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Résumé. — This paper is essentially a survey of André’s theory of pure motivated motives with an emphasis on

specialization theory in characteristic zero.
We review first the classical construction of pure motives and then turn to pure motivated motives whose

construction is modeled upon the one of pure homological motives, replacing homological cycles by motivated

cycles. Basically, motivated cycles are obtained from homological cycles by adjoining formally the Lefschetz
involution so that the so-called standard conjectures become true in the category of pure motivated motives; in

particular, this category is a semisimple Tannakian category naturally equipped with fibre functors coming from

Weil cohomologies.
The last section is devoted to the `-adic version of André’s specialization theorem for motivated cycles, which

asserts that, given a family of motivated motives M over a scheme S of finite type over a finitely generated field

k of characteristic 0, the locus of all s ∈ S(k) where the motivated motivic Galois group associated with Ms

degenerates is thin in S(k). When S is a curve, we improve André’s statement by resorting to a uniform open

image theorem for `-adic cohomology proved by A. Tamagawa and the author. We conclude by some applications
of this specialization theorem.

Cet article est une introduction à la théorie des motifs motivés purs développée par André. Nous nous intéressons
plus particulièrement au problème de la spécialisation de ces motifs en caractéristique 0.

Nous commençons par rappeler la construction classique des motifs purs puis nous présentons la construction

des motifs purs motivés comme une variante de la construction des motifs purs homologiques où les cycles ho-
mologiques sont remplacés par les cycles motivés. En gros, les cycles motivés sont obtenus en adjoignant formelle-

ment l’involution de Lefschetz aux cycles homologiques de sorte que les conjectures dites standard deviennent vraies

dans la catégorie des motifs purs motivés; en particulier, cette catégorie est une catégorie tannakienne semisimple
naturellement munie de foncteurs fibres provenant des cohomologies de Weil considérées.

La dernière partie de cet article est consacrée à la version `-adique du théorème d’André sur la spécialisation

des cyces motivés. Celui-ci peut s’énoncer comme suit. Soit k un corps de type fini et de caractéristique nulle, S
un schéma de type fini sur k et M une famille de motifs motivés sur S. Alors l’ensemble des points s ∈ S(k) où

le groupe de Galois motivé motivique associé à Ms dégénère est mince dans S(k). Lorsque S est une courbe, nous
améliorons le résultat d’André en invoquant un théorème d’image ouverte uniforme du à A. Tamagawa et l’auteur.

Nous concluons en donnant quelques applications de ce théorème de spécialisation.
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1. Introduction

Classically, (pure) motives can be presented either as an attempt to construct a universal cohomol-
ogy or as an attempt to ”embed” the category of smooth projective varieties into a neutral semisimple
Tannakian category over a field E. Both points of view are intrinsically connected but we will rather
adopt the second one, which is more adapted to André’s theory of motivated motives.

Recall that a neutral Tannakian category over a field E is a rigid abelian tensor category which
admits a faithful tensor functor with value in the category of finite dimensional E-modules. The main
theorem of Tannakian formalism asserts that a neutral Tannakian category is equivalent to the cate-
gory of finite dimensional E-rational representations of a pro-algebraic group over E (pro-reductive if
the category is furthermore assumed to be semisimple).

Fix a field k of characteristic 0 and let P(k) denote the category of smooth, projective schemes
over k and P(k)op its opposite category. These are tensor categories. The first step of the construc-
tion of pure motives is to ”embed” P(k)op into an additive tensor category - this is the category of
homological correspondences. Once one has an additive tensor category, one can, in turn, ”embed”
it into its Karoubian enveloppe, which is a pseudoabelian tensor category - this is the category of ef-
fective motives. The third step consists in inverting formally the so-called Lefschetz motive to obtain
the category of pure motives, which is a rigid pseudoabelian tensor category. The category of pure
motives, however, is not Tannakian yet and, unfortunately, the remaining part of the construction is
only conjectural, based on the so-called standard conjectures. These conjectures are all implied by
the so-called Lefschetz type conjecture, which predicts that the Lefschetz involution is a morphism in
the category of pure motives.

The key idea of André’s construction of motivated cycles is to adjoin formally the Lefschetz invo-
lutions to the set of homological correspondances in order to force Lefschetz conjecture to hold and
construct a category of motives which is a semisimple neutral Tannakian category - the category of
pure motivated motives. In particular, to any X ∈ P(k) one can associate the tensor subcategory
〈X〉⊗ generated by X in the category of pure motivated motives; this is again a semisimple neutral
Tannakian category and its Galois group Gmot(X) is a reductive algebraic group.

Now, given a scheme S, smooth, separated and geometrically connected over k with generic point
η and a smooth projective morphism f : X → S with geometrically connected fibres, one can ask how
the categories 〈Xs〉⊗ vary with s ∈ S or, equivalently, how the Gmot(Xs) do. This problem is dealt
with in [A96, §5].

First, one has to find a way to compare 〈Xs〉⊗ and 〈Xη〉⊗, s ∈ S. Using the semisimplicity of
the category of pure motivated motives and Deligne’s fixed part theorem, one can show that the
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specialization isomorphism for `-adic cohomology

sps :
⊕
i≥0

H2i(Xη,Q`)(i)→̃
⊕
i≥0

H2i(Xs,Q`)(i)

maps motivated cycles to motivated cycles (corollary 4.7). So, as motivated motivic Galois groups are
reductive, one can identify Gmot(Xs) with a subgroup of Gmot(Xη) and equality holds if and only if
the specialization morphism for `-adic cohomology induces an isomorphism onto motivated cycles for
all fibre power X ×k X ×k · · · ×k X.

