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A consequence of the geometric torsion conjecture for abelian
varieties over function fields is the following. Let k be an algebraic-
ally closed field of characteristic 0. For any integers d, g � 0 there
exists an integer N := N(k,d, g) � 1 such that for any function
field L/k with transcendence degree 1 and genus � g and any
d-dimensional abelian variety A → L containing no nontrivial k-
isotrivial abelian subvariety, A(L)tors ⊂ A[N]. In this paper, we deal
with a weak variant of this statement, where A → L runs only over
abelian varieties obtained from a fixed (d-dimensional) abelian
variety by base change. More precisely, let K/k be a function
field with transcendence degree 1 and A → K an abelian variety
containing no nontrivial k-isotrivial abelian subvariety. Then we
show that if K has genus � 1 or if A → K has semistable reduction
over all but possibly one place, then, for any integer g � 0,
there exists an integer N := N(A, g) � 1 such that for any finite
extension L/K with genus � g, A(L)tors ⊂ A[N]. Previous works of
the authors show that this holds—without any restriction on K —
for the �-primary torsion (with � a fixed prime). So, it is enough
to prove that there exists an integer N := N(A, g) � 1 such that
for any finite extension L/K with genus � g, the prime divisors of
|A(L)tors| are all � N .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The torsion conjecture for abelian varieties over finitely generated fields of characteristic 0 as-
serts that for any finitely generated field F of characteristic 0 and integer d � 1 there exists an integer
N := N(F ,d) � 1 such that for any d-dimensional abelian variety A → F , A(F )tors ⊂ A[N]. One can state
a geometric variant of this conjecture over function fields.
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Conjecture 1.1. Let k be an algebraically closed field of characteristic 0. Then, for any function field L/k and
any integer d � 0, there exists an integer N := N(L/k,d) � 1 such that for any d-dimensional abelian variety
A → L containing no nontrivial k-isotrivial abelian subvariety, A(L)tors ⊂ A[N].

Classical arguments (see Appendix A) show that Conjecture 1.1 (for all d) is equivalent to Conjec-
ture 1.1 for L = k(P1

k ) (and for all d), and that Conjecture 1.1 implies the following uniform version:
For any integers d, g � 0 there exists an integer N := N(k,d, g) � 1 such that for any function field L/k with
transcendence degree 1 and genus � g and any d-dimensional abelian variety A → L containing no nontrivial
k-isotrivial abelian subvariety, A(L)tors ⊂ A[N]. In this note, we deal with a weak variant of this state-
ment, where A → L runs only over abelian varieties obtained from a fixed (d-dimensional) abelian
variety by base change.

More precisely, let k be an algebraically closed field of characteristic 0 and let X be a smooth,
separated and connected curve over k with generic point η. Let X̃ denote the smooth compactification
of X , and g X the genus of X̃ . Write π1(X) for the etale fundamental group of X . Let A → X be an
abelian scheme such that Aη contains no nontrivial k-isotrivial abelian subvariety. For any prime �,
let ρA,� : π1(X) → GL(Aη[�]) denote the canonical representation of π1(X) on the group of (generic)
�-torsion points. For any v ∈ Aη[�], write Xv → X for the finite etale cover corresponding to the
inclusion of open subgroups Stabπ1(X)(v) ⊂ π1(X). Set:

g(n) := min{g Xv }v∈Aη[n]× .

(Here, given an integer n � 0, we will write Aη[n]× for the set of torsion points of order exactly n.)
We consider the following:

Conjecture 1.2. limn �→∞ g(n) = +∞.

Previous works of the authors show that the “vertical” part of Conjecture 1.2 holds, that is, for
any prime �, limn �→∞ g(�n) = +∞ [CT08, Thm. 1.1]. So, here, we focus on the “horizontal” part of
Conjecture 1.2. Namely, we show:

Theorem 1.3. Assume either that g X � 1 or that A → X has semistable reduction over all except possibly one
point of X̃ \ X. Then:

lim
��→∞;�: prime

g(�) = +∞.

So, as N | N ′ implies that g(N ′) � g(N), the only problem to complete the proof of Conjecture 1.2
is to remove, in Theorem 1.3, the semistability assumption when g X = 0.

There is also an arithmetic motivation for this work, namely, the torsion conjecture for fibers of
abelian schemes. More precisely, let F be a finitely generated field of characteristic 0, X a smooth,
separated and geometrically connected curve over F , and A → X an abelian scheme. Then, showing
that there exists an integer N := N(A) � 1 such that Ax(F )tors ⊂ Ax[N] for all x ∈ X(F ) amounts to
showing (cf. [CT08, Lem. 4.4]) that Xv(F ) = ∅, v ∈ Aη[N]× , N 
 0 (depending on A). For example,
when applied to the “universal” elliptic scheme E → X := P1 \ {0,1728,∞} defined by:

E j : y2 + xy = x3 − 36

j − 1728
x − 1

j − 1728
,

this assertion is closely related to the celebrated theorem of Mazur [Ma77], Kamienny [K92], Merel
[Me96] and others establishing the torsion conjecture for elliptic curves.

Recall that, from Mordell’s conjecture [FW92], Xv(F ) is finite if g Xv � 2. In the “vertical” situation
of [CT08, Thm. 1.1], one can use this combined with a projective system argument to show that
Xv(F ) = ∅, v ∈ Aη[�n]× , n 
 0 [CT08, Cor. 1.2]. Unfortunately, such an argument is not available in
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the “horizontal” situation. However, combining [CT08, Cor. 1.2], Mordell’s conjecture and Theorem 1.3,
one can state the following arithmetic result:

Corollary 1.4. Let F be a finitely generated field of characteristic 0, X a smooth, separated and geometrically
connected curve over F and A → X an abelian scheme. Assume either that X has genus � 1 or that A → X
has semistable reduction over all except possibly one (geometric) point of X̃ \ X. Then, for each prime � there
exists an integer n(�) � 1 such that:

(i) n(�) = 1 for � 
 0;
(ii) the set of x ∈ X(F ) such that �n(�) | |Ax(F )tors| is finite for any � � 0.

The present paper is organized as follows. In Section 2, we perform two reductions. In Section 2.1,
we show that Theorem 1.3 for g X � 2 follows from the geometric Lang–Néron theorem and, in Sec-
tion 2.2, we invoke a semisimplicity argument to show that, when g X = 1, it is enough to prove that
g(�) � 2 for � 
 0. Section 3 is devoted to the proof of Theorem 1.3. In Section 3.1 we complete
the proof of Theorem 1.3 when g X = 1. The heart of this subsection is Corollary 3.6, which asserts
that for any integer B � 1 and � 
 0 (depending on B) the image of π1(X) acting on a nonzero
π1(X)-submodule of Aη[�] contains no abelian subgroups of index � B; the proof of this statement
involves several arguments of arithmetic, geometric and group-theoretic nature. In Section 3.2, we
carry out the proof of Theorem 1.3 when g X = 0. The argument here, based on the Riemann–Hurwitz
formula and the specific structure of π1(X) when g X = 0, is rather of combinatorial nature. Eventu-
ally, Section 3.3 is devoted to the proof of Corollary 1.4 and the short Appendix A to remarks about
consequences of the geometric torsion conjecture.

2. Reduction steps

In the rest of this paper, we follow the notations of Section 1, unless otherwise stated. In partic-
ular, k denotes an algebraically closed field of characteristic 0, X denotes a smooth, separated and
connected curve over k with generic point η, and A → X denotes an abelian scheme such that Aη

contains no nontrivial k-isotrivial abelian subvariety (recall that, given a function field K/k, an abelian
variety a over K is said to be k-isotrivial if there exists an abelian variety a0 over k such that a ×K K
is K -isomorphic to a0 ×k K ). The reason for this technical hypothesis on Aη is that we will apply to
Aη the following geometric variant of the Lang–Néron theorem [LN59]:

Theorem 2.1. Let K/k be a function field and a an abelian variety over K containing no nontrivial k-isotrivial
abelian subvariety. Then the abelian group a(K ) is finitely generated. In particular, its torsion subgroup a(K )tors

is finite.

Let K = k(η) denote the function field of X .
For each prime �, let G� denote the image of ρA,� : π1(X) → GL(Aη[�]). More generally, given a

π1(X)-submodule M ⊂ Aη[�], we will write ρA,M : π1(X) → GL(M) for the corresponding represen-
tation and denote by G M and KM its image and kernel respectively. We will consider, in particular,
π1(X)-submodules of the form M(v) := F�[G�v] ⊂ Aη[�], v ∈ Aη[�].

2.1. Proof of Theorem 1.3 – g X � 2

From Theorem 2.1 one can deduce:

Lemma 2.2.

(1) Aη[�]G� = 0 for � 
 0.

