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Abstract

In previous work, we defined “link spectral invariants” for any compact surface
and used these to study the algebraic structure of the group of area-preserving
homeomorphisms; in particular, we showed that the kernel of Fathi’s mass-flow
homomorphism is never simple. A key idea for this was a kind of Weyl law, showing
that asymptotically the link spectral invariants recover the classical Calabi invariant.

In the present work, we use the subleading asymptotics in this Weyl law to
learn more about the algebraic structure of these homeomorphism groups in the
genus zero case. In particular, when the surface has boundary, we show that the
kernel of the Calabi homomorphism on the group of hameomorphisms is not simple,
answering an old question of Oh and Müller; this contrasts the smooth case, where
the kernel of Calabi is simple. We similarly show that the group of hameomorphisms
of the two-sphere is not simple. Related considerations allow us to extend the
Calabi homomorphism to the full group of compactly supported area-preserving
homeomorphisms, answering a longstanding question of Fathi. In fact, we produce
infinitely many distinct extensions.

Central to the applications is that we show that the subleading asymptotics for
smooth, possibly time-dependent, Hamiltonians are always Op1q, and for certain
autonomous maps recover the Ruelle invariant. The construction of a hameomor-
phism with “infinite Ruelle invariant” then shows that a normal subgroup with Op1q

subleading asymptotics is proper.
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1 Introduction

Area-preserving homeomorphisms of surfaces

Let pM,ωq be a compact manifold possibly with boundary, equipped with a volume-form,
and consider the group HomeocpM,ωq of volume-preserving homeomorphisms that are
the identity near the boundary, in the component of the identity.

When the dimension of M is at least three, there is a clear picture due to Fathi
regarding the algebraic structure of this group: there is a mass-flow homomorphism, and
its kernel is a simple group. In contrast, in dimension two the situation is much less
understood despite the fact that many decades have passed since Fathi’s work.1

We recently showed [6] that when dimpMq “ 2, the kernel of mass-flow is never
simple. In fact, it contains as a proper normal subgroup the group HameopM,ωq of
hameomorphisms, whose definition we review in Definition 2.2. When M has boundary,
we also showed that the classical Calabi homomorphism, which we review in Definition 2.1
and which measures the average rotation of the map, extends to Hameo from the group
HamcpM,ωq of Hamiltonian diffeomorphisms that are the identity near the boundary. It
is then natural to ask the following.

1We refer the reader to [6] for background, including a definition of the mass-flow homomorphism.
In the cases that we will be mainly concerned with here, that is the disc and the sphere, the kernel of
mass-flow is just the group of area and orientation preserving homeomorphisms.
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Question 1.1. When M is closed, is HameopM,ωq simple? When M has non-empty
boundary, is the kernel of Calabi on HameopM,ωq simple?

This is an old question. For example, a variant appears in [27, Problem (4)]. Let us
briefly explain why one might hope for a positive answer. Hameomorphisms are home-
omorphisms with well-defined Hamiltonians, and it is natural to wonder whether the
algebraic structure of the group of hameomorphisms could be like that of the group
HamcpM,ωq; moreover, Banyaga showed [1] that Hamc is simple when M is closed and
the kernel of Calabi is simple when M has boundary.

Our first result shows that the structure of Hameo is more complicated than this.

Theorem 1.2. The following groups are not simple:

1. The kernel of Calabi on HameopD2, ωq.

2. The group HameopS2, ωq.

A two-term Weyl law

Theorem 1.2 is proved by studying the asymptotics of the “link spectral invariants”
defined in our previous work [6]. In [6] we defined quasimorphisms

µk : DiffpS2, ωq Ñ R, fk : HomeocpD2, ωq Ñ R

and we showed that these satisfy the important asymptotic formulae

lim
kÑ8

fkpgq “ Calpgq (1)

on DiffcpD2, ωq, and

lim
kÑ8

µkpgq “ 0.

We called this the “Calabi property”. Here, Cal denotes the aforementioned Calabi
homomorphism and Diffc denotes the group of diffeomorphisms that are the identity near
the boundary and that preserve ω, which we note for the reader coincides with the group
Hamc in the above cases. We refer the reader to our review in Section 2 for more details
about the µk and fk.

The above formulas are kinds of Weyl laws2, and it is natural to ask what can be
said about the subleading asymptotics. With many seemingly similar kinds of Weyl laws,
this tends to be a hard question. For example, the above Calabi property was inspired
by an analogous Weyl law for the related “ECH spectral invariants” defined in [19], see
[9]. For these spectral invariants, all that is known is a bound on the growth rate of the
subleading asymptotics [11] that is likely far from optimal, with the conjectural bound
being Op1q [20].

2For specialists, we note that the convergence to zero for the µk is what one would hope for in a Weyl
law, since these invariants are defined via mean normalization of Hamiltonians.
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In contrast, it turns out that we are able to say quite a lot about the subleading
asymptotics of the µk. To state our result, let Ru denote the Ruelle invariant from [34]
(see also [17, 18]), which we review in Section 2.1.3. We now state a result that is central
to our proof of Theorem 1.2 and which is also of independent interest.

Theorem 1.3. If ψ P DiffpS2, ωq (resp. ψ P DiffcpD2, ωq X kerpCalq), then the sequence
tk µkpψqukPN (resp. tk fkpψqukPNq is uniformly bounded. In fact, if ψ “ ϕ1

H , where H :
D2 Ñ R is an autonomous and compactly supported Hamiltonian on the disc with finitely
many critical values, then

lim
k
kµkpψq “ lim

k
kpfkpψq ´ Calpψqq “ Calpψq ´

1

2
Rupψq. (2)

A similar result concerning the subleading asymptotics of the µk in the case of au-
tonomous Hamiltonians on the sphere with finitely many critical values also holds, but for
brevity (and because the Ruelle invariant is not defined over the sphere without further
choices), we do not state it.

Remark 1.4. In the statement of the above theorem, we are implicitly invoking the fact
that we can regard any ψ P DiffcpD2, ωq as a map of the two-sphere by embedding D2 as
a hemisphere and extending by the identity, for our conventions see Section 2.2.4, when
we write µkpψq in (2); we will continue to do this throughout this paper. The invariants
µk and fk can be thought of as invariants of (possibly time-dependent) Hamiltonians as
well, by setting µkpHq :“ µkpϕ1

Hq and fkpHq :“ fkpϕ1
Hq. This viewpoint is helpful and

adopted in [6], as well as Section 3 here.

In view of Theorem 1.3 it is natural to ask if (2) holds more generally. For the
aforementioned ECH spectral invariants, essentially the same question was asked, under
a genericity assumption on the contact form [20]. In the ECH case, simple examples
exist, for example the boundary of the round sphere, with no well-defined subleading
asymptotic limit at all; in this sense, then, the genericity assumption can not be dropped.
In our case, however, we know of no such analog, and indeed Theorem 1.3 asserts that in
the simplest cases, the subleading asymptotics in fact always recover Ruelle. We therefore
pose as a question the following.

Question 1.5. Is it the case that for any ψ P DiffcpD2, ωq,

lim
k
kµkpψq “ lim

k
kpfkpψq ´ Calpψqq “ Calpψq ´

1

2
Rupψq?

We emphasize that, in contrast to the ECH case, we are not requiring any genericity
in ψ in the above question. We return to this question in Section 7, where we explore
some heuristic considerations.

Remark 1.6. There is a cousin of ECH, called PFH, defined for area-preserving diffeo-
morphisms of surfaces. One can define homogenized spectral invariants with PFH, see [7],
and it seems likely that these agree with the µk; this would follow from [4], for example, if
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it was known that the homogenized PFH spectral invariants are quasimorphisms. If this
agreement of spectral invariants is proved, then it would imply the analogous two-term
Weyl law as in Theorem 1.3 for these PFH invariants. For “one-term” Weyl laws for PFH,
computing the leading asymptotics, see [10, 12].

Remark 1.7. Our interest in the present work is with homogenized spectral invariants
because for applications to the algebraic structure of HomeocpM,ωq, these seem preferable.

Infinitely many extensions of Calabi and the Simplicity Conjecture revisited

Consideration of the asymptotics of the µk also leads to the resolution of an old question
about the aforementioned Calabi homomorphism.

Question 1.8 ([14]). Does Cal extend from DiffcpD2, ωq to HomeocpD2, ωq?

Question 1.8 has a long history which is closely connected to the question of whether
or not the group HomeocpD2, ωq is simple; see for example [18, Sec. 2.2]. It is known that
no C0-continuous extension can exist, because the kernel of Cal is C0-dense. It was also
recently shown that this group is in fact not simple [8], resolving the longstanding “Sim-
plicity Conjecture”. However, the question of whether an extension as a homomorphism
exists has remained open.

One might guess that no such extension exists. For example, many groups of home-
omorphisms satisfy an automatic continuity property, see for example [23], and as was
stated above, it is known that a continuous extension can not exist; see also Remark 5.1
below. On the contrary, however, we have the following result.

Theorem 1.9. The Calabi homomorphism admits infinitely many extensions to the group
HomeocpD2, ωq.

It follows from Theorem 1.9 that the group HomeocpD2, ωq is not simple. This gives
another proof of the aforementioned “Simplicity Conjecture”. It should be emphasized
that our proof uses the nontrivial construction of the fk from [6], so is not self-contained;
on the other hand, it does give a new proof, deducing nonsimplicity purely algebraically
from the existence of a geometrically constructed homomorphism out of HomeocpD2, ωq.
This kind of argument for proving non-simplicity is much more in line with how non-
simplicity is proved for related groups, see the summary in [8, Sec. 1.1.1], so it is natural
to hope for a proof like this. Moreover, this perspective has value in finding new normal
subgroups: to keep the introduction focused, we defer the precise statement regarding
these subgroups to Section 5.2 below.

Remark 1.10. That one can partially extend the Calabi homomorphism, namely to a
class of radial maps, via a limit construction involving (unhomogenized) link spectral
invariants is stated in [29, Remark 2].
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Simplicity

Let G :“ HomeocpΣ, ωq, where Σ is some compact surface. Given Theorem 1.2, it is
natural to ask if some simple non-trivial normal subgroup of HomeocpD2, ωq exists. After
all, there certainly exist groups (e.g. Z) with no simple normal subgroups at all.

Theorem 1.11. The commutator subgroup rG,Gs is simple.

The proof of Theorem 1.11 is completely independent of our other results, and does
not use link spectral invariants at all. In fact, we should note that from a certain point
of view, Theorem 1.11 is not too surprising. Indeed, the commutator subgroup of rG,Gs

is normal in G, so standard arguments as in [14], see in particular the exposition in [8,
Prop. 2.2]), show that rG,Gs is perfect; and, for many transformation groups, perfectness
and simplicity are equivalent. So, it might be the case that Theorem 1.11 is known to
experts. However, we are unable to find any proof in the literature and so we include one
here.

It would be very interesting to find a geometric characterization of rG,Gs. In the
diffeomorphism case, Banyaga has shown [1] that rG,Gs is the kernel of Cal.

Themes of the proofs and outline of the paper

A crucial fact for many of our arguments is the following estimate from [6] on the defect
of the fk. (We refer the reader to 2.2.2 for preliminaries about quasimorphisms.)

Lemma 1.12 ([6]). The fk and µk are quasimorphisms of defect 2
k
.

This is a key property that powers many of our arguments and one goal of our paper is
to illustrate the usefulness of this fact. The basic idea is that this defect property allows
us to detect interesting normal subgroups and construct interesting homomorphisms; on
the other hand, our two-term Weyl law from above allows us to recover the Calabi and
Ruelle invariants, which are among the most studied invariants of area-preserving disc
maps, from the fk, for a wide class of diffeomorphisms.

We put this together as follows. In our previous work, we studied twist maps with
“infinite Calabi” invariant, defined via the leading asymptotics of the fk, to show that
Hameo is proper. Here, we study twist maps with “infinite Ruelle invariant,” defined via
the asymptotics of the kfk, to show nonsimplicity on Hameo. More precisely, we define a
subgroup of elements with Op1q subleading asymptotics and we show that this contains
all smooth Hamiltonian diffeomorphisms, but we show that it is proper by constructing
a hameomorphism with “infinite Ruelle invariant;” see Proposition 4.1.

We further comment on the contrast between “infinite Ruelle” and “infinite Calabi”
in Remark 4.4.

Summary of our knowledge of the normal subgroup structure

It seems to us useful to summarize in one place what is known about the normal subgroup
structure for the groups that concern us here, and what remains to be understood.
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We start with the case of diffeomorphisms, established by Banyaga, for the sake of
comparison. Let G8 denote the relevant group. As mentioned above, in the case of S2,
we have

rG8, G8
s “ DiffpS2, ωq,

and in the case of D2 we have

rG8, G8
s “ kerpCalq Ł DiffcpD2, ωq.

