

C∗(X/YX ;φ∗θY ∗F) ≃ //

φ∗
��

C∗(E
θ
X)

≃

θ̃X∗

//

φ̃∗
��

C∗(EX)

φ̃∗
��

C∗(Y,Ξ
Y ;F)

∼= // C∗(Y/YY ; θY ∗F) ≃ // C∗(E
θ
Y )

≃

θ̃Y∗

// C∗(EY )

We start with rightmost square whose commutativity is an immediate con-
sequence of the diagram (70); from it we get a commutative diagram for the
total spaces of the corresponding pullback fibrations

Eθ
X

θ̃X

��

φ̃ // Eθ
Y

θ̃Y

��
EX

φ̃ // EY

which induces the desired diagram for direct maps in singular homology.

Let us now analyse the leftmost square: The complex C∗(Y/YY ; θY ∗F) is
by definition the enriched complex defined using the critical points of the
Morse function F of the data ΞY on Y and the twisting cocycle m′

x,y ∈
C∗(Ω(Y/YY )). We recall that the cocycle (m′

x,y) was defined in the proof of
Th.7.2 in §7.3 in the same way as the Barraud-Cornea cocycle (mx,y) which
defines C∗(Y,Ξ

Y ;F) except for the fact that we omit θY : Y/YY → Y from
the evaluation map; therefore the relation between the two is

mx,y = θY∗ (m
′
x,y) (72)

The same is valid for the corresponding complex C∗(X/YX ; θX∗φ∗F) and
the Morse function f of the data ΞX . Given the compatibility between ΞX

and ΞY we have Crit(f) ⊂ Crit(F ) and moreover φ∗(m
′
x,y(f)) = m′

x,y(F ) for
x, y ∈ Crit(F ), i.e. the second complex is a subcomplex of the first via the
inclusion φ.
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The first arrow of (71) is the usual identification of Rem.4.6 (due to (72)
here) between the enriched complex on Y with cocycle pushed forward by
θY∗ and the complex on Y/YY with module pulled back by θY ∗. In view of
the above, using (70), it is clear that the diagram

C∗(X,Ξ
X ;φ∗F) φ∗ //

∼=
��

C∗(Y,Ξ
Y ;F)
∼=
��

C∗(X/YX ; θX∗φ∗F) φ∗ // C∗(Y/YY ; θY ∗F)

is commutative.

We turn now our attention to the middle arrow of (71) which corresponds
to the third and most important step of the proof of Th.7.2: the quasi-
isomorphism between the enriched complex C∗(Y/YY ; θY ∗F) defined above
and singular (cubic) homology of the total space Eθ

Y of the fibration θY ∗E . Let
us show that φ induces a commutative diagram in this case too, i.e. that the
middle square above is commutative. Denote by ΨY this quasi-isomorphism
and by ΨX : C∗(X/YX ; θX∗φ∗F) → C∗(E

θ
X) its analogue for X. Recall the

definition of ΨY from §7.3 (it was denoted by Ψ′ there):

ΨY (α⊗ x) = Φ∗(α⊗mY
x )

for any α ∈ θY ∗F and x ∈ Crit(F ). Here Φ : F × P⋆→Y/YY Y/YY → Eθ
Y

is a lifting function for θY ∗E : F → Eθ
Y → Y/YY . The family of chains

mY
x ∈ C|x|(P⋆→Y/YY Y/YY ) is the one constructed in §7.3.

Consider now the analogous quasi-isomorphism for the pullback fibration
φ∗θY ∗E = θX∗φ∗E . Taking the lifted function Φφ which is derived from Φ as
explained in the beginning of the present proof, we have

ΨX(α⊗ x) = Φφ
∗ (α⊗mX

x )

for α ∈ φ∗θY ∗F and x ∈ Crit(f). Again, the compatibility between the
data ΞX and ΞY implies that Crit(f) ⊂ Crit(F ) and, by construction, mY

x =
φ∗(m

X
x ). Now we are ready to prove the commutativity of the diagram

C∗(X/YX ; θX∗φ∗F) φ∗ //

ΨX≃
��

C∗(Y/YY ; θY ∗F)

ΨY≃
��

Eθ
X

φ̃∗ // Eθ
Y

where φ∗(α⊗ x) = α⊗ x. Indeed, using (69) we have

ΨY ◦ φ∗(α⊗ x) = Φ∗(α⊗mY
x ) = Φ∗(α⊗ φ∗(m

X
x ))

= φ̃∗(Φ
φ
∗ (α⊗mX

x )) = φ̃∗ ◦ΨX(α⊗ x).
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This finishes the proof of Step 1.

Step 2: φ : X → Y is a general smooth map. By definition (see §9.5),
we have φ∗ = (i∗)

−1φχ∗ where χ : X → D is an embedding into a disk,
φχ = (χ, φ) : X → D × Y , and i : Y ↪→ D × Y is the inclusion y 7→ (0, y).
On the other hand considering the pull-back of the projection π : D×Y → Y
which is

π∗E : F → D × EY
Id×π−→ D × Y

we have two homotopic maps i ◦ φ and φχ : X → D × Y which yield the
same map in singular homology

φ̃χ∗ = (ĩ ◦ φ)∗ : H∗(EX)→ H∗(D × EY )

(we have φχ∗π∗E = (i ◦ φ)∗π∗E = φ∗E .) Noting that ĩ∗ : H∗(EY )→ H∗(D ×
EY ) is an isomorphism we get φ̃∗ = (̃i∗)

−1φ̃χ∗. Since the diagram (68) is
commutative for the embeddings φχ and i by Step 1, it is also commutative
for φ:

H∗(X;φ∗(C∗(F )))
φχ
∗ //

≃ Ψφ∗E
��

φ∗

**
H∗(D × Y ; π∗C∗(F ))

≃ Ψπ∗E
��

H∗(Y ;C∗(F ))
i∗oo

ΨE≃
��

H∗(EX)
φ̃χ

∗ //

φ̃∗

44H∗(D × EY ) H∗(EY )
ĩ∗oo

Step 3: φ : X → Y is continuous. We will use the following lemma:

Lemma 9.15. Let φ0, φ1 : X → Y two homotopic continuous maps and
E : F → EY → Y a Hurewicz fibration over Y . Denote by F = C∗(F ) the
associated DG-module over C∗(ΩY ) and by Ψ the identification isomorphism
Ψ : H∗(X;φ∗

0F) → H∗(X;φ∗
1F). Also denote by Ei

X the total spaces of the
pullback fibrations φ∗

iE for i = 0, 1 and by φ̃i : Ei
X → EY the maps induced

by φi. Then the following diagram is commutative:

H∗(E
0
X)

φ̃0∗ // H∗(EY ) H∗(E
1
X)

φ̃1∗oo

H∗(X;φ∗
0F)

Ψ
≃

//

Ψφ∗
0E ≃

OO

H∗(X;φ∗
1F)

Ψφ∗
1E ≃

OO

Proof. Remark first that the proof is immediate if φi are smooth. Indeed, in
this case we may complete our diagram as follows:
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H∗(E
0
X)

φ̃0∗ // H∗(EY ) H∗(E
1
X)

φ̃1∗oo

H∗(X;φ∗
0F)

φ0∗ //

Ψ
≃

66

Ψφ∗
0E ≃

OO

H∗(Y ;F)

ΨE ≃

OO

H∗(X;φ∗
1F)

Ψφ∗
1E ≃

OO

φ1∗oo

(73)

The two squares are commutative by Step 2, the lower part is also commuta-
tive by homotopy invariance, so the whole diagram is commutative and this
particular case is proved. .

To prove the general case, denote byD the interval [−ϵ, 1+ϵ], by φ : D×X →
Y the homotopy between φ0 and φ1 (we may suppose that this homotopy is
stationary on [−ϵ, 0] and on [1, 1+ ϵ]) and by ij : X ↪→ D×X the inclusions
ij(x) = (j, x) for j = 0, 1. We write the above diagram for the homotopic
maps i0 and i1 and for the pullback fibration φ∗E : F → ED×X → D × X
instead of E , which we complete as follows:

EY

H∗(E
0
X)

ĩ0∗ //

φ̃0∗
66

H∗(ED×X)

φ̃∗

OO

H∗(E
1
X)

ĩ1∗oo

φ̃1∗
hh

H∗(X; i∗0φ
∗F) Ψ

≃
//

Ψi∗0φ
∗E ≃

OO

H∗(X; i∗1φ
∗F)

Ψi∗1φ
∗E ≃

OO

Noting that φ ◦ ij = φj we infer that the two upper triangles are commuta-
tive. The lower rectangle is also commutative since it concerns the smooth
homotopic maps i0 and i1. We point out that here we are in the framework
of Remark 8.10, the identification isomorphism being defined for maps which
do not preserve the basepoint. Also, we used Remark 8.9 which asserts that
the isomorphism Ψ above is the same as the one defined for the homotopic
maps φ0 and φ1. Therefore the exterior part of the diagram diagram is also
commutative, and the lemma is proved.

We complete now the proof of Step 3. Let φ : X → Y be a continuous
map. The direct map φ∗ is defined by (66) using φ : X → Y , a smooth
approximation of φ. Denote by EX resp EX the total spaces of the pullback
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fibrations φ∗E resp. φ∗E . Consider the following diagram:

H∗(EX)
φ̃∗ // H∗(EY ) H∗(EX)

φ̃∗oo

H∗(X;φ∗F) φ∗ //

Ψ
≃

66

Ψφ∗E ≃

OO

H∗(Y ;F)

ΨE ≃

OO

H∗(X;φ∗F)

Ψφ∗E ≃

OO

φ∗oo

This diagram looks like (73) for the homotopic maps φ and φ but now our
goal is to prove that the left square is commutative. We know that the
right square is commutative by Step 2, that the lower part of the diagram
is commutative by the definition (66) of φ∗, and finally that the outer part
of the diagram is commutative, by the previous lemma. We infer thus the
commutativity of the left square which was our purpose (68) and the proof
of Proposition 9.14 is now complete.
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10 Functoriality: second definition

We develop in this section our second approach for the construction of direct
and shriek maps, as outlined in §8.3.

10.1 Direct map induced in homology

We construct in this section the direct map φ∗ associated to a smooth map
φ : X → Y . The generalization to the case of continuous maps works as
in §9.7.

Denote by ⋆X ∈ X, ⋆Y ∈ Y the basepoints. We work under the standing
assumption φ(⋆X) = ⋆Y . Let ΞX and ΞY be sets of data on X and Y in
these basepoints. We construct the direct map at the level of complexes
φ∗ : C∗(X,Ξ

X ;φ∗F) → C∗(Y,Ξ
Y ;F) under the following transversality hy-

pothesis:

Denote f and g the chosen Morse functions on X, respectively Y . For all
x ∈ Crit(f) and y′ ∈ Crit(g) we have

φ|Wu(x) ⋔ W s(y′).

This can be achieved by perturbing the pseudo-gradient vector field on Y ,
as in the proof of the classical theorem of Smale (which corresponds to the
case φ = Id).

Under this assumption we define

Mφ(x, y′) = W u(x) ∩ φ−1(W s(y′)) ∼= W u(x) φ×W s(y′)),

where the second notation stands for the fiber product ofW u(x) andW s(y′).
Because the intersection is transverse this is a smooth manifold of dimension

dimMφ(x, y′) = |x| − |y′|.

We consider its compactificationMφ
(x, y′) ∼= W

u
(x) φ×W

s
(y′). In this no-

tation for the fiber product we omit the inclusions of the stable and unstable
manifolds into X for the sake of simplicity. This is a manifold with boundary
and corners such that

∂Mφ
(x, y′) =

⋃
y

L(x, y)×Mφ
(y, y′) ∪

⋃
x′

Mφ
(x, x′)× L(x′, y′).

The manifold Mφ
(x, y′) is also oriented. Using our convention (13) from

§5.2.1 the orientation of its interior is given by(
OrMφ(x, y′),CoorW s

g (y
′)
)
= OrW u

f (x) (74)
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and we extend this orientation to the boundary. One may also write(
OrMφ(x, y′),OrW u

g (y
′)
)
= OrW u

f (x) (75)

In order to construct a representing chain system from this data we need to
investigate the difference between the product orientation and the boundary
orientation of each of these two types of boundary strata. We respectively
have:

Lemma 10.1. The orientation differences are given by the following signs:

Or ∂Mφ
(x, y′) = (−1)|x|−|y| (OrLf (x, y),OrMφ

(y, y′)
)

and

Or ∂Mφ
(x, y′) = (−1)|x|−|y′|−1

(
OrMφ

(x, x′),OrLg(x′, y′)
)
.

Proof. We prove the first relation.

Consider a boundary point of the form (λ, λ) ∈ Lf (x, y) ×M
φ
(y, y′). Near

this point we might viewMφ
(x, y′) as a subset of W

u

f (x) via the transverse
intersection φ|Wu

f (x)
⋔ W s(y′) (we omit again the inclusions of the Latour

cells in X for simplicity). Writing λ = (λa, λ
′
φ(a)) ∈ M

φ
(y, y′) = W

u

f (y) φ×
W

s

g(y
′) (where the half-infinite broken trajectory λa ends at a ∈ X and the

half-infinite broken trajectory λ′φ(a) starts at φ(a) ∈ Y ), the point (λ, λ)

corresponds thus to (λ, λa) ∈ W
u

f (x) in this identification.

Now let n be the outward normal vector at this point. Our orientation
convention (12) yields(

n,Or (∂Mφ
(x, y′))

)
= OrMφ

(x, y′). (76)

Obviously, we may also see n as the outward normal of W
u

f (x) at (λ, λa). We
therefore have (

n,Or ∂W
u

f (x)
)
= OrW

u

f (x).

Now recall the relation (17) from §5.2.2

Or ∂W
u

f (x) = (−1)|x|−|y| (OrLf (x, y),OrW
u

f (y)
)
,

which implies here(
n,OrLf (x, y),OrW

u

f (y)
)
= (−1)|x|−|y|OrW

u

f (x).
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Figure 3: The exterior normal ofMφ
(x, y′) at (λ, (λa, λ

′
φ(a))), seen inW

u

f (x).
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Using the extension to the boundary of (74) in both sides we infer(
n,OrLf (x, y),OrMφ

(y, y′),CoorW u
g (y

′)
)

= (−1)|x|−|y| (OrMφ
(x, y′),CoorW u

g (y
′)
)

which by removing CoorW s
g (y

′) leads to(
n,OrLf (x, y),OrMφ

(y, y′)
)
= (−1)|x|−|y|OrMφ

(x, y′).

Combined with (76) this gives the first relation of our statement.

To prove the second relation, denote again by n the outward normal at some
point (λ, λ′) ∈ Mφ

(x, x′) × Lg(x′, y′). Relation (76) is of course still valid.
However since we cannot considerMφ

(x, y′) as a subset of W
u

f (x) near this
boundary point we have to describe n more precisely.

With the same notation λ = (λa, λ
′
φ(a)), the point (λ, λ) corresponds to

(a, φ(a)) ∈ Mφ
(x′, y) seen as W

u

f (x) φ× W
s

g(y
′). Therefore we may con-

sider n = γ′(0) where γ = (γX , γY ) : (−ϵ, 0] → W
u

f (x) φ×W
s

g(y
′) is a path

pointing outwards the boundary such that γ(0) = (a, φ(a)) ; note that for
t < 0 we have φ(γX(t)) = γY (t). Since only the orientation of the interior
ofMφ

(x′, y) was defined explicitly defined (by (74)) we prefer to write (76)
at a interior point γ(t) using a diffeomorphic copy of ∂Mφ

(x, y′) in a collar
neighbourhood. Near such a point we may view Mφ

(x, y′) as a subset of
W

u

f (x) and use γ′X(t) instead of n. Therefore (76) combined with (74) yields
in this point(

γ′X(t),Or ∂Mφ
(x, y′),CoorW s

g (y
′)
)

=
(
OrMφ(x, y′),CoorW

s

g(y
′)
)
= OrW u

f (x)

which we write equivalently(
Or ∂Mφ

(x, y′),γ′X(t),CoorW
s
g (y

′)
)

= (−1)|x|−|y′|−1
(
OrMφ(x, y′),CoorW

s

g(y
′)
)

= (−1)|x|−|y′|−1OrW u
f (x).

Now we may replace γ′X(t) by γ′Y (t) = φ∗(γ
′
X(t)) in the relation above ;

this is because in the transverse intersection W u
f (x) ⋔ W s(y′) we make use

of the isomorphism φ∗ : TW u
f (x)/TMφ(x, y′) ∼= TY/TW s

g (y
′) to write the

orientation rule (74). Remark that by construction the vector n = γ′Y (0) can
be viewed as the exterior normal to the stable manifold W

s

g(y
′) at (λ′φ(a), λ

′).
Remark also that arguing as in the proof of Proposition 5.4 at the boundary
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point (λ′φ′(a), x
′) of W

s

g(y
′), the normalized gradient vector ξ

∥ξ∥ (extended

by continuity at that point) is directed inwards. Therefore, we may take
n = − ξ

∥ξ∥ at this point. Now on the one hand we have by the above(
Or ∂Mφ

(x, y′),γ′Y (t),CoorW
s
g (y

′)
)

= (−1)|x|−|y′|−1
(
OrMφ(x, y′),CoorW

s

g(y
′)
)

= (−1)|x|−|y′|−1OrW u
f (x).

and on the other hand, by putting t = 0 we get(
OrMφ(x, x′),OrLg(x′, y′), γ′Y (t),CoorW s

g (y
′)
)

=
(
OrMφ(x, x′),OrLg(x′, y′), n,CoorW s

g (y
′)
)

=
(
OrMφ(x, x′),OrLg(x′, y′),−ξ,CoorW s

g (y
′)
)

=
(
OrMφ(x, x′),OrLg(x′, y′),CoorSsg(y′)

)
=
(
OrMφ(x, x′),Or W u

g (y
′)
)

= OrW
u

f (x).

In the second equality we changed the point in W
s
(y′) from (λ′φ(a), λ

′) to

(λ′φ′(a), x
′) so that the exterior normal becomes n = −ξ (we may omit the

norm which has no effect on the orientations). The third equality uses our
coorientation convention for stable spheres (11) and the relation (14). The
last equality uses (75).

We get a sign difference of (−1)|x|−|y′|−1 between the two computations, which
gives exactly the second relation of Lemma 10.1.

Proceeding inductively as in Proposition 5.6 we get a representing chain
system (τx,y′) forM

φ
(x, y′) which satisfies the following equation :

∂τx,y′ = (−1)|x|−|y|
∑

y∈Crit(f)

sx,y × τy,y′ − (−1)|x|−|y′|
∑

x′∈Crit(g)

τx,x′ × sx′,y′ .

Instead of it we would have liked to have an equation which is similar to (30),
in order to define a morphism between twisted complexes. For this purpose
we set

σx,y′ = (−1)|x|−|y′|−1τx,y′ . (77)

It is then easy to check that (σx,y′) indeed satisfies an equation of the form
(30), i.e.,

∂σx,y′ =
∑

y∈Crit(f)

sx,y × σy,y′ −
∑

x′∈Crit(g)

(−1)|x|−|x′|σx,x′ × sx′,y′ .
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In the sequel we will refer to (σx,y′) as a corrected representing chain system
onMφ

(x, y′).

Now we construct continuous evaluation maps

qφx,y′ :M
φ
(x, y′)→ ΩY.

For this purpose we take two homotopies HX : [0, 1] × X → X and HY :
[0, 1] × Y → Y which respectively join IdX and IdY to the compositions
θX ◦ pX and θY ◦ pY (recall that θ is a homotopy inverse of the projection
p in a set of data Ξ). We may and will construct these homotopies using a
similar procedure on X and on Y : take a homotopy of trees Yt between the
base point ⋆ and the given tree Y , let pt be the projection which collapses the
tree Yt and choose homotopy inverses θt of pt for t ∈ [0, 1] such that θ0 = Id
and θ1 = θ. The homotopy Ht is then defined as θt ◦ pt. We will use this
definition in the proof of Proposition 10.3 below.

We define the evaluation maps qφx,y′ as follows. We view an element of

Mφ
(x, y′) as consisting of a half-infinite broken trajectory λ in X flowing

from the critical point x to a certain point a, coupled with a half-infinite
broken trajectory λ′ in Y starting at the point φ(a) and flowing into y′.
We start from the evaluations qX and qY defined in Lemma 5.9 (see also
Lemma 7.7 in §7.3). Note that, by definition, qX(λ) ∈ P⋆→θX◦pX(a)X and
qY (λ′) ∈ PθY ◦pY (φ(a))→⋆Y . We define

qφx,y′ :M
φ
(x, y′)→ ΩY (78)

by

qφx,y′(λ, λ
′) = φ(qX(λ))#φ(HX(1− t, a))#HY (t, φ(a))#qY (λ′). (79)

In other words we use the homotopies H
X
= HX(1−·, ·) and HY to connect

the endpoint of φ(qX(λ)) with the starting point of qY (λ′), getting thus a
loop in Y . See Figure 4 below.

Note that on the boundary ∂Mφ
(x, y′) the maps qφx,y′ satisfy

qφx,y′(λ, λ) = φ(qXx,y(λ))#q
φ
y,y′(λ)

for all (λ, λ) ∈ L(x, y)×Mφ
(y, y′) and

qφx,y′(λ, λ
′) = (qφx,x′(λ))#q

Y
x′,y′(λ

′)
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Figure 4: Definition of the evaluation map qx,y′ :M
φ
(x, y′)→ ΩY .
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for all (λ, λ′) ∈ Mφ
(x, x′) × L(x′, y′). Taking into account these properties,

the construction of a representing chain system for the compactified moduli
spacesMφ

(x, y′) leads via the evaluations qφx,y′ to a collection of chains

νx,y′ = −qφx,y′,∗(σx,y′) ∈ C|x|−|y′|(ΩY )

such that

∂νx,y′ =
∑
y

(Ωφ)∗(mx,y)νy,y′ −
∑
x′

(−1)|x|−|x′|νx,x′mx′,y′ .

The reason for inserting a minus sign in the definition of νx,y′ lies in our
orientation conventions and will be clear in the proof of Proposition 10.3. At
this stage one may notice that when φ = Id, the 0-chain τx,x of the initial
representing chain system has positive sign since the orientation rule (75)
writes (

OrMId
(x, x),OrW

u

f (x)
)

= OrW
u

f (x)

Therefore the corrected 0-chain σx,x has negative sign and as for the contin-
uation maps (see Remark 6.6) we use the evaluations to turn this minus sign
into plus.

We now define

φ∗ : F ⊗ Crit(f)→ F ⊗ Crit(g), φ∗(α⊗ x) =
∑
y′

α · νx,y′ ⊗ y′. (80)

A direct verification shows that this is a chain map, see also §6. This map
depends a priori on the representing chain system forMφ

(x, y′) and on the
homotopies HX and HY . We will prove independence in homology with
respect to these choices, as well as the compatibility with the continuation
maps (48), in Corollary 10.7 below. Our strategy is to show that the direct
map defined above is the same as the one defined in §9, so that it inherits all
the properties of the latter.

Remark 10.2. The definition of φ∗ generalises to the case when X and Y
have boundary. We need to take a (negative) gradient on X pointing inwards
in order to preventMφ(x, y′) to contain boundary points of X, which would
change the compactification of this moduli space. Therefore φ∗ is defined on
the absolute homology H∗(X;φ∗F). We also suppose φ(intX) ⊂ intY , so
that φ(W u(x)) ∩ ∂Y = ∅ and in particularMφ(x, y′) does not intersect the
preimage of a neighbourhood of ∂Y , which again implies thatMφ

(x, y′) is the
same as in the case without boundary. One may also use the first definition
of the direct map given in §9 to generalise it under the same hypothesis. The
map φ∗ may take values in H∗(Y, ∂Y ;F) but it factors as H∗(X;φ∗F) →
H∗(Y ;F)→ H∗(Y, ∂Y ;F).
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10.2 The two definitions of direct maps coincide

We prove in this section that the two definitions of the direct map from §9
and §10.1 coincide, i.e., the maps induced in homology are the same, see
Proposition 10.6. Throughout this section we will denote the first map by
φ∗ and the second one by φ∗.

The key result towards the proof is the following:

Proposition 10.3. Let Ξ0 and Ξ1 be two sets of data defined on (X, ⋆) and
F a DG-module over C∗(ΩX). The map Id∗ : C∗(X,Ξ0;F) → C∗(X,Ξ1;F)
(defined by the second definition) does not depend on choices at homology
level, and it coincides with the continuation map Ψ01.

Proof. We have proved in §6.3 that the continuation map Ψ01 does not de-
pend in homology on the choice of continuation data. It is therefore enough to
show that, for any choice of the construction data (representing chain system

onMId
(x, y′) and homotopies), the map Id∗ : C∗(X,Ξ0;F) → C∗(X,Ξ1;F)

is chain homotopic to the continuation map Ψ01 defined using a specific choice
of continuation data.

Let us describe this choice of continuation data. We begin the description
with the choice of the Morse function and negative gradient on [−ϵ, 1+ϵ]×X.
Let ρ : R→ [0, 1] be a smooth increasing cutoff function such that ρ(s) = 0
for s ≤ 1

2
+ ε and ρ(s) = 1 for s ≥ 1 − ε for some small enough ε > 0. We

moreover suppose that ρ is strictly increasing on [1
2
+ ε, 1 − ε]. Denote by

(fi, ξi) the Morse-Smale pairs corresponding to Ξi, i = 0, 1, and consider the
homotopies

ft =

{
ρ(1− t)f0, t ∈ [−ε, 1

2
],

ρ(t)f1, t ∈ [1
2
, 1 + ε],

ξt =

{
ρ(1− t)ξ0, t ∈ [−ε, 1

2
],

ρ(t)ξ1, t ∈ [1
2
, 1 + ε].

Note that both ft and ξt vanish for t ∈ [1
2
− ϵ, 1

2
+ ϵ]. As in §6, let g : [−ε, 1+

ε]→ [0, 1] be a smooth Morse function which has exactly two critical points,
a nondegenerate maximum at 0 and a nondegenerate minimum at 1, and
which is therefore strictly decreasing on (0, 1). We consider on [−ε, 1+ε]×X
the Morse function F (t, x) = ft(x) + g(t) and the negative pseudo-gradient
ξ(t, x) = ξt(x)− g′(t)∂t. We define the map Ψ01 using the pair (F, ξ).

We claim that, for all x ∈ Crit(f0), y ∈ Crit(f1), we have a homeomorphism
of moduli spaces

LF (x, y) ≃MId(x, y). (81)
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As a preparation for the proof of this claim, recall the following general fact:
let v be a vector field on some manifold, h be a diffeomorphism of intervals
on the real line, and α, β be parametrized curves in that manifold related
by α(s) = β(h(s)). Then β solves β̇(s) = v(β(s)) if and only if α solves
α̇(s) = h′(s)v(α(s)). In other words, β is an integral curve of v if and only if
α is an integral curve of h′v.

We now construct the homeomorphism (81). Let γ̃ = (a, γ) : R → [−ε, 1 +
ε]×X be a representative of an equivalence class in LF (x, y).

� The component a solves a′(s) = −g′(a(s)) and lims→−∞ a(s) = 0,
lims→+∞ a(s) = 1, hence a(s) ∈ (0, 1) for all s ∈ R and a is strictly
increasing. As a consequence, there exist unique real numbers s̄− <
s̄ < s̄+ such that a(s̄) = 1

2
and a(s̄±) =

1
2
± ε.

� The component γ solves

γ̇(s) =

{
ρ(1− a(s))ξ0(γ(s)), s ≤ s̄,
ρ(a(s))ξ1(γ(s)), s ≥ s̄.