(2) lim� �→∞ min{|G�v|}v∈Aη[�]× = +∞. In particular, lim� �→∞ min{|G M |}0�=M⊂Aη[�] = +∞.
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Proof. (1) is straightforward, as Aη[�]G� = Aη(K )[�]. As for the first assertion of (2), suppose that for
some integer B � 1 and infinitely many primes �, there exists v ∈ Aη[�]× such that |G�v| � B . From
Riemann’s existence theorem, there are only finitely many possibilities for finite etale covers of X with
degree � B . So, up to replacing X by a finite etale cover, one may assume that for infinitely many
primes � there exists v ∈ Aη[�]× such that |G�v| = 1, which contradicts (1). The second assertion
of (2) follows from the first, since |G M | � |G�v| holds for any v ∈ M \ {0}. �

For each P ∈ X̃ \ X , let I P ,� ⊂ G� be the inertia group at P (well-defined up to conjugacy).

Lemma 2.3. Let v ∈ Aη[�]. For each Q ∈ X̃v \ Xv , let e(Q ) � 1 be the ramification index at Q in the cover
πv : X̃v → X̃ . Then one has:

2g Xv − 2 = |G�v|(2g X − 2) +
∑

P∈ X̃\X

∑
Q ∈π−1

v (P )

(
e(Q ) − 1

)

= |G�v|(2g X − 2) +
∑

P∈ X̃\X

(|G�v| − |I P ,� \ G�v|).

Proof. This is the Riemann–Hurwitz formula for the (ramified) cover πv : X̃v → X̃ . For the second
equality, observe that π−1

v (P ) is identified with I P ,� \ G�v . �
Now, one obtains:

Corollary 2.4. Conjecture 1.2 holds for g X � 2.

Proof. By Lemma 2.3, one has 2g Xv − 2 � |G�v|(2g X − 2), hence g Xv � |G�v|(g X − 1) + 1. Now, the
assertion follows from Lemma 2.2(2). �

So, we will now focus on the cases when X has genus 0 or 1. Also, without loss of generality, one
may and will assume that X̃ \ X is exactly the set of places where A → X has bad reduction.

When g X = 1, one can make a further reduction: to prove Theorem 1.3 when g X = 1, it is enough
to prove that g(�) � 2 for � 
 0. We establish this result in the next subsection.

2.2. Semisimplicity

Lemma 2.5. Let O be a noetherian integral domain and set S := Spec(O ). Let F be the field of fractions
of O and assume that F is perfect. Let R be an (a not necessarily commutative) O -algebra, and M a left
R-module which is finitely generated as an O -module. Assume that M F := M ⊗O F is semisimple as a left R F -
module, where R F := R ⊗O F . Then there exists a non-empty open subset U ⊂ S, such that, for each p ∈ U ,
Mκ(p) := M ⊗O κ(p) is semisimple as a left Rκ(p)-module, where Rκ(p) := R ⊗O κ(p) and κ(p) denotes the
residue field at p.

Proof. One may write M F = ⊕r
i=1 Mi,F , where Mi,F is a simple R F -submodule for each i = 1, . . . , r.

Define Mi to be the inverse image of Mi,F in M , which is an R-submodule of M and is finitely
generated as an O -module, since O is noetherian. It is easy to check that the natural map Mi ⊗O F →
Mi,F is an isomorphism. Accordingly, the natural map j : ⊕r

i=1 Mi → M becomes an isomorphism
after tensored with F over O . Since both the source and the target of j are finitely generated O -
modules, j already becomes an isomorphism after tensored with O [1/ f ] over O for some f ∈ O \ {0}.
So, up to replacing O by such O [1/ f ], one may assume that M = ⊕r

i=1 Mi . Thus, by considering each
factor Mi one by one, one may assume that M F is a simple R F -module. Similarly, up to replacing O
by O [1/ f ] for some f ∈ O \{0}, one may assume that M is a free O -module. In particular, the natural
map EndO (M) → EndO (M) ⊗O F ∼−→ EndF (M F ) is injective.
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Next, up to replacing R by the image of R in EndO (M), one may assume that R ↪→ EndO (M). In
particular, R is finitely generated as an O -module, and R ↪→ R F ↪→ EndO (M) ⊗O F ∼−→ EndF (M F ).
Let Z and Z F denote the centers of R and R F , respectively. Then Z coincides with the inverse image
of Z F in R , and the natural map Z ⊗O F → Z F is an isomorphism.

Since M F is a faithful, simple R F -module, Z F is a field and R F is a central simple algebra over Z F .
Observe that Z is an integral domain and that Z F is identified with the field of fractions of Z . Let Ropp

and Ropp
F denote the opposite algebras of R and R F , respectively, and consider the natural O -algebra

homomorphism m : R ⊗Z Ropp → EndZ-module(R) defined by m(a⊗b)(x) = axb. This map tensored with
F over O is identified with the natural F -algebra homomorphism R F ⊗Z F Ropp

F → EndZ F -module(R F ),
which is an isomorphism, as R F is a central simple algebra over Z F . Since both the source and the
target of m are finitely generated O -modules, the map m already becomes an isomorphism after
tensored with O [1/ f ] over O for some f ∈ O \ {0}. So, up to replacing O by such O [1/ f ], one may
assume that m is an isomorphism.

Since F is perfect, the finite extension Z F /F is separable. In other words, the finite morphism
π : Spec(Z) → Spec(O ) = S obtained by the natural homomorphism O ↪→ Z is generically etale, hence
there exists a non-empty open subset U of S over which π is etale. Let p ∈ U . Then, on the one hand
Zκ(p) := Z ⊗O κ(p) is a finite direct product of finite (separable) extensions of κ(p):

Zκ(p) =
∏

1�i�r

Ki,

and, on the other hand, the natural map Rκ(p) ⊗Zκ(p)
Ropp

κ(p) → EndZκ(p)-module(Rκ(p)) can be identified
with m⊗O κ(p), hence is an isomorphism. Write 1Zκ(p)

= ∑
1�i�r ei with ei ∈ Ki and set Ri := ei Rκ(p) ,

i = 1, . . . , r. Then Rκ(p) decomposes as a product

Rκ(p) =
∏

1�i�r

Ri

and the isomorphism Rκ(p) ⊗Zκ(p)
Ropp

κ(p)→̃ EndZκ(p)-module(Rκ(p)) induces isomorphisms Ri ⊗Ki

Ropp
i →̃EndKi-module(Ri). This implies that Ri is a central simple algebra over Ki (see [Mi80, IV,

Cor. 1.8] and [GSz06, Thm. 2.2.1]). As a result, Rκ(p) is a semisimple algebra and, in particular, Mκ(p)

is a semisimple Rκ(p)-module, as desired. �
Proposition 2.6. Aη[�] is a semisimple F�[G�]-module for � 
 0.

Proof. First, by taking a suitable model of A → X → k, one may reduce the problem to the case
where k is of finite transcendence degree over Q. Second, by considering the base change of A →
X → k with respect to any embedding k ↪→ C, one may reduce the problem to the case where k = C.
Now, consider the complex-analytification Aan → Xan of A → X . The (singular) homology groups
H1(Aan

x ,Z), x ∈ Xan , form a local system on Xan , or, equivalently, a π
top
1 (Xan)-module M , which is

free of rank 2 dim(Aη) as a Z-module. By definition, MF�
is identified with Aη[�] as a π

top
1 (Xan)-

module. (Here, π
top
1 (Xan) acts on Aη[�] via the comparison isomorphism π

top
1 (Xan)∧ ∼−→ π1(X).) In

particular, the image of π
top
1 (Xan) in GL(MF�

) is identified with G� . Set R := Z[π top
1 (Xan)]. Then, by

[D71, Thm. (4.2.6)], MQ is a semisimple RQ-module. Thus, the assertion follows from Lemma 2.5. (See
also [FW92, Ch. VI].) �
Remark 2.7. As the proof shows, Proposition 2.6 remains true when X is a smooth, connected
k-scheme of arbitrary dimension and A → X is an arbitrary abelian scheme (without the non-
isotriviality assumption).
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Lemma 2.8. Let F be a field. Let G be a finite group and M an F [G]-module of finite dimension over F . Let
v ∈ M \ {0} and set M(v) := F [G v] ⊂ M. Let L : M(v) � F be a nonzero F -linear form. Assume that M(v)

is a simple F [G]-module. Then:

|G v| � ∣∣L(G v)
∣∣dimF (M(v))

.