Moreover, rG8, G8s is simple; and, in the disc case, we have

G8
{rG8, G8

s » R. (3)

The case of homeomorphisms seems quite different: a striking phenomena, which
seems genuinely new, is a plethora of normal subgroups arising from different geometric
considerations.

To elaborate, we described above the subgroup Hameo, which one can think of as
those homeomorphisms that can be said to have Hamiltonians. There is another normal
subgroup FHomeo, containing Hameo, whose precise definition we skip for brevity: one
can think of it as the largest normal subgroup for which Hofer’s geometry can be defined.
Buhovsky has recently shown [2] that FHomeo and Hameo do not coincide. As mentioned
above, we showed in [8, 6], resolving in particular the Simplicity Conjecture, that FHomeo
is proper. We can therefore summarize the situation regarding these groups, prior to this
work, as follows. Let G denote the group of area and orientation preserving homeomor-
phisms of S2 or the group of compactly supported area-preserving homeomorphisms of
D2.

For S2, we have

rG,Gs Ă HameopS2, ωq Ł FHomeopS2, ωq Ł G

For D2 we have

rG,Gs Ă kerpCalq Ł HameopD2, ωq Ă FHomeopD2, ωq Ł G,

where here Cal denotes the extension of the Calabi homomorphism mentioned above that
we established in [6]; one expects the inclusion of Hameo into FHomeo to be proper by
the arguments in [2].

Our work here shows that the left most inclusions are proper, by constructing an
explicit normal subgroup, and that rG,Gs is simple. The normal subgroup we construct
to show properness does contain rG,Gs, but we do not know if this inclusion is proper.

To set the context for describing more normal subgroups, it is natural to wonder if
(3) has any counterpart for homeomorphisms. We do not currently understand the quo-
tient G{rG,Gs; in fact none of the quotients G{H where H is any of the above normal
subgroups, can be identified. On the other hand, in this paper we find some “quasimor-
phism subgroups” that can be assumed to contain any of the above H whose quotients
are isomorphic to R, see our Section 5.
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There are yet more normal subgroups that are not our focus in the present work but
certainly of interest. First of all, one can construct normal subgroups via “fragmentation
norms”, see [21]; it is not currently known how these relate to the normal subgroups
above. One can also find normal subgroups between FHomeo and G by pulling back from
the quotient subgroups corresponding to growth rates of infinite twist maps, see [29].

Organization of the paper

The outline of the paper is now as follows. After reviewing the preliminaries, we start
with the computation in the smooth case, proving Theorem 1.3; this is the content of
Section 3. We then move to the case of hameomorphisms in Section 4: the outcome of
the computation from the previous section gives an explicit formula for the subleading
asymptotics in the smooth case, and this motivates our definition for a hameomorphism
with unbounded subleading asymptotics, see Section 4, which is the key step in proving
Theorem 1.2. Section 5 uses related ideas to extend the Calabi invariant: the idea is that,
just as the subleading asymptotics are a suitable replacement for Ruelle, the leading
asymptotics allow for infinitely many extensions of Calabi. In Section 6, we prove the
simplicity result Theorem 1.11. Finally, in the last section, we take up the question of
whether the subleading asymptotics of the µk recover Ruelle for arbitrary Hamiltonians.
This is not relevant to the algebraic considerations here, but is a very interesting question
in its own right; we give a heuristic examination.
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2 Preliminaries

We begin by reviewing the relevant background material and elaborating on some defini-
tions mentioned in the introduction.
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2.1 The groups, the Calabi homomorphism and the Ruelle in-
variant

2.1.1 Basic notions

Let S be either the standard 2-sphere S2 “ tpx, y, zq P R3 : x2 ` y2 ` z2 “ 1u in R3

or the standard closed 2-disc D2 in R2. We assume that S is endowed with an area
form ω. In the case of the disc, unless otherwise stated, all our maps will be assumed
compactly supported, i.e. functions on D2 are assumed to vanish in some neighborhood of
the boundary of D2 and homeomorphisms of D2 are assumed to coincide with the identity
in some neighborhood of the boundary of D2.

As mentioned in the introduction, our main characters will be

G “ HomeocpS, ωq

the group of (compactly supported) area preserving homeomorphisms of S and its smooth
counter-part

G8
“ DiffcpS, ωq

the group of area preserving diffeomorphisms of S. When S “ S2 we will drop the
subscript ’c’ from the notation. The group G is known to be the C0-closure of G8. A
smooth Hamiltonian H “ pHtqtPr0,1s : r0, 1s ˆ S Ñ R generates an isotopy pϕtHqtPr0,1s

obtained by integrating the time dependent vector field XHt defined by ωpXHt , ¨q “ dHt.
It is known that G8 coincides with the Hamiltonian group HamcpS, ωq, i.e. that any
ψ P G8 is of the form ψ “ ϕ1

H for some Hamiltonian H.
In the disc case, G8 “ HamcpD2, ωq admits a non-trivial group homomorphism Cal :

G8 Ñ R, called the Calabi homomorphism, which we now recall.

Definition 2.1. Let ψ P DiffcpD2, ωq. Since G8 “ HamcpD2, ωq, the diffeomorphism ψ is
the time-one map of a Hamiltonian H, i.e. ψ “ ϕ1

H . The quantity

Calpψq “

ż 1

0

ż

D2

H ω dt

turns out to be independent of the choice of Hamiltonian H and is called the Calabi
invariant of ψ. This defines a map Cal : G8 Ñ R which is a group homomorphism [3]
(see also [25]).

As mentioned in the introduction, we can think of the Calabi homomorphism as
measuring the “average rotation” of the map, see [15, 17].

2.1.2 Some normal subgroups of G

We are interested in this work in a particular normal subgroup of G. The key definition
is as follows. As above, we denote by S a surface which is either S2 or D2.
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Definition 2.2 (Oh-Müller [27]). A homeomorphism ψ P G is called a hameomorphism
(or sometimes a strong Hamiltonian homeomorphism) if there exist a compact subset
K Ă S, a sequence of Hamiltonians Hi : r0, 1s ˆ S Ñ R, i P N, supported in K and an
isotopy pψtqtPr0,1s with ψ

0 “ Id and ψ1 “ ψ, such that

(i) ϕtHi
converges to ψt in the C0 topology and uniformly in t P r0, 1s,

(ii) Hi is a Cauchy sequence with respect to the Hofer norm } ¨ }.

The set of all hameomorphisms is denoted HameopS, ωq.

Remark 2.3. Several variants of the above definition may be found in the literature. In
particular, one sometimes replaces the convergence with respect to the Hofer norm } ¨ }

with uniform convergence. However, it was proved by Müller [26] that this change in the
definition gives rise to the same group of hameomorphisms.

In [6], we used the following weaker variant. We called ψ a hameomorphism if there
exist a compact set K and a sequence of Hamiltonians Hi, supported in K, such that the
time-1 maps ϕ1

Hi
converge to ψ and Hi is Cauchy with respect to the Hofer norm. This

weaker notion gives rise to another normal subgroup of G, which we will denote Hameo1

in this remark. We clearly have the inclusion Hameo Ă Hameo1, but we do not know
whether equality holds.

Our reason to change from one notion to another is to have stronger statements.
Indeed, in [6] (see also the discussion in Theorem 2.4 below), we extended the Calabi
homomorphism to Hameo1 which is a priori a stronger result than just extending to
Hameo. Here, we find a normal subgroup of G which is strictly smaller than Hameo
(resp. kerpCalq in Hameo); this is a priori a stronger statement than finding a subgroup
in Hameo1 (resp. kerpCalq in Hameo1).

We can use the Calabi homomorphism from above to get some additional subgroups,
as the following shows.

Theorem 2.4 ([6], Theorem 1.4). The Calabi homomorphism on G8 extends canonically
to a group homomorphism HameopD2, ωq Ñ R. Moreover, for any ψ P HameopD2, ωq and
any sequence Hi as in Definition 2.2 the extension of the Calabi homomorphism satisfies

Calpψq “ lim
iÑ8

Calpϕ1
Hi

q.

This gives another normal subgroup of G in the case of the disc, namely the kernel of
Cal : HameopD2, ωq Ñ R.

2.1.3 The Ruelle invariant

We now recall the construction of the Ruelle quasi-morphism, following [17]. Recall that
G8 :“ DiffcpD2, ωq denotes the group of compactly-supported area-preserving diffeomor-
phisms of the 2-disc. We fix a trivialization

TD2
– D2

ˆ R2 (4)

10



(which is unique up to homotopy). The group G8 is contractible, so if g P G8 we may
pick an isotopy tgtu from Id to g, again unique up to homotopy. For a point z P D2, let

vtpzq P R2
zt0u

denote the first column of dgtpzq P SLp2,Rq expressed in the trivialisation (4), and

Anggpzq P R

the variation in the angle of vtpzq, measured with respect to a fixed direction (say the
x-axis) and integrated over 0 ď t ď 1. The uniqueness of the choice of tgtu up to
homotopy shows this does not depend on the choice of isotopy from g to Id. The function
z ÞÑ Anggpzq is smooth and so integrable. Setting

rpgq :“

ż

D2

Anggpzqω

we obtain the Ruelle invariant

Rupgq :“ lim
pÑ8

rpgpq{p.

This is a non-trivial homogeneous quasi-morphism on G8 (and on the kernel of the Calabi
homomorphism).

Gambaudo and Ghys [17, Proposition 2.9] give a formula for the Ruelle invariant in
the special case of an autonomous Hamiltonian flow of a function H P C8

c pD2q with
finitely many critical values. Suppose ξ P R is a regular value of H, so H´1pξq is a finite
disjoint union of circles. Each such circle C bounds a disc in D2, and we associate the
sign `1, respectively ´1, to C Ă H´1pξq depending on whether H increases, respectively
decreases, as one crosses from the exterior to the interior region.

Then

RupHq :“ Rupϕ1
Hq “

ż

R
nHpξqdξ (5)

where the integer nHpξq P Z is the signed sum of values ˘1 over the connected components
C of H´1pξq.

Specialising further to the case of a smooth function H P C8
c pD2q which is Morse with

critical points pi, this simplifies to ([18, Section 2.4]):

RupHq “
ÿ

i

p´1q
indppiq Hppiq (6)

where indppiq is the Morse index of pi.

2.2 Monotone links, spectral invariants and quasimorphisms

The material for this section was developed in [6]. We refer the reader to this paper for
further details.
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2.2.1 Monotone links and their spectral invariants

We call a Lagrangian link (or Lagrangian configuration) any subset of the form L “

L1 Y ¨ ¨ ¨ Y Lk where the Li’s are pairwise disjoint smooth simple closed curves in S2,
see Figure 1. A Lagrangian link is called monotone if the connected components of its

complement all have the same area areapS2q

k`1
.

Figure 1: Two examples of Lagrangian links on S2 with respectively k “ 4 and k “ 5
components.

Remark 2.5. In [6], we introduced a more general notion of η-monotonicity, where η is
a non-negative real parameter. We will not need this more general notion in the present
paper. What we call monotonicity here corresponds to 0-monotonicity.

Let L be a monotone link with k components. We can take the product of the compo-
nents to form the associated connected submanifold SympLq inside the k-fold symmetric
product Symk

pS2q. The symplectic form ω on S2 induces a singular symplectic form on
Symk

pS2q whose singular locus is away from SympLq and makes SympLq a Lagrangian sub-
manifold. After smoothing the symplectic form near the singular locus, the Lagrangian
Floer cohomology of SympLq with itself is well-defined and non-zero [6, Lem. 6.10]. It
enables us to define the link spectral invariants as follow.

Given a Hamiltonian function H : r0, 1s ˆ S2 Ñ R, we define SympHq : r0, 1s ˆ

Symk
pS2q Ñ R to be SympHqtprx1, . . . , xksq :“

řk
i“1Htpxiq. The Lagrangian link spec-

tral invariant cLpHq is defined to be 1
k
cSympLqpSympHqq, where cSympLqpSympHqq is the

Lagrangian spectral invariant of SympHq with respect to the Lagrangian submanifold
SympLq [6, Equation (54)]. We have shown in [6] that it is well-defined and indepen-
dent from the choice of smoothing of the symplectic form as long as the smoothing is
sufficiently local. For a Hamiltonian diffeomorphism ψ P DiffpS2, ωq p“ HampS2, ωqq and
a mean-normalized generating Hamiltonian H (i.e.

ş

S2 Htωdt “ 0 for all t P r0, 1s, and
ψ “ ϕ1

H), we have shown in [6] that cLpψq :“ cLpHq is well-defined and independent of
the choice of H.

Remark 2.6. In the specific case of a link L by parallel circles, similar invariants were
previously constructed by Polterovich and Shelukhin [29] using orbifold Floer cohomology
[16], [5] and the computational techniques in [22].
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2.2.2 Quasimorphisms for diffeomorphism groups

Recall that a quasimorphism on a group Γ is a map f : Γ Ñ R for which there exists a
constant D ą 0 such that for any a, b P Γ,

|fpabq ´ fpaq ´ fpbq| ď D

The constant D is called a defect of f . A quasimorphism f is said to be homogeneous if
it satisfies fpakq “ kfpaq for any k P Z and a P Γ.