Note that γ is constant on the interval [s̄−, s̄+] and denote this constant by
c ∈ X. Let h0 : (−∞, s̄−] → (−∞, 0] be the diffeomorphism defined as
the unique primitive of the (nonzero) function s 7→ ρ(1 − a(s)) such that
h0(s̄−) = 0. Let h1 : [s̄+,∞)→ [0,∞) be the diffeomorphism defined as the
unique primitive of the function s 7→ ρ(a(s)) such that h1(s̄+) = 0. Then

γ(s) =


α0(h0(s)), s ≤ s̄−,
c, s ∈ [s̄−, s̄+],
α1(h1(s)), s ≥ s̄+

(82)

for some uniquely determined parametrized curves α0 : (−∞, 0] → X,
α1 : [0,∞) → X such that α̇0 = ξ0(α0), α̇1 = ξ1(α1), lims→−∞ α0(s) = x,
lims→∞ α1(s) = y. By construction we have α0(0) = α1(0) = c, so that
(α0, α1) defines an element inMId(x, y).

The map (81) associates to [γ̃] the pair (α0, α1). It is easy to check that
the map is independent of the choice of representative γ̃. The inverse map
associates to a pair (α0, α1) the class [γ̃] with γ̃ defined as above, and both
maps are continuous.

Moreover, the homeomorphism (81) extends to a homeomorphism between
the compactified moduli spaces

R : LF (x, y) ≃M
Id
(x, y) (83)
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such that the following compatibility conditions are satisfied:

R(λ, λ̄) = (λ,R(λ̄)) (84)

for any (λ, λ̄) ∈ Lf0(x, z)× LF (z, y), and

R(λ̄, λ) = (R(λ̄), λ) (85)

for any (λ̄, λ) ∈ LF (x,w)× Lf1(w, y).

Starting with a representing chain onMId
(x, y) we want to use R−1 to trans-

port it into one on LF (x, y). We have to take into account the fact that in
general R does not preserve the orientations. More precisely :

Lemma 10.4. The homeomorphism R : LF (x, y) → M
Id
(x, y) changes the

orientation by the sign (−1)|x|−|y|−1.

Proof. According to (75) the orientation ofMId
(x, y) is given by(

OrMId
(x, y),OrW

u

f1
(y)
)

= OrW
u

f0
(x).

Given x ∈ Crit(f0) and y ∈ Crit(f1), we apply (14) to get(
OrLF (x, y),CoorSsF (y)

)
= OrW

u

F (x).

Denoting as before by t the variable on [0, 1], recall the orientation rule (25)
for x ∈ Crit(f0):

OrW
u

F (x) =
(
∂
∂t
,OrW u

f0
(x)
)
.

For y ∈ Crit(f1) the vector ∂
∂t

points inwards the stable manifold W
s

F (y)
along a level of F by construction. Therefore, by our convention (11), we
have

CoorSsF (y) =
(
− ∂
∂t
,CoorW

s

F (y)
)

and we infer

OrW
u

F (x) =
(
OrLF (x, y),CoorSsF (y)

)
=
(
OrLF (x, y),− ∂

∂t
,CoorW

s

F (y)
)

= (−1)|x|−|y|−1
(
∂
∂t
,OrLF (x, y),CoorW

s

F (y)
)

= (−1)|x|−|y|−1
(
∂
∂t
,OrLF (x, y),OrW

u

F (y)
)

= (−1)|x|−|y|−1
(
∂
∂t
,OrLF (x, y),OrW

u

f1
(y)
)
.
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This implies(
OrLF (x, y),OrW

u

f1
(y)
)
= (−1)|x|−|y|−1OrW

u

f0
(x).

The map R can be viewed as applying the projection [0, 1]×X → X to the
trajectories of LF (x, y). It therefore preserves the vertical tangent vectors,
in particular those of W u

f0
(x) and W u

f1
(y). Denoting by OrR(LF (x, y)) the

orientation induced by R on the target, we obtain(
OrR(LF (x, y)),OrW

u

f1
(y)
)
= (−1)|x|−|y|−1OrW

u

f0
(x).

Comparing this orientation relation with the above orientation relation for

MId
(x, y) we obtain

OrR(LF (x, y)) = (−1)|x|−|y|−1OrMId
(x, y).

This proves the lemma.

If (τx,y) is the chosen representing chain system on MId
(x, y), the previous

lemma allows us to choose (−1)|x|−|y|−1R−1
∗ (τx,y) as representing chain system

on LF (x, y). So, if σx,y = (−1)|x|−|y|−1τx,y is the corrected representing chain
system (see (77)) then R−1

∗ (σx,y) is a representing chain system on LF (x, y)
and it is this one that we will use to define the continuation map.

To this purpose we have to evaluate it by qx,y : LF (x, y)→ ΩX from (31). To
define this map we need a family of trees Yt and a family of expanding maps
θt : X/Yt → X, i.e., homotopy inverses of the collapsing maps p : X → X/Yt.
Recall that qIdx,y :M

Id
(x, y)→ ΩX, the evaluation map from (78), was defined

using homotopies HX
0 and HX

1 between Id and θ0 ◦ p0, resp. between Id and
θ1 ◦ p1, and these homotopies were constructed by collapsing and expanding
paths of trees joining ⋆ and Y0, resp. ⋆ and Y1. Denote by (Yτ0 ) the homotopy
between ⋆ and Y0 and by (θτ0) : X/Yτ0 → X the expanding maps which yield
the homotopy HX

0 = (θτ0 ◦ pτ0) between Id and θ0 ◦ p0. We may suppose that
this homotopy is parametrized by τ ∈ [1

2
, 1
2
+ ε]. Use the analogous notation

Yτ1 , pτ1 and θτ1 for the maps defining the homotopy HX
1 , also parametrized by

the interval τ ∈ [1
2
, 1
2
+ ε]. We choose the following family of trees (Yt) on X:

Yt : =



Y0, t ∈ [0, 1
2
− ε],

Y1−t
0 , t ∈ [1

2
− ε, 1

2
],

Y t1, t ∈ [1
2
, 1
2
+ ε],

Y1, t ∈ [1
2
+ ϵ, 1],
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and accordingly the expanding maps

θt : =



θ0, t ∈ [0, 1
2
− ε],

θ1−t0 , t ∈ [1
2
− ε, 1

2
],

θt1, t ∈ [1
2
, 1
2
+ ε],

θ1, t ∈ [1
2
+ ϵ, 1].

By definition (see (31)) the evaluation map qx,y : LF (x, y)→ ΩX is given by

qx,y = π ◦Θ ◦ p ◦ Γ,

where Γ is the reparametrization of a trajectory by the values of F , the map
p : [0, 1] × X →

⋃
t∈[0,1]{t} × X/Yt is the collapsing map, the map Θ is its

homotopy inverse and π : [0, 1]×X → X is the canonical projection.

We now compare the maps qIdx,y ◦ R and qx,y. If they were equal, then the
continuation cocycle

νx,y = −qx,y,∗(R−1
∗ (σx,y)) = −qIdx,y,∗(σx,y)

would be equal to the cocycle which defines the direct map Id∗ and therefore
we would have Ψ01 = Id∗ at chain level and the proof would be finished. But
in fact these maps are only homotopic. More precisely:

Lemma 10.5. (compare to Lemma 10.8) There is a homotopy

qs : LF (x, y)→ ΩX

between the maps qIdx,y ◦R and qx,y which satisfies

qs(λ, λ̄) = qf0x,z(λ)#q
s(λ̄) (86)

for any (λ, λ̄) ∈ Lf0(x, z)× LF (z, y), and

qs(λ̄, λ) = qs(λ̄)#qf1w,y(λ) (87)

for any (λ̄, λ) ∈ LF (x,w)× Lf1(w, y).

Having only a homotopy instead of an equality suffices however for our pur-
poses. Indeed, we can apply Lemma 6.13 to the representing chain system
R−1

∗ (σx,y) — which satisfies an equation of the form (30) —, and to the eval-

uation maps π ◦ qφχ
and qφ ◦ Π :Mφχ

→ ΩY which are homotopic through
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a homotopy satisfying (36) and (37) (these correspond to equations (86)
and (87) in the statement above). Lemma 6.13 implies that the two cocycles
obtained from these evaluations define maps which coincide in homology,
which means that Ψ01 = Id∗ as claimed.

Proof of Lemma 10.5. We actually show that for any λ ∈ LF (x, y) the loops
qIdx,y ◦R(λ) and qx,y(λ) are equal modulo reparametrization, and then use the
fact that any two positive reparametrizations of an interval of the real line
are homotopic. Let us get into more detail. Take as previously γ̃ = (a, γ)

a representative for λ and write R(λ) = (α0, α1) ∈ M
Id
(x, y). By definition

we have

qIdx,y ◦R(λ) = qIdx,y(α0, α1) = qf0(α0)#H
X
0 (1− t, c)#HX

1 (t, c)#qf1(α1)

and
qx,y(λ) = qx,y(γ̃) = π ◦Θ ◦ p ◦ Γ(γ̃).

The map qx,y commutes with concatenations, so

qx,y(γ̃) = qx,y(γ̃|(−∞,s̄−])#qx,y(γ̃|[s̄−,s̄+])#qx,y(γ̃|[s̄+,+∞)),

and upon using the formula (82) for γ̃ this relation becomes

qx,y(γ̃) = qx,y(a(s), α0(h0(s)))#qx,y(a(s), p)#qx,y(α1(h1(s))),

where s belongs respectively to (−∞, s̄−], [s̄−, s̄+] and [s̄+,+∞) in the three
paths above. Let us analyse them separately. We use the sign ∼ to indicate
that two paths are equivalent modulo reparametrization.

For s ∈ (−∞, s̄−] the path γ̃ stays in [0, 1
2
− ε]×X, where the trees Yt and

the expanding maps θt are constant equal to Y0 resp. θ0. We therefore get

qx,y(a(s), α0(h0(s)))

= π ◦Θ ◦ p ◦ Γ(a(s), α0(h0(s)))

= θ0 ◦ p0 ◦ π ◦ Γ(a(s), α0(h0(s))) ∼ θ0 ◦ p0 ◦ Γ(α0) = qf0(α0)

since π(Γ(a, α0)) is a reparametrization of Γ(α0) (we use the values of different
Morse functions to parametrize the two of them). Similarly, for s ∈ [s̄+,+∞)
we are in [1

2
+ ϵ]×X and we get

qx,y(a(s), α1(h1(s))) ∼ qf1(α1).

In the intermediate interval [s̄−, s̄+] we analyze first the case s ∈ [s̄−, s̄] for
which γ̃ takes values in the slice [1

2
− ε, 1

2
]×X and has its second coordinate

γ constant equal to c. On this interval we have

qx,y(a(s), c)) = π ◦Θ ◦ p ◦ Γ(a(s), c).
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Now Γ(a(s), c) is the parametrization of (a(s), c) using the values of the
Morse function F on the product (which equals g on this slice); since a is
strictly decreasing we may parametrize the same path using its projection
on [0, 1], which means that (Γ(a(s)), c) ∼ (t, c), the latter being defined for
t ∈ [1

2
− ε, 1

2
]. Our choice of trees and expanding maps therefore yields

qx,y(a(s), c)) ∼ π ◦Θ ◦ p(t, c) = π(t, θ1−t0 ◦ p1−t0 (c))

= θ1−t0 ◦ p1−t0 (c) = HX
0 (1− t, c).

Analogously, on the interval s ∈ [s̄, s̄+] we find that

qx,y(a(s), c)) ∼ HX
1 (t, c),

where t ∈ [1
2
, 1
2
+ ε].

Putting all this together we finally infer that

qIdx,y ◦R(λ) ∼ qx,y(λ)

for any λ. Moreover, by construction the reparametrizations vary continu-
ously with respect to λ, which implies that the maps qIdx,y ◦ R and qx,y are
homotopic as claimed.

We still have to check that the homotopy may be chosen to satisfy the con-
ditions (86) and (87) on the boundary of LF (x, y). This is straightforward.
Indeed, for (λ, λ̄) ∈ Lf0(x, z)× LF (z, y) we have

qx,y(λ, λ̄) = qf0x,z(λ)#qz,y(λ̄)

and using (84) we also have

qIdx,y(R(λ, λ̄)) = qf0x,z(λ)#q
Id
z,y(R(λ̄)).

Moreover, the equivalence by reparametrization ∼ from above equals the
identity on the first concatenation factor qf0x,z(λ). Therefore, in order to get
the desired property (86) we have to insure that the homotopy between these
two equivalent loops is also the identity on this factor, which is easy.

The same applies to (λ̄, λ) ∈ LF (x,w) × Lf1(w, y), which proves (87). As a
matter of fact, interpolating between two equivalent loops of the form γ#γi
or γi#γ (for i = 0, 1) with homotopies which are the identity on the first,
resp. second factor, reduces to the following: given a strictly increasing
reparametrization of the source χ : [0, a]→ [0, b] for b < a, we deform it into
Id[0,a] by χs, keeping χ

′
s(τ) = 1 on the intervals where χ′(τ) = 1. This can

be achieved by linear interpolation and this recipe depends continuously on
some parameter λ if χ does so (in our situation λ ∈ LF (x, y)).
This finishes the proof of Lemma 10.5 ...
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...as well as the proof of Proposition 10.3.

We are now in position to prove that the two definitions we gave for the
direct maps coincide.

Proposition 10.6. Let φ : (X, ⋆X)→ (Y, ⋆Y ) be a smooth map, ΞX and ΞY

two sets of data defined respectively on (X, ⋆X) and (Y, ⋆Y ), and F a DG-
module over C∗(Ω⋆Y Y ). Then the map φ∗ : C∗(X,Ξ

X ;φ∗F)→ C∗(Y,Ξ
Y ;F)

defined by (80) coincides in homology with the one defined in §9.5, denoted
here φ∗.

This statement should be understood as follows: for any choice (representing
chain system onM(x, y′), homotopies HX and HY ) needed to define φ∗, this
map coincides in homology with the one defined in §9 between the complexes
associated to ΞX and ΞY . Since the latter is well defined we obviously get

Corollary 10.7. The map φ∗ : H∗(X;φ∗F) → H∗(Y ;F) given by (80) is
well defined and satisfies Properties 1-4 from §8.1.

Proof of Proposition 10.6. We break the proof into three steps:

(a) The two maps coincide in homology for embeddings φ : X → Y .

(b) Let D = Dm be a disc with 0 as a basepoint and π : D × Y → Y the
projection. We denote by ΞD = (h,−∇h, o{0} = +,Y = 0, θ = Id) the usual
set of data which completes the Morse function h(x) = ∥x∥2. On D we
choose the trivial homotopy HD = Id, and we choose a homotopy HY on Y .
Then the map π∗ : C∗(D × Y ; ΞD × ΞY ; π∗F) → C∗(Y,Ξ

Y ;F) constructed
using the homotopies Id ×HY and HY coincides in homology with the one
defined in §9.

(c) Consider an arbitrary smooth map φ and an embedding φχ = (χ, φ) :
(X, ⋆X) → [D × Y, (0, ⋆Y )]. Let F be a DG-module over C∗(Ω⋆Y Y ). The
maps defined in this section φ∗ : C∗(X,Ξ

X ;φ∗F) → C∗(Y,Ξ
Y ;F), π∗ :

C∗(D × Y,ΞD × ΞY ; π∗F)→ C∗(Y,Ξ
Y ;F) (the direct map of the projection

π), and φχ∗ : C∗(X,Ξ
X ;φ∗F)→ C∗(D×Y,ΞD×ΞY ; π∗F) (the direct map of

the embedding φχ), satisfy the following particular case of the composition
property in homology :

π∗ ◦ φχ∗ = (π ◦ φχ)∗ = φ∗.

Here the map φ∗ is defined using arbitrary choices for the representing chain
system and the homotopies, whereas for π∗ and φχ∗ we use some adapted
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choices of the representing chain systems and the same homotopies HX , HY

on X, resp. Y and Id×HY on D × Y .

Let us show how these three steps imply Proposition 10.6. Recall the notation
φ∗ for the direct map defined in §9. Take an embedding χ : (X, ⋆X)→ (D, 0)
for some disc D. By definition (see (62)) we have

φ∗ = (i∗)
−1 ◦ φχ∗ = π∗ ◦ φχ∗ .

We should point out here that the above maps are defined at the chain level:
π∗ = (i∗)

−1 : C∗(Y,Ξ
Y ;F)→ C∗(D × Y,ΞD × ΞY ; π∗F) by

α⊗ (0, x) 7→ α⊗ x

and φχ∗ : C∗(X,Ξ
X ;φ∗F)→ C∗(D × Y,ΞD × ΞY ; π∗F) as in the proof of (a)

below. Now by (a) and (b) we have φχ∗ = φχ∗ and π∗ = π∗. Applying (c) we
get the sequence of equalities in homology

φ∗ = (π ◦ φχ)∗ = π∗ ◦ φχ∗ = π∗ ◦ φχ∗ = φ∗.

Thus φ∗ = φ∗ in homology as desired.

We now prove the three steps above.

Proof of (a). We may suppose that φ : X ↪→ Y is an inclusion; the general-
ization to the case of embeddings is straightforward. Proceed as in §9.2 to
define φ∗: extend the set of data ΞX on X first to a tubular neighborhood
U of X in Y with inward gradient and then to the whole of Y . Denote the
extension by ΞYφ . If f is the Morse function on X, for x ∈ Crit(f) and α ∈ F
we have by definition of φ∗ : C∗(X,Ξ

X ;φ∗F)→ C∗(Y,Ξ
Y ;F):

φ∗(α⊗ x) = Ψ(α⊗ x),

where Ψ is the continuation map between the data ΞYφ and ΞY (compare
to (64) where the same formula was given for the embedding φχ). Let us
now express φ∗. If F : Y → R is the Morse function of ΞYφ (which is
an extension of f) we get by construction the equality between oriented
manifolds W

u

f (x) = W
u

F (x) for any x ∈ Crit(f) (since the gradient points
inwards along the boundary of the tubular neighborhood of X). Therefore,
if G is the Morse function of ΞY , we get for y′ ∈ Crit(G) that

Mφ
(x, y′) ∼= W

u

f (x) φ×W
s

G(y
′) = W

u

F (x) Id×W
s

G(y
′) ∼=MId

(x, y′).

This identification preserves orientations and enables us to take the same
(corrected) representing chain system on both spaces, cf. (77)
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We finally obtain
ϕ∗(α⊗ x) = Id∗(α⊗ x),

where Id∗ : C∗(Y,Ξ
Y
φ ;F) → C∗(Y,Ξ

Y ;F) is the direct map associated to
Id for the two different sets of data, constructed with a homotopy on the
domain which extends HX and the given homotopy HY on the target : for
these choices the evaluation maps qφ and qId obviously match with the iden-
tification above. We apply Proposition 10.3 to finish the proof of our claim
that φ∗ = φ∗ for embeddings.

Proof of (b). We describe the maps

π∗ : C∗(D × Y,ΞD × ΞY ; π∗F)→ C∗(Y,Ξ
Y ;F)

and
π∗ : C∗(D × Y,ΞD × ΞY ; π∗F)→ C∗(Y,Ξ

Y ;F).
If G : Y → R is the Morse function of ΞY then W

u

h+G(0, x) = {0} ×W
u

G(x)
for any x ∈ Crit(G). Thus for any x, y′ ∈ Crit(G) we have

Mπ
((0, x), y′) ∼= W

u

h+G(0, x) π×W
s

G(y
′)

∼= {0} ×MId

G (x, y
′) ∼=MId

G (x, y
′).

This identification preserves orientations and enables us to choose the repre-
senting chain systems as well as the corrected representing chain systems
accordingly. Notice that the evaluations qπ : M((0, x), y′) → ΩY and

qId : MId

G (x, y
′) → ΩY clearly also match with this identification. There-

fore π∗(α⊗ (0, x)) = Id∗(α⊗ x), where Id∗ : C∗(Y,Ξ
Y ;F)→ C∗(Y,Ξ

Y ;F) is
the direct map. Applying again Proposition 10.3 we find that Id∗ = Id and
therefore

π∗(α⊗ (0, x)) = α⊗ x
for any x ∈ Crit(G) and α ∈ F . On the other hand we know that

π∗(α⊗ (0, x)) = (i∗)
−1(α⊗ (0, x)) = α⊗ x,

which proves the desired equality.

Proof of (c). Let us give a formula for φχ∗ . If G is the Morse function of ΞY

then we have W
s

h+G(0, y
′) = D ×W s

G(y
′) for any y′ ∈ Crit(G). Denoting

f : X → R the Morse function of ΞX we then get for any x ∈ Crit(f) and
y′ ∈ Crit(G) :

Mφχ

(x, (0, y′)) ∼= W
u

f (x) (χ,φ)× (D ×W s

G(y
′))

∼= {(a, b, χ(a)) | (a, b) ∈ W u

f (x) φ×W
s

G(y
′)}.
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This space projects ontoMφ
(x, y′) = W

u

f (x) φ×W
s

G(y
′) and the projection

Π is a homeomorphism. Note that Π preserves the orientations. Indeed, the
orientation rule (75) writes here(

OrMφχ

(x, (0, y′)),OrW
u

h+G(0, y
′)
)

= OrW
u

f (x).

Since W
u

h+G(0, y
′) = W

u

G(y
′) as oriented manifolds, this coincides with the

orientation rule forMφ
(x, y′), i.e.,(

OrMφ
(x, y′),OrW

u

G(y
′)
)
= OrW

u

f (x).

This enables us to choose (Π−1)∗(σx,y′) as a corrected representing chain

system on Mφχ

((0, x), y′), where (σx,y′) is a corrected representing chain
system forMφ

(x, y′). Using the homotopies HX on the domain and Id×HY

on the target we define the evaluation map qφ
χ
:Mφχ

(x, (0, y′))→ Ω(D×Y )
using the formula (79). Evaluating the above representing chain system we
get

νφ
χ

x,(0,y′) = −qφχ

∗ (Π−1
∗ (σx,y′))

and then
φχ∗ (α⊗ x) = α

∑
y∈CritG

π∗(ν
φχ

x,y′)⊗ (0, y′)

for any α ∈ F and x ∈ Crit(f), where π : D × Y → Y is the projection.
Let us explain the reason for the appearance of π∗ in this formula. For a
general direct map ψ∗ : C∗(X;ψ∗F) → C∗(Y,F) defined by ψ∗(α ⊗ x) =
α ·
∑

y νx,y′ ⊗ y′ the product α · νx,y′ is the module product for F since νx,y′
is already a chain on ΩY by definition. In the above case ψ = φχ, the role
of F is played by π∗F (and (φχ)∗π∗F = φ∗F), so that we have to use the
multiplication rule for the module π∗F .
We proved in (b) the equality of direct maps π∗ = π∗ in homology. Using
that formula for the latter we get at the homology level :

π∗ ◦ φχ∗ (α⊗ x) = π∗ ◦ φχ∗ (α⊗ x) = α
∑

y∈CritG

π∗(ν
φχ

x,(0,y′))⊗ y
′,

which we want to compare to

φ∗(α⊗ x) = α
∑

y∈CritG

νφx,y′ ⊗ y
′,
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where νφx,y′ = −qφ∗ (σx,y′). At this point it would have been nice to have a
commutative diagram

Mφχ

(x, (0, y′))
qφ

χ

//

Π
��

Ω(D × Y )

π

��
Mφ

(x, y′)
qφ // ΩY

If this was true we would have gotten

π∗(ν
φχ

x,(0,y′)) = −π∗q
φχ

∗ (Π−1
∗ (σx,y′))

= −qφ∗Π∗(Π
−1
∗ (σx,y′)) = −qφ∗ (σx,y′) = νφx,y′ ,

and this would have finished the proof. However, the above diagram is only
homotopy commutative:

Lemma 10.8. There is a homotopy (qs)s∈[0,1] between π◦qφ
χ
and qφ◦Π whose

maps qs :M(x, (0, y′)) → ΩY , s ∈ [0, 1] satisfy the following conditions on
the boundary ∂M(x, (0, y′)):

� for all (λ, λ) ∈ Lf (x, y) ×M(y, (0, y′)), x, y ∈ Crit(f), y′ ∈ Crit(G),
we have

qs(λ, λ) = Ωφ(qX(λ))#qs(λ). (88)

� for all (λ, λ′) ∈M(x, (0, x′))×LG(x′, y′)), x ∈ Crit(f), x′, y′ ∈ Crit(G),
we have

qs(λ, λ′) = qs(λ)#qY (λ′). (89)

This lemma is sufficient to prove the proposition. Indeed, similarly to the
end of the proof of Proposition 10.3, we are in the situation of Lemma 6.13:

the representing chain system σx,(0,y′) = Π−1
∗ (σx,y′) defined onMφχ

(x, (0, y′))
satisfies an equation of the form (30), and moreover we have two evaluation

maps π ◦ qφχ
and qφ ◦ Π : Mφχ

→ ΩY which are homotopic through a
homotopy satisfying (36) and (37) (which correspond to (88) and (89) in
the statement above). We may therefore apply Lemma 6.13 and infer that
the maps constructed with the two cocycles obtained form these evaluations
are identical in homology. In other words, we get the claimed equality π∗ ◦
φχ∗ = φ∗. This completes the proof of Step (c), and hence the proof of
Proposition 10.6.
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Proof of Lemma 10.8 . Let us take a closer look at the two maps which are
claimed to be homotopic. We denote by (a, φχ(a)) a point in

Mφχ

(x, (0, y′)) ∼= W
u

f (x) φχ×W s

h+G(0, y
′),

we denote λa the unparametrized (possibly broken) flow line onX which joins
x to a, and we denote λ′φχ(a) = (λ′χ(a), λ

′
φ(a)) the unparametrized (possibly

broken) flow line on D×Y which runs from (χ(a), φ(a)) to (0, y′). Note that
λ′φ(a) = π(λ′φχ(a)) is the (unparametrized) flow line on Y which descends from

φ(a) to y′. By definition we have

π◦qφχ

(a, φχ(a))

= π
[
φχ(qX(λa))#φ

χ(HX
1−t(a))#(Id×HY

t )(φ
χ(a))#qD×Y (λ′φχ(a))

]
,

which after distributing π becomes

π◦qφχ

(a, φχ(a))

= φ(qX(λa))#φ(H1−t(a))#H
Y
t (φ(a))#π

(
qD×Y (λ′φχ(a))

)
.

On the other hand, again by definition

qφ(Π(a, φχ(a))) = qφ(a, φ(a))

= φ(qX(λa))#φ(H1−t(a))#H
Y
t (φ(a))#q

Y (λ′φ(a))).

These two concatenations coincide except for the fourth term. Let us compare
these last terms in the two concatenations. By definition

qD×Y = θD×Y ◦ pD×Y ◦ ΓD×Y = [Id× (θY ◦ pY )] ◦ ΓD×Y ,

and therefore π ◦ qD×Y (λ′φχ(a)) = θY ◦ pY ◦ π ◦ ΓD×Y (λ′φχ(a))). The last term

of the second concatenation writes qY (λ′φ(a)) = θY ◦ pY ◦ ΓY (λ′φ(a)). This

means that we have to compare π ◦ ΓD×Y (λ′φχ(a)) and ΓY (λ′φ(a)). We recall

that by definition (see the proof of Lemma 5.9), the function Γ applied to
some gradient flow line yields its parametrization by the values of the Morse
function. Therefore both π◦ΓD×Y (λ′φχ(a)) and ΓY (λ′φ(a)) are parametrizations
of the same gradient line λ′φ(a) obtained using different Morse functions : the

function h + G : D × Y → R for the flow line (λ′χ(a), λ
′
φ(a)) for the former,

and the function G : Y → R for the latter. So one is a reparametrization of
the other, which implies in particular that they are homotopic.