Proof. Set r := dimF (M(v)). Consider the first case L(v) �= 0 and the second case L(v) = 0 separately.
In the first case, one has M(v) = F v ⊕ ker(L). In this case, set e1 := v and let e2, . . . , er be an F -basis
of ker(L). In the second case, one has F v ⊂ ker(L) and r � 2. In this case, set e1 := v , take e2 ∈ M(v)\
ker(L) and take an F -basis of ker(L) in the form of e1, e3, . . . , er . Then, in both cases, ε := (e1, . . . , er)

forms an F -basis of M(v). Consider the dual F -basis e∨
1 , . . . , e∨

r of M(v)∨ := HomF (M(v), F ). Then,
by definition, L = ae∨

k for some a ∈ F × , where k = 1 (resp. k = 2) in the first (resp. second) case.
Given g ∈ G , write C g,i (resp. R g,i ) for the ith column (resp. row) of the matrix of g written in ε ,
i = 1, . . . , r. Then:

E := L(G v) = {L(gv)
}

g∈G = {L(
gg′v

)}
g,g′∈G = {aR g,kC g′,1}g,g′∈G .

Since M(v) is a simple F [G]-module, M(v)∨ is a simple F [G]-module as well. In particular, the
g−1L = L(g−) = aR g,k , g ∈ G generate M(v)∨ as an F -vector space. Hence, one can fix an F -basis
of the form aR g1,k, . . . ,aR gr ,k for M(v)∨ . The matrix A whose rows are the aR gi ,k , i = 1, . . . , r is in
GLr(F ) with the property that AC g,1 ∈ Er , g ∈ G . Hence:

G v = {C g,1}g∈G ⊂ A−1Er,

from which the desired inequality follows. �
Proposition 2.9. Assume that g X = 1 and that g(�) � 2 for � 
 0. Then lim� �→∞ g(�) = +∞.

Proof. Let � be a prime and v ∈ Aη[�]× . From Proposition 2.6, Aη[�] is a semisimple F�[G�]-module
for � 
 0, hence M(v) can be written as a direct sum:

M(v) =
⊕

1�i�r

Mi

with Mi a simple F�[G�]-module, i = 1, . . . , r. For each i = 1, . . . , r let vi denote the projection of v
onto Mi , so that Mi = M(vi). Then, since Stabπ1(X)(v) ⊂ Stabπ1(X)(vi), the etale cover Xv → X factors
through Xv → Xvi , hence g Xv � g Xvi

. Thus, up to replacing v by, say, v1, one may assume that M(v)

is a simple F�[G�]-module.
By assumption and Lemma 2.3, one has

0 <
(
2g(�) − 2 �

)
2g Xv − 2 =

∑
P∈ X̃\X

(|G�v| − |I P ,� \ G�v|) =
∑
P∈S

(|G�v| − |I P ,� \ G�v|)

for � 
 0, where S := {P ∈ X̃ \ X | I P ,� acts nontrivially on G�v}. In particular, S is non-empty. Further,
since

|I P ,� \ G�v| = ∣∣(G�v)I P ,�
∣∣ + ∣∣I P ,� \ (

G�v \ (G�v)I P ,�
)∣∣

�
∣∣(G�v)I P ,�

∣∣ + 1

2

∣∣G�v \ (G�v)I P ,�
∣∣

= 1

2
|G�v| + 1

2

∣∣(G�v)I P ,�
∣∣,
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one has

2g Xv − 2 �
∑
P∈S

1

2

(|G�v| − ∣∣(G�v)I P ,�
∣∣).

For each P ∈ S , one has M(v)I P ,� � M(v), hence one can choose a nonzero F�-linear form:

L = L�,v,P : M(v) � M(v)/M(v)I P ,� � F�.

By construction, (G�v)I P ,� ⊂ L−1(0) so:

|G�v| − ∣∣(G�v)I P ,�
∣∣ �

∣∣L(G�v)
∣∣ − 1.

Now, since M(v) is a simple F�[G�]-module with F�-dimension � dim(Aη[�]) = 2 dim(Aη), one has

|L(G�v)| � |G�v|
1

2 dim(Aη) by Lemma 2.8. Thus, the assertion follows from Lemma 2.2 (2). �
Remark 2.10. The first step of the proof of Proposition 2.9 shows that, for � 
 0, there exists v ∈
Aη[�]× such that g Xv = g(�) and that M(v) is a simple F�[G�]-module.

3. Proof of Theorem 1.3

3.1. Proof of Theorem 1.3 – g X = 1

The technical core is the following general fact:

Proposition 3.1. There exists an integer B = B(A) � 1, such that for any prime �, any π1(X)-submodule
M ⊂ Aη[�], and any abelian normal subgroup C ⊂ G M , one has: |C | � B.

Proof. Set d := dim(Aη). Consider the following weaker assertion:

Claim 3.2. There exists an integer B ′ = B ′(A) � 1, such that for any prime � and any π1(X)-submodule
M ⊂ Aη[�], one has: |Z(G M)| � B ′ , where Z(G) stands for the center of a given group G.

We shall first prove Proposition 3.1, assuming Claim 3.2. For this, one may ignore finitely many �.
So, by Proposition 2.6, one may assume that Aη[�] is a semisimple π1(X)-module, hence so is
M ⊂ Aη[�]. Set E := F�[C] ⊂ EndF�

(M). Then E is a commutative algebra of finite dimension, say,
r over F� and, as M is a faithful semisimple E-module, E is a semisimple algebra. Accordingly, E is
a finite direct product of finite extensions of F� . As F� is perfect, E ⊗F�

F� is isomorphic to Fr
� as

F�-algebra and, in particular:

AutF�-alg(E) ⊂ AutF�-alg(E ⊗F�
F�) � Sr .

Also, since E ⊗F�
F� � Fr

� acts faithfully on M ⊗F�
F� , one gets

r � dimF�
(M) � dimF�

(
Aη[�]) = 2d.

(To see the first inequality, consider the canonical decomposition M ⊗F�
F� � ⊕r

i=1 Mi corresponding
to the decomposition E ⊗F�

F� � Fr
� . Since E ⊗F�

F� acts faithfully on M ⊗F�
F� , Mi must be nonzero,

or, equivalently, dimF�
(Mi) � 1, for each i = 1, . . . , r. Therefore, dimF�

(M) = dimF�
(M ⊗F�

F�) � r.)
Let HC and NC be the image and the kernel of G M → AutF�-alg(E), respectively. By definition, NC
coincides with the centralizer of C in G M . Let YC → X be the Galois cover corresponding to the
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quotient π1(X)(� G M) � HC . By definition, the image of π1(YC ) in G M coincides with NC . As C ⊂
Z(NC ), one concludes: |C | � |Z(NC )| � B ′(A ×X YC ) by Claim 3.2. Since [YC : X] = |HC | � r! � (2d)! is
bounded, there are only finitely many (non-isomorphic) Galois covers YC → X by Riemann’s existence
theorem. Thus, Proposition 3.1 follows.

Next, we shall prove Claim 3.2. For this, fix a model A1 → X1 → k1 of A → X → k over a finitely
generated field k1 (of characteristic 0). Up to enlarging k1, one may assume that X1(k1) �= ∅. Fix
x1 ∈ X1(k1), which gives a splitting of the canonical short exact sequence:

1 → π1(X) → π1(X1) → Γk1 → 1.

(Here, we identify π1(X) = π1((X1)k1
), as the characteristic is 0, and ΓF = π1(Spec(F )) stands for

the absolute Galois group of a given field F .) In particular, Γk1 acts on π1(X) by conjugation. For
each � � 0, write ρA1,� : π1(X1) → GL(Aη[�]) for the corresponding representation (here, we iden-
tify Aη[�] = (A1)η1 [�]). Then, ρA,� = ρA1,�|π1(X) . So, writing G1,� for the image of ρA1,� , one gets
G� � G1,� .

For each π1(X)-submodule M ⊂ Aη[�], set Msat := Aη[�]KM . Then one has M ⊂ Msat , KMsat = KM

(hence G Msat = G M ), and (Msat)sat = Msat . Let us say that M is saturated if Msat = M . Now, up to
replacing M by Msat if necessary, one may assume that M is saturated when one proves the assertion
of Claim 3.2.

Also, by Proposition 2.6, there exists an integer N = N(A) � 1, such that for any prime � > N , Aη[�]
is a semisimple G�-module hence a faithful semisimple P -module, where P := F�[G�] ⊂ EndF�

(Aη[�]).
As a result, P is a semisimple algebra of finite dimension over F� . Let F be the center of P . Thus,
one has a canonical decomposition P = ∏

i∈I P i and F = ∏
i∈I F i , where I is a finite set and Pi is a

central simple algebra over Fi for each i ∈ I . Since the Brauer group of the finite field Fi is trivial, one
has Pi � Msi (Fi) for some si � 1. Further, according to the above decomposition of P , the P -module
Aη[�] is also decomposed canonically: Aη[�] = ⊕

i∈I T i (sometimes called the canonical isotypical
decomposition). More concretely, Ti � S⊕mi

i = Pi Aη[�] for each i ∈ I , where mi � 1 and Si is a simple
G�-submodule of Aη[�] on which P acts via the projection P → Pi and which is of dimension si
over Fi . (Note that Si �� S j if i �= j.) In particular, |I| � 2d.