The spectral invariant cL may be used to construct quasimorphisms onG8 “ DiffpS2, ωq.
This was proved in [6], inspired by an older (and famous) construction of Entov and
Polterovich [13].

Let L be a monotone Lagrangian link with k components and ϕ P DiffpS2, ωq and let
us introduce the homogenized spectral invariant

µkpHq “ lim
nÑ8

1

n
cLpH7n

q,

for any Hamiltonian H on S2; these are the µk mentioned in the introduction. The
above limit does not depend on the choice of the link L; see Theorem 2.7 below. Here the
notationH7n means the n-times composition ofH, where the composition of Hamiltonians
is defined by pH7Kqtpxq “ Htpxq `Kt ˝ pϕtHq´1pxq. It is well known that H7K generates
ϕtH ˝ ϕtK , thus H

7k generates the isotopy pϕtHqk.
Note that µk has a shift property (see [6]), namely for any Hamiltonian H and any

constant c P R, we have
µkpH ` cq “ µkpHq ` c. (7)

As above, we obtain invariants associated to elements of DiffpS2, ωq (still denoted µk) by:

µkpφq “ µkpHq, (8)

for any mean-normalized Hamiltonian H such that ϕ1
H “ φ. This does not depend on the

choice of H, see [6].

Theorem 2.7 ([6] Thm. 7.6, Thm. 7.7). For fixed k, the map µk : DiffpS2, ωq Ñ R does
not depend on the choice of Lagrangian link L. Moreover the following properties hold

1. (Hofer continuity and monotonocity) For all Hamiltonians H,K,

ż 1

0

min
xPS2

pHtpxq ´ Ktpxqqdt ď µkpHq ´ µkpKq ď

ż 1

0

max
xPS2

pHtpxq ´ Ktpxqqdt.

2. (Lagrangian control) Let H be a Hamiltonian and L “ L1 Y¨ ¨ ¨YLk be a Lagrangian
link, such that for all i “ 1, . . . , k the restriction of H to Li is a function of t denoted
ci. Then,

µkpHq “
1

k

k
ÿ

i“1

ż 1

0

ciptqdt.

13



3. (Quasimorphism) The map µk is a homogeneous quasimorphism of defect 2
k
.

The first item implies that the quasimorphisms µk : DiffpS2, ωq Ñ R are Lipschitz
continuous with respect to Hofer distance dH on DiffpS2, ωq defined by

dHpφ, ψq :“ inf
φ“ϕ1H ,ψ“ϕ1K

}H ´ K}, (9)

where the norm is given by }H} :“
ş1

0
pmaxS2 Ht ´ minS2 Htqdt (See e.g. [28] for an

introduction to Hofer’s distance). A consequence of item 2, proved in [6], is that the
quasimorphisms µk are linearly independent. In the case k “ 1, we recover the Entov-
Polterovich quasimorphism [13].

Remark 2.8. As a consequence of the first and second items, for any Hamiltonian H,
we have

1

k

k
ÿ

i“1

ż 1

0

min
xPLi

Htpxqdt ď µkpHq ď
1

k

k
ÿ

i“1

ż 1

0

max
xPLi

Htpxqdt

2.2.3 Quasimorphisms on the sphere

We now introduce quasimorphisms on the sphere. Denote

fk :“ µk ´ µ1.

By (8) and the shift property (7), we have

fkpHq “ fkpϕ1
Hq

for all Hamiltonians H (not only for mean-normalized ones). The fk give quasimorphisms
on DiffpS2, ωq which have similar properties to the µk. Our motivation for introducing
them is their C0-continuity, which is not satisfied by the µk. We collect in the next
theorem their useful properties.

Theorem 2.9 ([6]). 1. (C0-continuity) For all k ě 1, the quasimorphism fk is con-
tinuous with respect to C0 topology and extends continuously to HomeopS2, ωq

2. (Support control) For all k ě 1 and ϕ P HomeopS2, ωq whose support is included in
a disc of area ď 1

k`1
. Then, fkpϕq “ 0.

Remark 2.10. In fact, for any positive integers k, k1, the difference µk1 ´ µk extends
continuously to a quasimorphism on HomeopS2, ωq. Its defect is bounded above by the
sum of the defects of µk and µk1 , i.e. by 2

k
` 2

k1 . In particular, fk has defect 2
k

` 2.
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2.2.4 Inducing quasimorphisms on the disc

Let ι : D2 Ñ S2 be a smooth symplectic embedding which identifies the disc D2 with
the northern (or southern) hemisphere. Then we have an inclusion HomeocpD2, ωq Ă

HomeopS2, ωq and the maps fk induce by restriction quasimorphisms on HomeocpD2, ωq.
Let H be a Hamiltonian which is compactly supported in the disc. Then the La-

grangian control property yields µ1pHq “ 0 hence

fkpϕ1
Hq “ µkpHq “ µkpϕ1

Hq `

ż 1

0

ż

S2
H ω dt.

and in particular we obtain the following strengthening of the bound on the defect in
Remark 2.10 (which we already stated in Lemma 1.12).

Lemma 2.11. The fk restricted to the disc are quasimorphisms with defect 2{k.

Using the Lagrangian control property and a Lagrangian link L consisting of horizontal
circles Li “ tpx, y, zq P S2 | z “ ´1` 2 i

k`1
u, i “ 1, . . . , k, we can compute fk explicitly for

Hamiltonians that only depend on the variable z, namely:

fkpφ1
Hq “

1

k

k
ÿ

i“1

Hp´1 ` 2 i
k`1

q. (10)

This formula will be used in some subsequent sections.

3 The subleading asymptotics and the Ruelle invari-

ant

In this section, we first show that the spectral invariants tµku have O(1) subleading
asymptotics, and then compute those asymptotics exactly in the case of autonomous disc
maps with finitely many critical values.

3.1 Op1q subleading asymptotics

The proof that the spectral invariants tµku have Op1q subleading asymptotics in the
smooth case is an almost immediate consequence of the key inequality

|µkpψ0ψ1q ´ µkpψ0q ´ µkpψ1q| ď
2

k
(11)

from Lemma 1.12.

Theorem 3.1. For any ψ P DiffpS2, ωq, the sequence tk µkpψqukPN is uniformly bounded.
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Proof. Let GOp1q :“ tψ P DiffpS2, ωq|kµkpψq “ Op1qu. Equation (11) shows both that
if ψ0, ψ1 P GOp1q, then so is the product ψ0ψ1, and also that ψ P GOp1q if and only if
ψ´1 P GOp1q. Therefore, GOp1q is a subgroup of DiffpS2, ωq. Since µkpψq is invariant under
conjugating ψ by elements in DiffpS2, ωq, GOp1q is a normal subgroup.

Since DiffpS2, ωq is simple, to show GOp1q “ DiffpS2, ωq it therefore suffices to show that
GOp1q contains a single non-identity element. Let H be the height function (projection
to z co-ordinate) of S2 Ă R3. Let Lk be the k-component monotone link all of whose
components are level sets of H. By the Lagrangian control property, we have µkpHq “ 0.
Since H is mean-normalized, we have µkpϕ1

Hq “ 0, but ϕ1
H is not the identity element in

DiffpS2, ωq. The result follows.

By restricting the tµku to Hamiltonians on S2 supported (for instance) in a hemisphere,
we immediately obtain:

Corollary 3.2. Let D2 be a disc in S2 with area at most half of that of S2. For any
ψ P DiffcpD2, ωq, the sequence tk ¨ pfkpψq ´ CalpψqqukPN is uniformly bounded.

Proof. It follows from fkpψq “ µkpψq ´ µ1pψq, µ1pψq “ ´Calpψq and Theorem 3.1.

3.2 Autonomous Hamiltonians

For general smooth Hamiltonian diffeomorphisms on the disc, we know from above that
k ¨ pfkpψq ´ Calpψqq is bounded as k Ñ 8, but not that this sequence has a well-defined
limit. For autonomous maps with finitely many critical values, the limit does exist, and
is determined by the classical Ruelle invariant from Section 2.1.3: showing this is the aim
of this section.

The main result is the following.

Theorem 3.3. Let H : pD2, ωq Ñ R be a compactly supported autonomous Hamiltonian
with finitely many critical values. Then,

lim
kÑ8

pkµkpHq ´ pk ` 1qCalpHqq “ ´
1

2
RupHq. (12)

Theorem 1.3 directly follows from Theorem 3.1, Corollary 3.2 and Theorem 3.3.

Remark 3.4. The coefficient k`1 of CalpHq is the reciprocal of the monotonicity constant
of a k-component link Lk (see [6, Definition 1.12]).

The proof will use monotone Lagrangian links Lk ‘most’ of whose connected com-
ponents are contained in level sets of H. In order to describe these links, we need a
generalization of the Reeb graph of a Morse function on S2.

Let H : pS2, ωq Ñ R be an autonomous Hamiltonian with finitely many critical values.
We define an equivalence relation „ on S2 via x „ y if and only if there is c P R such that
Hpxq “ Hpyq “ c and for any open interval I Ă R containing c, x and y are in the same
connected component of H´1pIq. Let R : S2 Ñ G :“ S2{ „ be the associated quotient
map. There is a uniquely defined function HG : G Ñ R such that H “ HG ˝ R.
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Lemma 3.5. The space G can be equipped with the structure of a finite graph. Moreover,
it is a tree.

Proof. We define the set of vertices of G to be the HG-preimage of the set of critical
values of H.

Take an interval I containing c in its interior and containing no other critical values.
Then the number of connected components kc of H

´1pIq depends only on c but not on
I. If, in addition, I is a closed interval, we know that H´1pIq is also closed and hence
compact. Let J be an open interval containing I such that c is the only critical value in
J . The collection of connected components of H´1pJq forms an open cover of H´1pIq.
By the compactness of H´1pIq, it is covered by finitely many connected components of
H´1pJq. Since the number of connected components of H´1pIq and H´1pJq are the same,
a connected component of H´1pJq contains precisely one connected component of H´1pIq,
which implies that kc is finite. By definition, kc is the number of vertices in G with HG-
value equal to c. Since there are only finitely many critical values, G has finitely many
vertices.

For any two consecutive critical values c0 ă c1 of H, and an interval J Ă pc0, c1q con-
taining no critical values, the number of connected components kc0,c1 of H´1pJq depends
only on c0, c1 but not on J . By compactness of S2 again, kc0,c1 is finite. We define the
connected components of H´1

G ppc0, c1qq to index the (open) edges of G; each such open
edge is diffeomorphic to an open interval. The choice of connected component of H´1pJq

also picks out connected components of H´1
G pciq, and hence vertices of G, and we define

the closure of an open edge in G to be a closed interval which connects the correspond-
ing two vertices associated to the critical values c0 and c1. It is now clear that G has a
structure of a finite graph.

Finally, if G were not a tree, then we would be able to lift a non-trivial 1-cycle from
G to S2, contradicting H1pS2;Zq “ 0.

Let t be the number of vertices of G and enumerate the vertices v1, . . . , vt. Let µ be
the Borel measure on G such that for every open set U Ă G, we define

µpUq :“

ż

R´1pUq

ω.

For i “ 1, . . . , t, let
mi :“ µpviq P r0, 1s.

Note that for any x P Gztv1, . . . , vtu, we have µpxq “ 0. Many of the components of our
desired links Lk will be of the form R´1pxq for some x P Gztv1, . . . , vtu. Near R´1pviq,
the following simple observation will be useful in constructing Lk.

Lemma 3.6. Let k P N. For any open neighborhood Ji of vi, there exist Sk,i :“ tpk`1qmiu

pairwise disjoint circles in R´1pJiq each of which bounds a disk of area 1
k`1

in R´1pJiq.

Proof. When pk ` 1qmi ă 1, the lemma is regarded as vacuously true so we assume
pk ` 1qmi ě 1.
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First, we show that R´1pJiq is connected. Let y0, y1 P R´1pJiq be such that Rpy0q “

Rpy1q. From the definition of the equivalence relation „, y0 and y1 belong to the same
connected component of R´1pJiq. In other words, for any x P Ji, there is only one
connected component of R´1pJiq whose R-image contains x. Furthermore, the restriction
of R to any connected component of R´1pJiq not containing R

´1pviq is an S
1-fibre bundle.

Together, these facts clearly imply that R´1pJiq is connected.
Since R´1pJiq is a connected proper open subset of the sphere, it is diffeomorphic to

a planar domain.
Moreover, we have

pk ` 1qωpR´1
pJiqq ą pk ` 1qmi ě Sk,i.

It is therefore clear that we can find Sk,i-many pairwise disjoint circles in R´1pJiq such
that each bounds a disk of area 1

k`1
in R´1pJiq.

For 1 ď i ď t, let valpviq denote the valency of vi.