Let us now check relations (88) and (89). The first one is immediate: it only
concerns the first term of the expressions for π◦qφχ

and qφ◦Π above, whereas
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the homotopy only affects the last term as we have just seen. Actually this
relation is a direct consequence of the property

qX(λ, λa) = qX(λ)#qX(λa)

for the broken orbits (λ, λa) ∈ Lf (x, y)×W
u

f (y) ⊂ W
u

f (x), which is satisfied
by the evaluation maps on X.

More care needs to be taken with (89) since it concerns the fourth and last
term of the two expressions. As above we have two parametrizations ΓD×Y

and ΓY of a broken orbit (λ′φ(a), λ
′) ∈ W

s

G(x
′) × LG(x′, y′) ⊂ W

s
(y′): the

first one is given by the values of h + G : D × Y → R for the broken orbit
[(λ′χ(a), λ

′
φ(a)), (0, λ

′)] ∈ W s

G(0, x
′)×Lh+G((0, x′), (0, y′)), and the other one is

given by the values of G : Y → R. On the last factor (0, λ′) the values of
h+G are those of G, so that we actually get two parametrized paths defined
by concatenations γ0#γ and γ1#γ such that γ1 is a reparametrization of γ0.
We have to use a homotopy of the form γs#γ between these paths in order
to ensure (89). This is of course possible (see also the end of the proof of
Lemma 10.5), and finishes the proof of Lemma 10.8.

10.3 Properties of direct maps revisited

As we have already mentioned, in view of the fact that the map φ∗ defined in
this section coincides with the one from §9, it follows that it satisfies all the
desired properties stated in Theorem 8.2. We find it nevertheless instructive
to sketch alternative proofs of these properties which rely directly on the
moduli spacesMφ(x, y′) involved in the definition of the map φ∗.

Sketch alternative proof of Theorem 8.2 for direct maps.

1. Proof of the (Identity) property, i.e., Id∗ = Id. We will sometimes
denote in this paragraph φ = Id : X → X. We will prove that φ∗ induces
in homology an isomorphism which is also an idempotent, i.e., φ∗ ◦φ∗ = φ∗,
hence φ∗ is the identity.

The start of the proof is the observation that we can use the same auxiliary
data (Morse function, pseudo-gradient, embedded collapsing tree, homotopy
inverse θ for the collapsing map p) in the source and in the target, because
such a choice satisfies the correct transversality conditions. Given x, y′ ∈
Crit(f), the moduli spaces M(x, y′) which were previously defined for φ
become now the moduli spaces of parametrized gradient trajectories from x
to y′. In contrast to the case of classical Morse homology, the map Id typically
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does not induce the identity at chain level because the higher dimensional
moduli spaces of gradient trajectories are in general non-empty. Nevertheless,
Id∗ differs at chain level from the identity by terms which are of strictly lower
order in the filtration: if |x| = |y′| thenM(x, y′) = ∅ unless x = y′, in which
case mx,x is the 0-chain given by the loop H(1−·, x)#H(·, x), where H is the
chosen homotopy from Id to θ◦p. This loop is homotopic to the constant loop
at x and therefore Id∗ induces the identity on the 2nd page of the spectral
sequence. As a consequence, it induces an isomorphism in homology.

To prove that Id∗ is an idempotent in homology we view the moduli spaces
of parametrized gradient trajectoriesM(x, y′) from x to y′ as moduli spaces
of unparametrized gradient trajectories in L(x, y′) carrying one additional
marked point. We then consider the moduli spaces H(x, y′) consisting of un-
parametrized gradient trajectories in L(x, y′) carrying two additional marked
points. Any two such points are naturally ordered by the gradient direction
along the gradient trajectory. The moduli spaces H(x, y′) have dimension
|x|− |y′|+1 if |x|− |y′| ≥ 1, respectively 0 if |x| = |y′|. The compactification
H(x, y′) is a manifold with boundary and corners such that

∂H(x, y′) =
⋃
y

L(x, y)×H(y, y′) ∪
⋃
x′

H(x, x′)× L(x′, y′)

∪M(x, y′) ∪
⋃
z̃

M(x, z̃)×M(z̃, y′).

The first two kinds of terms in the boundary correspond to breaking of gra-
dient trajectories with the marked points staying at finite distance, the third
term in the boundary corresponds to the two points colliding, and the fourth
term corresponds to the gradient distance between the two points becoming
infinite and resulting in an intermediate breaking. The construction of a
representing chain system for the compactified moduli spaces H(x, y′) gives
rise to a collection of chains hx,x = ⋆ and

hx,y′ ∈ C|x|−|y′|+1(ΩX) for |x| − |y′| ≥ 1,

such that

∂hx,y′ =
∑
z̃

νx,z̃νz̃,y′ − νx,y′

+
∑
y

(−1)|x|−|y|mx,yhy,y′ +
∑
x′

(−1)|x|−|x′|hx,x′mx′, y′ .

The first term on the right hand side describes the composition φ∗ ◦ φ∗,
the second term describes φ∗, and the equation amounts to saying that the
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collection (hx,y′) defines a chain homotopy between φ∗ ◦φ∗ and φ∗ (see §2.3).
Therefore we have φ∗ ◦ φ∗ = φ∗ in homology.

2. Proof of (Functoriality). The identity

(ψφ)∗ = ψ∗φ∗

is proved by showing that the corresponding chain maps are homotopic at
chain level. Denote ξ, η, ζ the pseudo-gradients on X, Y , Z, and ϕtη the flow
of η for t ∈ R. The composition ψ∗ ◦ φ∗ is described using product moduli

spaces Mφ
(x, y′) × Mψ

(y′, z′′), where the first factor involves the map φ
and the second factor involves the map ψ. The homotopy is constructed by
considering the moduli spaces

H(x, z′′) =
⋃
t>0

W u(x) ∩ (ψϕtηφ)
−1(W s(z′′)).

These have to be interpreted as matching configurations consisting of a half-
infinite trajectory of ξ flowing out of x to a certain point a in X, followed by a
trajectory of η of finite length t > 0 starting at φ(a) and ending at the point
b = φtηφ(a) in Y , followed by a half-infinite trajectory of ζ starting from ψ(b)

and flowing into z′′ in Z. The compactification H(x, z′′) is a manifold with
boundary and corners such that

∂H(x, z′′) =
⋃
y

L(x, y)×H(y, z′′) ∪
⋃
y′′

H(x, y′′)× L(y′′, z′′)

∪Mψφ
(x, z′′) ∪

⋃
y′

Mφ
(x, y′)×Mψ

(y′, z′′).

Here the first two terms on the right hand side correspond to gradient break-
ing of the half-infinite trajectories at their asymptotes, the third term cor-
responds to the limit t → 0 and involves the composition ψφ, whereas the
fourth term corresponds to gradient breaking as t → ∞. The construction
of a representing chain system for the compactified moduli spaces H(x, z′′)
results in a collection of chains

hx,z′′ ∈ C|x|−|z′′|+1(ΩZ)

such that

∂hx,z′′ =
∑
y′

(Ωψ)∗νx,y′νy′, z′′ − νx,z′′

+
∑
y

(−1)|x|−|y|(Ωψφ)∗mx,yhy,z′′ +
∑
y′′

(−1)|x|−|y′′|hx,y′′my′′, z′′ .
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This provides the desired homotopy, in the manner of §2.3.

Proof of (Homotopy). Denote C∗(g;F) the Morse complex on Y with
coefficients in F , and C∗(f ;φ

∗
0F), C∗(f ;φ

∗
1F) the Morse complexes onX with

coefficients in φ∗
0F , respectively φ∗

1F , where φ0, φ1 : X → Y are homotopic
via φ = (φt)t∈[0,1]. We claim that there is a canonical up to homotopy chain
homotopy equivalence

Ψφ : C∗(f ;φ
∗
0F)

≃−→ C∗(f ;φ
∗
1F),

and a homotopy commutative diagram

C∗(f ;φ
∗
0F)

φ0∗ //

Ψφ
''

C∗(g;F)

C∗(f ;φ
∗
1F)

φ1∗

77

Step 1: definition of Ψφ : C∗(f ;φ
∗
0F)

≃−→ C∗(f ;φ
∗
1F). The chain map

Ψφ is defined from a continuation cocycle {hφx,y ∈ C|x|−|y|(ΩY ) : x, y ∈
Crit(f)}, and the idea is to build the latter by evaluating the moduli spaces
of parametrized trajectories for f into ΩY using the homotopy φ. Denote
M(x, y) the moduli space of parametrized Morse trajectories running be-
tween x, y ∈ Crit(f), viewed as the moduli space of pairs (γ, a) consisting of
an unparametrized trajectory γ ∈ L(x, y) and a marked point a on γ. Note
that M(x, y) is a smooth manifold of dimension dimM(x, y) = |x| − |y|,
and in the case |x| = |y| this moduli space is nonempty only for x = y,
when it consists of the single constant trajectory at x. This moduli space
compactifies to a manifold with boundary and corners such that

∂M(x, y) =
⋃
z

L(x, z)×M(z, y) ∪
⋃
z

M(x, z)× L(z, y).

To define the evaluation map we introduce the following notation: given
γ ∈ L(x, y) and s ∈ [0, f(x)−f(y)], we denote γ(s) the unique point on im γ
such that f(γ(s)) = f(x) − s. Thus s 7→ γ(s) is the reparametrization of
γ by the levels of f , which was previously denoted ΓX(γ) (see Lemma 5.9).
We have in particular x = γ(0), a = γ(f(x)− f(a)), and y = γ(f(x)− f(y)).
Denote γx,a = γ|[0,f(x)−f(a)] and γa,y = γ|[f(x)−f(a),f(x)−f(y)]. As in the previous
sections, denote pX the collapsing map on X and θX its chosen homotopy
inverse. We define an evaluation map ev : M(x, y) → ΩY as follows: the
image of (γ, a) is the Moore loop [0, f(x)− f(y) + 1]→ Y given by

ev(γ, a) = φ0(θ
XpXγx,a)# {φt(θXpX(a))}t∈[0,1]#φ1(θ

XpXγa,y).

156



Figure 5: The map ev :M(x, y)→ ΩY

Intuitively, this evaluation map sends γ to the concatenation of the following
paths: first φ0◦γ, where γ is traversed between x and a, then φt(a), t ∈ [0, 1],
and finally φ1 ◦ γ, where γ is traversed between a and y. As discussed
in the previous sections, the role of the composition θXpX is to transform
paths in loops. The evaluation map extends to the compactification and is
compatible with breaking. Applying it to a representing chain system for the
moduli spaces M(x, y), x, y ∈ Crit(f) we obtain the desired continuation
cocycle {hφx,y ∈ C|x|−|y|(ΩY ) : x, y ∈ Crit(f)}, subordinated to the twisting
cocycles (Ωφ0∗mx,y) and (Ωφ1∗mx,y), which defines the chain map Ψφ. The
continuation cocycle is such that hφx,y = 0 for |x| = |y| and x ̸= y, hence
the chain map is lower triangular with respect to the Morse filtration. If
the homotopy preserves the basepoint, the map Ψφ is the identity on the
diagonal and therefore a chain isomorphism. In general, it is only a chain
homotopy equivalence, the homotopy inverse being given by the analogous
map constructed from the reverse homotopy.

Step 2: proof of the homotopy identity φ1∗ ◦ Ψφ = φ0∗. We consider mod-
uli spaces M[0,1](x, y′) consisting of pairs (t, a) with t ∈ [0, 1] and a ∈
W u(x)∩φ−1

t (W s(y′)), with unstable and stable manifolds considered with re-
spect to t-dependent negative pseudo-gradients ξt and ηt. The moduli space
M[0,1](x, y′) has dimension |x|−|y′|+1 and its compactification is a manifold
with boundary and corners such that

∂M[0,1]
(x, y′) =

⋃
y

L(x, y)×M[0,1]
(y, y′) ∪

⋃
x′

M[0,1]
(x, x′)× L(x′, y′)

∪Mφ1
(x, y′) ∪Mφ0

(x, y′).
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This produces a system of chain representatives c
[0,1]
x,y′ such that

∂c
[0,1]
x,y′ = c1x,y′ − c0x,y′

+
∑
y

(−1)|x|−|y|sx,y × c[0,1]y,y′ +
∑
x′

(−1)|x|−|x′|c
[0,1]
x,x′ × sx′,y′ .

At this point we have to deal with the following issue: while each element
(t, a) ∈ M[0,1](x, y′) evaluates naturally into ΩY via φt and this evaluation
extends continuously to the compactification, it does not give rise to a correct
homotopy cocycle between the continuation cocycles defining φ0∗ and φ1∗.
The problem is that the chains sx,y are evaluated into Y in an uncontrolled
way via the maps φt, t ∈ [0, 1]. We solve this issue using adapted evaluation
maps.

(i) We define an evaluation map ev0 :M[0,1](x, y′) → ΩY as follows. Given
a point (t, a) ∈ M[0,1](x, y′), denote γ′X,t : (−∞, 0] → X the half-infinite
trajectory of ξt running from x to a, and γ′Y,t : [0,∞) → Y the half-infinite
trajectory of ηt running from φt(a) to y′. As in Step 1, let γXt : [0, f(x) −
f(a)] → X be the reparametrization of γ′X,t by the levels of f , and γYt :
[0, g(φt(a)) − g(y′)] → Y the reparametrization of γ′Y,t by the levels of g.
Denote fx,a = f(x)− f(a) and gt,a,y′ = g(φt(a))− g(y′). We define ev0(t, a)
to be the Moore loop ev0(t, a) : [0, fx,a + t+ 2 + gt,a,y′ ]→ Y given by

ev0(t, a) = φ0(θ
XpXγXt )# {φτ (θXpX(a))}τ∈[0,t]

#φt(H
X(1− ·, a))#HY (·, φt(a))# γYt .

This evaluation map extends continuously to the compactification. By ap-
plying it to the representing chain system c

[0,1]
x,y′ we obtain a homotopy cocycle

h
[0,1]
x,y′ between the continuation cocycle h0x,y′ which defines φ0∗ : C∗(f ;φ

∗
0F)→

C∗(g;F) and the continuation cocycle h̃1x,y′ obtained by evaluating via ev0
the representing chains for the moduli spacesMφ1

(x, y′), which also defines
a chain map C∗(f ;φ

∗
0F)→ C∗(g;F).

(ii) We consider now the 1-parameter family of evaluation maps evL, L ≥ 0
defined on elements ofMφ1(x, y′) by varying from a to x the point of insertion
of the homotopy φτ , τ ∈ [0, 1] along the half-infinite gradient trajectory γ′X .
Denote fx,b = f(x)− f(b) and ga,y′ = g1,a,y′ = g(φ1(a))− g(y′). Denote also
γ′X = γ′X,1, γ

X = γX1 and γ′Y = γ′Y,1, γ
Y = γY1 . We define evL(a) to be the

Moore loop evL(a) : [0, fx,a + 3 + ga,y′ ]→ Y given by

evL(a) = φ0(θ
XpXγX |[0,fx,γ′

X
(−L)]

)# {φτ (θXpXγ′X(−L))}τ∈[0,1]
#φ1(θ

XpXγX |[fx,γ′
X

(−L),fx,a]
)#φ1(H

X(1− ·, a))#HY (·, φ1(a))# γY .
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Figure 6: The map ev0 :M[0,1](x, y′)→ ΩY .

For L = 0 we read the continuation cocycle h̃1x,y′ from (i). For L =∞ we read
the composition between the cocycle h1y,y′ which defines φ1∗ : C∗(f ;φ

∗
1F)→

C∗(g;F), and the continuation cocycle hφx,y from Step 1. Upon evaluating
Mφ1(x, y′) using the family evL, L ≥ 0 we obtain a homotopy cocycle be-
tween these two continuation cocycles.

The outcome of (i) and (ii) is that the identity φ1∗ ◦ Ψφ = φ0∗ holds up to
homotopy, as claimed.

4. Proof of the (Spectral sequence). This follows much in the manner
of the proof given using the first definition of the direct maps, and we omit
the details.

10.4 Shriek map induced in homology

In this section we give our alternative definition for the shriek map φ! asso-
ciated to a smooth map φ : X → Y between orientable manifolds.

The proof of the corresponding statements from Theorem 8.2 will follow from
Proposition 10.12, which is proved in the next section and which asserts that
this definition of the shriek map is the same as the one from §9.

We proceed as for the definition of direct maps in §10.1 but with the roles of
the stable and unstable manifolds interchanged. We denote ⋆X ∈ X, ⋆Y ∈ Y
the basepoints, and we choose two sets of data ΞX and ΞY on X, respectively
Y . We work under the standing assumption φ(⋆X) = ⋆Y , we assume w.l.o.g.
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Figure 7: The maps evL :Mφ1(x, y′) for L ≥ 0.

that φ is smooth and for all x′ ∈ Crit(g) and y ∈ Crit(f) we have

φ|W s(y) ⋔ W u(x′),

where f and g are the Morse functions on X, respectively Y . We define

Mφ!(x′, y) = W s(y) ∩ φ−1(W u(x′)).

When no confusion can arise we also use the abridged notation

M(x′, y) =Mφ!(x′, y).

Because the intersection is transverse this is a smooth manifold of dimension

dimM(x′, y) = |x′| − |y|+m− n.

It is convenient to use the notation

[x′] = |x′|+m and [y] = |y|+ n, (90)

so that the dimension ofM(x′, y) equals [x′]− [y]. By shifting the indices of
the critical points in this way, we get new gradings on the twisted complexes
for which the shriek map H∗(Y ;F) → H∗(X;φ∗F) that we will construct
below becomes degree preserving. The compactification

M(x′, y) ∼= W
s
(y) φ×W

u
(x′)
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is a manifold with boundary and corners of dimension [x′]− [y] such that

∂M(x′, y) =
⋃
y′

L(x′, y′)×M(y′, y) ∪
⋃
x

M(x′, x)× L(x, y).

In order to construct a representing chain system on these spaces we need to
orient them. We orient first the stable manifolds by setting(

OrW
s
(y),OrW

u
(y)
)
= OrX, (91)

and similarly for the stable manifolds on Y . Then we orientM(x′, y) by(
CoorW

u

g (x
′),OrM(x′, y)

)
= OrW

s

f (y), (92)

which we may also write(
OrW

s

g(x
′),OrM(x′, y),

)
= OrW

s

f (y). (93)

This convention is different from our usual orientation rule for transverse
intersections (13). We chose it in the particular case of shriek maps since it
yields simpler orientation computations for the different spaces involved in
the construction. For instance we remark the following equality :

Lemma 10.9. Consider the identity map Id : X → X, where X is endowed
with two possibly different Morse-Smale couples, (f, ξf ) on the domain and
(g, ξg) on the target. Then for any x′ ∈ Crit(g) and y ∈ Crit(f) we have

MId!
(x′, y) = MId

(x′, y)

as oriented manifolds, where on the right hand side we have the moduli
space associated to the identity viewed as Id−1 : (X, g, ξg)→ (X, f, ξf ).

Proof. The two manifolds above are defined by the same (transverse) inter-
section W

u

g (x
′) ⋔ W

s

f (y) (more precisely, it is the fibered product of W
u

g (x
′)

and W s
f (y) defined by the canonical applications which send these Latour

cells into X). So the only thing to prove is that their orientations are iden-
tical. Using the conventions (91) and (93) we write

(OrW
s

g(x
′),OrMId!

(x′, y),OrW
u

f (y))=(OrW
s

f (y),OrW
u

f (y))=OrX.

On the other hand our convention (75) for direct maps yields

(OrW
s

g(x
′),OrMId

(x′, y),OrW
u

f (y))=(OrW
s

g(x
′),OrW

u

g (x
′))=OrX,

proving thus our claim

OrMId!
(x′, y) = OrMId

(x′, y).
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Prior to the construction of a representing chain system we have to compare
the boundary orientation for the strata L(x′, y′)×M(y′, y) andM(x′, x)×
L(x, y) of ∂M(x′, y) with their product orientation. We find:

Lemma 10.10. We have the following equalities of orientations:

Or ∂Mφ!
(x′, y) = (−1)[x′]−[y′]

(
OrLg(x′, y′),OrM

φ!
(y′, y)

)
and

Or ∂Mφ!
(x′, y) = (−1)[x′]−[y]−1

(
OrMφ!

(x′, x)),OrLf (x, y′)
)
.

Proof. Recall that the orientation rule (21) for Lg(x′, y′) is(
OrLg(x′, y′),−ξ,OrW

u

g (y
′)
)
= OrW

u

g (x
′),

where ξ is a gradient vector field. We use the relation (91) to express this
orientation in terms of stable manifolds instead of unstable manifolds. We
start by adding OrW

s

g(x
′) at the left on both sides and infer

(OrW
s
(x′),OrLg(x′, y′),− ξ,OrW

u

g (y
′))

= (OrW
s

g(x
′),OrW

u

g (x
′)) = OrX.

Writing OrX =
(
OrW

s

g(y
′),OrW

u

g (y
′)
)
and removing OrW

u

g (y
′) from both

sides yields (
OrW

s
(x′),OrLg(x′, y′),−ξ

)
= OrW

s
(y′). (94)

The rest of the proof proceeds as in Lemma 10.1. Let us start with the first
relation. Denote as usual by n the outward normal of Mφ!

(x′, y) at some
boundary point (λ′, λ) ∈ Lg(x′, y′)×M

φ!
(y′, y).

We view an element ofM(x′, y) as consisting of a half-infinite trajectory λ in
X starting at a point a and flowing into y, of a half-infinite trajectory λ′ in
Y flowing from the critical point x′ to a certain point b, the two trajectories
being coupled by the condition φ(a) = b. Denoting λ = (λa, λ

′
φ(a)) and

arguing as in the proof of Lemma 10.1 we may view n as the outward normal
to the boundary of W

u
(x′) at the point (λ, λ′a) ∈ Lg(x′, y′)×W

u
(y′). Then,

considering the boundary point (λ, y′) ∈ ∂W u
(x′), we may take n = ξ, the

gradient vector field.

With that in mind, we first write the usual rule for the boundary orientation(
n,Or ∂Mφ!

(x′, y)
)
= Mφ!

(x′, y)
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and therefore, by (93)

(OrW
s

g(x
′), n,Or ∂Mφ!

(x′, y))

= (OrW
s

g(x
′),OrMφ!(x′, y)) = OrW

s

f (y).

Now, in order to compare it with the product orientation, we write using
(94) in the fourth equality below and (93) in the fifth one :(

OrW
s

g(x
′), n,OrLg(x′, y′),OrMφ!

(y′, y)
)

=
(
OrW

s

g(x
′), ξ,OrLg(x′, y′),OrMφ!

(y′, y)
)

= −
(
OrW

s

g(x
′),−ξ,OrLg(x′, y′),OrMφ!

(y′, y)
)

= (−1)|x′|−|y′| (OrW
s

g(x
′),OrLg(x′, y′),−ξ,OrMφ!

(y′, y)
)

= (−1)|x′|−|y′| (OrW
s

g(y
′),OrMφ!

(y′, y)
)

= (−1)|x′|−|y′|OrW
s

f (y)

= (−1)[x′]−[y′]OrW
s

f (y).

This proves our first claim.

Let us now prove the second relation in an analogous way. The outward
normal n ofMφ!

(x′, y) at some boundary point (λ, λ) ∈Mφ!
(x′, x)×Lf (x, y)

with λ = (λa, λ
′
φ(a)) may be viewed as the outward normal of W

s

f (y) at

(λa, λ) ∈ W
s

f (x) × Lf (x, y) ∈ ∂W
s

f (y). Moving to the point (x, λ) of this
boundary, we may consider n = −ξ, the opposite of the gradient vector field
which points outwards at this point (after being normalised and extended by
continuity as in the proof of Proposition 5.4). As above, we have on the one
hand

(OrW
s

g(x
′),n,Or ∂Mφ!

(x′, y))

= (OrW
s

g(x
′),OrMφ!(x′, y)) = OrW

s

f (y),

and on the other hand (using (93) in the third equality as well as (94) for
Lf (x, y) in the last equality)(

OrW
s

g(x
′),n,OrMφ!

(x′, x),OrLf (x, y)
)

=
(
OrW

s

g(x
′),−ξ,OrMφ!

(x′, x),OrLf (x, y)
)

= (−1)[x′]−[x]
(
OrW

s

g(x
′),OrMφ!

(x′, x),−ξ,OrLf (x, y)
)

= (−1)[x′]−[x]
(
OrW

s

f (x),−ξ,OrLf (x, y)
)

= (−1)[x′]−[x]+[x]−[y]−1
(
OrW

s

f (x),OrLf (x, y),−ξ
)

= (−1)[x′]−[y]−1OrW
s

f (y).

The comparison between the two finishes our proof.
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Now following once again the recipe of Proposition 5.6 we construct a repre-
senting chain system (τx′,y) for the moduli spacesMφ!

(x′, y) which according
to the previous lemma satisfies the following equation :

∂τx′,y = (−1)[x′]−[y′]
∑

y′∈Crit(g)

sx′,y′ × τy′,y − (−1)[x′]−[y]
∑

x∈Crit(f)

τx′,x × sx,y.

As in the case of direct maps we need to correct this representing chain
system with a sign in order to get an equation of the form (30), namely by
setting as in (77):

σx′,y = (−1)[x′]−[y]−1τx′,y. (95)

which indeed satisfies an equation of the desired form

∂σx′,y =
∑

y′∈Crit(g)

sx′,y′ × σy′,y − (−1)[x′]−[x]
∑

x∈Crit(f)

σx′,x × sx,y.

As previously the next step is to evaluate this corrected representing chain
system into ΩY . At this purpose we use the homotopies HY and HX on Y
resp. X that we have already defined to construct the evaluation maps for
direct maps; they respectively join IdY to θY ◦ pY and IdX to θX ◦ pX . To
define the evaluation map we start with the half-infinite trajectory λ′φ(a) in

Y which we evaluate with qY getting thus a path from ⋆Y to θY ◦ pY (φ(a)).
Then we use the reversed homotopy HY (1 − t, φ(a)) to extend this path
until φ(a). Afterwards we do the same to the half-infinite trajectory λa in
X whose evaluation qX is a path in X from θX ◦ pX(a) to ⋆X . In order to
close the loop in Y we have to precede it by the homotopy HX(t, a) and then
transport the concatenation to Y via φ. This gives a continuous application

qφ!

x′,y :M
φ!
(x′, y)→ ΩY

whose formula is

qφ!

x′,y(λa, λ
′
φ(a)) = qY (λ′φ(a))#H

Y (1− t, φ(a))#φ(HX(t, a))#φ(qX(λa)) (96)

By definition, the restriction of qφ!

x′,y on the boundary ∂Mφ!
(x′, y) satisfies

qφ!

x′,y(λ
′, λ) = qYx′,y′(λ

′)#qφ!

y′,y(λ)

for all (λ′, λ) ∈ Lg(x′, y′)×M
φ!
(y′, y) and

qφ!

x′,y(λ, λ) = qφ!

x′,x(λ)#φ(q
X
x,y(λ))

for all (λ, λ) ∈Mφ!
(x′, x)× Lf (x, y).
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Defining
νx,y′ = −qφ!

x′,y,∗(σx′,y)

leads to a collection of chains

νx′, y ∈ C[x′]−[y](ΩY )

such that

∂νx′, y =
∑
y′

(mx′, y′)νy′, y −
∑
x

(−1)[x′]−[x]νx′, x(Ωφ)∗mx,y.

We now define

φ! : F ⊗ Crit(g)→ F ⊗ Crit(f), φ!(α⊗ x′) =
∑
y

α · νx′, y ⊗ y (97)

where the critical points are graded by the modified index [ ]. A direct
verification shows that this is a chain map, see also §6.