Claim 3.3. There exists an integer B1 = B1(A) (independent of the choice of the model A1 → X1 → k1 of A →
X → k) satisfying the following property: For any prime �, there exists a finite Galois extension k2 = k2(�)/k1
with [k2 : k1] � B1 , such that any saturated π1(X)-submodule M ⊂ Aη[�] is π1(X1 ×k1 k2)-stable and that
the image G2,M of π1(X1 ×k1 k2) in GL(M) commutes with Z(G M).

First, consider a prime � > N . Observe that the action by conjugation of G1,� on G� (via group
automorphisms) extends by F�-linearity to an action on P (via F�-algebra automorphisms), which
induces an action on F (via F�-algebra automorphisms). One has F ⊗F�

F� � Fr
� as F�-algebras for

some r � 0, and, in particular:

AutF�-alg(F ) ⊂ AutF�-alg(F ⊗F�
F�) � Sr .

Also, since F ⊗F�
F� � Fr

� acts faithfully on Aη[�] ⊗F�
F� , one gets r � dimF�

(Aη[�]) = 2d (see above).
Consider the homomorphism ρ : G1,� → AutF�-alg(F ) given by the above action. Let H denote the
image of ρ . As G� ⊂ P and F is the center of P , the homomorphism ρ factors through G1,� � G1,�/G� .
Define k2 to be the Galois extension corresponding to the quotient Γk1 = π1(X1)/π1(X) � G1,�/G� �
H . By definition, [k2 : k1] = |H| � r! � (2d)!, and the image of π1(X1 ×k1 k2) in GL(Aη[�]) commutes
with F . Now, let M be a saturated π1(X)-submodule of Aη[�]. Then there exists a subset IM ⊂ I ,
such that M = ⊕

i∈IM
Ti . (Indeed, one has M � ⊕

i∈I S⊕ei
i , where 0 � ei � mi , i ∈ I . Now, since M is

saturated, ei � 1 if and only if Ti ⊂ M .) Consider the idempotent eM := (eM,i)i∈I ∈ F = ∏
i∈I F i , where

eM,i = 1 (resp. eM,i = 0) for i ∈ IM (resp. i ∈ I \ IM ). Then one gets M = eM(Aη[�]), which implies that
M is π1(X1 ×k1 k2)-stable, as π1(X1 ×k1 k2) commutes with eM ∈ F . Further, set P M := ∏

i∈IM
P i and
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F M := ∏
i∈IM

Fi . Then F M is the center of P M . Since P M = F�[G M ] in EndF�
(M), one has Z(G M) =

F M ∩ G M ⊂ F M . Now, since G2,M commutes with F M , it commutes with Z(G M), as desired.
Second, consider a prime � � N . Let k2 be the Galois extension of k1 corresponding to the quotient

Γk1 � G1,�/G� . By definition, [k2 : k1] = [G1,� : G�] � |G1,�| � |GL(Aη[�])| � �4d2 � N4d2
, and the image

of π1(X1 ×k1 k2) in GL(Aη[�]) coincides with G� . Thus, any G�-submodule M ⊂ Aη[�] is π1(X1 ×k1

k2)-stable, and the image G2,M of π1(X1 ×k1 k2) in GL(M) coincides with G M . In particular, G2,M

commutes with Z(G M). Now, B1 := max((2d)!, N4d2
) satisfies the desired property, which completes

the proof of Claim 3.3.

Claim 3.4. There exists an integer B ′′ = B ′′(A) satisfying the following property: For any prime � and any
π1(X)-submodule M ⊂ Aη[�], one has: |Z(G M)| � B ′′|Z(G M)|, where Z(G M) denotes the image of Z(G M)

in (G M)ab.

Indeed, to prove Claim 3.4, one may ignore finitely many primes � and assume that Aη[�] is
semisimple by Proposition 2.6. Also, as G M = G Msat , one may assume that M is saturated. Then, as
in the proof of Claim 3.3, G M ⊂ P×

M and Z(G M) ⊂ F ×
M . Consider the determinant map δM : P×

M →
F ×

M induced by the determinant maps P×
i (� GLsi (Fi)) → F ×

i for i ∈ IM . Note that ker(δM |F ×
M
) =∏

i∈IM
μsi (F ×

i ) has cardinality �
∏

i∈IM
si � (2d)2d , as si = dimFi (Si) � dimF�

(Aη[�]) = 2d and |IM | �
|I| � 2d. As δM(G M) ⊂ F ×

M is abelian, it is a quotient of (G M)ab . Accordingly, δM(Z(G M)) is a quotient
of Z(G M). Now, one gets:

∣∣Z(G M)
∣∣ = ∣∣ker(δM |Z(G M ))

∣∣∣∣δM
(

Z(G M)
)∣∣ � (2d)2d

∣∣Z(G M)
∣∣.

This completes the proof of Claim 3.4.
Now, turn to the proof of Claim 3.2. Let k2 = k2(�) be as in Claim 3.3. Then it follows from the

various definitions that, for each saturated π1(X)-submodule M ⊂ Aη[�], one has the following mor-
phisms of Γk2 -modules1:

Z(G M) � Z(G M) ↪→ (G M)ab � π1(X)ab,

where Γk2 acts trivially on Z(G M), hence also on Z(G M). Now, to conclude, one needs one more
specialization step. From now on, write Z = Z(G M) for simplicity.

Consider a model (X → Spec(R), x : Spec(R) → X ) of (X1 → k1, x1 : Spec(k1) → X1). More pre-
cisely, R is a finitely generated normal integral Z-algebra with fraction field k1 (hence Spec(R) →
Spec(Z) is dominant); X → R is a smooth curve, that is, a proper, smooth, geometrically connected
curve over R minus a relatively finite etale divisor, such that X ×R k1 is isomorphic to (and will be
identified with) X1 over k1; and x : Spec(R) → X is an (a unique) extension of x1 : Spec(k1) → X1
(under the identification X ×R k1 = X1). Fix two primes p �= q in the image of Spec(R) → Spec(Z).
Choose any closed point s ∈ Spec(R) lying above p, then one gets a canonical specialization isomor-
phism for the prime-to-p part of the etale fundamental groups [SGA1, Exp. XIII]:

π
(p′)
1 (X)→̃π

(p′)
1 (Xs),

which is compatible with the actions of

Γk1 ⊃ Ds � Γκ(s),

1 To see how Γk2 acts on Gab
M , note that G2,M acts by conjugation on G M hence on Gab

M . By the very definition of Gab
M , the

induced action of G M on Gab
M is trivial. In other words, the action of G2,M on Gab

M factors through G2,M/G M � Γk2 .
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where Ds stands for the decomposition group at s. Further, let R2 be the integral closure of R in k2
and let s2 be the closed point of Spec(R2) above s such that Ds2 ⊂ Ds . Now, one gets homomorphisms

Z (p′) ↪→ (G M)ab,(p′) � π
(p′)
1 (X)ab→̃π

(p′)
1 (Xs)

ab,

which are compatible with the actions of Γk2 ⊃ Ds2 � Γκ(s2) . In particular, the action of Ds2 on Z (p′)

factors through Γκ(s2) , as Z (p′) is a subquotient of the Γκ(s2)-module π
(p′)
1 (Xs)

ab.

Note that [Γκ(s) : Γκ(s2)] � [Ds : Ds2 ] � [Γk1 : Γk2 ] � B1. Since Γκ(s) � Ẑ is a finitely generated profi-
nite group, the intersection Γ of all open subgroups Γ ′ ⊂ Γκ(s) with [Γκ(s) : Γ ′] � B1 is again an open
subgroup. (The index [Γκ(s) : Γ ] is equal to the least common multiple of 1, . . . , B1, which is inde-
pendent of �.) Write κ for the finite extension of κ(s) corresponding to Γ ⊂ Γκ(s) , and let φ denote
the |κ |-th power Frobenius element, which is a generator of Γ = Γκ . By construction, φ acts triv-

ially on the subquotient Z (p′) of π
(p′)
1 (Xs)

ab. This implies that |Z (p′)| � B(s, B1,X ) for some constant

B(s, B1,X ) independent of �. More precisely, recall that the Γκ(s)-module π
(p′)
1 (Xs)

ab can be written
canonically as an extension:

1 → I → π
(p′)
1 (Xs)

ab →
∏

a:prime �=p

Ta( J X̃s
) → 1,

where J X̃s
is the jacobian of the smooth compactification X̃s of Xs and I is the subgroup generated

by the images of inertia subgroups at the points of X̃s \ Xs . Denote by Pφ(t) ∈ ∏
a �=p Za[t] the char-

acteristic polynomial of φ acting on π
(p′)
1 (Xs)

ab by conjugation. Then, from the above exact sequence,
one sees that Pφ has coefficients in Z and that the (complex) absolute values of the roots of Pφ are

|κ | 1
2 (2g times) and |κ | (max(r − 1,0) times), where g is the genus of X̃s and r is the number of

points of X̃s \ Xs . In particular, Pφ(1) is a nonzero integer, which is independent of �.