Lemma 3.7. Let Bi “ valpviq ´ 1. For any 1 ď i ď t, any open neighborhood Ji of vi,
and for all k P N sufficiently large such that 3

k`1
ă µpeq for every open edge e P G, there

is a monotone link Lk “
Ťk
j“1 Lk,j Ă S2 with k components such that3:

� For j P Tk,1 :“ t1, . . . , k ´
řt
u“1pSk,u ` Buqu, Lk,j is contained in a level set of H;

� For i “ 1, . . . , t and j P Tk,2,i :“ tk ´
ři´1
u“1pSk,u ` Buq ` 1, . . . , k ´

ři´1
u“1pSk,u `

Buq ` Sk,iu, we have Lk,j Ă R´1pJiq;

� For i “ 1, . . . , t and Tk,3,i :“ tk´
ři´1
u“1pSk,u`Buq`Sk,i`1, . . . , k´

ři
u“1pSk,u`Buqu,

the set

R

¨

˝

ď

jPtTk,2,i
Ť

Tk,3,iu

Lk,j

˛

‚

Hausdorff converges to tviu as k goes to 8;

� For a fixed i P t1, . . . , tu and any j0, j1 P Tk,2,i
Ť

Tk,3,i, the circles Lk,j0 and Lk,j1 are
contained in the same connected component of S2z YjPTk,1 Lk,j.

Note that Tk,1, Tk,2,i and Tk,3,i for all i together form a partition of t1, . . . , ku. Roughly
speaking, the components of Lk associated to the first three bullet points above are:

� S1-fibres lying above open edges of G;

� components coming from Lemma 3.6, which can be chosen as close to R´1pviq as
desired; and

� ‘remaining’ components not of the first two types, but which are controlled by the
Hausdorff convergence.
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Figure 2: On the left: R´1pJiq (the union of pink and light blue regions) contains R´1pviq
(pink region) and type T2,i circles (blue). R´1pViq (the union of pink, light blue and
light green regions) contains both type T3,i circles (red) and type T2,i circles. Type T1
circles (black) are level sets outside the interior of R´1pViq. On the right: we indicate
a neighborhood of the vertex vi in G, coloured to indicate the images of the respective
regions on the left.

Proof. For i “ 1, . . . , t, let tUi,ju
si
j“1 be the connected components of Gztviu, where si :“

valpviq is the number of connected components of Gztviu. Denote µpUi,jq by ai,j so we
have mi `

řsi
j“1 ai,j “ 1. By our assumption on k, we have ai,j ą 3

k`1
for all i, j. Let

ri,j P p0, 1
k`1

s be the unique number such that ai,j ´ ri,j is an integer multiple of 1
k`1

.
For any vi and any j “ 1, . . . , si, we define xi,j P Ui,j to be the unique point such that

xi,j is on an edge adjacent to vi and the open interval between vi and xi,j has µ-measure ri,j.
The existence of xi,j is guaranteed by the assumption 3

k`1
ă µpeq, whilst its uniqueness

comes from the fact that G is a tree (so there is a bijective correspondence between
edges adjacent to vi and connected components Ui,j). Moreover, again by the assumption
3

k`1
ă µpeq, we have that xi,j ‰ xi1,j1 unless i “ i1 and j “ j1. Most importantly, by

our choice of ri,j, each connected component of Gztxi,jui,j has µ-measure being an integer
multiple of 1

k`1
. Denote the component of Gztxi,jui,j containing vi by Vi. By construction,

we have µpViq “ mi `
řsi
j“1 ri,j P pmi,mi `

valpviq
k`1

s so Sk,i ă pk ` 1qµpViq ď Sk,i ` valpviq.
Without loss of generality, we can assume that Ji Ă Vi for all i “ 1, . . . , t (see Figure 2).

By Lemma 3.6, we fix Sk,i pairwise disjoint circles in R´1pJiq bounding disjoint disks
of area 1

k`1
in R´1pJiq. Denote these circles by Lk,j for

k ´

i´1
ÿ

u“1

pSk,u ` Buq ` 1 ď j ď k ´

i´1
ÿ

u“1

pSk,u ` Buq ` Sk,i.

The complement of the associated Sk,i disjoint closed disks in R´1pViq is also a connected

3Recall that Sk,i :“ tpk ` 1qmiu
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open subset of S2. Therefore, we can put an additional set of pk ` 1qµpViq ´ Sk,i ´ 1
circles, each bounding a disc of area 1

k`1
again, to obtain a further collection of circles

Lk,j indexed by k, j with

k ´

i´1
ÿ

u“1

pSk,u ` Buq ` Sk,i ` 1 ď j ď k ´

i´1
ÿ

u“1

pSk,u ` Buq ` pk ` 1qµpViq ´ 1.

Combining the circles from the previous two steps, we obtain circles Lk,j in R´1pViq
indexed by k, j such that

k ´

i´1
ÿ

u“1

pSk,u ` Buq ` 1 ď j ď k ´

i´1
ÿ

u“1

pSk,u ` Buq ` pk ` 1qµpViq ´ 1

with the property that the collection of circles is pairwise disjoint, and every connected
component in its complement has area 1

k`1
.

Any component of Gztxi,jui,j not containing any vi is an interval. We can subdivide
that interval so that each sub-interval has µ-measure 1

k`1
. Let X be the union of txi,jui,j

and the additional points we added to subdivide the intervals. Then R´1pXq gives us a
further |X| “ k ´

řt
i“1ppk ` 1qµpViq ´ 1q circles in S2. The union of

R´1
pXq

ď

tLk,ju

with

k ´

i´1
ÿ

u“1

pSk,u ` Buq ` 1 ď j ď k ´

i´1
ÿ

u“1

pSk,u ` Buq ` pk ` 1qµpViq ´ 1

for all i “ 1, . . . , t is the desired k-component monotone link Lk.
First note that Lk is indeed a k-component monotone link, because all the components

of its complement have area 1
k`1

. To verify the bullets of the lemma, we now explain the
labeling of the components of the link.

In general, we only have

pk ` 1qµpViq ´ 1 ď Sk,i ` valpviq ´ 1 “ Sk,i ` Bi

but not an equality. Therefore, we need to label the pSk,i `Biq ´ ppk` 1qµpViq ´ 1q-many
circles in R´1pXq that are ‘closest’ to R´1pviq to be

tLk,ju with k ´

i´1
ÿ

u“1

pSk,u ` Buq ` pk ` 1qµpViq ď j ď k ´

i
ÿ

u“1

pSk,u ` Buq.

This can be done so that the third and final bullet of the lemma hold, because 1
k`1

ppSk,i`

Biq ´ ppk ` 1qµpViq ´ 1qq ď
Bi

k`1
is converging to zero as k goes to infinity. The first and

the second bullet of the lemma hold by construction.

For each vertex vi P G, let χi :“ 2 ´ valpviq. We are now going to use the monotone
links Lk constructed in Lemma 3.7 to prove the following.
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Proposition 3.8. Let H : pS2, ωq Ñ R be an autonomous Hamiltonian with finitely many
critical values. Then

lim
kÑ8

ˆ

kµkpHq ´ pk ` 1q

ż

S2
H

˙

“ ´
1

2

t
ÿ

i“1

χiHGpviq (13)

Remark 3.9. When H is Morse, (13) reduces to

lim
kÑ8

ˆ

kµkpHq ´ pk ` 1q

ż

S2
H

˙

“ ´
1

2

s
ÿ

j“1

p´1q
indppjqHppjq

where tpju
s
j“1 is the set of critical points of H. Compare to Equation (6).

Proof of Proposition 3.8. Let k be large enough and Jk,i be an open neighborhood of vi
for i “ 1, . . . , t. We apply Lemma 3.7 to obtain a monotone link Lk. Let Tk,1, Tk,2,i
and Tk,3,i be as in Lemma 3.7. For i “ 1, . . . , t, let Vk,i be the connected component

of S2z
Ť

jPTk,1
Lk,j containing

Ť

jPTk,2,iYTk,3,i
Lk,j. Note that the area of Vk,i is

Sk,i`Bi`1

k`1
“

Sk,i`valpviq

k`1
. Let Vk “

Ťt
i“1 Vk,i.

The Lagrangian control property (Remark 2.8) applied to the link Lk yields

kµkpHq P

k
ÿ

j“1

HpLk,jq, (14)

where HpLk,jq :“ tHpyq|y P Lk,ju.
We want to show that, by choosing Jk,i to be sufficiently small, we obtain the following

three identities:

lim
kÑ8

¨

˝

¨

˝

ÿ

jPTk,1

HpLk,jq

˛

‚´ pk ` 1q

ż

S2zVk

H

˛

‚“
1

2

t
ÿ

i“1

valpviqHGpviq, (15)

lim
kÑ8

¨

˝

¨

˝

ÿ

jPTk,2,i

HpLk,jq

˛

‚´ pk ` 1q

ż

Vk,i

H

˛

‚“ ´valpviqHGpviq, for all i, (16)

lim
kÑ8

ÿ

jPTk,3,i

HpLk,jq “ BiHGpviq “ pvalpviq ´ 1qHGpviq, for all i. (17)

Note that these are limits of sets, since not all the Lk,j are contained in level sets of H;
however, the Jk,i shrink with k and hence the diameters of the sets HpLk,jq also tend to
zero as k increases to infinity. Once these equalities are proved, by summing them up we
will get

lim
kÑ8

˜

k
ÿ

j“1

HpLk,jq ´ pk ` 1q

ż

S2
H

¸

“
1

2

t
ÿ

i“1

pvalpviq ´ 2qHGpviq. (18)
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The result then follows from (14) and the observation that the RHS of (18) is precisely
´1

2

řt
i“1 χiHGpviq.

Identity (15) will be proved ‘edge by edge’. More precisely, let E be the set of edges of
G. Each connected component of S2z

Ť

jPTk,1
Lk,j other than Vk,1, . . . , Vk,t is topologically

an annulus and is canonically labeled by an edge e P E. Let Aek,1, . . . , A
e
k,he,k

be the

connected components4 that are labeled by e and denote their closures by A
e

k,i for i “

1, . . . , he,k. By possibly relabeling, we can assume that A
e

k,i X A
e

k,j ‰ H if and only

if j P ti ´ 1, i, i ` 1u. Let BA
e

k,i “ Lek,i´1 Y Lek,i for i “ 1, . . . , he,k. Note that, every
component of

Ť

jPTk,1
Lk,j is of the form Lek,i for precisely one e P E and i P t0, . . . , he,ku.

By identifying Aek,i with pr i´1
k`1

, i
k`1

sˆR{Z, dz^dyq using an S1-equivariant area preserving
diffeomorphism, in such a way that Lek,i is identified with tiu ˆ R{Z, we have

he,k
ÿ

i“1

˜

HpLek,iq ´ pk ` 1q

ż

Ae
k,i

H

¸

“ pk ` 1q

he,k
ÿ

i“1

ż

Ae
k,i

HpLek,iq ´ Hpzqdz

“ pk ` 1q

he,k
ÿ

i“1

ż i
k`1

i´1
k`1

´H 1
p

i

k ` 1
qpz ´

i

k ` 1
q ` O

ˆ

1

pk ` 1q2

˙

dz

“

˜

1

2pk ` 1q

he,k
ÿ

i“1

H 1
p

i

k ` 1
q

¸

` he,k O

ˆ

1

pk ` 1q2

˙

where Taylor’s theorem was used in passing from the second to the third line above. Note
that he,k ă pk`1q. By passing k to 8 and applying the fundamental theorem of calculus,
we get

lim
kÑ8

he,k
ÿ

i“1

˜

HpLek,iq ´ pk ` 1q

ż

Ae
k,i

H

¸

“ lim
kÑ8

1

2
pHpLek,he,kq ´ HpLek,0qq

“
1

2
pHGpB

1eq ´ HGpB
0eqq

where Bie are the corresponding vertices adjacent to e. By adding back the term limkHpLek,0q,
we have

lim
kÑ8

˜

he,k
ÿ

i“0

HpLek,iq ´

he,k
ÿ

i“1

pk ` 1q

ż

Ae
k,i

H

¸

“
1

2
pHGpB

1eq ` HGpB
0eqq

This completes the calculation over a single edge e. By summing over all e P E, we get
(15).

4It may help the reader to note that superscripts e always index a choice of edge e P E in this
argument.
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Equation (17) follows from the fact that |Tk,3,i| “ Bi and the third bullet of Lemma
3.7. Therefore, it suffices to verify Equation (16).