Remark 10.11. As in Remark 10.2 we point out that the definition of φ!

adapts to the case when X and Y have boundary. In order to get the same
compactification of Mφ!(x′, y) and define φ! in a similar way, we need to
take a (negative) gradient which points outwards ∂X and we need to as-
sume that φ(X) ⊂ intY . The target of φ! is therefore the relative ho-
mology H∗(X, ∂X;φ∗F). If Y has boundary, the shriek map φ! factors as
H∗(Y ;F)→ H∗(Y, ∂Y ;F)→ H∗(X, ∂X;φ∗F).

10.5 The two definitions of shriek maps coincide

The goal of this section is to prove Proposition 10.12 which asserts that the
shriek map from §9 and the one defined in the previous section coincide in
homology. This will imply the independence of the second definition of the
shriek map with respect to the various choices of auxiliary data. Furthermore
we infer all the properties from Theorem 8.2 for this alternative definition of
the shriek map.

Proposition 10.12. Let φ : (X, ⋆X)→ (Y, ⋆Y ) be a smooth map between ori-
ented manifolds, ΞX and ΞY two sets of data defined respectively on (X, ⋆X)
and (Y, ⋆Y ), and F a DG-module over C∗(Ω⋆Y Y ).

Then the map φ! : C∗(Y,Ξ
Y ;F) → C∗+dim(X)−dim(Y )(X,Ξ

X ;φ∗F) defined
by (97) coincides with the one defined in the last part of §9.5.
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Proof. As for its counterpart for direct maps (Proposition 10.6), the proof
relies on the following statement on the shriek map of the identity.

Proposition 10.13. (compare to Proposition 10.3 ) For any two sets of
data Ξ0 and Ξ1 defined on (X, ⋆) and for any DG-module F over C∗(ΩX),
the map Id! : C∗(X,Ξ1;F)→ C∗(X,Ξ0;F) defined as in §10.4 coincides with
the continuation map Ψ10 in homology. In particular, it does not depend on
the choices made for its definition (representing chain system, homotopies
etc).

Proof of Proposition 10.13. We claim that Id! actually coincides with the
direct map Id−1

∗ : C∗(X,Ξ1;F)→ C∗(X,Ξ0;F). The conclusion then follows
by applying Proposition 10.3 to the inverse of the direct map of the identity
Id−1

∗ .

The proof that Id! = Id−1
∗ is straightforward. We have already pointed out

in Lemma 10.9 that the moduli spacesMId−1

(x′, y) andMId!
(x′, y) are the

same as oriented manifolds, which enables us to pick the same representing
chain system (τx′,y) for both of them. Then, the signs in (77) and (95) also
coincide (note that [x′]− [y] = |x′|− |y| here), which means that we have the
same corrected representing chain system (σx′,y). Finally, as one may easily

check, formula (79) for φ = Id−1 which defines the evaluation map qId
−1

x′,y is

identical to formula (96) for qId!x′,y. Therefore the two morphisms of complexes
are equal.

The remaining part of the proof of Proposition 10.12 is pretty similar to that
of Proposition 10.6. Namely, denoting by φ! the shriek map defined in §9.5
and by φ! the one defined in §10.4 we successively prove the following three
claims.

(a) The two maps coincide in homology for embeddings φ : X → Y .

(b) The two maps coincide in homology for the projection π : D × Y → Y ,
where D = Dm is a disc with 0 as basepoint. We denote by OrD the usual
orientation of the disk D. In this statement Y is endowed with a set of data
ΞY and a homotopy HY , and these induce on D × Y a set of data ΞD × ΞY

with ΞD = (h,−∇h, o{0} = OrD,Y = 0, θ = Id) the standard set of data
associated to the Morse function h(x) = −∥x∥2, and a homotopy given by
Id×HY .

(c) The shriek map φ! satisfies the composition property in the following
particular case: Consider an arbitrary smooth map φ and an embedding
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φχ = (χ, φ) : (X, ⋆X)→
(
D × Y, (0, ⋆Y )

)
. Then

φχ! ◦ π! = (π ◦ φχ)! = φ!.

Here the map φ! is defined using arbitrary choices for the representing chain
system on Mφ!

(x′, y) and for the homotopies, whereas the two other maps
are defined using some adapted choices for the representing chain systems
and using the homotopies HX , HY on X, resp. Y , and Id×HY on D × Y .

Denote i : Y → D × Y the inclusion x 7→ (0, x). Given that φ! = φχ! ◦ i
−1

!

by definition, and i! ◦π! = Id by the composition property (which is satisfied
by the maps defined in §9), we get the desired conclusion by applying these
three steps as follows:

φ! = φχ! ◦ i
−1

! = φχ! ◦ π! = φχ! ◦ π! = (π ◦ φχ)! = φ!.

Proof of (a). We first assume that φ : X ↪→ Y is an inclusion. Recall the
definition of φ! from §9.2. Denote respectively by f : X → R and G : Y → R
the Morse functions of ΞX and ΞY . Extend the set of data ΞX on X first
to a tubular neighborhood U of X in Y with gradient pointing outwards
and then to the whole of Y . Denote the extension by ΞYφ and F : Y → R
its Morse function: F has no critical points in U except for those of f .
The definition of φ! in §9.2 was given for the data ΞYφ on Y , therefore we
have to insert a continuation map in order to define φ! : C∗(Y,Ξ

Y ;F) →
C∗+dim(X)−dim(Y )(X,Ξ

X ;φ∗F). We get for x ∈ Crit(G) and α ∈ F the formula

φ!(α⊗ x) = pr(Ψ(α⊗ x)), (98)

where Ψ is the continuation map between the data ΞY and ΞYφ and pr is the
projection

pr(α⊗ y) =

{
α⊗ y if y ∈ Crit(f),

0 if y ̸∈ Crit(f),

defined for α ∈ F and y ∈ Crit(F ). Let us now show that the same for-
mula is valid for φ!. Since the negative gradient of F points outwards along
the boundary of the tubular neighbourhood of X in Y , we obviously have
W

s

f (x) = W
s

F (x) for any x ∈ Crit(f). Thus for any x′ ∈ Crit(G) and
y ∈ Crit(F ) we have

Mφ!
(x′, y) ∼= W

u

G(x
′) φ×W

s

f (y) = W
u

G(x
′) Id×W

s

F (y)
∼=MId!

(x′, y).

This will enable us to relate φ! and Id!.
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We start by showing that the identification above preserves orientations. The
orientation rule (93) for the two spaces yields(

OrW
s

G(x
′),OrMφ!

(x′, y)
)
= OrW

s

f (y)

and (
OrW

s

G(x
′),OrMId!

(x′, y)
)

= OrW
s

F (y).

We therefore have to compare the orientations of W
s

f (y) and W
s

F (y). The
orientation convention (91) writes here(

OrW
s

f (y),OrW
u

f (y)
)
= OrX

and (
OrW

s

F (y),OrW
u

F (y)
)
= OrY.

Denoting by N the normal bundle of the submanifold X ⊂ Y , we fixed in
§9.2 the orientation rule (57)(

OrW
u

f (y),OrN
)
= OrW

u

F (y).

Combined with the above this gives(
OrW

s

F (y),OrW
u

f (y),OrN
)

= OrY.

On the other hand, the orientation rule (59)

(OrX,OrN) = OrY

implies (
OrW

s

f (y),OrW
u

f (y),OrN
)
= (OrX,OrN) = OrY.

We thus find
OrW

s

f (y) = OrW
s

F (y), (99)

and hence we have OrMφ!
(x′, y) = OrMId!

(x′, y) as claimed. Therefore we
may (and will) take the same representing chain system on both spaces. This
has to be corrected by the sign (−1)[x′]−[y]−1 (cf. (95)), but this sign is the

same for both spaces since equals dim(Mφ!
(x′, y))−1 = dim(MId!

(x′, y))−1.
Therefore we get identical corrected representing chain systems.

Now using a homotopy which extends HX on the domain of Id : Y → Y , and
using the homotopy HY on the target, it is easy to check that the evaluation
maps qφ!

x′,y and qId!x′,y are also identical for any x′ ∈ Crit(G) and y ∈ Crit(f).
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Putting this together we infer that φ! = pr ◦ Id!. We finish the proof of
the argument for inclusions by applying Proposition 10.13, which implies
φ! = pr ◦Ψ = φ! using (98).

More generally, if φ : X → Y is an embedding between oriented manifolds,
we see it as the composition i◦φX where φX : X → φ(X) is a diffeomorphism
which preserves orientations and i : φ(X) ↪→ Y is the inclusion. We use φ to
transport the set of data ΞX on φ(X), where we denote it by φ∗(Ξ

X). We
consider i!, i! : C∗(Y,Ξ

Y ;F) → C∗(φ(X), φ∗(Ξ
X); i∗F), the two shriek maps

defined by the inclusion; by the above we have i! = i!.

By definition we have φ! = (φX)! ◦ i! = (φ−1
X )∗ ◦ i!. On the other hand

there is a natural identification Mφ!
(x′, y) ∼= Mi!

(x′, φ(y)) which moreover
preserves orientations. It is easy to see that this identification matches with

the evaluations qφ!

x′,y : Mφ!
(x′, y) → ΩY and qx′,φ(y) : M

i!
(x′, φ(y)) → ΩY .

Since (ϕX)! = (φ−1
X )∗ maps α ⊗ φ(y) to α ⊗ y we infer that φ! = (ϕX)! ◦ i!

and therefore, as i! = i!, we get φ! = φ!, as claimed.

Proof of (b). The map π! is induced in homology by the map of complexes

C∗(Y,Ξ
Y ;F)→ C∗+m(D

m × Y,ΞD × ΞY ; π∗F) defined by

π!(α⊗ x) = α⊗ (0, x).

Indeed, the shriek map of the inclusion i : Y ↪→ D × Y was defined in §9.2
by i!(α ⊗ (0, x)) = α ⊗ x, and since π ◦ i = Id and i! was proved to be an
isomorphism, we get π! = (i!)

−1 in homology using the composition rule.
Note that this particular formula for i!, and therefore also the one for π!, are
valid under the orientation convention (57) for unstable manifolds from §9.2,
as was discussed above. We will use in the sequel the fact that the orientations
conventions yield the shriek map of the inclusion i.

Let us now describe the map π! : C∗(Y,Ξ
Y ;F)→ C∗+m(D×Y,ΞD×ΞY ; π∗F)

and prove that it coincides with π! in homology.

If G : Y → R is the Morse function of ΞY then we have W
s

h+G(0, y) =

{0} ×W s

G(y) for any y ∈ Crit(G) since 0 is a maximum for the function h .
Thus for any x′, y ∈ Crit(G) we have

Mπ!
(x′, (0, y)) ∼= W

s

h+G(0, y) π×W
u

G(x
′)

∼= {0} ×MId!
G (x′, y) ∼=MId!

G (x′, y).

Moreover this identification preserves the orientations. To see this, recall
that the orientations are given by the rule (93) and it suffices to justify that
OrW

s

h+G(0, y) = OrW
s

G(y). We proved this property (99) at point (a) above
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for any embedding φ : X → Y , so we may apply it to our particular situation
i : Y ↪→ D × Y .

We are therefore allowed to choose the same representing chain system for

the two sets of moduli spacesMπ!
(x′, (0, y)) andMId!

G (x′, y), and moreover
the same corrected representing chain system (see (95)), since the sign of the
correction is (−1)dimension−1.

It is also easy to check that, due to the particular choice of our data on

D, the evaluations qπ! : Mπ!
(x′, (0, y)) → ΩY and qId! : MId!

G (x′, y) → ΩY
coincide (via the identification above). Recalling the formula for π! given at
the beginning of the proof we infer that

π! = π! ◦ Id!,

where Id! : C∗(Y,Ξ
Y ;F) → C∗(Y,Ξ

Y ;F) is the shriek map of the identity.
Applying Proposition 10.13 we find that Id! = Id and the conclusion follows.

Proof of (c). The proof goes along the same lines as the proof of Proposi-
tion 10.6(c). We establish a formula at the level of complexes for the shriek
map of the embedding φχ : X → D × Y and try to relate it to the formula
for φ!. We begin with the description of the relevant moduli spaces. Denote
as above by G the Morse function for ΞY and by h : D → R the function
with a unique maximum at 0 for the set of data ΞD. The negative gradient
of h points outwards along ∂D, so we have W

u

h+G(0, x
′) = D ×W s

G(x
′) for

any x′ ∈ Crit(G). Denoting by f : X → R the Morse function of ΞX we then
get for any x′ ∈ Crit(G) and y ∈ Crit(f):

Mφχ
! ((0, x′), y) ∼= W

s

f (y) (χ,φ)× (D ×W u

G(x
′))

∼= {(a, b, χ(a)) | (a, b) ∈ W s

f (y) φ×W
u

G(x
′)}.

This space projects ontoMφ!
(x′, y) = W

s

f (y) φ×W
u

G(x
′) and the projection

Π is a homeomorphism. Let us show that Π preserves the orientations. The
orientation rule (93) writes here(

OrW
s

h+G(0, x
′),OrMφχ

! ((0, x′), y))
)

= OrW
s

f (y).

According to (99) we have W
s

h+G(0, x
′) = W

s

G(x
′) as oriented manifolds for

any embedding. Therefore we find the same orientation as forMφ
(x, y′), i.e.,(

OrW
s

G(x
′),OrMφ!

(x′, y)
)
= OrW

s

f (y),

which proves that Π preserves orientations. As a consequence, we can choose

(Π−1)∗(σx′,y) as a corrected representing chain system on Mφχ

((0, x′), y),
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where (σx′,y) is a corrected representing chain system for Mφ
(x′, y) (the

correcting sign is the same for both moduli spaces since they have the same
dimension).

Using the homotopies HX on the source and Id × HY on the target we

then define the evaluation map qφ
χ
! :Mφχ

! ((0, x′), y) → Ω(D × Y ) using the
formula (96). Evaluating the above representing chain system we get

ν
φχ
!

(0,x′),y = −qφ
χ
!

∗ (Π−1
∗ (σx′,y)),

and then
φχ! (α⊗ (0, x′)) = α

∑
y∈Critf

π∗(ν
φχ
!

(0,x′),y)⊗ y

for any α ∈ F and x′ ∈ Crit(G), where π : D× Y → Y is the projection. As
in the proof of Proposition 10.6 the presence of π∗ in the above formula is
due to the fact that the DG-module on D × Y is π∗F .
Now using the equality (in homology) π! = π! proved in (b) and the formula
for the latter we obtain for any x′ ∈ Crit(G) and α ∈ F

φχ! ◦ π!(α⊗ x
′) = φχ! ◦ π!(α⊗ x′)

= φχ! (α⊗ (0, x′)) = α
∑

y∈Critf

π∗(ν
φχ
!

(0,x′),y)⊗ y.

This has to be compared with

φ!(α⊗ x′) = α
∑

y∈Critf

νφ!

x′,y ⊗ y,

where νφ!

x,y′ = −qφ!
∗ (σx′,y). There would be equality between the two if the

diagram

Mφχ
! ((0, x′), y)

q
φ
χ
! //

Π
��

Ω(D × Y )

π

��
Mφ!

(x, y′)
qφ! // ΩY

was commutative. However, just like in the proof Proposition 10.6, we are
only able to show that the diagram is homotopy commutative. The proof of
this result is completely analogous to the one of Lemma 10.8 and we leave
the details to the reader.

Having a homotopy commutative diagram however suffices to conclude that
φχ! ◦ π! = φ! at the level of homology, in a similar manner as in the proof of
Proposition 10.6. This concludes the proof of Proposition 10.12.
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10.6 Maps between closed oriented manifolds of equal
dimension

We prove in this section in the context of DG-coefficients two results about
shriek maps between closed orientable manifolds of the same dimension.
Their counterparts with local coefficients are classical (see for example [Dol80,
Chapter VIII, Proposition 10.10]).

Proposition 10.14. Let φ : X → Y be a map of degree d ∈ Z between closed
oriented manifolds of equal dimensions. Let F be a DG local system on Y .
Then

φ∗φ! = d · Id.

In particular, if d = ±1 the map φ! is injective and the map φ∗ is surjective.

Proof. The identity φ∗φ! = d·Id is proved by showing that the corresponding
chain maps are homotopic. We use the definition of direct maps and shriek
maps from §10.1 and §10.4. Denote by ΞX = (f, η, . . .) and by ΞY = (g, ξ, . . .)
two sets of data on X, resp. Y , and denote by ϕtη the flow of the pseudo-
gradient η for t ∈ R. The composition φ∗ ◦ φ! is described using product
moduli spaces Mφ!

(x′, y) ×Mφ
(y, z′) for x′, z′ ∈ Crit(g) and y ∈ Crit(f),

where the first factor involves the pseudo-gradients ξ and η, and the second
factor involves the pseudo-gradients η and ξ. The homotopy is constructed
by considering the moduli spaces

H(x′, z′) =
⋃
t>0

ϕtηφ
−1(W u(x′)) ∩ φ−1(W s(z′)).

These have to be interpreted as configurations consisting of a half-infinite
trajectory of ξ flowing out of x′ to a point b in Y , a trajectory of η of length t >
0 inX beginning at a point a such that φ(a) = b, and a half-infinite trajectory
of ξ in Y beginning at φ(ϕtη(a)) and flowing into z′. The compactification

H(x′, z′) is a manifold with boundary and corners of dimension |x′|− |z′|+1.
Its boundary can be described as

∂H(x′, z′) =
⋃

x′′∈Crit(g)

L(x′, x′′)×H(x′′, z′) ∪
⋃

z′′∈Crit(g)

H(x′, z′′)× L(z′′, z′)

∪Ht=0(x
′, z′) ∪

⋃
y∈Crit(f)

Mφ!
(x′, y)×Mφ

(y, z′),

where the first two terms correspond to Morse breaking at ±∞, the fourth
term corresponds to Morse breaking in the limit t→∞, and the third term
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Figure 8: The space H(x′, z′), and its boundary parts associated to t = 0
and t = +∞.

Ht=0(x
′, z′) corresponds to the limit t→ 0 and is described as

Ht=0(x
′, z′) = φ−1(W

u
(x′) ∩W s

(z′)).

See Figure 8. The choice of a representing chain system for the compactified
moduli spacesH(x′, z′) provides a homotopy between φ∗φ! and the morphism
defined by the moduli spaces Ht=0(x

′, z′). We will show that the latter in-
duces d · Id in homology.

The moduli space Ht=0(x
′, z′) can be interpreted as the compactification of

the space of pairs (a, γ), a ∈ X, γ ∈ M(x′, z′) a parametrized trajectory
from x′ to z′, and φ(a) = γ(0). If x′ = z′ the moduli space Ht=0(x

′, x′)
is identified with φ−1(x′). If |x′| > |z′| the moduli space Ht=0(x

′, z′) is a
compact manifold with boundary and corners of dimension |x′| − |z′|; its
boundary is

∂Ht=0(x
′, z′)

=
⋃

x′′∈Crit(g)

L(x′, x′′)×Ht=0(x
′′, z′) ∪

⋃
z′′∈Crit(g)

Ht=0(x
′, z′′)× L(z′′, z′).

In order to prove that φ∗φ! and d · Id are homotopic using the moduli spaces
H(x′, z′) and Ht=0(x

′, z′), we first need to orient these spaces and then to
construct a representing chain system on each one of them.

Orientations. To orient H(x′, z′) we proceed as follows: We choose orienta-
tions on X and on Y and on the unstable manifolds of all critical points of f
and g. Consider the submersion Γ : X × [0,+∞)×X → X ×X defined by

Γ(a1, t, a2) = (a1, ϕ
t
η(a2))
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and denote by Z the pre-image of the diagonal Z = Γ−1(∆X) which may
be seen as the set of segments of pseudo-gradient trajectories in X. This
manifold is diffeomorphic to X × [0,+∞) and it inherits the orientation of
the latter:

OrZ = (OrX, ∂t) (100)

We compactify it to the manifold with boundary and corners

Z = Z ∪
⋃

y∈Crit(f)

W
s
(y)× {+∞}×W u

(y).

Note that the boundary ∂Z also contains the diagonal {(a, 0, a) | a ∈ X}.
Now if we define χ : Z → Y × Y by

χ(a1, t, a2) = (φ(a1), φ(a2)),

we remark that H(x′, z′) = χ−1(W
u
(x′) × W

s
(z′)) and we will orient our

moduli space using this description: the computations will be simpler if
instead of the usual rule(

OrH(x′, z′),CoorW u
(x′),CoorW

s
(z′)
)
= OrZ

we take (
CoorW

u
(x′),OrH(x′, z′),CoorW s

(z′)
)
= OrZ

which we write using (100):(
OrW

s
(x′),OrH(x′, z′),OrW

u
(z′)
)
= (OrX, ∂t) . (101)

To orient the stable manifolds we recall the convention (91) from §10.4:(
OrW

s
,OrW

u)
= OrX,

and similarly for Y .

We choose to orient Ht=0(x
′, z′) as the boundary of H(x′, z′), using the out-

ward normal vector field which is −∂t, so(
−∂t,OrHt=0(x

′, z′)
)
= OrH(x′, z′).

Using (101) this yields the following orientation rule for Ht=0(x
′, z′):(

OrW
s
(x′),−∂t,OrHt=0(x

′, z′),OrW
u
(z′)
)
= (OrX, ∂t) .

Therefore, moving ∂t to the end of the left hand side(
OrW

s
(x′),OrHt=0(x

′, z′),OrW
u
(z′)
)
= (−1)|x′|+1OrX (102)
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The case x′ = z′ is of particular interest. The manifold H(x′, x′) being 0-
dimensional equation (102) writes(

OrHt=0(x
′, x′),OrW

s
(x′),OrW

u
(x′)
)
= (−1)|x′|+1OrX

which using (91) becomes:

(OrHt=0(x
′, x′),OrY ) = (−1)|x′|+1OrX. (103)

This means that the orientation of a point a ∈ φ−1(x′) = Ht=0(x
′, x′) dif-

fers from the usual one (which is ±1 depending on whether Taφ preserves
orientations or not) by the sign (−1)|x′|+1.

The next step is to determine the difference between the boundary orientation
of ∂H(x′, z′) and the orientations already assigned to the different parts of
this boundary. Using the orientation rule (101) we get:

Lemma 10.15. We have:

Or ∂H(x′, z′) = (−1)|x|′−|x′′|Or
(
L(x′, x′′)×H(x′′, z′)

)
Or ∂H(x′, z′) = (−1)|x|′−|z′|Or

(
H(x′, z′′)× L(z′′, z′)

)
Or ∂H(x′, z′) = (−1)|x|′Or

(
Mφ!

(x′, y)×Mφ
(y, z′)

)
Or ∂H(x′, z′) = Or Ht=0(x

′, z′)

Proof. Let n be the outward normal to the space ∂H(x′, z′) at a point of
L(x′, x′′)×H(x′′, z′). According to (101) we have(

OrW
s
(x′), n,Or ∂H(x′, z′),OrW

u
(z′)
)
= (OrX, ∂t) . (104)

Reasoning like in the proof of Lemma 10.10 we may suppose that n = ξ, the
outward normal of ∂W

u
(x′) along L(x′, x′′)×W u(x′′), which at (λ, x′′) is the

gradient vector on Y . Applying (94) in the third equality below and (101)
in the fourth we get:(

OrW
s
(x′), n,OrL(x′, x′′),OrH(x′′, z′),OrW

u
(z′)
)

=
(
OrW

s
(x′), ξ,OrL(x′, x′′),OrH(x′′, z′),OrW

u
(z′)
)

= (−1)|x′|−|x′′| (OrW
s
(x′),OrL(x′, x′′),−ξ,OrH(x′′, z′),OrW

u
(z′)
)

= (−1)|x′|−|x′′| (OrW
s
(x′′),OrH(x′′, z′),OrW

u
(z′)
)

= (−1)|x′|−|x′′| (OrX, ∂t) ,
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according to (100). Comparing the above to (104) we get our first relation.

The proof of the second one is very much similar. Again like in the proof of
Lemma 10.10 we may take n = −ξ, the outward normal of ∂W

s
(z′) along

W s(z′′) × L(z′′, z′), and we infer applying the orientation rule (21) in the
third equality and (101) in the fourth:(

OrW
s
(x′), n,OrH(x′, z′′),OrL(z′′, z′),OrW

u
(z′)
)

=
(
OrW

s
(x′),−ξ,OrH(x′, z′′),OrL(z′′, z′),OrW

u
(z′)
)

= (−1)|x′|−|z′| (OrW
s
(x′),OrH(x′, z′′),OrL(z′′, z′),−ξ,OrW

u
(z′)
)

= (−1)|x′|−|z′| (OrW
s
(x′),OrH(x′, z′′),OrW

u
(z′′)

)
= (−1)|x′|−|z′| (OrX, ∂t) ,

which compared to (104) implies the claimed sign difference.

Let us now analyse the third relation. By definition of H(x′, z′) the outward
normal vector at a point of Mφ!(x′, y) ×Mφ(y, z′) ⊂ ∂H(x′, z′) is also an
outward normal vector for ∂Z at a point of W s(y)×{+∞}×W u(y) and via
the (orientation preserving) diffeomorphism between Z and X × [0,+∞) we
may consider that n = ∂t. We get by applying the orientation rules (93) and
(75) forMφ!

(x′, y) resp. Mφ
(y, z′):(

OrW
s
(x′), n,OrMφ!

(x′, y),OrMφ
(y, z′),OrW

u
(z′)
)

=
(
OrW

s
(x′), ∂t,OrMφ!

(x′, y),OrMφ
(y, z′),OrW

u
(z′)
)

= (−1)|x′|
(
OrW

s
(x′),OrMφ!

(x′, y),OrMφ
(y, z′),OrW

u
(z′), ∂t

)
= (−1)|x′|

(
OrW

s
(y),OrW

u
(y), ∂t

)
= (−1)|x′| (OrX, ∂t)

which implies the third relation after comparison with (104).

Finally the last relation is valid by definition of the orientation ofHt=0(x
′, z′).

The lemma is proved.

Now we do the same for the manifold Ht=0(x
′, z′). Based on the orientation

rule (102) we get the following sign differences:

Lemma 10.16. We have:

Or ∂Ht=0(x
′, z′) = Or

(
L(x′, x′′)×Ht=0(x

′′, z′)
)

and

Or ∂Ht=0(x
′, z′) = (−1)|x|′−|z′|−1Or

(
Ht=0(x

′, z′′)× L(z′′, z′)
)
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Proof. As above, we may consider the outward normal n at some point be-
longing to L(x′, x′′)×Ht=0(x

′′, z′) ⊂ ∂Ht=0(x
′, z′) as being the outward nor-

mal of ∂W
u
(x′) at a point of L(x′, x′′) ×W u(x′′) and choosing this point of

the form (λ, x′′) we may suppose n = ξ, the (negative) gradient on Y . As
in the proof of the preceding lemma we compare the boundary orientation
given by (

n,Or ∂Ht=0(x
′, z′)

)
= OrHt=0(x

′, z′)

with the product orientation(
n,OrL(x′, x′′),Or ∂Ht=0(x

′′, z′)
)

For this purpose we use the relation (102) which transforms the first relation
in (

OrW
s
(x′), n,Or ∂Ht=0(x

′, z′),OrW
u
(z′)
)
= (−1)|x′|+1OrX, (105)

while the second writes using (94) in the third equality below and then (102)
in the fourth:(

OrW
s
(x′), n,OrL(x′, x′′),OrHt=0(x

′′, z′),OrW
u
(z′)
)

= (OrW
s
(x′), ξ,OrL(x′, x′′),OrHt=0(x

′′, z′),OrW
u
(z′))

= (−1)|x′|−|x′′|(OrW
s
(x′),OrL(x′, x′′),−ξ,OrHt=0(x

′′, z′),OrW
u
(z′))

= (−1)|x′|−|x′′|(OrW
s
(x′′),OrHt=0(x

′′, z′),OrW
u
(z′))

= (−1)|x′|+1OrX.