Let T be the inverse image of Z (p′) in π
(p′)
1 (Xs)

ab under the map π
(p′)
1 (Xs)

ab � (G M)ab,(p′) . Then

T is a Γκ(s2)-submodule of π
(p′)
1 (Xs)

ab of finite index. In particular, the characteristic polynomial of φ

acting on T coincides with Pφ . The surjective map T � Z (p′) factors through T � TΓ , where TΓ is
the maximal Γ -coinvariant (or, equivalently, φ-coinvariant) quotient of T . Thus, one concludes:

∣∣Z (p′)∣∣ � |TΓ | = ∣∣Pφ(1)
∣∣′ =: B(s, B1,X ),

where N ′ stands for the prime-to-p part of a given positive integer N . (Here, to get the equality
|TΓ | = |Pφ(1)|′ , consider the elementary divisors of φ − Id : Ta → Ta for each prime a �= p, where Ta

stands for the a-adic part of T .) Similarly, considering a closed point t ∈ Spec(R) lying above q, one
gets |Z (q′)| � B(t, B1,X ). Set B ′′′ = B(s, B1,X )B(t, B1,X ), then, for any prime �, one gets |Z | � B ′′′ .
This, together with Claim 3.4, completes the proof of Claim 3.2. �
Corollary 3.5. Conjecture 1.2 holds for g X = 1.

Proof. By Proposition 2.9, it is enough to prove that g(�) � 2 for � 
 0. Suppose otherwise, then
there exist infinitely many primes � and v ∈ Aη[�]× such that g X = g Xv = 1. Then the finite etale
cover Xv → X is automatically Galois and abelian. So Cv := G M(v) is abelian but, as well, |Cv | =
|G�v| → +∞, by Lemma 2.2(2), which contradicts Proposition 3.1. �
Corollary 3.6. For any integer b � 1 there exists an integer N(b, A) � 0 such that for any nontrivial π1(X)-
submodule M ⊂ Aη[�], G M contains no abelian subgroup of index � b for any � � N(b, A).
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Proof. Else, there exist b � 1 and infinitely many primes � � 0 such that there exists a π1(X)-
submodule M ⊂ Aη[�] with G M containing an abelian subgroup C0 of index � b. Set C :=
∩g∈G M gC0 g−1, which is an abelian normal subgroup of G M of index � b!. Now, by Proposition 3.1,
one gets: |G M | = [G M : C]|C | � b!B , which contradicts Lemma 2.2(2). �
Remark 3.7. The argument of [CT09, Remark 5.8] shows that Proposition 3.1 and Corollary 3.6 remain
true when X is a smooth, connected k-scheme of arbitrary dimension.

We conclude this subsection with an application of Corollary 3.6. For any nontrivial π1(X)-
submodule M ⊂ Aη[�], write XM → X for the etale cover corresponding to the inclusion of open
subgroups KM = ker(ρA,M) ⊂ π1(X) and define:

gtot(�) := min{g XM }0 �=M⊂Aη[�].

Corollary 3.8.

lim
��→∞ gtot(�) = +∞.

Proof. The main point is that XM → X is Galois with group G M .

Claim 3.9. lim� �→∞ gtot(�) = +∞ does not hold if and only if there exists a nontrivial π1(X)-submodule
M ⊂ Aη[�] such that g XM = 0, 1 for infinitely many � � 0.

Indeed, the “if” implication is straightforward. For the “only if” implication, assume that gtot(�) � 2,
� 
 0. Then, for � 
 0 and for any nontrivial π1(X)-submodule M ⊂ Aη[�], g XM � gtot(�) � 2 so,

|G M | � ∣∣Aut(XM)
∣∣ � 84(g XM − 1)

by the Hurwitz bound. Whence min{|G M |}0�=M⊂Aη[�] � 84(gtot(�) − 1). Now, from Lemma 2.2(2), one
has lim� �→∞ gtot(�) = +∞. This completes the proof of Claim 3.9.

As a result, the only cases to rule out are:

(i) g X = 0 and g XM = 0, for infinitely many � � 0;
(ii) g X = 0 and g XM = 1, for infinitely many � � 0;

(iii) g X = 1 and g XM = 1, for infinitely many � � 0.

For (i), it follows from the classification of finite subgroups of PGL2(k) and lim� �→∞|G M | = +∞
that the group G M is either cyclic or dihedral for � 
 0. In both cases, G M contains an abelian normal
subgroup A� (� Z) with [G M : A�] � 2, which contradicts Corollary 3.6.

For (ii) and (iii), G M is a finite subgroup of the automorphism group of a genus 1 curve. But such
a group contains an abelian normal subgroup A� (� Z2) with [G M : A�] � 6, which, again, contradicts
Corollary 3.6. �
Remark 3.10. When k = C and Aη is principally polarized, J.-M. Hwang and W.-K. To proved that a
uniform bound (i.e., depending only on dim(Aη)) for the growth of g X Aη [�] (� gtot(�)) exists [HT06].
By classical arguments (Zarhin’s trick and specialization), such a uniform bound also exists only under
the assumption that k has characteristic 0.

3.2. Proof of Theorem 1.3 – g X = 0

From now on, we will write P G, S S, P S S ⊂ X̃ \ X for the subsets corresponding to the places of po-
tentially good (but not good), semistable (but not good), potentially semistable (but neither semistable
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nor potentially good) reduction respectively. Since we have assumed that X̃ \ X is exactly the set of
places where A → X has bad reduction, one has X̃ \ X = P G � S S � P S S . For each place P ∈ X̃ \ X and
prime �, we will write I P ,� for the image of the corresponding inertia group in G� , which is a finite
cyclic group (as the characteristic of k is 0). From the semistable reduction theorem [SGA7, Exp. IX]:

– If P ∈ P G then there exists an integer N P � 2 (unique and independent of �) such that I N P
P ,� = 1

for any � and that I N
P ,� �= 1 for N < N P and � 
 0.

– If P ∈ S S then I P ,� is unipotent of echelon 2 for � 
 0.
– If P ∈ P S S then there exists an integer N P � 2 (unique and independent of �) such that I N P

P ,� is

unipotent of echelon 2 for � 
 0 and that I N
P ,� is not unipotent for N < N P and � 
 0.

We will sometimes say that A → X has reduction type (nP )P∈ X̃\X , where

nP := N P , P ∈ P G;
∞, P ∈ S S;
N P ∞, P ∈ P S S.

Before carrying out the proof of Theorem 1.3 when g X = 0, we describe briefly the strategy.

3.2.1. Reduction to a combinatorial problem
For each � let v� ∈ Aη[�]× such that g(�) = g Xv�

. (If � 
 0, one can even assume that M(v�) is
a simple F�[G�]-module (cf. Remark 2.10), though this fact will not be used in the following.) By
Lemma 2.3, one has

2g Xv�
− 2 = −2|G�v�| +

∑
P∈ X̃\X

|G�v|(1 − εP (v�)
)
,

with

εP (v�) = |I P ,� \ G�v�|
|G�v�| , P ∈ X̃ \ X .

Set

λv�
:= 2g Xv�

− 2

|G�v�| = r − 2 −
∑

P∈ X̃\X

εP (v�),

where r := | X̃ \ X |. Then: g(�) � 2 for � 
 0 if and only if λv�
> 0 (or, equivalently

∑
P∈ X̃\X εP (v�) <

r − 2) for � 
 0; and, by Lemma 2.2(2), lim� �→∞ g(�) = +∞ if there exists ε > 0 such that:

λv�
> ε

(
or, equivalently,

∑
P∈ X̃\X

εP (v�) < r − 2 − ε

)
for � 
 0. (∗)

Thus, the problem amounts to estimating the size of the “local term”
∑

P∈ X̃\X εP (v�).
Under the semistability assumption, this can be done by combinatorial manipulations based on

the specific structure of π1(X) when g X = 0 to complete the proof of Theorem 1.3. We postpone this
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issue to the next subsection and conclude this one by illustrating another idea, successfully exploited
in [CT08] and [CT09]. Namely, we compare λv�

with:

λ� := 2g X Aη [�] − 2

|G�| = r − 2 −
∑

P∈ X̃\X

1

|I P ,�| .

For � 
 0, one has:

λ� = r − 2 −
∑

P∈P G

1

N P
−

∑
P∈S S

1

�
−

∑
P∈P S S

1

�N P
,

which shows that:

lim
��→∞λ� = λ := r − 2 −

∑
P∈P G

1

N P
.

Now, Corollary 3.8, together with the fact that λ� � λ�′ for 0 � � < �′ , implies that λ > 0 so it is
enough to prove that:

lim
��→∞λv�

= λ.