Let ϵk ą 0 be such that limkÑ8 Sk,iϵk “ 0 for all i. Let Jk,i be a sufficiently small
neighborhood of vi such that HGpJk,iq Ă rHGpviq ´ ϵk, HGpviq ` ϵks. It implies that

ÿ

jPTk,2,i

HpLk,jq Ă rSk,iHGpviq ´ Sk,iϵk, Sk,iHGpviq ` Sk,iϵks

On the other hand, recall that µpviq “ mi ě
Sk,i

k`1
. Therefore, we can find an open disk

Dk,i Ă R´1pJk,iq such that ωpDk,iq “
Sk,i

k`1
. It implies that

lim
kÑ8

¨

˝

¨

˝

ÿ

jPTk,2,i

HpLk,jq

˛

‚´ pk ` 1q

ż

Dk,i

H

˛

‚“ lim
kÑ8

r´2Sk,iϵk, 2Sk,iϵks “ 0 for all i (19)

Recall that ωpVk,izDk,iq “ ωpVk,iq ´ ωpDk,iq “
Sk,i`valpviq

k`1
´

Sk,i

k`1
“

valpviq
k`1

. Therefore, we
also have

lim
kÑ8

pk ` 1q

ż

Vk,izDk,i

H “ lim
kÑ8

pk ` 1qωpVk,izDk,iqHGpviq “ valpviqHGpviq for all i (20)

Equation (16) now follows from Equations (19) and (20).

Proof of Theorem 3.3. We embed D2 into the northern hemisphere of S2. By Proposition
3.8 and (5), it suffices to show that

řt
i“1 χiHGpviq coincides with

ş

R nHpξqdξ. We can
reinterpret

ş

R nHpξqdξ using G as follows. Let v1 be the vertex of G given by RpBD2q

(it is also the R-image of the entire southern hemisphere). Let e be an edge of G. Let
the two vertices adjacent to e be B`e and B´e. Since G is a tree, there is no ambiguity
to require that B`e is further away from v1 than B´e (we allow that B´e “ v1). If
HGpB`eq ą HGpB´eq, we define ne “ 1. If HGpB`eq ă HGpB´eq, we define ne “ ´1. It is
clear from the definition of nH that

ż

R
nHpξqdξ “

ÿ

e

ż

HGpeq

ne “
ÿ

e

pHGpB
`eq ´ HGpB

´eqq

where the sum is over all edges of G. For any vertex v of G other than v1, there is a
unique edge ev of G such that B`ev “ v because G is a tree. Therefore, we have

ÿ

e

pHGpB
`eq ´ HGpB

´eqq “ ´ valpv1qHGpv1q `

t
ÿ

i“2

pHGpviq ´ pvalpviq ´ 1qHGpviqq

“

t
ÿ

i“1

χiHGpviq

where the last equality uses that HGpv1q “ 0 and χi “ 2 ´ valpviq. It completes the
proof.
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Remark 3.10. For higher genus surfaces, one can use a similar method to estimate cLpHq

for appropriate monotone links L most of whose components are level sets of H. However,
the homogenized spectral invariant µL will depend on the particular link L, and not only
on the number of components of L. Therefore, for any fixed sequence of monotone links
tLkukPN, this method should not give a robust estimate of the subleading asymptote of
µLk

for all autonomous Hamiltonians H simultaneously.

4 Non-simplicity for kernel of Calabi and for Hameo

In this section, we prove Theorem 1.2 whose statement we recall here.

Theorem (Theorem 1.2). The following groups are not simple:

1. The kernel of Calabi on HameopD2, ωq.

2. The group HameopS2, ωq.

The goal of this section is to explain the proof.

Proper normal subgroups from subleading asymptotics

We begin by defining the normal subgroups which will turn out to be proper. To define
our subgroups, we will use the subleading asymptotics of the quasimorphims arising from
link spectral invariants which were introduced in Section 2.2.2.

First, consider the case of the disc. Denote by kerpCalq the kernel of the Calabi
homomorphism Cal : HameopD2, ωq Ñ R. Recall the quasimorphism fk : HomeopS2, ωq Ñ

R; its restriction to HomeocpD2, ωq has defect bounded by 2
k
, see Lemma 1.12. Our normal

subgroup will consist of those elements (of the kernel of Cal) for which the fk have bounded
subleading asymptotics. More precisely, define

NpD2
q :“ tψ P kerpCalq : the sequence |kfkpψq| is boundedu.

Proposition 4.1. NpD2q is a normal subgroup of kerpCalq which contains all of its smooth
elements.

Proof. The argument here is very similar to that of the proof of Theorem 3.1 and so
we will not provide all the details. NpD2q is a subgroup because the fk have defect 2

k

and it is normal because the fk, being homogeneous quasimorphisms, are invariant under
conjugation.

The fact that NpD2q contains all of the smooth elements in the kernel of Calabi is a
consequence of Corollary 3.2; this is because for such ψ, we have µ1pψq “ Calpψq “ 0.

In the case of the sphere, our normal subgroup is defined similarly, however we cannot
use the quasimorphisms fk : HomeopS2, ωq Ñ R because although the restriction fk :
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HomeocpD2, ωq Ñ R has defect 2
k
, the fk have defect

2
k

` 2; see Remark 2.10. We remedy
this problem by working instead with the sequence of quasimorphisms

gk :“ µ2k´1 ´ µ2k´1´1, (21)

for k ě 2 on HomeopS2, ωq (see Remark 2.10).
Then, the defect of gk is bounded by 2

2k´1
` 2

2k´1´1
. Define

NpS2
q :“ tψ P HameopS2, ωq : the sequence |p2k ´ 1qgkpψq| is boundedu.

Proposition 4.2. NpS2q is a normal subgroup of HameopS2, ωq which contains all of its
smooth elements.

As in the case of NpD2q the proof is similar to that of Theorem 3.1 and so we will
omit it.

To prove properness of these normal subgroups, we will exhibit examples of hameo-
morphisms with unbounded subleading asymptotics.

4.1 A quickly twisting hameomorphism

The first part of the proof is to find a useful element that is in Hameo. As in our previous
work, [8, 7, 6], the desired map will be a twist map. However, in our previous work, we
studied “infinite twists” that were twisting so quickly that they were not in Hameo. Here,
we find a map that is twisting slowly enough to define an element of Hameo, but quickly
enough to have interesting, i.e. unbounded, subleading asymptotics. The construction of
this map will be the topic of this section.

Let T : S2 Ñ S2 be defined as follows.
We view S2 as the standard unit sphere tpx, y, zq P R3 : x2 ` y2 ` z2 “ 1u in R3 and

equip it with the symplectic form ω “ 1
4π
dθ^ dz where pθ, zq are the standard cylindrical

coordinates on R3. Denote by p´ the point on S2 whose z–coordinate is ´1. We pick a
function H : S2ztp´u Ñ R which is of the form

Hpθ, zq “ hpzq,

where h : p´1, 1s Ñ R is a smooth function which vanishes for z ě ´1
2
and, for z ď – 3

4
,

satisfies the identity

hpzq “

c

2

1 ` z
. (22)

The function H induces a well-defined flow ϕtH on S2 which fixes the point p´ and its
action on pθ, zq, with z ą ´1, is given by the following equation

ϕtHpθ, zq “ pθ ` 4πh1
pzqt, zq.
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We define
T :“ ϕ1

H .

Note that T is supported in the disc D2 :“ tpθ, zq : ´1 ď z ď 0u Ă S2 and so we can
view it as an element of either of HomeocpD2, ωq or HomeopS2, ωq.

Proposition 4.3. T P HameopD2, ωq. Moreover,

CalpT q “
1

2

ż 1

´1

hpzqdz ă 8.

Note that the above proposition implies that T P HameopS2, ωq as well.

Remark 4.4. As mentioned earlier, the homeomorphism T twists slowly enough to be
in Hameo, and so its Calabi invariant is well-defined, yet it twists fast enough not to be
contained in NpD2q; the heuristic reasoning behind T R NpD2q is that, since Hpp´q “ 8,
T has “infinite Ruelle invariant.”

In comparison, if we were to modify the function h in Equation (22) to

hpzq “
2

1 ` z

we would obtain an “infinite twist” homeomorphism that spins too fast to be contained
in Hameo; here the heuristic reasoning is that the condition

ş1

´1
hpzqdz “ 8 forces the

homeomorphism to have “infinite Calabi invariant.” Indeed, this can be proven rigorously
via the argument given in [8] (see also the proof of [6, Theorem 1.3]).

Proof of Proposition 4.3. By definition of Hameo, to prove that T P HameopD2, ωq, we
must find smooth Hamiltonians Kn supported in a compact subset of the interior of
D2 “ tpθ, zq : ´1 ď z ď 0u such that

(A) ϕ1
Kn

C0

ÝÑ T ,

(B) ϕtKn
is Cauchy for the C0-distance, uniformly in t P r0, 1s,

(C) the sequence Kn is Cauchy for Hofer’s norm } ¨ }.

We start by picking Hamiltonians Hn as follows. Let Dn :“ tpθ, zq : ´1 ď z ď

´1 ` 1
22n

u Ă D2 be the disc of radius 1
22n

(in z coordinate) centered at p´; note that

AreapDnq “
1

22n
AreapD2

q “
1

22n`1
. (23)

Now, pick the Hamiltonian Hn so that the following hold:

(i) Hn depends only on the z variable,

(ii) Hn “ H outside of Dn and Hn « 2n
?
2 in the interior of Dn,
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(iii) }Hn`1 ´ Hn} ď 2n
?
2.

To see why Hn can be picked to satisfy the above, note that Hp´1` 1
22n

q “ 2n
?
2 and so

to obtain Hn it suffices to smoothly flatten H on the interior of Dn.

Note that ϕ1
Hn

˝ T´1 “ Id outside of Dn and hence ϕ1
Hn

C0

ÝÑ T . We will find Hamilto-
nians Kn such that ϕ1

Kn
“ ϕ1

Hn
, the sequence Kn is Cauchy for Hofer’s norm } ¨ } and ϕtKn

is Cauchy for the C0-distance, uniformly in t. Note that once this is proven Theorem 2.4
yields

CalpT q “ lim
n

Calpϕ1
Kn

q “ lim
n

Calpϕ1
Hn

q “ lim
n

ż

D2

Hn ω “

ż

D2

H ω “
1

2

ż 1

´1

hpzqdz.

We need the following lemma whose proof relies on ideas going back to Sikorav [37].

Lemma 4.5. Let ∆ be a Euclidean 2-disc equipped with an area form ω of total area A.
Suppose D Ă ∆ is diffeomorphic to D2 and that AreapDq ă A

N
for some integer N ą 0.

Let F be a smooth Hamiltonian supported in the interior of D. Then, we have

dHpϕ1
F , Idq ď

}F }

N
` 2A.

where dH denotes the Hofer distance on Hamcp∆, ωq and }F } “
ş1

0
pmax∆ Ft ´min∆ Ftqdt

is the Hofer norm of F .

Proof. Lemma 4.3 of [7] proves this for A “ 1. A straightforward adaptation of the proof
therein yields the case where A ‰ 1.

Before proving this lemma, we will use it to construct the sequence of Hamiltonians
Kn.

For each n, the Hamiltonian Hn`1´Hn is supported in the disc Dn, by item (ii) above,
and }Hn`1 ´ Hn} ď 2n

?
2, by (iii). Let ∆n Ă D2 be the disc centered at p´ and of area

An “ 2´n{2. By Equation (23), we have AreapDnq ă An

N
for N “ 2t3n{2u. Hence, applying

Lemma 4.5, we obtain Hamiltonians Gn supported in ∆n which satisfy

� ϕ1
Gn

“ ϕ1
Hn`1´Hn

“ ϕ´1
Hn
ϕ1
Hn`1

,

� }Gn} ď
}Hn`1´Hn}

N
` 2An ď 2n

?
2

N
` 2An.

In particular, for N “ 2t3n{2u, we get Hamiltonians Gn such that the series
ř8

i“1 }Gi} is
summable. Since Gn is supported in An, the C

0-distance dC0pϕtGn
, Idq is bounded by the

diameter of An, which is Op2´n{4q. It follows that the series
ř8

i“1 dC0pϕtGi
, Idq is summable

as well (uniformly in t).
Now let us define K1 :“ H1 and then recursively Kn`1 :“ Kn7Gn for n ě 1. Then,

ϕ1
Kn

“ ϕ1
H1
ϕ1
G1

¨ ¨ ¨ϕ1
Gn´1

“ ϕ1
Hn
.
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Moreover, since
ř8

i“1 }Gi} “
ř8

i“1 }Ki`1 ´ Ki} is summable, the sequence Kn is Cauchy
with respect to the Hofer norm. Similarly, since

ř8

i“1 dC0pϕtGi
, Idq is summable, ϕtKn

converges for the C0 topology.
This completes the proof of Proposition 4.3 modulo the proof of the lemma which we

provide below.

Proof of Lemma 4.5. We will present the proof of the lemma under the simplifying as-
sumption that the Hamiltonian F is time independent and leave the more general case,
which is very similar, to the reader. Note that we have only applied Lemma 4.5 to
time-independent Hamiltonians.