The comparison with (105) shows the desired relation.

To prove the second one we analogously may suppose that the outward nor-
mal vector n at some point of Ht=0(x

′, z′′)× L(z′′, z′) ⊂ ∂Ht=0(x
′, z′) is also

pointing outwardsW
s
(z′) along its boundary at a point ofW

s
(z′′)×L(z′′, z′)

and therefore we may take n = −ξ. We determine the sign difference by
putting the product orientation in the relation:(

OrW
s
(x′), n,OrHt=0(x

′, z′′),OrL(z′′, z′),OrW
u
(z′)
)

= (OrW
s
(x′),−ξ,OrHt=0(x

′, z′′),OrL(z′′, z′),OrW
u
(z′))

=(−1)|x′|−|z′|−1(OrW
s
(x′),OrHt=0(x

′, z′′),OrL(z′′, z′),−ξ,OrW
u
(z′))

=(−1)|x′|−|z′|−1(OrW
s
(x′),OrHt=0(x

′, z′′),OrW
u
(z′′))

=(−1)|z′|OrX,

where we applied the orientation rule (21) in the third equality and then
(102) in the fourth. By comparing to (105) we observe a sign difference of
(−1)|x′|−|z′|−1, as claimed.
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Representing chain systems. Taking into account all these sign differences we
use the same inductive procedure as in Proposition 5.6 to construct repre-
senting chain systems on Ht=0(x

′, z′) and on H(x′, z′). According to Lemma
10.16, the first one, denoted by σ0

x′,z′ , satisfies

∂σ0
x′,z′ =

∑
x′′∈Crit(g)

sx′,x′′ × σ0
x′′,z′ −

∑
z′′∈Crit(g)

(−1)|x′|−|z′|σ0
x′,z′′ × sz′′,z′ .

We want this representing chain system to define a chain map between DG-
complexes, so we transform the above relation in an equation which looks
like the one of the continuation cocycle (2) by setting σ̃0

x′,z′ = (−1)|z′|σ0
x′,z′ .

We indeed get

∂σ̃0
x′,z′ =

∑
x′′∈Crit(g)

sx′,x′′ × σ̃0
x′′,z′ −

∑
z′′∈Crit(g)

(−1)|x′|−|z′′|σ̃0
x′,z′′ × sz′′,z′ . (106)

We may construct the chain system σ̃0
x′,z′ such that it satisfies an extra prop-

erty: Note that there is a canonical projection π : Ht=0(x
′, z′)→ L(x′, z′) to

the moduli space of unparametrized gradient trajectories which forgets the
point a and the parametrization of γ, and the fiber of π has dimension 1
whenever Ht=0(x

′, z′) is nonempty. Reasoning as in the proof of Lemma 6.10
one may construct the representing chain system (σ0

x′,z′) such that π∗σ
0
x′,z′ = 0

if |x′| > |z′| and therefore

π∗(σ̃
0
x′,z′) = 0 ∀ |x′| > |z′| (107)

For |x′| = |z′| we have by definition σ̃0
x′,z′ = 0 except for the case x′ = z′

when according to (103) we have:

σ̃0
x′,x′ = −

∑
a∈φ−1(x′)

sgn(Taφ) · a. (108)

We now study the representing chain system on H(x′, z′). By lemma 10.15
the inductive construction yields Sx′,z′ ∈ C|x′|−|y′|+1(H(x′, z′)) such that :

∂Sx′,z′

= σ0
x′,z′ + (−1)|x′|

∑
y∈Crit(f)

τx′,y × τy,z′

+
∑

x′′∈Crit(g)

(−1)|x′|−|x′′|sx′,x′′ × Sx′′,z′ +
∑

z′′∈Crit(g)

(−1)|x′|−|z′|Sx′,z′′ × sz′′,z′ ,
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In the relation above σ0
x′,z′ is the representing chain system previously con-

structed on Ht=0(x
′, z′) whereas τx′,y and τy,z′ are respectively the represent-

ing chain systems constructed in §10.4 and §10.1 onMφ!
(x′, y) andMφ

(y, z′).
Now remember that in order to define the maps φ! and φ∗ we had to apply
the sign corrections (95) and (77), namely:

σx′,y = (−1)[x′]−[y]−1τx′,y = (−1)|x′|−|y|−1τx′,y

and
σy,z′ = (−1)|y|−|z′|−1τy,z′ .

Replacing, we obtain

∂Sx′,z′

= σ0
x′,z′ + (−1)|z′|

∑
y∈Crit(f)

σx′,y × σy,z′

+
∑

x′′∈Crit(g)

(−1)|x′|−|x′′|sx′,x′′ × Sx′′,z′ +
∑

z′′∈Crit(g)

(−1)|x′|−|z′|Sx′,z′′ × sz′′,z′ ,

Finally, set S̃x′,z′ = (−1)|z′|Sx′,z′ and recall that σ̃0
x′,z′ = (−1)|z′|σ0

x′,z′ by defi-
nition. The relation becomes:

∂S̃x′,z′

= σ̃0
x′,z′ +

∑
y∈Crit(f)

σx′,y × σy,z′

+
∑

x′′∈Crit(g)

(−1)|x′|−|x′′|sx′,x′′ × S̃x′′,z′ +
∑

z′′∈Crit(g)

(−1)|x′|−|z′′|S̃x′,z′′ × sz′′,z′ .

This looks quite similar to the homotopy relation (3), but we still have to
convert it into an equation on ΩY .

Evaluation maps. We start with the definition of the evaluation on H(x′, z′):
Denote by pY : Y → Y/YY the projection and θY : Y/YY → Y its homotopy
inverse which is part of the datum ΞY . Use similar notation for X. As
in §10.1 and §10.4 denote by HY : [0, 1] × Y → Y a homotopy between
Id and θY ◦ pY and by HX its analogue on X. We define evaluation maps
qx′,z′ : H(x′, z′)→ ΩY in the following way. Take an element (λ′Y , λX , λ

′′
Y ) ∈

H(x′, z′), where λ′Y is a gradient line on Y from x′ to some point b = φ(a), λX
is a gradient line on X from a to some point ã and finally λ′′Y is a gradient
line on Y from φ(ã) to z′. If we apply the evaluation maps qX and qY

defined by the data ΞX and ΞY respectively to these three paths we get
γ1 = qY (λ′Y ) ∈ P⋆→θY ◦pY (φ(a))Y , then γ2 = qX(λX) ∈ PθX◦pX(p)→θX◦pX(ã)X
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Figure 9: The evaluation map qx′,z′ : H(x′, z′)→ ΩY

and finally γ3 = qY (λ′Y ) ∈ PθY ◦pY (φ(ã))→⋆Y . To get a loop on Y from these
paths we use the homotopies HX and HY and define:

qx′,z′(λ
′, λ, λ′′) = γ1#HY (1−t, φ(a))#φ(HX(t, a)#γ2#H

X(1−t, ã))
#HY (t, φ(ã))# γ3.

Let us see how these evaluations act on the boundary ∂H(x′, z′). It is easy to
verify by looking at the formulas (79) and (96) which define the evaluations
qφy,z′ :M

φ
(y, z′)→ ΩY resp. qφ!

x′y :M
φ!
(x′, y)→ ΩY that

qx′,z′ = qφ!

x′,y#q
φ
y,z′

onMφ!
(x′, y)×Mφ

(y, z′). In particular,

qx′,y′,∗(σx′,y × σy,z′) = (−qφ!

x′,y,∗(σx′,y)) · (−q
φ
y,z′,∗(σy,z′)) = νφ!

x′,y · ν
φ
y,z′ , (109)

the cocycle which defines the composition φ∗φ!.

It is also immediate that

qx′,z′ = qYx′,x′′#qx′′,z′

on L(x′, x′′)×H(x′′, z′) and

qx′,z′ = qx′,z′′#q
Y
z′′,z′
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on H(x′, z′′) × L(z′′, z′) where qY denotes the evaluation on the trajectory
spaces of Y .

On the last part of ∂H which is Ht=0(x
′, z′) the evaluation qx′,z′ equals by

definition

γ1#HY (1−t, φ(a))#φ
(
HX(t, a)#HX(1−t, a)

)
#HY (t, φ(a))# γ3

But we have another natural evaluation on this space. Recall that there is
an obvious projection π : Ht=0(x

′, z′) → L(x′, z′) and that we had an eval-
uation qY : L(x′, z′) → ΩY defined by the datum ΞY on Y . It is natural to
consider as evaluation the composition q0x′,z′ = qY ◦ π. This formula is also

valid for x′ = z′ since π factors throughM(x′, z′) and we may define qY on
this space. Notice that with the above notation q0x′,z′ equals γ1#γ3. There
is an obvious homotopy between qx′,z′ and q

0
x′z′ which moreover satisfies the

hypothesis of Lemma 6.13. The representing chain system (σ̃0
x′,z′) verifies

Equation (106), so it also fulfils the conditions required by this lemma. We
may therefore apply it and infer that the cocycles νx′,z′ := −qx′z′,∗(σ̃0

x′,z′) and

ν0x′,z′ := −q0x′z′,∗(σ̃0
x′,z′) define homotopic chain maps Ψ,Ψ0 : C∗(Y,Ξ

Y ;F) →
C∗(Y,Ξ

Y ;F) (their formula is Ψ(α ⊗ x′) =
∑

z′∈Crit(g) ανx′,z′ ⊗ z′ and analo-

gously for Ψ0.)

On the other hand, the cocycle hx′,z′ ∈ C|x′|+|z′|+1(ΩY ) defined by hx′,z′ =

qx′,z′,∗(S̃x′,z′) satisfies an equation of the form (3) and therefore yields a chain
homotopy between Ψ and φ∗φ! (we also used (109) here). Therefore φ∗φ! is
chain homotopic to Ψ0 and it suffices to show that the latter equals deg(φ)·Id
to finish our proof. This is straightforward: by the property (107) combined
with the definition of q0 we get ν0x′,z′ = 0 for x′ ̸= z′ and finally, since q0x′,x′ is
constant equal to the basepoint ⋆, the property (108) implies

ν0x′,x′ = −qx′,x′,∗(σ̃0
x′,x′) = deg(φ) · ⋆,

as claimed.

The proof of Proposition 10.14 is now complete.

The following corollary was previously announced as Corollary 8.4.

Corollary 10.17. Let φ : X → Y be an orientation preserving homo-
topy equivalence between closed oriented manifolds and let F be a DG lo-
cal system on Y . The canonical maps φ! : H∗(Y ;F) → H∗(X;φ∗F) and
φ∗ : H∗(X;φ∗F)→ H∗(Y ;F) are isomorphisms inverse to each other.
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Proof. An orientation preserving homotopy equivalence has degree 1, hence
φ∗φ! = Id by Proposition 10.14. On the other hand, by functoriality (Corol-
lary 8.3) we know that φ∗ is an isomorphism. Thus φ! is an isomorphism and
φ! = φ−1

∗ .

We close this section with a slight generalization of Proposition 10.14 regard-
ing transverse maps.

Consider two smooth manifolds X and Y and two smooth and transverse
maps X

φ−→ Z and Y
ψ−→ Z into a third manifold Z. The fibre product of X

and Y above φ and ψ then fits into the following diagram :

X φ×ψ Y Y

X Z

π1

π2

ψ

φ

We pick some DG coefficients F on Z, and pull them back on X, Y , and
X φ×ψ Y via φ, ψ, and φ ◦ π1 = ψ ◦ π2.

Proposition 10.18. In the above situation, we have

ψ!φ∗ = π2∗π1!

and
φ!ψ∗ = π1∗π2!.

Proof. The proof is very similar to that of Proposition 10.14. We choose

Morse functions X
fX−→ R, Y fY−→ R, Z fZ−→ R, and X φ×ψ Y

f∩−→ R on the
four manifolds under consideration, and associated pseudo-gradients such
that we can make use of the definition of the shriek and direct maps given
in §10.1 and §10.4. Let ϕX , ϕY , ϕZ , ϕ∩ denote the associated flows. The
composition ψ!φ∗ (resp. π2∗π1!) is given by the moduli spaces of the form
Mφ(x, z)×Mψ!(z, y) (resp. Mπ1!(x, t)×Mπ2(t, y)).

Consider the homotopy induced by the moduli spaces

HZ(x, y) =
⋃
τ>0

{ϕτZ(φ(W u(x))) ∩ ψ(W s(y))}

i.e. by the spaces of configurations consisting of 3 components :

� a half infinite flow line in X from a critical point x to some point p,
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� a finite piece of flow line in Z from a point p′ to another point q,

� a half infinite flow line in Y from a point q′ to a critical point y,

such that φ(p) = p′ and q = ψ(q′).

The compactification of these moduli spaces can be described as follows :

HZ = HZ ∪LX(x, x′)×HZ(x
′, y) ∪HZ(x, y

′)× LY (y′, y)

∪Mφ
(x, z)×Mψ!

Y (z, y) ∪HZ,t=0(x, y) (110)

The first three terms of the boundary ∂HZ correspond to Morse breaking in
the infinite and finite parts, and the fourth to the limit t→ 0, which can also
be described as

HZ,t=0(x, y) = {(p, q) ∈ W u(x)×W s(y), φ(p) = ψ(q)}.

The analogous moduli spaces for the composition π2∗π1! are

H∩(x, y) =
⋃
τ>0

{ϕτ∩π−1
1 W u(x) ∩ π−1

2 W s(y)},

and the part of the compactification coresponding to the limit t = 0 is

H∩,t=0(x, y) = {(p, z, q) ∈ W u(x)×(X φ×ψ Y )×W s(y) :

π1(z) = p and π2(z) = q}.

A choice of representing chains of HZ(x, y) (resp. H∩(x, y)) induces a ho-
motopy from ψ!φ∗ (resp. π1!π2∗) to the morphism associated to the moduli
spaces HZ,t=0(x, y) (resp. H∩,t=0(x, y)).

On the other hand, we have

H∩,t=0(x, y) = {(p, q) ∈ W u(x)×W s(y) : (p, q) ∈ X φ×ψ Y }
= {(p, q) ∈ W u(x)×W s(y) : φ(p) = ψ(q)}
= HZ,t=0(x, y).

We conclude that at ψ!φ∗ and π1!π2∗ are related by a homotopy, and this
proves the first relation in the statement.

The second relation follows by symmetry.
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Remark 10.19. Proposition 10.18 can be seen as a generalization of Propo-
sition 10.14, which can be recovered as follows. Given a degree d smooth
map X

φ−→ Y between manifolds of the same dimension we have the following
diagram :

(X × Y ) (φ×Id)×∆ Y Y

X × Y Y × Y,

π1

π2

∆

φ×Id

where ∆ is the inclusion of the diagonal. But (X × Y ) φ×Id×∆ Y ≃ X, and
with this identification, π1 = Id× φ, π2 = φ, and the above diagram can be
written as

X Y

X × Y Y × Y

Y

Id×φ

φ

∆

φ×Id

π2

Proposition 10.18 then implies that

(Id× φ)∗φ! = (φ× Id)!∆∗.

But π2∗(Id×φ)∗ = φ∗ by functoriality, and we leave it as an exercise for the
interested reader to prove that π2∗(φ× Id)! = d · π2∗.
This implies φ∗φ! = d · π2∗∆∗ = d · Id.
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11 Cohomology and Poincaré duality

In this section we prove a version of Poincaré duality with DG coefficients for
closed orientable manifolds. This result has been proved before by E. Malm
in his thesis, see [Mal10, Theorem 3.1.2] and the references therein.

11.1 Cohomology

We first define Morse cohomology groups with DG local coefficients on a
closed orientable manifold M . For that purpose we consider C−∗(ΩM) as a
DGA of cohomological type, i.e., with differential of degree +1. Given an
element a ∈ C∗(ΩM) we denote a the same element viewed in C−∗(ΩM) with
opposite degree.

Definition 11.1. A cohomological DG local system on M , or equivalently a
cohomological right C−∗(ΩM)-module, is a DG module G∗ whose differential
has degree +1 and which is endowed with a multiplication

Gi ⊗ C−j(ΩM)→ Gi+j.

Example 11.2. Given a right C∗(ΩM)-module F (homological DG local
system), we denote F the right C−∗(ΩM)-module defined by grading F in
opposite degree and leaving the differential unchanged:

F i = F−i.

Then F is a cohomological DG local system. Given an element f ∈ F , we
denote f the same element viewed in F and graded in opposite degree.

Definition 11.3. Given a Morse function f : M → R, a cohomological
cocycle adapted to f is a collection (my∨, x∨) indexed by x∨, y∨ ∈ Crit(f)
with my∨, x∨ ∈ C−∗(ΩM) of degree

|my∨, x∨ | = −(|x∨| − |y∨| − 1) = |y∨| − |x∨|+ 1,

and satisfying the relation

∂my∨, x∨ =
∑
z∨

(−1)|y∨|−|z∨|my∨, z∨mz∨, x∨ .

The definition is motivated by the following example.
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Example 11.4. Given a Morse function f and a negative pseudo-gradient
vector field ξ, the moduli spaces L↑(y, x) of positive pseudo-gradient trajecto-
ries from y to x, i.e., trajectories of −ξ running from y at −∞ to x at +∞,

possess compactifications L↑
(y, x) which are manifolds with boundary with

corners of dimension |x| − |y| − 1. They give rise through the procedure used
in the construction of the homological Barraud-Cornea cocycle to elements
m↑
y,x ∈ C|x|−|y|−1(ΩM) which satisfy the relation

∂m↑
y,x =

∑
z

(−1)|y|−|z|m↑
y,zm

↑
z,x.

When viewing m↑
y,x as an element in C−∗(ΩM) of opposite degree |y|−|x|+1

we denote it by my∨, x∨. With the convention |x∨| = |x|, we have |my∨, x∨| =
|y∨| − |x∨|+ 1. Hence (my∨, x∨) is a cohomological cocycle adapted to f .

For the next example denote I : ΩM → ΩM the involution given by
reparametrizing loops backwards, and denote I∗ the map induced at chain
level. Note that I∗ is an anti-algebra homomorphism, meaning that I∗(αβ) =
(−1)|α||β|I∗βI∗α.

Example 11.5. Given a homological cocycle {mx,y}, the formula

{my∨, x∨ = (−1)|x||y|+|x|+1I∗mx,y}

defines a cohomological cocycle, with my∨, x∨ understood to live in opposite
degree −(|x| − |y| − 1) = |y∨| − |x∨| + 1. To check the cocycle relation we
start with the equation ∂mx,y =

∑
z(−1)|x|−|z|mx,zmz,y, we apply I∗ and use

that it is an anti-algebra homomorphism to obtain

∂my∨, x∨ = (−1)|x||y|+|x|+1I∗

(∑
z

(−1)|x|−|z|mx,zmz,y

)
=
∑
z

(−1)|x||y|+1−|z|+(|x|−|z|−1)(|z|−|y|−1)I∗mz,yI∗mx,z

=
∑
z

ε(|x|, |y|, |z|)my∨, z∨mz∨, x∨

=
∑
z

(−1)|y|+|z|my∨, z∨mz∨, x∨

=
∑
z

(−1)|y∨|−|z∨|my∨, z∨mz∨, x∨ ,

with ε(|x|, |y|, |z|) = (−1)|x||y|+1−|z|+(|x|−|z|−1)(|z|−|y|−1)+|z||y|+|z|+|x||z|+|x|.
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Definition 11.6. Given a cohomological DG local system G and a cohomo-
logical cocycle (my∨, x∨) adapted to the Morse function f , the cohomological
Morse complex of f with coefficients in G is defined as

C∗(f ;G) = G ⊗ ⟨Crit(f)∨⟩,
where Crit(f)∨ is the set of critical points of f with elements denoted x∨ for
each x ∈ Crit(f), endowed with the differential of degree +1 given by

d(α⊗ x∨) = ∂α⊗ x∨ + (−1)|α|
∑
y∨

αmx∨, y∨ ⊗ y∨.

In the remaining of this section we reinterpret this definition as a derived
Hom. Given a right C∗(ΩM)-module F , denote F left the left C∗(ΩM)-module
whose underlying chain complex is F and with module structure given by

α · f = (−1)|α||f |f · I∗α.
Recall also from Example 11.2 the cohomological DG local system F .
The following proposition should be compared with [Mal10, Definition 3.1.1].

Proposition 11.7. We have a chain homotopy equivalence

C∗(f ;F) ≃ RHomC∗(ΩM)(Z,F left).

Proof. Using the semi-free resolution of the trivial left C∗(ΩM)-module Z
given by the Barraud-Cornea cocycle we can write the right hand side as
HomC∗(ΩM)(C∗(ΩM) ⊗ C∗(M),F left). To write the differential explicitly we
consider an element ℓ ∈ HomC∗(ΩM)(C∗(ΩM) ⊗ C∗(M),F left) and we let
fx = ℓ(1⊗ x), so that |fx| = |ℓ|+ |x|. Then

(δℓ)(α⊗ x)
= ∂(ℓ(α⊗ x))− (−1)|ℓ|ℓ(∂(α⊗ x))

= (−1)|ℓ||α|∂(α · fx)− (−1)|ℓ|ℓ(∂α⊗ x+ (−1)|α|
∑
y

αmx,y ⊗ y)

= (−1)|ℓ||α|+|α|(|ℓ|+|x|)∂(fx · I∗α)− (−1)|ℓ|+|ℓ|(|α|−1)∂α · fx
−
∑
y

(−1)|ℓ|+|α|+|ℓ|(|α|+|x|−|y|−1)αmx,y · fy

= (−1)|α||x|∂fx · I∗α

−
∑
y

(−1)|ℓ|+|α|+|ℓ||α|+|ℓ|(|x|−|y|−1)+(|ℓ|+|y|)(|x|−|y|−1)α · fy · I∗mx,y

= (−1)|ℓ||α|+|α|α

(
∂fx − (−1)|ℓ|

∑
y

(−1)|x||y|fy · I∗mx,y

)
.
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We now consider the cohomological Morse complex C∗(f ;F) defined us-
ing the cohomological cocycle {my∨, x∨ = (−1)|x||y|+|x|+1I∗mx,y} from Exam-
ple 11.5 (this is possible since the Morse complex with DG coefficients does
not depend up to chain homotopy on the choice of cocycle). We define the
Z-linear map

C∗(f ;F) = F ⊗ ⟨Crit(f)∨⟩ Φ−→ HomC∗(ΩM)(C∗(ΩM)⊗ C∗(M),F left),

f ⊗ y∨ 7→ (−1)|y|ℓf,y,

where ℓf,y(1⊗ y) = f and ℓf,y(1⊗ x) = 0 for x ̸= y. Thus |ℓf,y| = |y| − |f | =
|y∨|+ |f | and Φ has degree 0. Clearly Φ is Z-linear and is an isomorphism at
chain level. To finish the proof it is enough to prove that it is a chain map,
and for this we compute

δΦ(f ⊗ y∨) = (−1)|y|δ(ℓf,y)

7→
{

1⊗ y 7→ (−1)|y|∂f,
1⊗ x 7→ −(−1)|y|+|y|−|f |+|x||y|f · I∗mx,y,

and

Φδ(f ⊗ y∨) = Φ(δf ⊗ y∨ + (−1)|f |
∑
x

f ·my∨, x∨ ⊗ x∨)

= Φ(∂f ⊗ y∨ + (−1)|f |
∑
x

(−1)|x||y|+|x|+1f · I∗mx,y ⊗ x∨)

7→
{

1⊗ y 7→ (−1)|y|∂f,
1⊗ x 7→ (−1)|x|+|f |+|x||y|+|x|+1f · I∗mx,y.

These two expressions are equal.

11.2 Poincaré duality

Let M be a closed manifold of dimension n. We assume in this section
that M is orientable and oriented. Let f :M → R be a Morse function
and F a homological DG local system. Recall that F determines a cohomo-
logical local system F as in Example 11.2. Choose a negative pseudo-gradient
ξ, an embedded collapsing tree Y , and a homotopy inverse θ for the projec-
tion M → M/Y . Define the homological Morse complex C∗(−f ;F) using
Y , θ and the cocycle (m−f

x,y) determined by −ξ. Define the cohomological

Morse complex C∗(f ;F) using Y , θ and the cocycle (mf
x∨, y∨) determined by

ξ as in Example 11.4. With these choices we have:
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Proposition 11.8. There is a canonical isomorphism of chain complexes

PD : C∗(−f ;F)
≃−→ Cn−∗(f ;F)

defined on generators by

PD(α⊗ x) = α⊗ x∨.

In the previous formula x is a critical point of −f and hence a generator
of the homological Morse complex, but it is also a critical point of f and
hence determines a generator x∨ of the cohomological Morse complex. Their
degrees are related by

|x∨| = n− |x|.

Proof. It is clear that PD is a bijection. To prove that PD is a chain map,
note that the cocyclesm−f

x,y andm
f
x∨, y∨ coincide except for their degrees which

are opposite, so that mf
x∨, y∨ = m−f

x,y. We compute:

PD(∂(α⊗ x)) = PD(∂α⊗ x+ (−1)|α|
∑
y

αm−f
x,y ⊗ y)

= ∂α⊗ x∨ + (−1)|α|
∑
y

αm−f
x,y ⊗ y∨

= ∂α⊗ x∨ + (−1)|α|
∑
y

α ·m−f
x,y ⊗ y∨

= ∂α⊗ x∨ + (−1)|α|
∑
y

α ·mf
x∨, y∨ ⊗ y

∨

= d(α⊗ x∨) = d(PD(α⊗ x)).

In the next statement we denote by H∗ the Morse homology groups, and by
H∗ the Morse cohomology groups with DG-coefficients.

Theorem 11.9 (Poincaré duality with DG coefficients, see also [Mal10, The-
orem 3.1.2]). Let M be a closed oriented manifold of dimension n, let F be
a homological DG local system and denote F the cohomological local system
obtained from F by reversing the sign of the grading. The following Poincaré
duality isomorphism holds:

PD : H∗(M ;F) ≃−→ Hn−∗(M ;F).

Proof. This follows directly from Proposition 11.8 using the invariance of DG
Morse homology with respect to the choice of Morse function.
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11.3 Poincaré duality and shriek maps

Proposition 11.10 (map induced in cohomology). Let X, Y be closed
smooth manifolds. Let F be a cohomological DG local system on Y . A
continuous map φ : X → Y induces in cohomology a canonical degree 0
morphism

φ∗ : H∗(Y ;F)→ H∗(X;φ∗F)
with the following properties:

i. (Identity) We have Id∗ = Id.

ii. (Composition) Given maps X
φ−→ Y

ψ−→ Z and a cohomological DG
local system F on Z, we have

(ψφ)∗ = φ∗ψ∗ : H∗(Z;F)→ H∗(X;φ∗ψ∗F).

iii. (Homotopy) Homotopic maps induce equal morphisms.

iv. (Spectral sequence) The morphism φ∗ is the limit of a morphism
between the spectral sequences associated to the corresponding enriched
complexes, given at the second page by

φp,∗ : Hp(Y ;Hq(F))→ Hp(X;φ∗Hq(F)).
i.e., the map induced by φ in cohomology with coefficients in Hq(F).

Proof. The construction of φ∗ uses the same moduli spaces as the ones used
for φ∗, except that the outputs and inputs are exchanged as in Example 11.4.
All the statements are proved as in Theorem 8.2.

Proposition 11.11. Let Xm, Y n be closed smooth manifolds of respective
dimensions m and n. We assume that both X and Y are orientable
and oriented. Given a DG local system on Y , we have a commutative
diagram

H∗+m−n(X;φ∗F) H∗(Y ;F)φ!oo

PD≃
��

Hn−∗(X;φ∗F)

PD−1 ≃

OO

Hn−∗(Y ;F).φ∗
oo

Proof. This follows directly from the constructions of the maps φ∗, φ!, and
from the proof of Poincaré duality. The equality φ∗F = φ∗F is obvious.