As εP (v�) � 1
|I P ,�| by definition, this is equivalent to:

lim
��→∞

(
εP (v�) − 1

|I P ,�|
)

= 0, ∀P ∈ X̃ \ X .

To go further, write M(F ) for the set of nontrivial minimal subgroups of a given finite group F
(equivalently, this is the set of cyclic subgroups of F with prime order) and, for P ∈ X̃ \ X , set:

(G�v�)
′
P :=

⋃
H∈M(I P ,�)

(G�v�)
H .

Then one has:

1

|I P ,�| � εP (v�) � 1

|I P ,�|
(

1 − |(G�v�)
′
P |

|G�v�|
)

+ |(G�v�)
′
P |

|G�v�| .

So, it would be enough to prove that:

lim
��→∞

|(G�v�)
′
P |

|G�v�| = 0, P ∈ X̃ \ X .

Let γP ,� be a generator of I P ,� , and, when P ∈ P G ∪ P S S , let PP be the set of prime divisors of N P .
Then one has, for � 
 0:

0 �
|(G�v)′P |
|G�v�| �

∑
q∈PP

|(G�v)
γ

N P /q
P ,� |

|G�v�| , P ∈ P G,

0 �
|(G�v�)

′
P |

|G�v�| = |(G�v�)
γP ,� |

|G�v�| , P ∈ S S,
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and

0 �
|(G�v�)

′
P |

|G�v�| �
( ∑

q∈PP

|(G�v�)
γ

�N P /q
P ,� |

|G�v�|
)

+ |(G�v�)
γ

N P
P ,� |

|G�v�| , P ∈ P S S.

Applying this method, one gets:

Proposition 3.11. Conjecture 1.2 holds for dim(Aη) = 1.

Proof. First, M(v�) := F�[G�v�] ⊂ Aη[�] coincides with Aη[�] for � 
 0 and v� ∈ Aη[�]× . Indeed, else,
M(v�) is 1-dimensional, which contradicts Corollary 3.6. In particular, G� acts faithfully on M(v�). So,
one may apply Lemma 3.12 below and deduce that, in any case,

|(G�v�)
′
P |

|G�v�| � C P ε(�) → 0,

where C P � 1 is an integer depending only the reduction type at P ∈ X̃ \ X .

Lemma 3.12. For each prime �, there exists ε(�) � 0 depending only on A and �, such that ε(�) → 0 (� → ∞)
and that |(G�v)γ |

|G�v| � ε(�) for any �, any v ∈ Aη[�]× , and any γ ∈ G� acting nontrivially on M(v).

Proof. For any γ ∈ G� acting nontrivially on M(v), set Mγ (v) := F�[(G�v)γ ] ⊂ M(v)γ ⊂ M(v).
Since γ acts nontrivially on M(v) and dim(M(v)) � 2, the only possibilities are dim(Mγ (v)) = 0 or
(dim(Mγ (v)),dim(M(v)γ ),dim(M(v))) = (1,1,2). In the former case, (G�v)γ = ∅, so there is noth-
ing to do. In the latter case, up to replacing v by an element of (G�v)γ �= ∅, one may assume that
γ v = v hence Mγ (v) = F�v . Set Uγ ,v := {g ∈ G� | g(Mγ (v)) = Mγ (v)} ⊂ G� . Then, by definition, one
has a surjective map Uγ ,v � (G�v)γ , g �→ gv , which is |G v |-to-1, where G v := StabG�

(v). Whence

|(G�v)γ | = [Uγ ,v : G v ] and |(G�v)γ |
|G�v| = 1

[G�:Uγ ,v ] .

Now, assume that the statement of Lemma 3.12 does not hold, that is there exists N � 1 such that
for any integer n � 0 there exists a prime �n � n, vn ∈ Aη[�n]× and γn ∈ G�n acting nontrivially on
M(vn) such that dim(Mγn (vn)) = 1 and [G�n : Uγn,vn ] � N . By Riemann’s existence theorem, there are
only finitely many isomorphism classes of etale covers of X with degree � N . So, up to replacing X
by such a cover, one may assume that G�n = Uγn,vn for infinitely many n � 0. But, then, F�n vn is a
G�n -submodule of F�n -dimension 1, which contradicts Corollary 3.6 for �n � N(1, A). �

This completes the proof of Proposition 3.11. �
Remark 3.13. Proposition 3.11 is also a direct consequence of the fact that the genus of modular
curves X1(�) goes to ∞ with � but our proof does not resort to this specific argument.

In fact, since Corollary 3.8 takes into account any nontrivial π1(X)-submodule M ⊂ Aη[�], the
proof of Proposition 3.11 shows the following when dim(Aη) is arbitrary. For any v ∈ Aη[�]× , set
(when it is defined):

g2(�) := min{g Xv }v∈Aη[�]×,dim(M(v))�2.

Then g2(�) → +∞.
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3.2.2. Proof of Theorem 1.3 – g X = 0
From now on, write X̃ \ X = {P1, . . . , Pr} and recall that π1(X) is the profinite completion of the

group given by the generators γ1, . . . , γr and the single relation γ1 · · ·γr = 1, where γi is a distin-
guished generator of inertia at Pi , i = 1, . . . , r. Also, let γi,� denote the image of γi in G� (hence
I Pi ,� = 〈γi,�〉). Eventually, write Oi,n for the set of all ω ∈ G�v such that |〈γi,�〉ω| = n. So, in particular,
Oi,1 = (G�v)I Pi ,� , and Oi,n = ∅ unless n | |I Pi ,�|.

3.2.2.1. A general computation. For any subset I ⊂ {1, . . . , r}, set

E I :=
⋂
i∈I

Oi,1 = (G�v)〈γi |i∈I〉

(thus, in particular, E∅ = G�v) and, for each 0 � i � r, set:

Σi :=
∑

I⊂{1,...r}, |I|=i

|E I |,

Σ i :=
∣∣∣∣

⋃
I⊂{1,...r}, |I|=i

E I

∣∣∣∣.

Similarly, define the ∗-variants: for any subset I ⊂ {1, . . . , r},

E∗
I := E I

∖ ⋃
I� J

E J

and, for each 0 � i � r,

Σ∗
i :=

∑
I⊂{1,...r}, |I|=i

∣∣E∗
I

∣∣,

Σ∗
i :=

∣∣∣∣
⋃

I⊂{1,...r}, |I|=i

E∗
I

∣∣∣∣.

Note that, actually, Σ∗
i = Σ∗

i , i = 0, . . . , r.
Now, consider the map ν : G�v → {0, . . . , r} which sends ω ∈ G�v to

ν(ω) := ∣∣{1 � i � r | ω ∈ E{i}}
∣∣.

Then,

Σ1 =
∑

1�i�r

|E{i}| =
∑

ω∈G�v

ν(ω) =
∑

0�i�r

i
∣∣ν−1(i)

∣∣ =
∑

0�i�r

iΣ∗
i =

∑
0�i�r

iΣ∗
i .2

But, on the other hand, one has:

Σ i =
∑

i� j�r

Σ∗
j , i = 1, . . . , r.

2 More generally, one has Σi = ∑
i� j�r C i

jΣ
∗
j .
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So, one eventually gets:

Σ1 =
∑

1�i�r

Σ i .

Now, from Lemma 2.2(1), for any � 
 0 and any I ⊂ {1, . . . , r} with |I| = r, r − 1, one has
Aη[�]〈γi,�|i∈I〉 = Aη[�]G� = 0, hence, in particular, E I = ∅. As a result:

Σr = Σr = 0;
Σr−1 = Σr−1 = 0;

Σr−2 = Σ∗
r−2 = Σr−2

and Σ i � |G�v|, i = 1, . . . , r − 3. Whence:

Σ1 � (r − 3)|G�v| + Σr−2.

3.2.2.2. Estimate for Σr−2 . We will now make use of the semistable reduction theorem [SGA7,
Exp. IX] which implies that for any 1 � i � r with Pi ∈ S S and any � 
 0, the element γi,� is unipo-
tent of echelon exactly 2, that is, γi,� = Id +νi,� with ν2

i,� = 0 and νi,� �= 0; in particular, γi,� has order
exactly �.

Fix I ⊂ {1, . . . , r} such that |I| = r − 2 and let ω �= ω′ ∈ E I . Then, for any j ∈ {1, . . . , r} \ I , one has
〈γ j,�〉ω ∩ 〈γ j,�〉ω′ = ∅. Indeed, else, there would exist an integer 1 � k � � − 1 such that γ k

j,�ω = ω′ .
So, as γ k

j,�ω = ω + kν j,�(ω), one gets: 0 �= ω′ − ω = kν j,�(ω) ∈ ker(ν j,�). But, by assumption, ω,ω′ ∈
ker(νi,�), i ∈ I . Hence:

0 �= ω′ − ω ∈
⋂

i∈I∪{ j}
ker(νi,�),

which contradicts the fact that Aη[�]〈γi,�|i∈I∪{ j}〉 = Aη[�]G� = 0.
But, for any ω ∈ E I and any j ∈ {1, . . . , r} \ I such that A → S has semistable reduction over P j

one has |〈γ j,�〉ω| = � hence:

�|E I | � |G�v| − |E{ j}|.
Thus, summing the above over all I ⊂ {1, . . . , r} with |I| = r − 2, one obtains:

Σr−2 � r(r − 1)

2�
|G�v|.