Fix 1 ď k ď N and pick pairwise disjoint discs D1, . . . , Dk Ă ∆ such that each of
these discs has the same area as D. There exist Hamiltonian diffeomorphisms ψ1, . . . , ψk P

Hamcp∆, ωq such that

� ψipDq “ Di for each i “ 1, . . . , k,

� dHpψi, Idq ď A
N
.

Consider the time-independent Hamiltonian

H :“
1

k

k
ÿ

i“1

F ˝ ψ´1
i .

It is supported in the union of the discs Di and }H} ď
}F }

k
. Therefore,

dHpϕ1
F , Idq ď dHpϕ1

F , ϕ
1
Hq ` dHpϕ1

H , Idq ď dHpϕ1
F , ϕ

1
Hq `

}F }

k
.

Hence, to prove the lemma, it is sufficient to show that dHpϕ1
H , ϕ

1
F q ď 2kA

N
. To do so,

first observe that ϕ1
H “

śk
i“1 ψiϕ

1{k
F ψ´1

i and ϕ1
F “

śk
i“1 ϕ

1{k
F . Hence,

dHpϕ1
H , ϕ

1
F q “ dH

˜

k
ź

i“1

ψiϕ
1
k
Fψ

´1
i ,

k
ź

i“1

ϕ
1
k
F

¸

ď

k
ÿ

i“1

dHpψiϕ
1
k
Fψ

´1
i , ϕ

1
k
F q

ď

k
ÿ

i“1

dHpψi, Idq ` dHpψ´1
i , Idq

“

k
ÿ

i“1

2 dHpψi, Idq ď
2kA

N

Here, the inequalities on the second and the third line follow from the bi-invariance of
Hofer’s metric and the inequality on the final line follows from the fact that we picked ψi
such that dHpψi, Idq ď A

N
.
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4.2 The case of the disc

We now use the map T to prove the first item of Theorem 1.2.
We will prove that the normal subgroup NpD2q, from Proposition 4.1, is proper. This

is a direct consequence of the following two lemmas.

Lemma 4.6. Suppose that there exists an element ψ P HameopD2, ωq such that the se-
quence |k ¨ pfkpψq ´ Calpψqq| is unbounded. Then, there exists some ψ1 in the kernel of
Calabi which does not belong to NpD2q.

Proof. Let Θ P DiffcpD2, ωq be such that CalpΘq “ Calpψq and define

ψ1
“ ψ ˝ Θ´1.

Then Calpψ1q “ 0. On the other hand, by Lemma 1.12

|kfkpψ1
q ´ kfkpψq ´ kfkpΘ´1

q| ď 2.

Now, we claim that the sequence tkfkpψq ` kfkpΘ´1quk is unbounded which, in combina-
tion with the above inequality, implies that the sequence |kfkpψ1qq| is unbounded. This,
in turn, implies that ψ1 R NpD2q.

The fact that tkfkpψq ` kfkpΘ´1quk is unbounded is an immediate consequence of
Theorem 3.1: the sequence tk ¨ pfkpΘ´1q ´ CalpΘ´1qquk is bounded, by the theorem, and
the sequence tk ¨pfkpψq´Calpψqquk is unbounded, by assumption. Hence, the sum of these
two sequences, which is exactly tkfkpψq ` kfkpΘ´1quk, is unbounded. This completes the
proof.

Lemma 4.7. The sequence |kpfkpT q ´ CalpT qq| is unbounded, where T P HameopD2, ωq

is as in Proposition 4.3.

Proof. Recall the (non-smooth) function H from (22) which we used in the definition of
T . Let Hnpzq be a sequence of smoothings of H, depending only on z, that agree with H
except for ´1 ď z ď ´1 ` 1

22n
. One could, for example, take Hn to be as in the proof of

Proposition 4.3.

Note that ϕ1
Hn

C0

ÝÑ T and so, by the C0 continuity property of the fk, we have

fkpT q “ lim
nÑ8

fkpϕ1
Hn

q.

Now, since H and the Hn depend only on z, we can compute fkpϕ1
Hn

q using the
Lagrangian Control property; see Section 2.2.2. We have

fkpϕ1
Hn

q “
1

k

k
ÿ

i“1

Hnp´1 ` 2
i

k ` 1
q.

Since Hn “ H, except for ´1 ď z ď ´1 ` 1
22n

, for n large enough we have fkpϕ1
Hn

q “
1
k

řk
i“1Hp´1 ` 2 i

k`1
q and hence
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fkpT q “
1

k

k
ÿ

i“1

Hp´1 ` 2
i

k ` 1
q “

1

k

k
ÿ

i“1

hp´1 ` 2
i

k ` 1
q.

Recall that CalpT q “ 1
2

ş1

´1
hpzq dz ă 8. Hence, to prove that kfkpT q ´ kCalpT q is

unbounded, it suffices to prove that the sequence whose kth term is given by

2pkfkpT q ´ pk ` 1qCalpT qq “ 2
k

ÿ

i“1

hp´1 ` 2
i

k ` 1
q ´ pk ` 1q

ż 1

´1

hpzq dz (24)

is unbounded, which we will prove below.
Write ai “ ´1 ` 2 i

k`1
, for i “ 0, . . . , k ` 1. Observe that (24) can be rewritten as

pk ` 1q

k
ÿ

i“1

ˆ
ż ai

ai´1

hpaiq ´ hpzqdz

˙

´ pk ` 1q

ż ak`1

ak

hpzqdz.

The term
şak`1

ak
hpzqdz is zero since h is supported in ´1 ď z ď ´1

2
. So we must prove

unboundedness of the sum.
Since h is a convex function, we have hpaiq ´ hpzq ď h1paiqpai ´ zq. Thus

pk ` 1q

k
ÿ

i“1

ˆ
ż ai

ai´1

hpaiq ´ hpzqdz

˙

ď pk ` 1q

k
ÿ

i“1

ˆ

h1
paiq

ż ai

ai´1

pai ´ zqdz

˙

“ pk ` 1q

k
ÿ

i“1

ˆ

h1
paiq

2

pk ` 1q2

˙

“

k
ÿ

i“1

ˆ

h1
paiq

2

k ` 1

˙

.

Now, since h1 is non-decreasing, we have

k
ÿ

i“1

2

k ` 1
h1

paiq ď

k
ÿ

i“1

ż ai`1

ai

h1
pzqdz “

ż 1

a1

h1
pzqdz “ ´hpa1q

kÑ8
ÝÑ ´8.

This shows that pk`1q
řk
i“1

´

şai
ai´1

hpaiq ´ hpzqdz
¯

is unbounded and concludes the proof.

4.3 The case of the sphere

Here, we prove the second item of Theorem 1.2.

Proof. Recall, from Proposition 4.2, the normal subgroup

NpS2
q :“ tψ P HameopS2, ωq : the sequence |p2k ´ 1qgkpψq| is boundedu,

where gk is the quasimorphism defined by (21).
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We will show that NpS2q is proper. For this, we define a variant T 1 of the map T from

Proposition 4.3; that is, we let T 1 be the time-1 flow of F pθ, zq “ fpzq “

b

2
1`z

, away

from the south pole, and we set T 1pp´q “ p´. We claim that T 1 P HameopS2, ωq; this
follows directly from Proposition 4.3 via the observation that T 1 ˝ T´1 is smooth.

Define

Spkq “
?
2k

2k´1
ÿ

i“1

c

1

i
.

Then, arguing as in the proof of Lemma 4.7 it can be shown that

p2k ´ 1qgkpT 1
q “ Spkq ´

2k ´ 1

2k´1 ´ 1
Spk ´ 1q “ Spkq ´ 2Spk ´ 1q ´

1

2k´1 ´ 1
Spk ´ 1q. (25)

We will only provide an outline of the proof of the above formula as its derivation
is similar to what was done in the proof of Lemma 4.7. Here is the outline: take an
appropriate sequence of smoothings Fnpzq of F pzq which coincide with F away from a
small neighborhood of p´. Then, (25) follows from the following two items

1. ϕ1
Fn

C0

ÝÑ T 1 and so, by the C0 continuity of gk, we have gkpT 1q “ limnÑ8 gkpϕ1
Fn

q.

2. using the Lagrangian Control property, one obtains that

gkpϕ1
Fn

q “
1

2k ´ 1
Spkq ´

1

2k´1 ´ 1
Spk ´ 1q.

It follows from (25) that to show that T 1 is not in NpS2q, we need to estimate the
difference

Spkq ´ 2Spk ´ 1q ´
1

2k´1 ´ 1
Spk ´ 1q.

The crux of the issue is showing that Spkq ´ 2Spk ´ 1q is unbounded. To see this, write

Spkq´2Spk ´ 1q “
?
2k

2k´1
ÿ

i“1

c

1

i
´ 2

?
2k

2k´1´1
ÿ

i“1

c

1

2i

“
?
2k

˜

2k´1
ÿ

i“0

c

1

2i ` 1
´

2k´1
ÿ

i“1

c

1

2i

¸

ě
?
2k

˜

1 ´

c

1

2

¸

,

which is unbounded in k.
To complete the proof, it therefore remains to show that the term 1

2k´1´1
Spk ´ 1q is

bounded in k. To do this, we write

1

2k´1 ´ 1
Spk ´ 1q “

2k´1

2 ¨ 2k´1 ´ 1

Spk ´ 1q

2k´2
.
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The term Spk´1q

2k´2 differs from the right Riemann sum, for the integrable function
b

2
1`z

on

´1 ď z ď 1, by 1
2k´2 , hence

1
2k´1´1

Spk ´ 1q is bounded in k. We conclude from this the

sequence p2k ´ 1qgkpT 1q is unbounded and hence T 1 R HameopS2, ωq. This completes the
proof of Theorem 1.2.

5 Infinitely many extensions of Calabi

Having applied the two-term Weyl law to study the normal subgroup structure of G “

HomeocpD2, ωq, we now invoke related asymptotic considerations to prove Theorem 1.9,
which we recall for the reader states that the Calabi homomorphism admits infinitely
many extensions to G. We also elaborate on the promise from the introduction that this
perspective has value in identifying new normal subgroups whose quotients can be com-
puted. We note for the benefit of the reader that while this section is thematically linked
to the previous one, it does not cite results from there and so can be read independently.

5.1 The main theorem

We begin with the promised proof of Theorem 1.9, which collects considerations of the
asymptotics of the fk via a short argument.

Proof of Theorem 1.9. Define the group R1 :“ RN{ „, where s „ t if and only if s´ t has
limit 0. We can think of this as the “set of all limits of sequences”. There is a natural
map

S : G Ñ R1, g Ñ pf2pgq, f3pgq, . . . , fnpgq, . . .q. (26)

(We have not included f1 here, because as we have defined it, it is 0.) By Lemma 1.12,
this is a group homomorphism. There is also a canonical homomorphism

∆ : R Ñ R1, x ÞÑ px, x, . . . , xq.

Now by the Weyl law (1), we have

Sphq “ pCal,Cal,Cal, . . .q (27)

for every h P DiffcpD2, ωq.
We now find a section of the map ∆, as follows. The group R1 is a vector space over

R. Take the vector v1 “ p1, . . . , 1, . . .q P R1; by Zorn’s Lemma, we can extend this to a
basis β for R1. The section of ∆ now comes from the splitting of R1 with respect to this
basis. More precisely, we define

s : R1
Ñ R, spvq “ a1, v “ a1v1 `

ÿ

viPβ,vi‰v1

aivi.

It now follows from (27) that s ˝ S is the desired extension. Since there are infinitely
many choices of extensions β, and the map S is surjective (see Proposition 5.3 below), it
follows that there are infinitely many extensions.

32



Remark 5.1. The above argument uses Zorn’s lemma. As communicated to the authors
by C. Rosendal, there are models of set theory where the axiom of choice is false and every
homomorphism between Polish groups is continuous; in particular, the extensions from
above do not exist in those models. Assuming dependent choice plus ZF, the existence of
the above extension implies that there is a Vitali set. See [32, Thm. 5.] and [31].

Remark 5.2. In [6], the Calabi invariant was previously extended to a homomorphism
Cal on HameopD2, ωq by the rule

H ÞÑ

ż

Hωdt,

where H is any Hamiltonian for a given hameomorphism; such a Hamiltonian is not
unique, but [6] showed that this extension does not depend on the choice of Hamiltonian.
Any of the extensions to HomeocpD2, ωq in Theorem 1.9 agree with this extension when
restricted to Hameo; this follows from the fact that, similarly to (27),

Sphq “ pCal,Cal,Cal, . . .q, (28)

for any h P HameopD2, ωq.
To see why the above equation is true, we note that, as in the proof of [6, Thm. 1.1],

if h P HameopD2, ωq and H : r0, 1s ˆ D2 Ñ R is a C0 Hamiltonian for h, then, for any
ϵ ą 0, we can find smooth Hamiltonians Gm such that

1. ϕ1
Gm

converges to h in the C0 topology,

2. Gm uniformly converges to H.

Then,

|fkphq ´ fkpGmq| ă ϵ and

ˇ

ˇ

ˇ

ˇ

ż

Gm ´

ż

H

ˇ

ˇ

ˇ

ˇ

ă ϵ,

where in the first inequality above we have used the Hofer continuity property; see 2.7.
Since ϵ ą 0 is arbitrary, (28) follows from the above inequalities and (1).