One consequence of the above relationship between shriek maps and maps
induced in cohomology is that the statements in Proposition 11.10 are equiv-
alent to the corresponding statements for shriek maps in Theorem 8.2.
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12 Shriek maps and Poincaré duality for non-

orientable manifolds

In this section we prove a Poincaré duality theorem on non-orientable man-
ifolds, and we also construct shriek maps in that setting. Along the way
we recast the definition of the Morse complex with DG-coefficients using the
notion of orientation line. To the best of our knowledge, this notion was
originally used by Latour [Lat94] in the context of constant coefficients. It
has been extensively used in recent years in Floer theory, e.g. in [Abo15].

12.1 Algebraic preliminaries

12.1.1 Tensor product of DG local systems

Definition 12.1 (Tensor product of DG local systems). Given two right
C∗(ΩM)-modules F1,F2 with common ground ring K, their tensor product
F1 ⊗K F2 is naturally a right C∗(ΩM)-module with multiplication given by
the composition

F1 ⊗F2⊗C∗(ΩM)
1⊗1⊗∆∗−→ F1 ⊗F2 ⊗ C∗(ΩM)⊗ C∗(ΩM)

1⊗τ23⊗1−→ F1 ⊗ C∗(ΩM)⊗F2 ⊗ C∗(ΩM)→ F1 ⊗F2.

Here ∆∗ is the diagonal map on cubical chains, 1 denotes the identity map
and τ23 denotes the twist on the 2nd and 3rd factor.

Example 12.2. Given a fibration F ↪→ E → M , we explain in §7 that
it determines a unique-up-to-homotopy right C∗(ΩM)-module structure on
F = C∗(F ). Consider now two fibrations E1 −→ M ←− E2 over the same
base with fibers F1, F2 and corresponding right C∗(ΩM)-module structures on
F1 = C∗(F1) and F2 = C∗(F2). The fiber product E1×ME2 is a fibration with
fiber F1×F2, and the corresponding right C∗(ΩM)-module is chain homotopy
equivalent to the tensor product F1 ⊗F2.

12.1.2 Orientation lines

We describe in this subsection a formalism for orientations that is due to
Abouzaid [Abo15] and is well-adapted for working with twisting local sys-
tems. We rephrase in this language our previous orientation conventions
from §5.2.1, see (118). We use these same conventions in [BDHO].

191



Orientation lines. We call a Z-graded free abelian group of rank 1 an
orientation line. An isomorphism of orientation lines is a graded isomorphism
of the underlying free rank 1 abelian groups. In this setting we have the
following canonical isomorphisms.

� Given two orientation lines ℓ1, ℓ2, their tensor product ℓ1 ⊗ ℓ2 is by
definition supported in degree deg ℓ1 + deg ℓ2. The abelian group Z
supported in degree 0 is a neutral element for the tensor product. We
have a canonical twist isomorphism

ℓ1 ⊗ ℓ2
≃−→ ℓ2 ⊗ ℓ1 (111)

given by v1 ⊗ v2 7→ (−1)deg ℓ1·deg ℓ2v2 ⊗ v1.

� Given an orientation line ℓ, we denote by ℓ−1 = HomZ(ℓ,Z) its dual,
supported in degree deg ℓ−1 = − deg ℓ. There is a canonical evaluation
isomorphism

ℓ−1 ⊗ ℓ ≃−→ Z, α⊗ v 7→ α(v). (112)

Thus ℓ−1 plays the role of an inverse for ℓ with respect to the tensor
product. There is a canonical isomorphism

ℓ−1
2 ⊗ ℓ−1

1 ≃ (ℓ1 ⊗ ℓ2)−1, (113)

where a tensor product α2 ⊗ α1 ∈ ℓ−1
2 ⊗ ℓ−1

1 is seen as an element
of (ℓ1 ⊗ ℓ2)

−1 via ⟨α2 ⊗ α1, v1 ⊗ v2⟩ = α2(v2)α1(v1). Also, there is a
canonical isomorphism

ℓ ≃
(
ℓ−1
)−1

(114)

given by v 7→ (α 7→ α(v)).

Shift. Given an orientation line ℓ and an integer k ∈ Z, let ℓ[k] denote the
same orientation line with degree shifted down by k, i.e., ℓ[k]∗ = ℓ∗+k.

Given an orientation line ℓ supported in degree deg ℓ, we use the notation

ℓ = ℓ[deg ℓ]

for the orientation line seen as supported in degree 0.

Oriented orientation lines. To orient an orientation line means to choose
one of its two generators, called “positive”. An isomorphism of orientation
lines has a well-defined sign ±1 if its source and target are oriented.

Given two oriented orientation lines ℓ1 and ℓ2, we induce canonically an
orientation on their tensor product ℓ1 ⊗ ℓ2 as follows: the positive generator
is v1 ⊗ v2, where v1 ∈ ℓ1 and v2 ∈ ℓ2 are the positive generators. With this
convention, the following Koszul sign rule holds:
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The twist isomorphism (111) has sign (−1)deg ℓ1·deg ℓ2.

The neutral element Z for the tensor product is canonically oriented by its
generator 1. As a consequence, given an orientation on ℓ we induce canoni-
cally an orientation on ℓ−1 by requiring that the evaluation isomorphism (112)
be orientation preserving. In other words, a generator α : ℓ → Z is positive
if and only if α(v) = 1 for the positive generator v ∈ ℓ. (Note that the twist
isomorphism ℓ−1 ⊗ ℓ ≃ ℓ⊗ ℓ−1 has sign (−1)deg ℓ.)
These conventions for orienting the tensor product and the inverse imply
that, given oriented lines ℓ1, ℓ2, and ℓ, the isomorphisms (113) and (114) are
orientation preserving.

Orientation lines of real vector spaces. To a graded 1-dimensional real
vector space L one associates canonically an orientation line |L|, defined as
the free rank 1 abelian group generated by the two orientations of L modulo
the relation that their sum vanishes, supported in degL.

Given a finite dimensional real vector space V , its determinant line is the
graded 1-dimensional real vector space detV = ΛmaxV supported in degree
dimV . Let |V | = | detV | be the corresponding orientation line.

Since an orientation of detV is canonically equivalent to an orientation of
V , we can see |V | as being the free rank 1 abelian group generated by the
two orientations of V modulo the relation that their sum vanishes. There is
a canonical isomorphism |0| ≃ Z, which sends the positive orientation +1 of
the 0-dimensional vector space to 1.

Linear orientation conventions.

Direct sum. Given two finite dimensional real vector spaces V and W ,
we induce an orientation on V ⊕W from orientations of V and W as fol-
lows: given positive bases (v1, . . . , vm) of V and (w1, . . . , wn) of W , the basis
(v1, . . . , vm, w1, . . . , wn) is positive. At the level of orientation lines, this is
phrased as a canonical isomorphism

|V | ⊗ |W | ≃ |V ⊕W |. (115)

Short exact sequences. Given a short exact sequence of finite dimensional
real vector spaces

0→ A→ B → C → 0, (116)

we induce an orientation on B from orientations of A and C as follows: given
positive bases (a1, . . . , am) of A and (c1, . . . , cn) of C, we choose lifts c̃1, . . . , c̃n
for c1, . . . , cn and declare the basis (a1, . . . , am, c̃1, . . . , c̃n) of B to be positive.
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This yields a canonical isomorphism

|A| ⊗ |C| ≃ |B|. (117)

This isomorphism can be used to induce an orientation on any of the factors
A, B, C from orientations of the two other factors. Note also that this orien-
tation rule is equivalent to the one for the direct sum under the convention
that a choice of splitting C → B gives rise to an isomorphism B ≃ A⊕ C.
Transverse intersection and co-orientation. Let V be a real vector space
(with no specified orientation). A co-orientation of a subspace F ⊂ V is an
orientation of V/F . Let E ⊂ V be an oriented subspace, let F ⊂ V be a co-
oriented subspace, and assume that E and F are transverse, i.e., E+F = V .
Then E ∩ F inherits a canonical orientation from the short exact sequence

0→ E ∩ F → E → E

E ∩ F
≃ E + F

F
=
V

F
→ 0,

where the isomorphism E/E ∩ F ≃ (E + F )/F is the canonical one. We
write |E ∩ F | ⊗ |V/F | ≃ |E| or, in the language of §5.2.1, as

(Or(E ∩ F ),Coor(F )) = Or(E). (118)

This formula is the linear analogue of (13) and shows that the orientation
convention that we describe in this section coincides with the one from §5.2.1.

Orientation local system of a manifold. Given a manifold M , let |M |
be the local system of graded free rank 1 abelian groups whose fiber at a
point p is the orientation line |TpM |, supported in degree n = dimM . We
call it the orientation local system of M (in this definition, we implicitly view
a local system as a bundle of groups).

Vector bundles. Given a real vector bundle E → M , let |Efiber| be the
local system on M whose fiber at p is the orientation line |Ep| of the fiber
Ep. Yet another local system of interest is |E||M , the restriction of |E| toM ,
whose fiber at p is the orientation line of the total tangent space |TpE|.

The canonical short exact sequence 0→ Ep → TpE
dπ−→ TpM → 0 gives rise

to a canonical isomorphism

|Ep| ⊗ |TpM | ≃ |TpE|.

By requiring that this isomorphism preserves orientations we induce an orien-
tation on TpE from orientations of Ep and TpM (“fiber first, base second”).
Pasting these canonical isomorphisms together we get an isomorphism of
graded free rank 1 local systems on M

|Efiber| ⊗ |M | ≃ |E||M .
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Manifolds with boundary. Given a manifold M with boundary, consider
the normal bundle ν → ∂M along the boundary. The previous recipe pro-
vides an isomorphism |νfiber| ⊗ |∂M | ≃ |M ||∂M of local systems on ∂M .

In this situation the normal bundle is trivial. We trivialize the normal bundle
along ∂M using an outward pointing vector field along the boundary νout.
This determines a canonical isomorphism |R| ⊗ |∂M | ≃ |M ||∂M .

Explicitly, we split TpM as TpM ≃ Rνoutp ⊕Tp∂M , or equivalently we project
TpM onto Tp∂M with kernel Rνoutp , leading to the exact sequence 0 →
Rνoutp → TpM → Tp∂M → 0. This induces a canonical isomorphism

|Rνoutp | ⊗ |Tp∂M | ≃ |TpM |.

The canonical isomorphism Rνoutp ≃ R induces |R| ⊗ |∂M | ≃ |M ||∂M .

12.1.3 DG orientation local system on a manifold

Let M be a manifold of dimension n with basepoint ⋆. The orientation local
system |M |, described previously as a bundle of groups, can be viewed as a
DG local system as follows. The underlying complex is |T⋆M |, supported in
degree n, and the right C∗(ΩM)-action is given as follows:

� Ci(ΩM) acts trivially for i > 0,

� an element
∑
niγi ∈ C0(ΩM) acts by (

∑
nisign(γi))Id with sign(γi) =

±1 according to whether γi reverses or preserves the orientation. In
particular the action of C0(ΩM) factors through that of the group ring
Z[π1(M)].

Definition 12.3. We denote ℴM the above DG local system with fiber |T⋆M |,
and call it (DG) orientation local system of M .

The local system ℴM is supported in degree n = dimM , and

ℴM = ℴM [n]

is supported in degree 0. In the sequel statement of Poincaré duality we will
need to consider tensor products F ⊗ ℴM , where F is a DG local system.

12.2 Morse complex and orientation lines

For the sequel arguments we need to rephrase in a more intrinsic way the
definition of Morse homology and cohomology groups using orientation lines.
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(i) Constant coefficients. To the best of our knowledge, the point of view
adopted here is originally due to Latour [Lat94], see also Abouzaid [Abo15].
Let f : M → R be a Morse function, and let ξ,Y , θ be choices of Morse-
Smale pseudo-gradient vector field, collapsing tree and homotopy inverse for
the projection M → M/Y . Given x ∈ Crit(f) we denote ℴx = |TxW u(x)|
the orientation line of the unstable manifold at x. Given y ∈ Crit(f) such
that |y| = |x|−1, any isolated gradient line γ from x to y induces an isomor-
phism τ γx,y : ℴx

∼−→ ℴy determined by the isomorphism |R∂s| ⊗ |TyW u(y)| ≃
|TxW u(x)|, where ∂s is the ξ-direction along the gradient line. The Morse
complex C∗(f ;Z) with constant coefficients is defined to be

⊕
xℴx with dif-

ferential
∂|ℴx =

∑
|y|=|x|−1

∑
γ∈L(x,y)

τ γx,y.

This definition recovers the one from §5.2 as follows. Fix orientations of ℴx,
x ∈ Crit(f) given by generators ox ∈ ℴx. Then τ γx,y(ox) = εx,yoy, and the sign
is specified by requiring that the isomorphism |R∂s|⊗|TyW u(y)| ≃ |TxW u(x)|
is orientation preserving. On the other hand, with the conventions from §5.2,
and for the set of orientations {ox ∈ ℴx}, the sign ε′x,y of a trajectory γ is spec-
ified by requiring that the isomorphism |TyW u(y)| ⊗ |R⟨−ξ⟩| ≃ |TxW u(x)|
is orientation preserving (Remark 5.5), and therefore differs from εx,y by
(−1)|x|−|y|. By replacing in the computation of ε′x,y the orientation ox by

(−1)|x|ox, we obtain ε′x,y = εx,y. This phenomenon is similar to the one
described in Appendix A, see Proposition A.8.

(ii) DG coefficients. To define the homological Morse complex with DG
coefficients in the nonorientable case we adapt the previous construction
as follows. Recall the space of parametrized Morse trajectories L̂(x, y) =
W u(x)∩W s(y), oriented at a point p by the exact sequence 0→ TpW

u(x)∩
TpW

s(y)→ TpW
u(x)⊕TpW s(y)→ TpM → 0, which gives rise to a canonical

isomorphism of orientation lines

|TpL̂(x, y)| ⊗ |TpM |
∼−→ |TpW u(x)| ⊗ |TpW s(y)|.

Combining this with the isomorphism |TyM | ≃ |TyW u(y)| ⊗ |TyW s(y)|, re-
calling the moduli space of Morse trajectories L(x, y) ≃ L̂(x, y)/R∂s, and
transporting orientations from p to y, we obtain a canonical isomorphism

|R∂s| ⊗ |L(x, y)| ⊗ ℴy
∼−→ ℴx,

which induces a canonical isomorphism

τx,y : |L(x, y)|−1 ⊗ ℴx[1]
∼−→ ℴy. (119)

196



This splits along connected components γ of L(x, y) as τx,y = ⊕γτ γx,y. 6

Given a Barraud-Cornea cocycle (mx,y) we write mx,y =
∑

γm
γ
x,y, where the

sum runs over the connected components γ of L(x, y). Given a C∗(ΩM)-right
module F we define

C∗(f ;F) = ⊕xF ⊗ ℴx

with differential

∂|F ⊗ ℴx : α⊗ ox 7→ ∂α⊗ ox + (−1)|α|
∑
y

∑
γ

αmγ
x,y ⊗ τ γx,y([mγ

x,y]⊗ ox).

Here [mγ
x,y] is the orientation of Lγ(x, y) determined by mγ

x,y.

In case the cocycle (mx,y) is chosen such that τx,y is orientation preserving
with respect to fixed orientations ox of ℴx, x ∈ Crit(f), the differential
becomes

∂|F ⊗ ℴx : α⊗ ox 7→ ∂α⊗ ox + (−1)|α|
∑
y

αmx,y ⊗ oy

and the above definition coincides with the one that we have used previously
for orientable manifolds.

Remark 12.4. One can rephrase in a similar way using orientation lines the
cohomological Morse complex.

12.3 Poincaré duality in the non-orientable case

Theorem 12.5 (Poincaré duality). Let M be a closed manifold of dimension
n, denote ℴM its orientation local system supported in degree 0, let F be a
homological DG local system and denote F the cohomological local system
obtained from F by reversing the sign of the grading. The following Poincaré
duality isomorphism holds:

PD : HM∗(M ;F) ≃−→ HMn−∗(M ;F ⊗ ℴM).

Proof. We repeat the proof of Theorem 11.9. The key step is to establish an
analogue of Proposition 11.8, which is done in Proposition 12.6 below.

6Note that L(x, y) is always orientable, and the definition of the Barraud-Cornea co-
cycle is the same for both orientable and nonorientable manifolds. Given orientations of
ℴx, x ∈ Crit(f), the moduli space L(x, y) can be oriented by requiring that the canonical
isomorphism τx,y be orientation preserving.
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We choose a Morse function f : M → R, a negative pseudo-gradient ξ, an
embedded collapsing tree Y and a homotopy inverse θ for the projection
M → M/Y . Denote ℴux = |TxW u(x)|, ℴsx = |TxW s(x)|, and ℴMx = |TxM |.
Since TxW

u(x)⊕TxW s(x) = TxM , we obtain a canonical isomorphism ℴux⊗
ℴsx ≃ ℴMx , and further a canonical isomorphism

ιx : ℴsx
≃−→ (ℴux)

−1 ⊗ ℴMx .

Let F be a DG local system. We define the homological Morse complex
C∗(−f ;F) using Y , θ and the cocycle (m−f

x,y) determined by −ξ and the mod-

uli spaces L−f (x, y). We define the cohomological Morse complex C∗(f ;F ⊗
ℴM) using Y , θ and the cocycle (mf

x∨, y∨) determined by ξ and the moduli

spaces Lf↑(x, y) as in Example 11.4. We denote τMx,y : ℴ
M
x

≃−→ ℴMy the canon-
ical isomorphism given by parallel transport of the orientation along a Morse
trajectory from x to y (we do not include the trajectory in the notation for
readability).

We have a commutative diagram of canonical isomorphisms

|L−f (x, y)|−1 ⊗ ℴux(−f)[1]
τ−f
x,y // ℴuy(−f)

|Lf↑(x, y)| ⊗ ℴsx(f)[1]

ιx
��

ℴsy(f)

ιy

��
|Lf↑(x, y)| ⊗ ℴux(f)[−1]−1 ⊗ ℴMx

τf↑x,y⊗τMx,y
// ℴuy(f)

−1 ⊗ ℴMy .

(120)

For the next statement and proof we choose a generator osx of ℴux(−f) =
ℴsx(f), and we denote ιx(o

s
x) = (oux)

−1⊗oMx , with oux, o
M
x generators of ℴux(f),

ℴMx . We also denote τιx : ℴux(−f) = ℴsx(f)
≃−→ ℴMx ⊗ ℴux(f)

−1 the map ιx
postcomposed with the twist on the tensor product.

Proposition 12.6. There is a canonical isomorphism of chain complexes

PD : C∗(−f ;F)
≃−→ Cn−∗(f ;F ⊗ oM)

defined by

⊕xF ⊗ ℴux(−f) −→ ⊕x∨F ⊗ ℴM ⊗ ℴux(f)
−1, α⊗ osx 7→ α⊗ τιx(osx).
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Proof. As in the proof of Proposition 11.8, it is clear that PD is a bijection
and we prove that PD is a chain map. The cocyclesm−f

x,y andm
f
x∨, y∨ coincide

except for their degrees which are opposite, so that mf
x∨, y∨ = m−f

x,y. We
compute:

PD(∂(α⊗ osx))

= PD

(
∂α⊗ osx + (−1)|α|

∑
y

αm−f
x,y ⊗ τ−fx,y (osx)

)
= ∂α⊗ τιx(osx) + (−1)|α|

∑
y

αm−f
x,y ⊗ τιyτ−fx,y (osx)

= ∂α⊗ τιx(osx) + (−1)|α|
∑
y

α ·m−f
x,y ⊗ τ(τ f↑x,y ⊗ τMx,y)ιx(osx)

= ∂α⊗ τιx(osx) + (−1)|α|
∑
y

α ·mf
x∨, y∨ ⊗ τ

M
x,yo

M
x ⊗ τ f↑x,y(oux)−1

= d(α⊗ ιx(osx))
= d(PD(α⊗ x)).

For the third equality we used the commutativity of the diagram (120). For
the fifth equality we used the definition of the C−∗(ΩM)-module structure on
the tensor product F ⊗ ℴM , and the definition of the cohomological Morse
complex for f (see Remark 12.4).

Remark 12.7. The previous isomorphism is canonical, and this reflects the
fact that the group Hn(M ;ℴM) has a canonical generator. This is akin to the
fact that the square of an orientation line is canonically oriented: reasoning
in terms of Morse theory, one can choose a Morse function on M having
a unique maximum x, and the canonical generator of Hn(M ;ℴM) is the
positive generator of ℴx ⊗ ℴx = ℴx ⊗ ℴMx , with ℴx the orientation line of
TxW

u(x) = TxM .

12.4 Shriek map in the non-orientable case

Proposition 12.8 (shriek map). Let Xm, Y n be closed smooth manifolds
of respective dimensions m and n. Denote their respective orientation local
systems ℴX and ℴY , viewed as supported in degree 0. Let F be a DG local
system on Y . A continuous map φ : X → Y induces in homology a canonical
shriek map

φ! : H∗(Y ;F ⊗ ℴY )→ H∗+m−n(X;φ∗F ⊗ ℴX)
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which has the same functoriality properties as in the orientable case. In

particular, given maps Xm φ−→ Y n ψ−→ Zp and a DG local system F on Z,
we have

(ψφ)! = φ!ψ! : H∗(Z;F ⊗ ℴZ)→ H∗+m−p(X;φ∗ψ∗F ⊗ ℴX).

The construction of the shriek map can be done either directly as in §§ 9-
10, or through Poincaré duality via the commutative diagram (see Proposi-
tion 11.11)

H∗+m−n(X;φ∗F ⊗ ℴX) H∗(Y ;F ⊗ ℴY )
φ!oo

PD≃
��

Hn−∗(X;φ∗F)

PD−1 ≃

OO

Hn−∗(Y ;F).φ∗
oo

The following corollary is a straightforward consequence of functoriality of
shriek maps.

Corollary 12.9. Let φ : X → Y be a homotopy equivalence and let F be a
DG local system on Y . Denote the orientation local systems on X, Y by ℴX ,
respectively ℴY , viewed as being supported in degree 0. The canonical map

φ! : H∗(Y ;F ⊗ ℴY )→ H∗(X;φ∗F ⊗ ℴX)

is an isomorphism.
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13 Beyond the case of manifolds of finite di-

mension

The example we have in mind while writing this section is the space LQ
of free loops on a compact manifold (possibly with boundary). There are
several Morse-type theories which compute the singular homology of LQ. In
the forthcoming paper [BDHO] we will address the case of the symplectic
homology of the cotangent bundle. Another example is the Morse theory of
the energy functional E(γ) =

∫
||γ′(t)||2dt associated to a metric on Q. But

its generalisation to DG-coefficients leads to some serious technical issues.
First issue, the energy functional (defined on the Sobolev space H1,2(S1, Q),
in order to work with a Banach manifold) is not C∞ (or at least regular
enough), as required by Sard’s theorem in order to get manifold structures
on the trajectory spaces between arbitrary critical points. Second issue, we
need to prove that the Latour cells W

u
(x) defined by the critical points –

which have all finite index – are homeomorphic to disks. While the first issue
may be overcome using the work [AS09] of Abbondandolo and Schwarz, for
the second issue the result of Qin [Qin10] for Morse functions on Hilbert
manifolds is proved under the hypothesis that the gradient is standard near
the critical points, i.e. there exists a Morse local model. We are not aware
of a more general statement in infinite dimensions.

Another approach to the Morse theory of the free loop spaces was described
by Abouzaid in [Abo15]. It is the one which we will generalise in this section.
The idea is to see LQ as the direct limit (union) of the spaces LrQ of free
loops of length bounded above by r. For an appropriate choice of a sequence
(rn) these spaces turn out to be homotopy equivalent to compact manifolds
with boundary and corners, on which the classical Morse theory is valid.
Our generalisation will first treat the case of topological spaces which are
homotopy equivalent to manifolds. We then discuss in §13.2 the Morse theory
with DG-coefficients on direct limits, and finally in §13.3 the particular case
of LQ.
Throughout this section all the spaces have a fixed basepoint ⋆ and unless
otherwise mentioned the applications between them preserve the basepoints.
Before starting, let us list the expected properties of the homology H∗(X;F)
when X is a connected topological space which is not necessarily a finite
dimensional manifold and F is a DG-module over C∗(ΩX):

i. Spectral sequence. There is a spectral sequence whose second page E2
pq

is isomorphic to Hp(X;Hq(F)) and which converges to H∗(X;F).
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ii. Fibration. If E : F → E → X is a Hurewicz fibration and F = C∗(F )
then H∗(X;F) ≃ H∗(E).

iii. Direct maps. If φ : X → Y is continuous then there exists a map
φ∗ : H∗(X;φ∗F) → H∗(Y ;F); these maps satisfy the properties 1-4
of §8.1.

iv. Pullback. Let E : F → EY → Y be a Hurewicz fibration, F = C∗(F )
and EX the total space of the pullback fibration φ∗E , where φ : X →
Y is a continuous map. Let φ̃ : EX → EY the application induced
by φ. Then the direct map φ∗ coincides with the direct map φ̃∗ via the
isomorphisms of (ii).

We will show that all these properties are satisfied by our generalisation
below.

13.1 Topological spaces which are homotopically equiv-
alent to manifolds

Let u : X → K be a homotopy equivalence between a compact connected
manifoldX (possibly with non-empty boundary) and a connected topological
space K endowed with a DG-module F over C∗(ΩK).

Definition 13.1. The DG-homology of K with coefficients in F associated
to u is

Hu
∗ (K;F) := H∗(X;u∗F). (121)

A first remark is that, if K is itself a manifold, then u∗ : Hu
∗ (K;F) →

H∗(K;F) is an isomorphism by Theorem D, since u is a homotopy equiva-
lence. Another obvious observation is given in the next remark.

Remark 13.2. The homology Hu
∗ (K;F) is the limit of a spectral sequence

whose second page E2
pq is canonically isomorphic to the homology with local

coefficients Hp(K,Hq(F)). This spectral sequence is the one which computes
H∗(X;u∗F). Its second page is E2

pq = Hp(X, u
∗Hq(F)), and since u is a

homotopy equivalence, it yields an isomorphism u∗ : E
2
pq → Hp(K,Hq(F)).

We also have the following analogue of Theorem A/Theorem 7.2.

Proposition 13.3. Let u : X → K as above, F → E → K a Hurewicz
fibration and F = C∗(F ) the DG-module over C∗(ΩK) defined by the choice
of a lifting function. Then Hu

∗ (K;F) is isomorphic to H∗(E).
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Proof. If E ′ is the total space of the pull-back fibration u∗E then Theorem 7.2
asserts that Hu

∗ (K;F) = H∗(X;u∗F) is isomorphic to H∗(E
′). Since u is a

homotopy equivalence, it defines an isomorphism betweenH∗(E
′) andH∗(E).

Now let u, v : X → K two homotopic continuous maps and F a DG-module
over C∗(ΩK). Recall that in Proposition 8.6 from §8.2 we defined an isomor-
phism

Ψ : H∗(X;u∗F)→ H∗(X; v∗F)

which we called identification isomorphism. In the aforementioned section,
K was supposed to be a manifold for simplicity, but this was actually not
needed in the definition of Ψ. We also proved in Proposition 8.8 that Ψ
does not depend on the homotopy between u and v (see also Remark 9.13),
but we do not know how to adapt this proof to the case when K is not
a manifold. So in the sequel we will only allow the use of properties (i)-
(iii) from Proposition 8.6 in the general case of topological spaces, whereas
Proposition 8.8 may only be used for manifolds. In the latter case we will
denote the identification morphism by Ψu,v to emphasize that it only depends
on u and v. As explained in §8.2 the homotopy property for direct maps
u, v : X → Y between manifolds is expressed as the commutation of the
following diagram :

H∗(X;u∗F) u∗ //

Ψu,v

��

H∗(Y ;F)

H∗(X; v∗F)
v∗

77

Direct maps. We now define the direct map induced by a continuous
map β : K → L between topological spaces, both of which are homotopy
equivalent to manifolds. Let u : X → K and v : Y → L be homotopy
equivalences. Choose a continuous map between manifolds φ : X → Y such
that the following diagram is commutative up to homotopy:

X u //

φ

��

K

β
��

Y
v // L.