3.2.2.3. Conclusion.

(1) Everywhere semistable reduction: First, observe that G�v can be written as the disjoint union of
Oi,1 and G�v \ Oi,1 = Oi,� . Whence, one obtains:

εPi (v) = |Oi,1|
|G�v| + 1

�

(
1 − |Oi,1|

|G�v|
)

.

Thus, one gets:

λv = r

(
1 − 1

�

)
− 2 − 1

|G�v|
(

1 − 1

�

)
Σ1.
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So, (∗) is equivalent to:

Σ1 <

(
r − (2 + ε)

�

� − 1

)
|G�v| for v = v�, � 
 0. (∗∗)

But, from the above computation, one has:

Σ1 � (r − 3)|G�v| + Σr−2 �
(
r − 3 + ε(�)

)|G�v|,

where ε(�) = r(r−1)
2�

= O ( 1
�
). So, it is enough to show that r − 3 + ε(�) < r − (2 + ε) �

�−1 for � 
 0.
But this is always valid for 0 < ε < 1 since the left-hand term goes to r − 3 whereas the right-
hand term goes to r − 2 − ε .

(2) Semistable reduction over all but one point: Assume that A → X has semistable reduction over
P1, . . . , Pr−1 and non-semistable bad reduction over Pr . Then one has:

εPr (v) = 1

|G�v|
(

|Or,1| +
∑
n�2

1

n
|Or,n|

)
.

Thus, one gets:

λv = r

(
1 − 1

�

)
− 2 + 1

�
− 1

|G�v|
(

1 − 1

�

)
Σ1 − 1

�

|Or,1|
|G�v| − 1

|G�v|
∑
n�2

1

n
|Or,n|.

So, (∗) is equivalent to:

Σ1 + |Or,1|
� − 1

+ �

� − 1

∑
n�2

1

n
|Or,n|

<

(
r − �

� − 1

(
2 + ε − 1

�

))
|G�v| for v = v�, � 
 0. (∗∗∗)

Let q denote the minimal prime divisor of N Pr . One may assume that q < � for � 
 0. Now,
observe that:

Σ1 + |Or,1|
� − 1

+ �

� − 1

∑
n�2

1

n
|Or,n| � Σ1 + |Or,1|

� − 1
+ �

� − 1

1

q

∑
n�2

|Or,n|

� Σ1 + |Or,1|
� − 1

+ �

� − 1

1

q

(|G�v| − |Or,1|
)

� Σ1 +
(

1

q
+ 1

� − 1

)
|G�v|.

So, it is enough to prove that:

Σ1 +
(

1

q
+ 1

� − 1

)
|G�v| <

(
r − �

� − 1

(
2 + ε − 1

�

))
|G�v|.

But, from the above computation, one still has:

Σ1 � (r − 3)|G�v| + Σr−2 �
(
r − 3 + ε(�)

)|G�v|,
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where ε(�) = r(r−1)
2�

= O ( 1
�
). So, it is enough to show that r − 3 + ε(�) + ( 1

q + 1
�−1 ) < r − �

�−1 ×
(2 + ε − 1

�
) for � 
 0. But this is always valid for 0 < ε < 1 − 1

q since the left-hand term goes to

r − 3 + 1
q whereas the right-hand term goes to r − 2 − ε .

3.2.3. Semistable abelian schemes over P1
k minus three points

Using the same idea as in the proof of Theorem 1.3, one gets:

Proposition 3.14. There is no abelian scheme over X = P1
k \ {P1, P2, P3} with semistable reduction at P1 , P2 ,

P3 whose generic fiber is non-isotrivial.

Proof. Suppose that A → X is an abelian scheme which has semistable reduction over Pi and
whose generic fiber is non-isotrivial. Then, up to replacing A → X by the Néron model of a suit-
able (nontrivial) quotient of the generic fiber Aη , one may assume that Aη contains no nontrivial
isotrivial abelian subvariety. Then Aη[�]G� = 0 for � 
 0 by Lemma 2.2(1). Also, by the semista-
bility condition, one may write γi,� = Id + νi,� with ν2

i,� = 0. Now, the relation γ1,�γ2,�γ3,� = Id is

equivalent to γ1,�γ2,� = γ −1
3,� , which, in turn, is equivalent to ν1,� + ν2,� + ν3,� + ν1,�ν2,� = 0. Compos-

ing this relation with ν1,� , one obtains: ν1,�ν2,� + ν1,�ν3,� = 0. Since ker(ν1,�) ∩ ker(ν2,�) = 0 and
im(ν2,�) ⊂ ker(ν2,�), one has: ker(ν1,�ν2,�) = ker(ν2,�). Similarly, ker(ν1,�ν3,�) = ker(ν3,�). Whence
ker(ν2,�) = ker(ν3,�) ⊂ ker(ν2,�) ∩ ker(ν3,�) = 0. But this contradicts the fact that ν2,� , ν3,� are nilpo-
tent. �
Remark 3.15. Let Y → X be a non-isotrivial curve with generic fiber of genus � 2 or of genus 1 with
a rational point. If Y → X has semistable reduction over X̃ \ X then Pic0

Y |X has semistable reduction

as well over X̃ \ X . Thus, Proposition 3.14, together with Torelli’s theorem, implies [B81, Thm., p. 100].

Example 3.16. Consider the abelian scheme given by the Legendre family E → P1
λ \ {0,1,∞} of elliptic

curves defined by:

Eλ : y2 = x(x − 1)(x − λ).

Then a straightforward computation shows that n0 = n1 = ∞ and n∞ = 2∞. So, in some sense, the
result of Proposition 3.14 is optimal.

Corollary 3.17. There is no abelian scheme A → X with X of genus zero and with reduction type:

(i) (2,2,n), (2,3,4), (2,3,5);
(ii) (3,3,3), (2,4,4), (2,3,6), (2,2,2,2);

(iii) (2,2,n∞), (2,2∞,∞), (3,3,∞);
(iv) (2,3,3), (2,3,∞)

whose generic fiber is non-isotrivial.

Proof. We resort to an elementary base-change argument together with the following facts:

(1) If X has genus 0, there is no abelian scheme A → X with good reduction everywhere except
possibly over two points of X̃ \ X whose generic fiber is non-isotrivial;

(2) If X has genus 1, there is no abelian scheme A → X with good reduction everywhere whose
generic fiber is non-isotrivial; and

(3) Proposition 3.14.

Here, (1) and (2) follow straightforwardly from Corollary 3.6. (Or, one may also resort to [CT08,
Cor. 2.5] or [CT09, Thm. 5.1].)
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For (i), make the base change by the Galois cover from P1
k to P1

k ramified over three points and
with the same type of inertia to contradict (1). For (ii), make the base change by the Galois cover
from a genus 1 curve to P1

k ramified over three or four points and with the same type of inertia to
contradict (2). For (iii) make the base change by cyclic Galois covers from P1

k to P1
k ramified over P1

and P2 with degree 2, 2 and 3, respectively, to contradict (1), (3) and (3), respectively. For (iv), make
first the base change by the degree 2 cyclic Galois cover from P1

k to P1
k ramified over P1 and P3. Then

it is reduced to the first case of (ii) and the last case of (iii), respectively. �
3.3. Proof of Corollary 1.4

Let η be the generic point of X . For each integer n � 1, let ρA,n : π1(X) → GL(Aη[n]) denote the
canonical representation of the etale fundamental group π1(X) on the group of (generic) n-torsion
points. First, let us start with the isotrivial case:

Proposition 3.18. Assume that the generic fiber Aη is F -isotrivial, and let d be a positive integer. Then there
exists a positive integer N = N(A,d) such that, for any closed point x ∈ X and any finite extension κ/κ(x)
with ([κ(x) : F ] �)[κ : F ] � d, one has |Ax(κ)tors| � N.

Proof. Up to replacing F by a finite extension, one may assume that X(F ) �= ∅ and fix b ∈ X(F ). Write
ρA := lim←− ρA,n : π1(X) → GL(T (A)), where T (A) := lim←− Aη[n], and set G := ρA(π1(X)) and Ggeo :=
ρA(π1(X F )). Since Aη is isotrivial, B := |Ggeo| < ∞.