5.2 Normal subgroups with explicit quotients

It has been an open question since the proof of the Simplicity Conjecture mentioned in
the introduction to identify the quotient of G by the normal subgroup of finite energy
homeomorphisms FHomeo constructed there; see [8]. The circle of ideas around the
proof of Theorem 1.9 allows us to resolve a variant of this question: we can find normal
subgroups whose quotient can be calculated.

For example, define N to be the kernel of the map S from (26).

Proposition 5.3. The map S from (26) is surjective. In particular, G{N » R1.
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Proof. Given an element s P RN, we define a smooth autonomous Hamiltonian H on the
complement of the north pole p` P S2, and depending only on z, recursively as follows.

Call si the pi ´ 1qst component of s. To motivate what follows, note that, given k,
we can take our Lagrangian Link to correspond to the set tz “ ´1 ` 2i

k`1
: 1 ď i ď ku.

Fix also the data of a smooth function E : r0, 1s Ñ R that is constant near 0 and 1 and
satisfies Ep0q “ 0 and Ep1q “ 1.

We start by defining H to be equal to 0 on t´1 ď z ď 0u. Next, we define H to be
equal to 2s2 on tz “ 1{3u. We now extend H to a smooth function on t´1 ď z ď 1{3u

by defining it to be equal to Hp1{3qEp z
1{3

q on t0 ď z ď 1{3u. Note that any extension of

H to a smooth function of z on the entire interval r´1, 1s will have f2 of the extension
equal to s2, by the Lagrangian Control property (10).

Now assume, inductively, that we have extended H to a smooth function on t´1 ď

z ď ´1 ` 2k
k`1

u, for some k ě 2, that is constant near the endpoints of this interval and
satisfies

fipHq “ si, 2 ď i ď k

for any further extension of H to a smooth function on r´1, 1s. We seek to extend H to
a smooth function on t´1 ď z ď ´1 ` 2k`2

k`2
u that is also constant near the endpoints of

this interval and satisfies

fipHq “ si, 2 ď i ď k ` 1

for any further extension of H to a smooth function on r´1, 1s. Note, first of all, that
´1 ` 2k

k`2
ď ´1 ` 2k

k`1
. In particular, the equation

Hp´1 ` 2k`2
k`2

q “ pk ` 1qsk`1 ´

k
ÿ

i“1

Hp´1 ` 2i
k`2

q,

makes sense, and we use it to define H on tz “ ´1` 2k`2
k`2

u. We therefore have a function

H defined on t´1 ď z ď ´1` 2k
k`1

uYtz “ ´1` 2k`2
k`2

u, which is smooth on the first of these

sets and constant near the endpoints of the first of these sets. Since ´1` 2k
k`1

ă ´1` 2k`2
k`2

,

there is no obstruction to further extending H smoothly to t´1 ď z ď ´1` 2k`2
k`2

u : more
precisely, we define H to be

ˆ

Hp´1 `
2k ` 2

k ` 2
q ´ Hp´1 `

2k

k ` 1
q

˙

E

˜

z ´ p´1 ` 2k
k`1

q

2k`2
k`2

´ 2k
k`1

¸

` Hp´1 `
2k

k ` 1
q

on t´1 ` 2k
k`1

ď z ď ´1 ` 2k`2
k`2

u.
As above, we note that any further extension of H to a smooth function on t´1 ď

z ď 1u will have
fk`1pHq “ sk`1, (29)

by the Lagrangian Control property (10).
Given an element s P RN, we now define ψ to be the time-1 flow of the Hamiltonian

H constructed above, away from p`, and we set ψpp`q “ p`. We can view this as a
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compactly supported homeomorphism of the disc, which we also denote by ψ, and we
claim that Spψq “ s : indeed, for any fixed k, we can approximate ψ in C0 by smooth
flows corresponding to Hamiltonians that depend only on z, without changing the values
of H on the components tz “ ´1 ` 2i

k`1
u of the Lagrangian Link, hence the claim follows

from (29) together with the C0 continuity of fk (Theorem 2.9).

Remark 5.4. For a more familiar presentation of G{N via Proposition 5.3, we note that
the group R1 is isomorphic to R. Indeed, both are uncountable vector spaces over Q of
the same cardinality.

Remark 5.5. The map S allows us to define many other subgroups whose quotients can
be identified. Indeed, we can take any subgroup H Ă R1, and then by Proposition 5.3,
NH :“ S´1pHq will be a normal subgroup with quotient H. One can think of the different
NH as “leading asymptotics subgroups”: they correspond to different prescriptions of the
leading asymptotics of the fk. We may also produce groups by varying the target of S by
taking different quotients of RN. For example, if we quotient by the relation that s „ t if
and only if s ´ t remains bounded and take this to be the target of S, then the induced
homomorphism out of G is still surjective, but one can show that its kernel contains
FHomeo and Hameo, as introduced in the discussion at the end of the introduction.

6 The commutator group of G is simple

The goal of this section is to prove Theorem 1.11. We denote by G the kernel of the mass
flow homomorphism HomeocpΣ, ωq Ñ R, where Σ is a surface either compact or the inte-
rior of a compact surface with boundary. We denote by rG,Gs the commutator subgroup,
i.e. the subgroup generated by commutators. We will denote by rf, gs “ f´1g´1fg the
commutator of two elements f and g. Theorem 1.11 asserts that rG,Gs is simple.

As was mentioned in the introduction, it is known (See [8, Prop. 2.2]5) that any normal
subgroup of G contains rG,Gs and in particular the commutator group of rG,Gs, which
is normal in G, contains rG,Gs, hence rG,Gs is perfect. Another consequence of this fact
is that the simplicity of rG,Gs (Theorem 1.11) follows from the next lemma.

Lemma 6.1. Any normal subgroup of rG,Gs is normal in G.

Proof. Let H be a normal subgroup of rG,Gs. To prove that H is normal in G, we need
to prove that for all h P H and g P G, the conjugate g´1hg belongs to H. We will prove
it in several steps, gradually increasing the set of elements h and g for which we establish
this property.

First step. We will show that g´1hg P H for any h P H, g P G satisfying the following
two conditions:

5Proposition 2.2 in [8] is only stated on the disc, but holds on any compact surface by the same
argument.
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(I) the open set U “ Σzsuppphq is non empty,

(II) there exists f P G such that fpsupppgqq Ă U and fpsupppgqq X supppgq “ H.

Note that (II) is satisfied as soon as g is supported in a disk of sufficiently small area.
Let h P H and g P G satisfy (I) and (II) and let f P G be as in (II). We claim that

g´1hg “ rf´1, gs
´1hrf´1, gs. (30)

Indeed, denoting S “ supppgq, then rf´1, gs is supported in S Y fpSq. By (II) this is a
disjoint union and fpSq Ă U . Moreover rf´1, gs coincides with g in the complement of
fpSq.

For any x P ΣzfpSq, we therefore have

rf´1, gs
´1hrf´1, gspxq “ rf´1, gs

´1hgpxq.

Since fpSq is included in the complement of the support of h, the subsets fpSq and its
complement are both invariant by h. Thus hgpxq R fpSq, hence

rf´1, gs
´1hrf´1, gspxq “ rf´1, gs

´1hgpxq “ g´1hgpxq.

For any x P fpSq, the points gpxq and rf´1, gspxq are also both in fpSq. As a conse-
quence h acts trivially on them and we deduce the two identities

rf´1, gs
´1hrf´1, gspxq “ x, g´1hgpxq “ x.

We have shown that for all x P Σ, the equality rf´1, gs´1hrf´1, gspxq “ g´1fgpxq

holds. This establishes (30). Now since H is normal in rG,Gs, we deduce that g´1hg
belongs to H.

Second step. We will now show that g´1hg P H for any h P H satisfying condition (I)
and any g P G. This case will essentially follow from the first step and fragmentation.

Let h P H satisfying (I) and g P G. We let pSiqiPI be a finite open cover of Σ by
disks of sufficiently small area in the sense that for each i P I, there exists a map fi P G
satisfying fipSiq Ă U and fipSiq X Si “ H.

By Fathi’s fragmentation theorem [14, Thm. 6.6] the map g can be written as a
product g “ g1 ¨ ¨ ¨ gN of elements in G such that each gj is supported in one of the Si’s.
By construction, the maps hj “ g´1

j ¨ ¨ ¨ g´1
1 hg1 ¨ ¨ ¨ gj and gj`1 satisfy conditions (I) and

(II) for each j. Thus, we may use the first step by induction and deduce that hN “ g´1hg
belongs to H.
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Third step. We finally show that g´1hg P H for any h P H and g P G. This will rely
on the second step and the following lemma.

Lemma 6.2. Let h P H and let z be a fixed point of h (which exists by Arnold conjecture
[24]). Then for every sufficiently small open neighborhood U of z, there exists ℓ P H such
that supppℓq ‰ Σ and ℓ coincides with h on U .

We postpone the proof of this lemma and use it to conclude the proof of the third
step. Let h P H and g P G. Let ℓ P H be as provided by Lemma 6.2. Then, hℓ´1 and ℓ
belong to H and both satisfy condition (I). Our second step shows that g´1phℓ´1qg P H
and g´1ℓg P H. As a consequence, their product g´1hg belongs to H. This concludes the
proof of the third step and of Lemma 6.1.

Proof of Lemma 6.2. Let U be a small neighborhood of z. How small it is will be made
precise below. Since z is fixed, it is known6 that for every open neighborhood V of z, there
exists an element α P G which coincides with h in a neighborhood of z and is supported
in V . We may assume that U is so small that α “ h on U . We will use such an α to
build our map ℓ.

Let x be a point such that hpxq ‰ x. Note that we may assume without loss of
generality that such a point exists. Taking a point y close to x but distinct from x, we
obtain a configuration of four pairwise distinct points x, y, hpxq, hpyq. Let f P G be such
that fpxq “ y. Let A be an open neighborhood of x. If A is chosen small enough, then
the four open sets A, B “ hpAq, C “ fpAq and D “ hpCq are pairwise disjoint. In this
situation, it is easy to check that for any g P G supported in A we have

suppprf´1, gsq Ă A Y C and rf´1, gs “ g on A.

Similarly, since B Y D “ hpA Y Cq, we have for any g P G supported in A

suppprh´1, rf´1, gssq Ă A Y B Y C Y D and rh´1, rf´1, gss “ g on A.

Since h P H and H is normal in rG,Gs, the element rh´1, rf´1, gss belongs to H. Thus,
we have shown that any element of G supported in A coincides on A with an element of
H supported in AYBYC YD ‰ Σ. We will apply this fact to an appropriate conjugate
of the map α from the beginning of the proof.

Let β P rG,Gs be a map that sends z to x (this can be found for instance among
diffeomorphisms). Then, if the open sets U and V are chosen sufficiently small, the map
βαβ´1 is supported in A. By the above observation, there exists an element γ P H which
coincides with βαβ´1 on A and whose support is not the whole of Σ. Then, ℓ “ βγβ´1

suits our needs. Indeed, ℓ coincides with α on V hence with h on U . Moreover, since H
is normal in rG,Gs, ℓ P H and its support is not the whole of Σ.

6This is a standard folklore statement that can be proved by a combination of the Schoenflies and the
Oxtoby-Ulam theorem.
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7 Heuristic argument for recovering Ruelle

7.1 Hutchings’ heuristic

If pX,ωq is a 4 dimensional Liouville domain, there is a sequence of spectral invariants
ckpXq defined using Hutchings’ theory of ‘embedded contact homology’. These invariants
satisfy

lim
k
ckpXq

2
{k “ 4VolpXq

which is an analogue of the fact that – and motivated the result that – link spectral
invariants asymptotically recover the Calabi invariant. (Under a tentative dictionary be-
tween ECH and quantitative Heegaard Floer homology, this becomes more than analogy.).
Going further, Hutchings introduces

ekpXq :“ ckpXq ´ 2
a

kVolpXq

and conjectures [20] that for a ‘nice and generic’ star-shaped domain X Ă R4, one has a
subleading asymptotic

lim
k
ekpXq “ ´1{2RupXq (31)

where the Ruelle invariant in fact depends only on the contact boundary Y “ BX of X,
and is given by RupXq :“

ş

BX
ρ λ ^ dλ, with λ the restriction of the standard primitive

ř2
i“1pxidyi´yidxiq to Y and ρ : Y Ñ R a rotation function which measures an asymptotic

winding along the Reeb flow. Hutchings gives a heuristic derivation of (31) which has,
broadly speaking, two parts: first, a recasting of the rotation function in terms which
explicitly involves the action of ECH generators (which are certain periodic orbits of the
Reeb flow); and second a description of the action of Reeb orbits in terms of integrals over
the whole of Y , invoking a strong equidistribution result for those orbits. The discussion
below can be seen rather directly as a translation of Hutchings’ heuristic to our setting.