(122)
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For instance one may take φ = v′ ◦ β ◦ u where v′ is a homotopy inverse for
v. We therefore have an identification isomorphism

Ψ : H∗(X, u
∗β∗F)→ H∗(X;φ∗v∗F)

which a priori depends on the homotopy between β ◦ u and v ◦ φ.

Definition 13.4. We define the direct map βu,v∗ : Hu
∗ (K, β

∗F) → Hv
∗ (L;F)

by the composition

φ∗ ◦Ψ : H∗(X;u∗β∗F)→ H∗(Y ; v∗F), (123)

where φ∗ : H∗(X;φ∗v∗F) → H∗(Y ; v∗F) is the direct map and Ψ is the
identification isomorphism above.

In order to have a well-defined direct map we have to prove the following:

Proposition 13.5. The map βu,v∗ does not depend on φ : X → Y from the
homotopy diagram (122), nor on the identification isomorphism Ψ.

Building towards the proof we start with a simple lemma:

Lemma 13.6. Let X be a manifold, F a DG-module over C∗(ΩX) and
u : X → X a continuous map which is homotopic to the identity. Then
the identification morphism Ψu,Id equals the direct map u∗ : H∗(X;F) →
H∗(X;F).

Proof. This is an immediate application of the identity property Id∗ = Id
and the homotopy property (Theorem D or 8.2), which in this case writes

H∗(X;u∗F) u∗ //

Ψu,Id

��

H∗(Y ;F)

H∗(X;F)
Id∗

77

The next lemma is a generalization of the homotopy property.

Lemma 13.7. Let v : Y → L be a homotopy equivalence between a manifold
Y and a topological space L. Let X be a manifold and φ, χ : X → Y two
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(continuous) maps such that v ◦φ and v ◦χ are homotopic. Consider a DG-
module F over C∗(ΩL). Then for any homotopy Υ between v ◦ φ and v ◦ χ
the following diagram is commutative:

H∗(X;φ∗v∗F) φ∗ //

ΨΥ

��

H∗(Y ; v∗F)

H∗(X;χ∗v∗F)
χ∗

66

Proof. Note that if φ and χ are homotopic then the statement is just the usual
homotopy property for these maps and the DG-module v∗F (via Remark 8.9).
Our hypothesis being weaker, we use a different argument. Let w : L → Y
be a homotopy inverse for v. Consider the following diagram which only
contains maps between manifolds:

H∗(Y ; (w ◦ v)∗v∗F)
Ψv◦(w◦v),v

// H∗(Y ; v∗F)
= // H∗(Y ; v∗F) H∗(Y ; (w ◦ v)∗v∗F)

Ψv◦(w◦v),v
oo

H∗(X;φ∗(w ◦ v)∗v∗F)

φ∗

OO

Ψv◦(w◦v)◦φ,v◦φ
//

Ψv◦(w◦v)◦φ,v◦(w◦v)◦χ

33H∗(X;φ∗v∗F)
ΨΥ

//

φ∗

OO

H∗(X;χ∗v∗F)

χ∗

OO

H∗(X;χ∗(w ◦ v)∗v∗F)

χ∗

OO

Ψv◦(w◦v)◦χ,v◦χ
oo

Our goal is to prove that the middle square of this diagram is commuta-
tive. The left and the right squares are commutative by the naturality result
Lemma 9.12. The lower part is also commutative by Proposition 8.6, item
(iii). There is another commutation relation, the one concerning the lower
curved arrow, the leftmost and the rightmost arrows and the upper horizontal
part of the diagram. Indeed, using Remark 8.9 this commutation writes

Ψw◦v,Id ◦ χ∗ ◦Ψ(w◦v)◦φ,(v◦w)◦χ = Ψw◦v,Id ◦ φ∗,

and applying Lemma 13.6 we infer that this is equivalent to

(w ◦ v)∗ ◦ χ∗ ◦Ψ(w◦v)◦φ,(v◦w)◦χ = (w ◦ v)∗ ◦ φ∗,

which is exactly the homotopy property for the two homotopic applications
between manifolds (w ◦ v) ◦ φ and (w ◦ v) ◦ χ.
Using all these commutations we easily deduce that

χ∗ ◦ΨΥ ◦Ψv◦(w◦v)◦φ,v◦φ = φ∗ ◦Ψv◦(w◦v)◦φ,v◦φ.

Since the identification map Ψv◦(w◦v)◦φ,v◦φ is an isomorphism, we get the
desired relation χ∗ ◦ΨΥ = φ∗. This finishes the proof of the lemma.
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Proof of Proposition 13.5. Let φ : X → Y and χ : X → Y be two continuous
maps which fit into the homotopy commutative diagram (122), i.e. β ◦ u
is homotopic to both v ◦ φ and v ◦ χ. Choose two homotopies between
β ◦ u and these maps and denote by Ψ : H∗(X;u∗β∗F) → H∗(X;φ∗v∗F)
and Ψ′ : H∗(X;u∗β∗F) → H∗(X;χ∗v∗F) the corresponding identification
morphisms; denote also by βu,v∗ respectively β

′u,v
∗ the two direct maps thus

defined by (123); our goal is to prove βu,v∗ = β
′u,v
∗ .

Consider the homotopy between v ◦ φ and v ◦ χ obtained by the concatena-
tion of the two above and denote by ΨΥ : H∗(X;φ∗v∗F) → H∗(X;χ∗v∗F)
the corresponding identification isomorphism. Our proof is implied by the
following diagram:

H∗(X;χ∗v∗F)

χ∗

&&
H∗(X;u∗β∗F)

Ψ′

OO

Ψ

��

β
′u,v
∗ //

βu,v
∗

// H∗(Y ; v∗F)

H∗(X;φ∗v∗F)

φ∗

88
ΨΥ

;;

The upper and the lower right triangles are commutative by definition of
the maps β

′u,v
∗ and βu,v∗ . The leftmost part is also commutative by Propo-

sition 8.6, item (iii). Finally the previous lemma yields the commutation of
the exterior part of the diagram: ΨΥ ◦ χ∗ = φ∗. We easily infer the desired
equality from all these commutations:

β
′u,v
∗ = χ∗ ◦Ψ′ = χ∗ ◦ΨΥ ◦Ψ = φ∗ ◦Ψ = βu,v∗ .

The proof of Proposition 13.5 is now complete.

The direct maps βu,v∗ satisfy properties 1-4 from §8.1, which in this case are
stated as follows:

Proposition 13.8. The maps βu,v∗ defined above satisfy the following prop-
erties:

1. Identity: Idu,u∗ = Id∗.

2. Composition: δv,w∗ ◦ βu,v∗ = (δ ◦ β)u,w∗ .
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3. Homotopy: If β0, β1 : K → L are homotopic through a homotopy β
then βu,v0,∗ = βu,v1;∗ ◦Ψβ◦u, where

Ψβ◦u : H∗(X;u∗β∗
0F)→ H∗(X;u∗β∗

1F)

is the identification isomorphism induced by the homotopy β ◦ u.

4. Spectral sequence: The direct map βu,v∗ is the limit of a morphism be-
tween the spectral sequences defined in Remark 13.2, which at the sec-
ond page E2

pq identifies with the direct map between homologies with
local coefficients

βp : H∗(K, β
∗Hq(F))→ Hp(L,Hq(F)).

Proof. The proof is straightforward. We will only sketch the arguments and
leave the details to the reader.

1. Identity. Obvious.

2. Composition. For the following diagram which is commutative in homo-
topy

X
u //

φ

��
ζ◦φ

  

K

β

��
δ◦β

��

Y v //

ζ
��

L

δ
��

Z w //M

we define the direct maps βu,v∗ , δv,w∗ and (δ ◦ β)u,w∗ and get the diagram

H∗(X;u∗β∗δ∗F)

Ψ

��

βu,v
∗

&&

(δ◦β)u,w∗

��

Ψ
′′

&&

H∗(X;φ∗v∗δ∗F)

Ψ′

��

φ∗ // H∗(Y ; v∗δ∗F)

δv,w∗

%%

Ψ
′′′

��
H∗(X;φ∗ζ∗w∗F) φ∗ //

(ζ◦φ)∗

55
H∗(Y ; ζ∗w∗F) ζ∗ // H∗(Z;w

∗F)

The goal is to prove the commutativity of the upper left part. All the other
parts of the diagram are commutative by definition (the upper, the lower
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right and the curved exterior triangles), by Proposition 8.6.iii (the leftmost
part) and by the naturality Lemma 9.12 (the square). The conclusion follows.

3. Homotopy. For the homotopy commutative diagram

X u //

φ

��

K

β0,β1
��

Y
v // L

we get
H∗(X;u∗β∗

0F)

Ψ

��

βu,v
0,∗

&&
Ψβ◦u

##

H∗(X;φ∗v∗F) φ∗ // H∗(Y ; v∗F)

H∗(X;u∗β∗
1F)

Ψ′

OO

βu,v
1,∗

88

The goal is to prove the commutativity of the curved exterior triangle; the
upper and lower right triangles are commutative (by definition) and the left-
most part is also commutative (Proposition 8.6.iii). This implies the homo-
topy property.

4. Spectral sequence. Straightforward.

Remark 13.9. A consequence of this proposition is that Hu
∗ (K;F) does not

depend on the homotopy equivalence u : X → K. Indeed, if v : Y → K is
another one, the direct map

Idu,v∗ : Hu
∗ (K;F)→ Hv

∗ (K;F)

associated to IdK is an isomorphism, with inverse Idv,u∗ . Using these iden-
tifications we may therefore define H∗(K;F). Similarly we may define the
direct map β∗ : H∗(K; β∗F) → H∗(L;F) induced by β : K → L without
specifying the homotopy equivalences since the maps βu,v∗ defined above are
compatible with the identifications. Indeed, the diagram

Hu
∗ (K; β∗F) Idu,u

′
∗ //

βu,v
∗
��

Hu′
∗ (K; β∗F)

βu′,v′
∗
��

Hu
∗ (L;F)

Idv,v
′

∗ // Hv′
∗ (L;F)

is commutative by the composition property.
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We now prove the property (iv) (Pullback) above:

Proposition 13.10. Let β : K → L be a continuous map between topo-
logical spaces which are homotopically equivalent to compact manifolds and
let E : F → EL → L be a Hurewicz fibration over L. Denote by F the
DG-module C∗(F ) over C∗(ΩL) and by EK the total space of the pullback
fibration β∗E. Then the direct map β∗ : H∗(K; β∗F) → H∗(L;F) coincides

via the isomorphisms of Proposition 13.3 with β̃∗ : H∗(EK) → H∗(EL), the
map induced by β between the singular homologies of the total spaces.

Proof. We have to check the commutativity of the diagram

H∗(K; β∗F)
β∗
��

ΨK

≃
// H∗(EK)

β̃∗
��

H∗(L;F)
ΨL

≃
// H∗(EL)

where ΨK and ΨL are the isomorphisms given by Proposition 13.3. Choose
two homotopy equivalences u : X → K and v : Y → L, where X and
Y are compact manifolds, and a continuous map φ : X → Y such that
v ◦ φ and β ◦ u are homotopic. By definition H∗(K; β∗F) = H∗(X;u∗β∗F),
H∗(L;F) = H∗(Y ; v∗F), and describing the isomorphisms ΨK and ΨL as in
the proof of Proposition 13.3 the diagram above becomes:

H∗(X;u∗β∗F)
Ψβ◦u

X

≃
//

βu,v
∗
��

ΨK

((
H∗(E

β◦u
X )

ũ∗
≃
// H∗(EK)

β̃∗
��

H∗(Y ; v∗F) ΨY

≃
//

ΨL

66
H∗(EY )

ṽ∗
≃
// H∗(EL)

Here Eβ◦u
X and EY are the total spaces of the pullback fibrations u∗β∗E resp.

v∗E , the isomorphisms Ψβ◦u
X and ΨY are given by Theorem 7.2, and ũ, ṽ are

induced by u resp. v between the corresponding total spaces.

In order to prove that it is commutative we complete the diagram into
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H∗(X;u∗β∗F)
Ψβ◦u

X

≃
//

βu,v
∗

��
Ψ

!!

H∗(E
β◦u
X )

ũ∗
≃

//

(β̃◦u)∗

$$

H∗(EK)

β̃∗

��
H∗(Y ; v∗F) ΨY

≃
// H∗(EY )

ṽ∗
≃

// H∗(EL)

H∗(X;φ∗v∗F)
Ψv◦φ

X

≃
//

φ∗

OO

H∗(E
v◦φ
X )

φ̃∗

OO

(ṽ◦φ)∗

99

Note that the parts of the new addition to the diagram are commutative: the
two triangles on the right side are commutative by naturality of the maps
induced on the total spaces. On the left side we added the identification
isomorphism defined by the homotopy between β ◦ u and v ◦ φ; the com-
mutativity βu,v∗ = φ∗ ◦ Ψ is the definition (123) of βu,v∗ . The lower square
is commutative by Proposition 9.14, which is the version for manifolds of
the current proposition. We have another commutation on the diagram, by
applying Lemma 9.15 to the homotopic maps β ◦ u and v ◦ φ : X → L
(this lemma was stated for a manifold L but the proof in the case when L is
topological space is the same):

(β̃ ◦ u)∗ ◦Ψβ◦u
X = (ṽ ◦ φ)∗ ◦Ψv◦φ ◦Ψ.

With all these relations in hand we are able to complete the proof of our
proposition. We have:

β̃∗ ◦ ũ∗ ◦Ψβ◦u
X = (β̃ ◦ u)∗ ◦Ψβ◦u

X = (ṽ ◦ φ)∗ ◦Ψv◦φ ◦Ψ
= ṽ∗ ◦ φ̃∗ ◦Ψv◦φ ◦Ψ = ṽ∗ ◦ΨY ◦ φ∗ ◦Ψ
= ṽ∗ ◦ΨY ◦ βu,v∗ ,

which is the commutativity relation claimed by our statement.

13.2 Direct limits

Let (Xn)n∈N be a collection of compact connected manifolds, or more gen-
erally of connected topological spaces which are homotopically equivalent to
manifolds. We suppose that they are endowed with basepoints and with con-
tinuous maps in : Xn → Xn+1 which preserve these basepoints. Consider the
direct system defined by (Xn, in) and its direct limit in the category of pointed
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topological spaces, which we denote by X. We denote by jn : Xn → X the
continuous maps defined by the direct limit; we have jn+1 ◦ in = jn. Let F
be a DG-module over C∗(ΩX), the chains on the space of loops based at the
basepoint of X. We define the homology of X with coefficients in F by

H∗(X;F) = lim−→H∗(Xn; j
∗
nF), (124)

where the direct system in the right hand side is defined by the direct maps
in,∗ : H∗(Xn; i

∗
nj

∗
n+1F)→ H∗(Xn; j

∗
n+1F)

Example 13.11. Suppose that Xn is a submanifold of Xn+1 for any n and
that in : Xn ↪→ Xn+1 is the inclusion. In this case X =

⋃
nXn and we

are able to describe an enriched complex whose homology is H∗(X;F). We
take a set of data Ξ0 on X0 and extend it to a set of data Ξ1 on X1 as in
the definition of the direct maps for submanifolds in §9.2; for this choice the
enriched complex C∗(X0,Ξ

0; j∗0F) is a subcomplex of C∗(X1,Ξ
1; j∗1F). Then

we extend Ξ1 to Ξ2 on X2, then to Ξ3 on X3 and so on. We thus get a
set of data Ξ on X yielding a complex C∗(X,Ξ;F) which can be identified
with the direct limit of C∗(Xn,Ξ

n; j∗nF). Its homology is H∗(X;F), using
the commutation between direct limit and homology.

Proposition 13.12. If X and F are as above then H∗(X;F) is the limit
of a spectral sequence whose second page is isomorphic to the homology with
local coefficients Hp(X,HqF).

Proof. This is an easy consequence of the fact that the direct maps in∗ :
H∗(Xn; j

∗
nF) → H∗(Xn+1; j

∗
n+1F) satisfy the spectral sequence property,

i.e. they are the (spectral sequence) limits of direct maps irn,p,q : Er
n,p,q →

Er
n+1,p,q between the spectral sequences corresponding to the enriched ho-

mologies of Xn, resp. Xn+1, such that at the second page the map i2n,p,q :
Hp(Xn, Hq(F))→ Hp(Xn+1, Hq(F)) is the usual direct map induced by in in
homology with local coefficients. This enables us to define

Er
p,q = lim−→

n

Er
n,p,q.

Since direct limits commute with homology we infer that Er
p,q is a spectral

sequence:

Er+1
p,q = lim−→

n

Er+1
n,p,q = lim−→

n

H∗(E
r
n,p,q) = H∗(lim−→

n

Er
n,p,q) = H∗(E

r
p,q),

and using the same argument

H∗(X;F) = lim−→
n

H∗(Xn; j
∗
nF)

= lim−→
n

H∗(E
∞
n,p,q) = H∗(lim−→

n

E∞
n,p,q) = H∗(E

∞
pq ).

211



This means that the spectral sequence Er
p,q converges to H∗(X;F). Moreover

E2
p,q = lim−→

n

E2
n,p,q = lim−→

n

Hp(Xn, HqF) = Hp(X,Hq(F)),

as claimed.

The next statement is the analogue of Theorem 7.2 and of Proposition 13.3
for direct limits:

Proposition 13.13. Let X = lim−→Xn and E : F → E → X a Hurewicz
fibration. Denote by F the DG-module C∗(F ) over C∗(ΩX). Then H∗(X;F)
is isomorphic to H∗(E).

Proof. Let in : Xn → Xn+1, jn : Xn → X be the continuous maps associated
to the direct limit, En the total space of the pullback fibration j∗nE and
ĩn : En → En+1 the maps induced by in. Writing En = Xn jn×π E (where
π : E → X is the projection) we see that lim−→En = E. We infer

H∗(X;F) = lim−→
in∗

H∗(Xn; j
∗
nF) ≃ lim−→

ĩn∗

H∗(En) = H∗(lim−→En) = H∗(E).

Note that we used here Proposition 13.10 which implies that the direct map
in∗ : H∗(Xn; j

∗
nF) → H∗(X; j∗n+1F) coincides with ĩn : H∗(En) → H∗(En+1)

via the isomorphisms between homology with DG coefficients and homology
of the total spaces.

Direct maps. Let (Xn, in) and (Yn, kn) be two direct systems of connected
topological spaces which are homotopy equivalent to compact manifolds and
denote by X, resp. Y , their direct limits. Denote by jn : Xn → X, ln :
Yn → Y the maps associated to the direct limits. Consider (φn), a family of
continuous maps φn : Xn → Yn which define a morphism of direct systems,
i.e. satisfy φn+1 ◦ in = kn ◦ φn. This defines a continuous map φ = lim−→φn :
X → Y . If F is a DG-module over C∗(ΩY ), the direct maps

φn∗ : H∗(Xn; j
∗
nφ

∗F) = H∗(Xn;φ
∗
nl

∗
nF)→ H∗(Yn; l

∗
nF)

define a morphism of direct systems. We define the direct map as

φ∗ : H∗(X;φ∗F)→ H∗(Y ;F), φ∗ = lim−→φn∗. (125)

Remark 13.14. The map φ∗ between limits satisfies the four properties
from §8.1: identity, composition, homotopy and spectral sequence. This is
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a straightforward consequence of the fact that the direct maps φn∗ satisfy
these properties. We point out that the hypothesis we need for the homo-
topy property to be satisfied is that the homotopy between two maps φ, χ :
lim−→Xn → lim−→Yn is the direct limit of homotopies [0, 1] ×Xn → Yn between
φn and χn. The identification isomorphism Ψ : H∗(X;φ∗F) → H∗(X;χ∗F)
will be the direct limit of the identification isomorphisms defined by these
homotopies.

We finish this section with the following analogue of Proposition 13.10.

Proposition 13.15. Let φn : Xn → Yn be a family of continuous maps
between direct systems (Xn, in) and (Yn, kn) and denote by φ : X → Y
the direct limit lim−→φn between X = lim−→Xn and Y = lim−→Yn. Consider a
Hurewicz fibration E : F → EY → Y and its pullback φ∗E whose total space
is denoted by EX . Then, if F is the DG-module C∗(F ), the direct morphism
φ∗ : H∗(X;φ∗F) → H∗(Y ;F) coincides – via the isomorphisms of Proposi-
tion 13.13, – with the map φ̃∗ : H∗(EX)→ H∗(EY ) induced by φ between the
singular homologies of the total spaces.

Proof. Let jn : Xn → X and ln : Yn → Y be the maps defined by the direct
limits and denote EX

n , E
Y
n the total spaces of the pullback fibrations j∗nφ

∗E
respectively l∗nE . The proof of Proposition 13.13 shows that the isomorphism

ΨX : H∗(X;φ∗F) ≃−→ H∗(EX)

is the direct limit of the isomorphisms

ΨX
n : H∗(Xn; j

∗
nφ

∗F) ≃−→ H∗(E
X
n ),

and similarly
ΨY : H∗(Y ;F) ≃−→ H∗(EY )

is the direct limit of

ΨY
n : H∗(Yn; l

∗
nF)

≃−→ H∗(E
Y
n ).

Our result is proved by passing to the direct limit in the following diagram,
which is commutative by Proposition 13.10:

H∗(E
X
n )

φ̃n∗ // H∗(E
Y
n )

H∗(Xn; j
∗
nφ

∗F) φn∗ //

Ψn
X ≃

OO

H∗(Yn; l
∗
nF)

Ψn
Y ≃

OO
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13.3 Homology with DG-coefficients on the free loop
space

We adapt to DG-coefficients the presentation of Abouzaid ([Abo15], Chap-
ter 11) of the twisted homology of the free loop space. We start with the
contractible loops and then explain how the definition adapts to the other
connected components of the free loop space. Let Q be a compact mani-
fold and X = LQ the space of contractible free loops on Q. We will suppose
w.l.o.g. that they are piecewise smooth; the space LpsQ of such loops has the
same homotopy type as LQ and, if i : LpsQ ↪→ LQ is the inclusion, we will
define H∗(LQ;F) = H∗(LpsQ; i

∗F). Fix a Riemannian metric g on Q and
denote for each r ≥ 0 by LrQ the connected component of ⋆ in LpsQ formed
by loops of length L ≤ r . If (rn) is an increasing sequence which tends to
+∞ and in : LrnQ ↪→ Lrn+1Q are the inclusions, then clearly LQ = lim−→L

rnQ.

Definition 13.16. We call a sequence (rn) as above admissible if, for each
n, the space LrnQ is homotopy equivalent to a compact manifold (possibly
with boundary).

M. Abouzaid proves in [Abo15, Proposition 2.4] the following result:

Proposition 13.17. Given a metric g on Q, there exist sequences (rn) which
are admissible and tend to infinity.

The idea of the proof is that a piecewise smooth free loop is homotopic to a
concatenation of (short) geodesics and the endpoints of these geodesics define
a subset of QN for some integer N . We will present a sketch of the proof at
the end of this section.

The two preceding sections then allow us to define the homology of the space
LQ with DG-coefficients: Choose a basepoint ⋆ on Q and take the constant
loop ⋆ as basepoint on LQ. Let F be a DG module over C∗(ΩLQ), g a
metric on Q and (rn) an admissible sequence. Define

H∗(LQ;F) = lim−→H∗(LrnQ; j∗nF) (126)

where jn : LrnQ→ LQ are the inclusions. It is easy to see that:

Proposition 13.18. The homology H∗(LQ;F) does not depend on the met-
ric g, nor on the choice of an admissible sequence.

Proof. Let g, g′ be two metrics on Q and (rn), (r
′
n) admissible sequences

corresponding to g, resp. g′. Since Q is compact there is some C > 0 such
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that, for any q ∈ Q and v ∈ TqQ,
1

C
||v||g ≤ ||v||g′ ≤ C||v||g.

We infer that there exist subsequences (r′kn) of (r′n) and (rln) of (rn) such
that

Lrng Q ⊂ L
r′kn
g′ Q ⊂ L

rln
g Q.

We denote by φn and φ′
n these two inclusions. They induce morphisms of

direct systems, whose limits are both the identity map Id : LQ→ LQ. How-
ever, they do not necessarily define the identity morphism at the level of ho-
mology with DG-coefficients (for the same kind of reason why the direct map
Id∗ : C∗(X; Ξ;F)→ C∗(X,Ξ

′;F) is not the identity in homology, but rather
the continuation isomorphism for the data Ξ and Ξ′, see Proposition 10.3).
We therefore use two different notations:

Id∗ = lim−→φn∗ : H∗(LQ, g, (rn);F)→ H∗(LQ, g′, (r′kn);F)

and
Id′

∗ = lim−→φ′
n∗ : H∗(LQ, g′, (r′kn);F)→ H∗(LQ, g, (rln);F)

for some chosen DG-module F over C∗(ΩLQ). Now direct maps satisfy the
composition property (Remark 13.14) and therefore

Id′
∗ ◦ Id∗ = (Id′ ◦ Id)∗ = lim−→(φ′

n ◦ φn)∗.

But φ′
n ◦ φn is the inclusion LrnQ ⊂ LrknQ and by definition of the direct

limit lim−→(φ′
n ◦ φn)∗ is an isomorphism. By an analogous argument, taking

a subsequence of (kn) we find some direct map Id′′
∗ such that Id′′

∗ ◦ Id′
∗ is an

isomorphism. As a consequence, Id′
∗ is an isomorphism and therefore Id∗

is also an isomorphism. Therefore our claimed isomorphism is given by the
composition

H∗(LQ, g, (rn);F) Id∗

≃ // H∗(LQ, g′, (r′kn);F) H∗(LQ, g′, (r′n);F)
≃oo . (127)

It is an easy exercise to prove that the isomorphism above does not depend
on the choice of the subsequence (k′n). Therefore we are allowed to use the
notation H∗(LQ;F) and use these identification isomorphisms for different
sets of data [g, (rn)] used to define this homology.

Remark 13.19. By Proposition 13.12 we get that H∗(LQ;F) is the limit
of a spectral sequence with second page E2

pq = Hp(LQ;Hq(F)). Also, by
Proposition 13.13 we obtain that, for a Hurewicz fibration E : F → E → LQ,
the homology H∗(LQ;C∗(F )) is isomorphic to the singular homology H∗(E).
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Direct maps. According to §13.2 a family φ = (φn) of continuous maps
which defines a morphism between two direct systems yields a direct map in
homology with DG-coefficients between their limits. We will define such a
map for free loop spaces in two cases:

Case 1. Consider a smooth map φ : Q→ V between two compact manifolds.
Denote by Lφ : LQ→ LV the map induced by φ on the free loop space. Let
F be a DG-module over C∗(ΩLV ) . Our purpose is to define a direct map
Lφ∗ : H∗(LQ;Lφ∗F)→ H∗(LV ;F).
Choose [gQ, (rQn )] and [gV , (rVn )] sets of data (metric + admissible sequence)
on these manifolds. Notice that for any v ∈ TqQ we have ||dφ(v)||gV ≤
C · ||v||gQ , for C = supq∈Q||dqφ||. In particular, by taking a subsequence we

may suppose that the admissible sequence (rVn ) satisfies Lφ(Lr
Q
nQ) ⊂ LrVn V .