For each closed point x ∈ X , write sx : Γκ(x) → π1(Xκ(x)) ⊂ π1(X) for the corresponding section.
Then ρA ◦ sb induces a representation cb : ΓF → Aut(Ggeo) via conjugation. Let F1 = F1(b)/F be the
finite (Galois) extension corresponding to ker(cb) ⊂ ΓF . Then [F1 : F ] � B!. For any closed point x ∈ X
and any finite extension κ/κ(x),

cx,b,κ : Γκ → Ggeo

σ �→ ρA
(
sx(σ )sb(σ )−1)

is a 1-cocycle with values in Ggeo equipped with the ΓF -action defined by cb : ΓF → Aut(Ggeo). In
particular, cx,b,κ |ΓF1κ : ΓF1κ → Ggeo is a group homomorphism, hence, writing F2 = F2(x,b, κ)/F1κ

for the finite (Galois) extension corresponding to ker(cx,b,κ ) ⊂ ΓF1κ , one has [F2 : F ] � B!Bd and ρA ◦
sx|ΓF2

= ρA ◦ sb|ΓF2
.

Now, suppose that Ax(κ)[n]× �= ∅ for some positive integer n. Then, a fortiori, Ax(F2)[n]× �= ∅,
hence the above equality implies Ab(F2)[n]× �= ∅. Since [F2 : F ] � B!Bd, the claim now follows from
Lemma 3.19 below. �
Lemma 3.19. For any abelian variety A → F and integer d � 1, A(F )�d ∩ Ators is finite, where A(F )�d :=
{v ∈ A(F ) | [κ(v) : F ] � d, where v is the image of v in A.}.

Proof. Consider a model A → R of A → F where R is a normal integral domain finitely generated
over Z with fraction field F , then, by the same specialization argument as in the proof of Claim 3.2,
for any prime p in the image of Spec(R) → Spec(Z) and any closed point s ∈Spec(R) above p, any
point of A(F )�d ∩ A[n]× (p � n) specializes to a point of As(κ(s))�d ∩ As[n]× ⊂ As(κ(s)d)[n]× , where
κ(s)d/κ(s) denotes the finite (Galois) extension of κ(s) corresponding to the open subgroup Γ ⊂ Γκ(s)
defined to be the intersection of all Γ ′ ⊂ Γκ(s) with [Γκ(s) : Γ ′] � d. Now, from the Weil bound, this is
possible only for finitely many n. Considering two distinct primes in the image of Spec(R) → Spec(Z),
one deduces the desired finiteness eventually. �
Remark 3.20. As the proof shows, Proposition 3.18 remains true when X is a smooth, connected
F -scheme of arbitrary dimension.
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For n � 1 and v ∈ Aη[n], write Xv → X for the finite etale cover (defined over a finite exten-
sion F v/F ) corresponding to the inclusion of open subgroups Stabπ1(X)(v) ⊂ π1(X). For each n � 1,
set Xn := �v∈Aη[n]× Xv . Then, as in [CT08, 4.2], the image of Xn(F ) → X(F ) coincides with the set
of points x ∈ X(F ) such that Ax(F )[n]× �= ∅. Now, the assertion of Corollary 1.4 is equivalent to (i)
|X�n (F )| < ∞, �: prime, n 
 0 and (ii) |X�(F )| < ∞, �: prime 
 0. Here, (i) follows from [CT08,
Cor. 1.2]. Indeed, a special case (χ = 1) of [CT08, Cor. 1.2] implies the following assertion (stronger
than (i)): |X�n (F )| = ∅, �: prime, n 
 0. To prove (ii), let (Aη)0 denote the largest isotrivial abelian
subvariety of Aη (cf. [CT08, 2.1]), and, for any v ∈ Aη , write v0 for the image of v in A0

η := Aη/(Aη)0.

Then, for any v ∈ Aη[�]× , g Xv � g Xv0 . If v0 �= 0, then it follows from Theorem 1.3 applied to (the

Néron model over X of) A0
η that g Xv � g Xv0 � 2, � 
 0, so, from Mordell’s conjecture, one gets the

desired finiteness |Xv(F )| < ∞, � 
 0. If v0 = 0, i.e. v ∈ (Aη)0[�], then Proposition 3.18 applied to (the
Néron model over X of) (Aη)0 implies the following assertion (stronger than the desired finiteness
|Xv(F )| < ∞, � 
 0): Xv(F ) = ∅, � 
 0. This completes the proof of Corollary 1.4.

Appendix A. A consequence of the geometric torsion conjecture

Let k be an algebraically closed field of characteristic 0. Given an integer d � 0, consider the fol-
lowing statements:

(1,d) For any function field K/k there exists an integer N := N(K/k,d) such that for any d-
dimensional abelian variety A over K containing no nontrivial k-isotrivial abelian subvariety,
A(K )tors ⊂ A[N].
(2,d) There exists an integer N := N(k,d) such that for any d-dimensional abelian variety A over k(T )

containing no nontrivial k-isotrivial abelian subvariety, A(k(T ))tors ⊂ A[N].
(3,d) For any integer g � 0 there exists an integer N := N(k,d, g) � 1 such that for any function field
K/k with transcendence degree 1 and genus � g and any d-dimensional abelian variety A over K
containing no nontrivial k-isotrivial abelian subvariety, A(K )tors ⊂ A[N].

In this short appendix, we provide a proof of the following.

Proposition A.1. With the above notation we have

(1) For a given d � 0, (3,d) implies (1,d) and (1,d) implies (2,d);
(2) (2,d) for all d � 0 implies (3,d) for all d � 0.

Proof. The second part of assertion (1) is straightforward. As for the first part, write K = k(S) with S
a smooth, projective, connected scheme over k and fix a closed embedding S ↪→ Pr

k . Then any curve
obtained by cutting S with (dim(S) − 1) hyperplanes has same (arithmetic) genus, say, g . Given a d-
dimensional abelian variety A over k(S) containing no nontrivial k-isotrivial abelian subvariety, with
zero section ε and with a k(S)-rational torsion point P of order, say, N , there exists a non-empty
open subscheme U ⊂ S such that the smooth, projective morphism A → k(S) and the sections ε ,
P : Spec(k(S)) → A extend to a smooth, projective morphism A → U and sections ε, P : U → A,
respectively. By Grothendieck’s rigidity theorem [MF82, Thm. 6.14, Ch. 6 §3], A → U is an abelian
scheme with zero section ε. Now, to conclude, it is enough to prove that, by considering suitable
hyperplane sections, one gets a curve C (necessarily of genus � g by what we said above) on S , such
that C ∩ U �= ∅ and that Ak(C) := A ×U k(C) → k(C) contains no nontrivial k-isotrivial abelian subvariety.
Indeed, since Ak(C) has a k(C)-rational torsion point Pk(C) := P ×U k(C) of order3 N , N(K/k,d) :=
N(k,d, g) will have the desired property. The fact that such a C can always be constructed follows
from:

3 Recall that since A has good reduction at the generic point of C , the specialization map A[N] → Ak(C)[N] is an isomor-
phism.
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Claim. (See [CT08, Cor. 2.5].) Let K/k be a function field and let a be an abelian variety over K . Then a contains
no nontrivial k-isotrivial abelian subvariety if and only if for any open subgroup U ⊂ ΓK one has T�(a)U = 0.

In particular, the fact that a contains no nontrivial k-isotrivial abelian subvariety only depends
on the image of the Galois representation ΓK → GL(T�(a)). As a result, it is enough to show that
C can be constructed in such a way that π1(C ∩ U ) → π1(U ) → GL(T�(A)) has the same image as
π1(U ) → GL(T�(A)). So, let G denote the image of π1(U ) → GL(T�(A)). As G is a compact �-adic Lie
group, its Frattini subgroup Φ(G) is open in G . By the fundamental property of Frattini subgroup,
it is enough to show that C can be constructed in such a way that π1(C ∩ U ) surjects onto the
finite group G/Φ(G). Let UΦ(G) → U denote the connected étale cover corresponding to the kernel
of π1(U ) � G/Φ(G). Then, from Bertini’s theorem [Jo83, Thm. 6.10 3)], C can be constructed in such
a way that UΦ(G) ×U (C ∩ U ) is connected, which is equivalent to saying that π1(C ∩ U ) surjects onto
the finite group G/Φ(G) as requested.

To prove assertion (2), let K = k(C) be the function field of a smooth proper connected curve
C over k and let C → P1

k be a non-constant morphism of degree, say, γ . Then the Weil restric-
tion Resk(C)/k(P1

k )(A) → k(P1
k ) is a γ d-dimensional abelian variety containing no nontrivial k-isotrivial

abelian subvariety and Resk(C)/k(P1
k )(A)(k(P1

k )) � A(k(C)). Now, since a curve of genus � g has gonality

� g+3
2 , one gets (3,d), by setting N(k,d, g) := max{N(k, γ d) | 1 � γ � [ g+3

2 ]}. �
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