7.2 Actions of capped chords

In the next section we derive an expression for k ¨µkpHq for a not necessarily autonomous
Hamiltonian. The derivation appeals to different expressions for the action of a chord
carrying the spectral invariant, computed either on the disc or on its symmetric product.
We begin by reviewing the ‘cappings’ used to define the action.

Let pD2, ω “ dλq be a disk with area 1
2
and let H P C8

c pr0, 1s ˆ D2q be a compactly
supported Hamiltonian function. We symplectically identify pD2, ωq with the northern
hemisphere of S2, and H P C8

c pr0, 1s ˆD2q Ă C8pr0, 1s ˆS2q. Let L be a Lagrangian link
in S2 with k components bounding pairwise disjoint disks of area 1

k`1
. We also assume

that L is disjoint from the south pole of S2, and use stereographic projection to identify
the complement of the south pole with C.

The Lagrangian Floer cochain complex of SympLq with respect to the Hamiltonian
SympHq is denoted by CF pSympLq, SympHqq; it is generated by the intersection points
between SympLq and Sympϕ1

HpLqq together with cappings [6, Section 6.1].
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Remark 7.1. More precisely, we need to perturb H inside C8
c pr0, 1s ˆ Cq to make

Sympϕ1
HpLqq intersect transversally with SympLq to define CF pSympLq, SympHqq. To

ease notation, we will continue to denote the Hamiltonian by H and assume that it is
non-degenerate.

Equivalently, a generator of CF pSympLq, SympHqq is a Hamiltonian chord xptq “

px1ptq, . . . , xkptqqtPr0,1s in the unordered configuration space ConfkpCq from SympLq to
itself together with a capping [6, Section 6.2]. Since π1pSym

k
pS2q, SympLqq is trivial,

every Hamiltonian chord x represents the trivial relative homotopy class. Let x : r0, 1s Ñ

SympLq be a constant path, viewed as a reference base chord from SympLq to itself. A
cap of x with respect to x is a continuous map x̂ : r0, 1s ˆ r0, 1s Ñ Symk

pS2q such that
x̂p0, tq “ xptq, x̂ps, 0q, x̂ps, 1q P SympLq and x̂p1, tq “ x.

Recall that two caps are equivalent if their symplectic areas are the same [6, Section
6.1]7.

Let x̂ be a cap of x with image in Symk
pCq. Any other cap of x is equivalent to x̂ up

to adding a disc class in π2pSym
k
pS2q, SympLqq. Since SympLq is monotone [6, Lemma

4.19], adding two different primitive positive area disc classes from π2pSym
k
pS2q, SympLqq

to the fixed x̂ gives the same equivalence class of caps. Therefore, by choosing such a
primitive positive disc class to be in π2pSymk

pCq, SympLqq, we see that every equivalence
class of cap is represented by one lying in Symk

pCq. We will restrict to using caps in
Symk

pCq from now on.
For any cap x̂ in Symk

pCq, we define

x̂ ÞÑ px̂ :“ px̂ps, 0qqs#px̂p1, tqqt#px̂p1 ´ s, 1qqs.

Note that px̂ptq P SympLq for all t P r0, 1s. For any t P r0, 1s and i “ 1, . . . , k, we let
px̂,iptq to be the point on the ith component of L such that px̂ptq “ ppx̂,1ptq, . . . , px̂,kptqq.
By changing px̂ by homotopy, if necessary, we can assume that px̂,i is a smooth path for
all i.

The action of x̂ is defined to be

Apx̂q :“

ż 1

0

SympHqpxptqqdt ´

ż

x̂˚ Sympωq

“

ż 1

0

SympHqpxptqqdt ´

ż

p˚
x̂ Sympλq `

ż

x˚ Sympλq

“

k
ÿ

i“1

ˆ
ż 1

0

Hpxiptqqdt `

ż

x˚
i λ ´

ż

p˚
x̂,iλ

˙

.

By adding elements of π2pSym
k
pCq, SympLqq to x̂, we can change the relative homotopy

class of px̂,i by a multiple of the circle which is the ith component of L and it would change
the integration

ş

p˚
x̂,iλ by the area of the disc enclosed by the ith component of L. Let x̂0

be a cap of x such that 0 ď
řk
i“1

ş

p˚
x̂0,i
λ ă 1.

7In [6, Section 6.1], the definition of the equivalence of caps is slightly more complicated because we
have the parameter η. Our case is simpler because η “ 0.

39



Lemma 7.2 ([25] (10.3.3)). Let F : D2 Ñ R be the compactly supported function such
that dF “ pϕ1

Hq˚λ ´ λ. Then

ż 1

0

Hpxiptqqdt `

ż

x˚
i λ “ F pxip0qq.

Proof. The result follows immediately from the quoted reference, up to checking sign
conventions. The conventions for the Hamiltonian vector field are the same in this paper
and in [25], namely ιXH

ω “ dH. However, the primitive λ used in their work differs from
ours by sign, i.e. if their choice is λMS then we have λ “ ´λMS. Therefore, we have
dF “ ´ppϕ1

Hq˚λ ´ λq “ ´dFMS, where dFMS :“ pϕ1
Hq˚λMS ´ λMS. Converting their

equation (10.3.3), we get

F pxip0qq “ ´FMSpxip0qq “ ´

ż

x˚
i λMS `

ż 1

0

Hpxiptqqdt “

ż

x˚
i λ `

ż 1

0

Hpxiptqqdt

Lemma 7.3 ([17]). For the same F as above, we have
ż

D2

Fω “ 2

ż

D2

Hω

Proof. The above formula is proven in [17] but with the opposite sign. The reason for
this difference is that [17] and this paper have opposite conventions for the sign of the
Hamiltonian vector field.

Applying Lemma 7.2, we have

Apx̂q “

k
ÿ

i“1

ˆ

F pxip0qq ´

ż

p˚
x̂0,i
λ

˙

`
kx̂

k ` 1

where kx̂ is the image of px̂#´px̂0 P π1pSympLqq to Z under the obvious map which sends
the distinguished positive generators to 1.

We next need to relate kx̂ with CalpHq and RupHq. We have

degpx̂q “ degpx̂0q ` 2kx̂.

To compute degpx̂0q, we use the canonical trivialization of TCk “ T Symk
pCq to pull-back

a trivialization on x̂˚
0TCk.

The degree degpx̂0q is the Maslov index of the path of Lagrangians coming from
concatenating pTpx̂0 p1´tq SympLqqtPr0,1s and pDϕtHpTxp0q Sym

k
pLqqqtPr0,1s.

Let Ωstd be the holomorphic volume form on ConfkpCq induced from the standard
holomorphic volume form on Ck. Let

e2πiθstdptq
“

˜

ΩstdpDϕ
t
HpTxp0q Sym

k
pLqqq

|ΩstdpDϕtHpTxp0q Sym
k
pLqqq|

¸2
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and

e2πiθpptq
“

˜

ΩstdpTpx̂0 p1´tq SympLqq

|ΩstdpTpx̂0 p1´tq SympLqq|

¸2

.

Then (see [36, Section 11(j)], [35], [30]),

degpx̂0q “ rθstdp1q ´ θstdp0q ` θpp1q ´ θpp0qs.

By choosing L appropriately, we can assume that px̂0,i is an embedding that is less than
a full circle for all i “ 1, . . . , k. That ensures that

´2k ď θpp1q ´ θpp0q ď 2k.

On the other hand, the standard holomorphic volume form Ω0 on C also induces a
holomorphic volume form Ωsing on ConfkpCq. A direct computation shows that the forms
Ωstd and Ωsing are related by the Vandermonde determinant in the following sense:

Lemma 7.4. Writing Ωsing “ dz1 ^ ¨ ¨ ¨ ^ dzk and Ωstd “ dw1 ^ ¨ ¨ ¨ ^ dwk, where wi is
the ith elementary symmetric polynomial of the variables z1, . . . , zk, then

ź

iăj

pzi ´ zjqΩsing “ Ωstd

It follows that

θstdp1q ´ θstdp0q “

k
ÿ

i“1

`

θi0p1q ´ θi0p0q
˘

` 2
ÿ

iăj

pRi,jp1q ´ Ri,jp0qq

where e2πiθ
i
0ptq “

´

Ω0pDϕtHTxip0qLiq

|Ω0pDϕtHTxip0qLiq|

¯2

, and e2πiRi,jptq “
xiptq´xjptq

|xiptq´xjptq|
.

Putting things together, we have

Apx̂q “

k
ÿ

i“1

ˆ

F pxip0qq ´

ż

p˚
x̂0,i
λ

˙

`
degpx̂q

2pk ` 1q
(32)

´
1

2pk ` 1q

˜

r

k
ÿ

i“1

`

θi0p1q ´ θi0p0q
˘

` 2
ÿ

iăj

pRi,jp1q ´ Ri,jp0qq ` θpp1q ´ θpp0qs

¸

7.3 An expression for non-autonomous Hamiltonians

Now we can use (32) to estimate µkpHq.
Fix a class c P QHpSympLqq. For each N P N, let x̂N be a capped generator of

CF pSympLq, SympH7Nqq such that Apx̂Nq “ kckpH7N ; cq. So we have

kµkpHq “ lim
N

kckpH7N ; cq

N
“ lim

N

Apx̂Nq

N
.
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For each x̂N , we can write it as x̂N,0#An for a relative homotopy classAn P π2pCk, SympLqq

such that 0 ď
řk
i“1

ş

p˚
x̂N,0,i

λ ă 1.

We denote the F , θp, θ
i
0 and Ri,j for x̂N,0 by FN , θN,p, θ

i
N,0 and RN,i,j respectively so

we have ´2k ď θN,pp1q ´ θN,pp0q ď 2k for all N .
As a result, we have the following expression for kµkpHq:

lim
N

˜

k
ÿ

i“1

FNppxNqip0qq

N
´

1

2Npk ` 1q

˜

k
ÿ

i“1

`

θiN,0p1q ´ θiN,0p0q
˘

` 2
ÿ

iăj

pRN,i,jp1q ´ RN,i,jp0qq

¸¸

.

7.4 Heuristics

The discussion up to this point has been rigorous. Now we impose some optimistic
assumptions on the behaviour of Riemann sums and show that they can be used to
obtain the subleading asymptote of µkpHq.

The first assumption concerns the Riemann sum of F over the equidistributed points
tpxNqip0quki“1 (as k goes to infinity). We assume for simplicity that there is no subleading
error.

Assumption 7.5. We assume that

lim
k

˜˜

lim
N

k
ÿ

i“1

FNppxNqip0qq

N

¸

´ 2kCalpHq

¸

“ lim
k

lim
N

k
ÿ

i“1

ˆ

FNppxNqip0qq

N
´

ż

D2

F

˙

“ 0.

Remark 7.6. The term FN ppxN qip0qq

N
equals 1

N

řN´1
j“0 F pϕjHppxNqip0qqq. The previous As-

sumption is therefore close to the conclusion of the Birkhoff ergodic theorem [33]. We
recall that this theorem concerns the behaviour of length N time averages with a common
start point (so taken from a common orbit). In the uniquely ergodic case, one can choose
the start points arbitrarily, since any weak limit of measures along orbit segments con-
verges to an invariant measure. Away from the uniquely ergodic case, if one can perturb
the start-points of the length N orbit sums in open sets whose total measure diverges,
one can recover the same result using the Borel-Cantelli lemma. Our situation is neither
uniquely ergodic, nor do we have such generous control over the initial points pxNqip0q of
our orbit segments (standard transversality arguments would let them vary in open sets
of exponentially decreasing size).

The second assumption has a similar ergodic flavour, and concerns the Riemann sum of
the linking number between pairs of points, and the interpretation of Calabi as the average
asymptotic linking number [15, 17]. We again give a formulation with no subleading error.

Assumption 7.7. We assume that

lim
k

˜˜

lim
N

1

Npk ` 1q

ÿ

iăj

RN,i,jp1q ´ RN,i,jp0q

¸

´
k2

k ` 1
CalpHq

¸

“ 0.
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The last assumption is mild. It is the interpretation of Ruelle as the average asymptotic
rotation number. Since we are not going to prove the previous assumptions, we also leave
out the details of this statement, but expect its verification would be straightforward.

Assumption 7.8. We assume that

lim
k

lim
N

1

2Npk ` 1q

˜

k
ÿ

i“1

`

θiN,0p1q ´ θiN,0p0q
˘

¸

“
1

2
RupHq.

Under Assumptions 7.5, 7.7 and 7.8, we get

lim
k

pkµkpHq ´ pk ` 1qCalpHqq “ lim
k

ˆ

kµkpHq ´ p2k ´
k2

k ` 1
qCalpHq

˙

“ ´
1

2
RupHq.

which coincides with the calculations for autonomous Hamiltonians.
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