Let Lφn be the restriction of Lφ to Lφ(Lr
Q
nQ); the maps Lφn define a

morphism of direct systems and we obviously have lim−→Lφn = Lφ. Define
the direct map

Lφ∗ : H∗(LQ, gQ, (rQn );Lφ∗F)→ H∗(LV, gV , (rVkn);F)

as the direct limit of Lφn∗, as in the previous section.

One may check that Lφ∗ is well defined, i.e. compatible with the identifica-
tions (127), by considering the following commutative diagram:

H∗(LQ, gQ, (rQn );Lφ∗F)
Lφ∗

//

IdQ∗ ≃
��

H∗(LV, gV , (rVn );F)

IdV∗ ≃
��

H∗(LQ, g
′Q, (r

′Q
jn
);Lφ∗F)

Lφ∗
// H∗(LV, g

′V , (r
′V
pn );F)

H∗(LQ, g
′Q, (r

′Q
n );Lφ∗F)

Lφ∗
//

i∗ ≃

OO

H∗(LV, g
′V , (r

′V
n );F)

i∗ ≃

OO

where the leftmost and rightmost arrows define the identifications and the
subsequence (r

′V
pn ) satisfies r

′V
pn ≥ max(r

′V
jn , Cr

V
n ).

Remark 13.20. The map Lφ∗ has the following properties:

� It satisfies the properties from §8.1: identity, composition, homotopy
and spectral sequence. These follow immediately from the correspond-
ing properties of direct maps between direct limits (Remark 13.14).

� If E : F → ELV → LV is a Hurewicz fibration and ELQ is the total
space of the pullback Lφ∗E then, denoting F = C∗(F ), we have that
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Lφ∗ : H∗(LQ;Lφ∗F) → H∗(LV ;F) coincides with Lφ∗ : H∗(EQ) →
H∗(EV ) via the isomorphisms of Remark 13.19. This is an easy conse-
quence of Proposition 13.15.

Let us also define the direct map Lφ∗ for φ : Q→ V continuous. Recall the
notation LpsQ for the piecewise smooth loops, and denote by iQ : LpsQ ↪→
LQ the inclusion. We recall that, by definition,H∗(LQ;F) = H∗(LpsQ; i

∗
QF).

Choose φ : Q→ V a smooth approximation of φ. We get a diagram

LpsQ

Lφ
��

iQ // LQ
Lφ
��

LpsV
iV // LV

which is commutative in homotopy. Let F be a DG-module over C∗(ΩLV )
and denote by Ψ : H∗(LpsQ; i

∗
QLφ∗F) → H∗(LpsQ;Lφ∗i∗VF) the identifica-

tion isomorphism defined by the above homotopy. We define the direct map
Lφ∗ : H∗(LpsQ; i

∗
QLφ∗F)→ H∗(LpsV ; i∗VF) as the composition

Lφ∗ = Lφ∗ ◦Ψ.

(Compare to (123) in Definition 13.4.) The fact that this definition does not
depend on the choice of the approximation φ, and the fact that the properties
from Remark 13.20 continue to hold in this case, are proved in the same way
as in §13.1. We omit the details.

Case 2. Let Q be a smooth manifold and i : Q ↪→ LQ the inclusion. Consider
a DG-module F over C∗(ΩLQ). We define the direct map i∗ : H∗(Q; i

∗F)→
H∗(LQ;F). As above, we replace LQ by the space LpsQ of piecewise smooth
loops. We take a metric gQ on Q and an admissible sequence (rn). Then,
writing Q = lim−→Qn with Qn = Q, we notice that i : Q→ LQ may be seen as
the direct limit of in = i : Qn → LrnQ. Following (125) in §13.2, we define
i∗ = lim−→ in∗. As in the aforementioned section, if E is the total space of a
Hurewicz fibration E : F → E → LQ and F = C∗(F ), then i∗ is the direct
map in singular homology H∗(E|Q) → H∗(E), where E|Q is the total space
of the pullback fibration i∗E .
For further purposes it is useful to present a

Sketch of the proof of Proposition 13.17. Let g be a metric on Q. We may
suppose w.l.o.g. that its injectivity radius is larger than 4. For any integer
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n ≥ 1 consider n numbers δni ∈ (0, 2) such that rn =
∑n

i=1 δ
n
i is an increasing

sequence which tends to infinity. Denote by d the distance on Q and define

X∗
n = {(q0, . . . qn−1) ⊂ Qn : d(qi−1, qi) ≤ δni , ∀i = 1, . . . , n,

where qn ≡ q0}.

For a generic choice of δni the space X∗
n is a manifold with boundary and

corners. Note that the results of the preceding two sections are valid for
manifolds with corners: we take the (negative) gradient pointing inwards
along the boundary and thus the trajectories between critical points stay
away from ∂X∗

n. We may think of an element in X∗
n as encoding the vertices

of an n-gon in Q whose edges are geodesics. Now denote by Lr∗Q the space of
all free loops (not necessarily contractible) of length less than r. Define un :
X∗
n → Lrn∗ Q by mapping an element of X∗

n into its corresponding polygon.
Abouzaid proves in [Abo15] that un is a homotopy equivalence; if L(γ) is the
length of a loop γ (supposed piecewise smooth, as above, and parametrized
at unit speed), then

vn(γ) = (γ(0), γ(δn1
L(γ)
rn

), γ((δn1 + δn2 )
L(γ)
rn

), . . . , γ((δn1 + δn2 + · · · δnn−1)
L(γ)
rn

))

is a homotopy inverse of un.

Considering Xn, the connected component of X∗
n which contains the base-

point (⋆, ⋆, · · · , ⋆), we infer that un : Xn → LrnQ is a homotopy equivalence
which preserves the basepoints, as claimed.

Remark 13.21. We may also choose the numbers δni to satisfy the property
δni ≤ δn+1

i+1 for all i = 1, . . . , n. For this choice we have a natural inclusion
φn : Xn → Xn+1 defined by φn(q0, . . . , qn−1) = (q0, q0, . . . qn−1) and the
diagram

Xn
un //

φn

��

LrnQ
in
��

Xn+1
un+1 // Lrn+1Q

is commutative. This gives a description of the direct system of manifolds
in the limit of which we may define a Morse complex with DG-coefficients,
whose homology is by definition the one of LQ.

Remark 13.22. Definition for non-contractible free loops. Let a be a
free homotopy class of loops and LaQ the connected component of the free
loop space defined by this class. We defined above the homology with DG-
coefficients for a = 0; the definition easily adapts to the general case. We first
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fix a basepoint γa ∈ LaQ. After deforming it into a piecewise geodesic loop
we may suppose that it belongs to the image of un0(X

∗
n0
) for some sufficiently

large n0. Let ⋆n0 ∈ X∗
n0

such that un0(⋆n0) = γa and take as basepoint of
X∗
n the point ⋆n = φn−1 ◦ φn−2 ◦ · · · ◦ φn0(⋆n0) for n ≥ n0 + 1, where φk

are the maps of the previous remark. For n ≥ n0 we denote by Lrna Q the
connected component containing γa of the free loops belonging to the class a
of length ≤ r and by Xa

n the component of X∗
n which contains ⋆n. We remark

that the proof of Proposition 13.17 immediately implies that un : Xa
n → Lrna

is a homotopy equivalence which preserves the basepoints. On the other
hand we also have LaQ = lim−→L

rn
a Q. We may therefore define H∗(LaQ;F)

analogously to (126), the direct system (Lrna Q) being considered for n ≥ n0.
The assertions of Proposition 13.18, remain valid, as well as Remark 13.19.
Direct maps are also defined in a similar manner: for any continuous map
φ : Q → V we have φ∗ : H∗(LaQ;φ∗F) → H∗(Lφ(a)V ;F) and these maps
satisfy the properties of Remark 13.20.
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A Comparison of geometric and analytic ori-

entations in Morse theory

Our purpose in this section is to compare two sets of orientations for moduli
spaces of Morse trajectories. The first one, which we refer to as geometric
orientation, is the one used in the rest of this paper and is based on pre-
senting the moduli spaces of Morse trajectories as transverse intersections of
submanifolds of the ambient manifold, see §5.2. The second one, which we
refer to as analytic orientation, was used in [Sch93] and is based on the no-
tion of coherent orientation for suitable spaces of Fredholm operators defined
on the compactified real line. Such a comparison is needed in order to relate
Floer theory on aspherical manifolds to Morse theory [BDHO].

This appendix is structured as follows: we recall in §A.1 the definition of
the geometric orientation, we recall in §A.2 the definition of the analytic
orientation, and we compare the two in §A.3. To make the appendix self-
contained, we recall some relevant definitions from the body of the paper.

We consider a closed manifoldX of dimension d, a Morse function f : X → R,
and a Morse-Smale negative pseudo-gradient vector field for f , denoted by
ξ. Given x ∈ Crit(f) we denote by W u(x) its unstable manifold with respect
to ξ and W s(x) its stable manifold with respect to ξ. That ξ is Morse-Smale
means that the intersectionW u(x)∩W s(y) is transverse for all x, y ∈ Crit(f).

A.1 Geometric orientation

Following §5.2 we let

M(x, y) = W u(x) ∩W s(y)

and call it the space of parametrized ξ-trajectories. The terminology is moti-
vated by the fact that any point p ∈M(x, y) determines a unique trajectory
γ : R → X such that γ̇ = ξ ◦ γ and γ(0) = p, which satisfies in addition
lims→−∞ γ(s) = x, lims→+∞ γ(s) = y. Conversely, any trajectory γ : R→ X
such that γ̇ = ξ◦γ and lims→−∞ γ(s) = x, lims→+∞ γ(s) = y can be identified
with the point p = γ(0).

Let Ss(y) = W s(y) ∩ f−1(f(y) + ε) be the stable sphere of y, where ε > 0 is
chosen such that the interval (f(y), f(y) + ε] does not contain critical values
of f . We let

L(x, y) = W u(x) ∩ Ss(y)
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and call it the moduli space of unparametrized ξ-trajectories. The terminology
is motivated by the fact that, given any trajectory γ : R→ X such that γ̇ =
ξ ◦ γ and lims→−∞ γ(s) = x, lims→+∞ γ(s) = y, the intersection im γ ∩ Ss(y)
consists of a single point, which belongs to L(x, y). Thus L(x, y) is naturally
identified with the quotient of M(x, y) by the R-action that translates a
point along the unique ξ-trajectory passing through it.

In §5.2 we oriented the moduli spaces L(x, y) by first choosing orientations
of all the unstable manifolds W u(x), x ∈ Crit(f) and then requiring that the
canonical isomorphism

|L(x, y)| ⊗ |R⟨−ξ⟩| ⊗ |W u(y)| ≃ |W u(x)| (128)

be orientation preserving (see Remark 5.5).

Definition A.1. Given a choice of orientation of the unstable manifolds
W u(x), x ∈ Crit(f), the resulting family of orientations of the moduli spaces
L(x, y) is called geometric orientation.

For the purpose of this section we now recall the definition of the isomor-
phism (128). The inclusion L(x, y) ↪→ W u(x) induces at any point p ∈
L(x, y) the short exact sequence

0→ TpL(x, y)→ TpW
u(x)→ TpW

u(x)/TpL(x, y) ≡ TpX/TpS
s(y)→ 0

and thus determines a canonical isomorphism

|L(x, y)| ⊗ |TpX/TpSs(y)| ≃ |W u(x)|.

Here the identification TpW
u(x)/TpL(x, y) ≡ TpX/TpS

s(y) is canonical and
holds because the intersection W u(x) ∩ Ss(y) is transverse, i.e. TpX =
TpW

u(x) + TpS
s(y) (see also (118)). On the other hand, the inclusions

TpS
s(y) ⊂ TpW

s(y) ⊂ TpX determine the short exact sequence

0→ TpW
s(y)/TpS

s(y)→ TpX/TpS
s(y)→ TpX/TpW

s(y)→ 0

which gives rise to a canonical isomorphism

|TpW s(y)/TpS
s(y)| ⊗ |TpX/TpW s(y)| ≃ |TpX/TpSs(y)|.

Now Ss(y) is canonically cooriented in W s(y) as the boundary of the disc
W s(y)∩ {f ≤ f(y) + ε} by its exterior normal −ξ, and W s(y) is canonically
cooriented in X by W u(y) since TyW

u(y) ≡ TyX/TyW
s(y). In other words

we have canonical isomorphisms

|TpW s(y)/TpS
s(y)| ≃ |R⟨−ξ(p)⟩| and |TpX/TpW s(y)| ≃ |W u(y)|.

The above isomorphisms combine into (128).
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A.2 Analytic orientation

Given x, y ∈ Crit(f), the spaceM(x, y) of ξ-trajectories connecting x and y
can be interpreted as the zero set of the Fredholm section γ 7→ γ̇ − ξ(γ) of a
suitable Hilbert bundle over a space of paths connecting x to y, see [Sch93,
Appendix A].7 The linearization Dγ of this section at γ ∈ M(x, y) is a
Fredholm operator that acts on vector fields along γ. Once a reference Rie-
mannian metric on X has been chosen, the linearization can be expressed as
DγX = ∇sX−∇Xξ(γ). The Fredholm index of Dγ is equal to the difference
of Morse indices |x| − |y|, and Dγ is surjective if ξ is Morse-Smale [Sal90,
Theorem 3.3] (surjectivity of Dγ at all γ ∈ M(x, y) and the Morse-Smale
condition are actually equivalent). As a consequence, under the assumption
that ξ is Morse-Smale we obtain a canonical isomorphism of vector spaces

TγM(x, y) ≃ kerDγ

and therefore a canonical isomorphism of orientation lines

|TγM(x, y)| ≃ |Dγ|. (129)

Choose once and for all orthogonal isomorphisms TxX ≃ Rd for x ∈ Crit(f)
and denote by Ax ∈ Symd(R) the d × d-symmetric matrix that represents
the Hessian of f at x in this trivialization. There is a unique up to homotopy
orthogonal trivialization γ∗TM ≃ R × Rd that is asymptotic at ±∞ to the
chosen trivializations at x and y, and in this trivialization the operator Dγ

takes the form

Dγ : W
1,2(R,Rd)→ L2(R,Rd), X 7→ ∂sX + A(s)X(s), (130)

where A : R → Symd(R) is a path of symmetric matrices such that
lims→−∞A(s) = Ax, the Hessian of f at x, and lims→+∞A(s) = Ay, the
Hessian of f at y. Since Ax and Ay are nondegenerate, any operator of the
form (130) with fixed asymptotic behavior Ax and Ay is Fredholm, see [Sal90,
Theorem 3.3] or [Sch93, Proposition 2.12], and the space Dx,y of such oper-
ators is convex. The determinant bundle over Dx,y, denoted by detx,y, is
therefore trivializable. As a consequence, the orientation bundle |M(x, y)| is
also trivializable because, by (129), it is isomorphic to the pullback of |detx,y|
under the map M(x, y) → Dx,y, γ 7→ Dγ. This implies that the spaces of
Morse trajectoriesM(x, y) are orientable.

7More precisely, one considers the space P of paths R→ X of Sobolev class W 1,2 and
asymptotic to x, resp. y, at ±∞, and the Hilbert bundle over P with fiber L2(γ∗TX), the
space of L2-vector fields along γ. Here the L2-scalar product is understood with respect
to some reference Riemannian metric on X.
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Given x, z, y ∈ Crit(f) and R≫ 0 there is a gluing map

#R : KR ⊂M(x, z)×M(z, y)→M(x, y),

where KR ⊂ M(x, z) ×M(z, y) is a family of compact sets defined for R
large enough, which can be chosen to exhaustM(x, z)×M(z, y) as R→∞.
This family of gluing maps induces a canonical isomorphism

|M(x, z)| ⊗ |M(z, y)| ≃ |M(x, y)|. (131)

By definition, a coherent orientation of the moduli spacesM(x, y) is a triv-
ialization of |M(x, y)| for all x, y ∈ Crit(f) such that the above canonical
isomorphisms are orientation preserving.

The key fact is that coherent orientations exist. This is proved in the con-
text of Morse theory in [Sch93, §3.2] by a method similar to the classical
one in Floer theory [FH93]. The starting point for the proof is that the
isomorphisms (131) are induced by canonical isomorphisms [FH93, Sch93]

|detx,z| ⊗ |detz,y| ≃ |detx,y| (132)

determined by the linear gluing map8

#R : Dx,z ×Dz,y → Dx,y, (D1, D2) 7→ D1#RD2.

Thus, in order to prove the existence of coherent orientations for the spaces
of connecting trajectories M(x, y), it is enough to prove the existence of
orientations of the determinant bundles detx,y, x, y ∈ Crit(f) such that the
isomorphisms (132) are orientation preserving (we call such orientations co-
herent as well). A key property of the isomorphisms (132) is associativity,
i.e. commutativity of the diagram

|detx,z| ⊗ |detz,y| ⊗ |dety,w| ≃ //

≃
��

|detx,y| ⊗ |dety,w|
≃
��

|detx,z| ⊗ |detz,w| ≃ // |detx,w|.

(See [Sch93, Theorem 6] or [FH93, Theorem 10].)

8To define the linear gluing map one first chooses a smooth nondecreasing cutoff func-
tion ρ : R → [0, 1] such that ρ ≡ 0 on (−∞, 0] and ρ ≡ 1 on [1,+∞). Then, given R > 0
and operators D1 = ∂s +A1(s) and D2 = ∂s +A2(s), one defines D1#RD2 = ∂s +AR(s)
with AR(s) = A1(s+ R) for s ≤ −1, AR(s) = (1− ρ(−s)− ρ(s))Az + ρ(−s)A1(s+ R) +
ρ(s)A2(s−R) for s ∈ [−1, 1], and AR(s) = A2(s−R) for s ≥ 1.
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Coherent orientations on the determinant bundles detx,y can be constructed
in various ways, but the overall scheme is predetermined: an initial choice
of orientations for some determinant lines induces via (132) orientations for
all determinant lines, and the resulting set of orientations is coherent by the
associativity property. The recipe from [Sch93], which is analogous to the one
for Cauchy-Riemann operators from [FH93], stays in the realm of operators
defined on the real line: it starts with the choice of orientations of detx0,y
with x0 ∈ Crit(f) fixed and y ∈ Crit(f) arbitrary, such that the orientation
of detx0,x0 is the canonical one. These induce orientations for dety,x0 , which
further induce coherent orientations of detx,y.

We will proceed in a slightly different manner, inspired by the recipe for
Cauchy-Riemann operators from [BM04, BO09], and deduce coherent ori-
entations from a choice of orientations of determinant bundles of Fredholm
operators defined over half-lines. More precisely, we consider operators of
the form (130) with domain of definition (−∞, 0] and asymptotic condition
imposed only at −∞, i.e.,

Du
x : W 1,2((−∞, 0],Rd)→ L2((−∞, 0],Rd), X 7→ ∂sX + A(s)X(s),

where A : (−∞, 0] → Symd(R) is a path of symmetric matrices such that
lims→−∞A(s) = Ax. The arguments of [Sal90, Theorem 3.3] or [Sch93,
Proposition 2.12] adapt in a straightforward way to show that the operator
Du
x is Fredholm of index indDu

x = |x|, the Morse index of x. We denote by
Dux the space of such operators and note as before that it is convex, so that
its determinant bundle, denoted by detx, is orientable.

Remark A.2. Although we will not use them in the sequel, we introduce for
completeness two other contractible spaces consisting of Fredholm operators
of the form (130). The space Dsx consists of operators

Ds
x : W

1,2([0,+∞),Rd)→ L2([0,+∞),Rd), X 7→ ∂sX + A(s)X(s),

where A : [0,+∞) → Symd(R) is a path of symmetric matrices such that
lims→+∞A(s) = Ax. Any operator Ds

x is Fredholm of index indDs
x = d− |x|.

The space D consists of operators

D : W 1,2(I,Rd)→ L2(I,Rd), X 7→ ∂sX + A(s)X(s),

where I ⊂ R is a closed interval of nonzero length and A : I → Symd(R) is a
path of symmetric matrices. Any operator D is Fredholm of index indD = d.

We now choose an orientation of detx for each x ∈ Crit(f) and induce from
it a coherent orientation of the determinant lines detx,y for all x, y ∈ Crit(f)
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as follows. There is again a family of linear gluing maps

#R : KR ⊂ Dx,y ×Duy → Dux
defined for R≫ 0, which induces a canonical isomorphism

|detx,y| ⊗ |dety| ≃ |detx|. (133)

Having chosen orientations of detx and dety, there is a unique orientation of
detx,y such that this isomorphism is orientation preserving. Associativity of
gluing now takes the form of the commutative diagram

|detx,z| ⊗ |detz,y| ⊗ |dety|

��

≃ // |detx,z| ⊗ |detz|
≃
��

|detx,y| ⊗ |dety| ≃ // |detx|

By definition the horizontal arrows and the right vertical arrow in the above
diagram are orientation preserving, and therefore the left vertical arrow is also
orientation preserving, i.e., the canonical isomorphism (131) is orientation
preserving. This proves that the resulting system of orientations on detx,y is
coherent.

We infer a coherent system of orientations for the spaces of trajectories
M(x, y), and these induce a system of orientations for the moduli spaces
L(x, y) =M(x, y)/R, with R-action determined by the infinitesimal genera-
tor ξ, by requiring that the canonical isomorphism

|R⟨ξ⟩| ⊗ |L(x, y)| ≃ |M(x, y)| (134)

be orientation preserving.

Definition A.3. Given a choice of orientations of the determinant bundles
detx, x ∈ Crit(f), the resulting family of orientations of the moduli spaces
L(x, y) is called analytic orientation.

Remark A.4. While our recipe for constructing coherent orientations start-
ing from choices of orientations of the determinant lines detx, x ∈ Crit(f) can
be rephrased in the terms of [Sch93, §3.2], its advantage is that it is directly
suited for a comparison with the geometric orientation of the moduli spaces.

A.3 Comparison between the two orientations

By construction, the geometric orientation of the moduli spaces L(x, y) de-
pends on a choice of orientations of the unstable manifolds W u(x), x ∈
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Crit(f), and the analytic orientation depends on a choice of orientations of
the determinant bundles detx, x ∈ Crit(f). A first step in comparing the geo-
metric and analytic orientations is to show that these choices are canonically
equivalent.

Lemma A.5. A choice of orientation of the unstable manifold W u(x) for
some x ∈ Crit(f) is canonically equivalent to a choice of orientation of the
determinant bundle detx.

Proof. A choice of orientation of detx is equivalent to a choice of orientation
of any of its fibers, so that it is enough to study the operator Du

x given by
a constant path A(s) ≡ Ax. Denote by λ1, . . . , λd the eigenvalues of Ax,
ordered such that λ1, . . . , λk < 0 and λk+1, . . . , λd > 0 with k = |x|, and
denote by E1, . . . , Ed an orthonormal basis of eigenvectors. The operator
Du
x is surjective (this can be deduced for example by a direct truncation

argument from the bijectivity of the operator Dx,x = ∂s + Ax ∈ Dx,x [Sal90,
Theorem 3.3]), so that detDu

x = Λmax kerDu
x. A general solution to the

equation Dx,xX = 0 is X(s) =
∑d

i=1 cie
−λisEi with ci ∈ R. This map

belongs to W 1,2((−∞, 0],Rd) if and only if ck+1 = · · · = cd = 0, so that
kerDu

x = Vect⟨e−λisEi : i = 1, . . . , k⟩. An orientation of kerDu
x is therefore

equivalent to an orientation of Vect⟨E1, . . . , Ek⟩, the negative eigenspace of
Ax, and this is in turn equivalent to an orientation of W u(x).

Proposition A.6. Given equivalent choices of orientations of W u(x) and
detx for x ∈ Crit(f), the induced geometric and analytic orientations of the
moduli spaces L(x, y) differ by a sign equal to (−1)|x|−|y|.

Proof. The geometric orientation is determined by requiring that the canon-
ical isomorphism

|L(x, y)| ⊗ |R⟨−ξ⟩| ⊗ |W u(y)| ≃ |W u(x)| (135)

is orientation preserving.

The analytic orientation is determined by requiring that the canonical iso-
morphisms (133) and (134) are orientation preserving, hence requiring that
the canonical isomorphism |R⟨ξ⟩| ⊗ |L(x, y)| ⊗ |dety| ≃ |detx| is orientation
preserving. Under the equivalence of orientations between W u(x) and detx
for x ∈ Crit(f), this is equivalent to requiring that the canonical isomorphism

|R⟨ξ⟩| ⊗ |L(x, y)| ⊗ |W u(y)| ≃ |W u(x)| (136)

is orientation preserving. The definitions of the canonical isomorphisms (136)
and (135) imply that they only differ by rearranging the factors, and therefore
the analytic orientation of L(x, y) differs from the geometric orientation by
the sign (−1) · (−1)dimL(x,y) = (−1)|x|−|y|.
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A.4 Comparing the homologies

Corollary A.7. Let {ox : x ∈ Crit(f)} be a choice of orientations of
W u(x) or, equivalently, of detx. The analytic orientation of the moduli spaces
L(x, y) determined by {ox} is equal to the geometric orientation determined
by {(−1)|x|ox}.

Proof. This follows directly from Proposition A.6 and the geometric orienta-
tion rule (135).

We now explain how the corollary implies that Morse homology with DG
local coefficients does not depend on whether we choose geometric- or analytic
orientations.

Given o = {ox}, we set ō = {(−1)|x|ox}.

Let Ξ = (f, ξ, o, sgeomx,y (o),Y , θ) be Morse data, where f is a Morse function, ξ
is a Morse-Smale negative pseudo-gradient vector field, o = {ox} is a choice
of orientations for W u(x), {sgeomx,y (o)} is a representing chain system for the

compactified moduli spaces L(x, y) endowed with the geometric orientation
induced by o, Y is a collapsing tree, and θ is a homotopy inverse for the
collapsing map X → X/Y .
We denote sanx,y(o) = (−1)|x|−|y|sgeomx,y (o). By Proposition A.6, this is a rep-

resenting chain system for the compactified moduli spaces L(x, y) endowed
with the analytic orientation induced by o. On the other hand, by Corol-
lary A.7 we have sanx,y(o) = sgeomx,y (ō).

Twisting cocyclesmx,y ∈ C|x|−|y|−1(ΩX) are obtained from representing chain
systems sx,y using the collapsing tree Y and the homotopy inverse θ. Ac-
cordingly, we obtain twisting cocycles mgeom

x,y (o), man
x,y(o) and mgeom

x,y (ō) and
we have

(−1)|x|−|y|mgeom
x,y = man

x,y(o) = mgeom
x,y (ō).

This implies the following.

Proposition A.8. Given a DG-local system F , we have an equality of chain
complexes

FC∗(X, f, ξ, o, s
an
x,y(o),Y , θ;F) = FC∗(X, f, ξ, ō, s

geom
x,y (ō),Y , θ;F).
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Mathematics. Birkhäuser Verlag, Basel, 1993.

231



[Ser51] Jean-Pierre Serre. Homologie singulière des espaces fibrés. Appli-
cations. Ann. of Math. (2), 54:425–505, 1951.

[SG11] Jeffrey Strom and Thomas Goodwillie. The fiber of a Serre fi-
bration. https://mathoverflow.net/questions/53729/the-fiber-of-a-
serre-fibration, 2011.

[Zho19] Zhengyi Zhou. Morse-Bott cohomology from homological pertur-
bation theory, to appear in AGT. arXiv:1902.06587, 2019.

[Zho23] Zhengyi Zhou. On the cohomology ring of symplectic fillings. Al-
gebr. Geom. Topol., 23(4):1693–1724, 2023.

Jean-François Barraud
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Université de Strasbourg, Institut de recherche mathématique avancée, IRMA,
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