The next natural question is to understand the structure of the set of all s ∈ S such that Gmot(Xs) (
Gmot(Xη); André’s specialization theorem for motivated cycles answers it, at least partially.

Theorem 1.1. — ([A96, Thm. 5.2]) For any finite field extension k′/k the set of all s ∈ S(k′) such
that

Gmot(Xs) ( Gmot(Xη)

is thin in S(k′).

The proof is along the following guidelines. First, one observes that Gmot(Xs) contains an open
subgroup of the image Gs of the `-adic Galois representation

ρf,s : Γk(s) → GL(H∗(Xs,Q`)).

As a result, the degeneration of Gmot(Xs) forces the degeneration of Gs. Similarly, Gmot(Xη) contains
an open subgroup of the image G of the generic `-adic Galois representation

ρf,η : Γk(η) → GL(H∗(Xη,Q`))

and identifying H∗(Xη,Q`) and H∗(Xs,Q`) via sps :
⊕

i≥0 H2i(Xη,Q`)(i)→̃
⊕

i≥0 H2i(Xs,Q`)(i), one

can regard Gs as a closed subgroup of G. So, the set where Gmot(Xs) ( Gmot(Xη) is contained in the
set where Gs is not open in G. The problem thus amounts to studying this second set.

To control this second set, André resorts to a profinite variant of Serre’s irreducibility theorem
[Se89, p.148]. When S is a curve, this can be replaced by a uniform open image theorem for `-adic
representions of étale fundamental groups proved by A. Tamagawa and the author ([CT09b, Thm.
1.1] - see theorem 5.3) to obtain the following. Given an integer d ≥ 1, let S≤d denote the set of all
closed points s ∈ S such that [k(s) : k] ≤ d.

Theorem 1.2. — Assume that S is a curve and that k is a finitely generated field of characteristic
0. Then, for any integer d ≥ 1, the set of all s ∈ S≤d such that Gmot(Xs) ( Gmot(Xη) is finite.

The paper is organized as follows. In section 2, we review the construction of the category of
pure motives (after some preliminaries - gathered in subsection 2.1 - about algebraic cycles and Weil
cohomologies) and, in section 3, we discuss the formalism of the standard conjectures. In section 4,
we give the main features of André’s theory of motivated cycles and explain how to specialize them.
Section 5 is devoted to the statement and proof of the specialization theorem for motivated motivic
Galois groups (theorem 5.1, which gathers theorem 1.1 and 1.2). We conclude this last section by
discussing related topics such as jumping of the Neron-Severi rank or Tate conjectures.

It goes without saying that I am very much indebted to the reading of André’s works [A96] and
[A04] for the writing of this paper. I am also grateful to the referee for his or her constructive remarks.

2. The category of pure motives

2.1. Algebraic cycles and Weil cohomologies. — The aim of this preliminary section is to
review the formalism of algebraic cycles and Weil cohomologies required to introduce the category
of algebraic correspondences, which is the starting point of the construction of the category of pure
motives. The content here is very standard and can be skipped by any reader familiar with these
notions. We assume basic knowledge about intersection theory [F84], usual Weil cohomologies (say
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Betti and `-adic) and Tannakian formalism [DM82].

Given a field K, we write Mod/K for the category of K-modules, Mod
Z≥0

/K for the category of Z≥0-

graded K-modules, Alg
Z≥0

/K for the category of Z≥0-graded K-algebras and AAlg
Z≥0

/K for the category

of anticommutative Z≥0-graded K-algebras regarded as a ⊗-category whose commutativity constraint
is given by Koszul rule that is, for any two Z≥0-graded algebras M = ⊕i≥0Mi, N = ⊕i≥0Ni, the
commutativity constraint

cM,N : M ⊗K N→̃N ⊗K M

can be written as

cM,N =
⊕
i,j≥0

ci,j ,

where

ci,j : Mi ⊗K Nj →̃ Nj ⊗K Mi

mi ⊗ nj 7→ (−1)ijnj ⊗mi

, i, j ≥ 0.

Fix a field k, of characteristic 0.

Given a connected X ∈ P(k), we will write dX for its dimension. Some statements involving dX
below only make sense if X is equidimensional. We will not necessarily recall this hypothesis mainly
because the functors at stake commute with coproducts. So, the reader can think of X as being
connected.

2.1.1. Algebraic cycles. — Let E be a field of characteristic 0 and ∼ an adequate relation on P(k) (for
instance, rational equivalence rat, algebraic equivalence alg, homological equivalence H or numerical
equivalence num). For any X ∈ P(k), write

Z∗∼(X)E := Z∗(X)⊗Z E/ ∼

for the Z≥0-graded algebra of algebraic cycles with coefficients in E modulo ∼. Recall that this defines
covariant functors

(Z∗∼(−)E , (−)∗) : P(k)op → Alg
Z≥0

/E

and

(Z∗∼(−)E , (−)∗) : P(k)→ Mod/E .

More precisely, given a morphism f : X → Y in P(k), the morphism f∗ : Z∗∼(X)E → Z∗∼(Y )E is

defined as follows. For any x ∈ X, set f∗({x}) = [k(x) : k(f(x))]{f(x)} if dim({x}) = dim({f(x)})
and f∗({x}) = 0 else. Then, extend f∗ by E-linearity and check that it factors via ∼. Equivalently,
one has

(1) f∗(α) = pXYY ∗ (Γf · pXY ∗X (α)) , α ∈ Z∗∼(X)E ,

where Γf ∈ ZdY∼ (X ×k Y )E denotes the graph of f : X → Y and pXYX : Y ×k X → X (resp.

pXYY : Y ×k X → Y ) the first (resp. second) projection. The morphism f∗ : Z∗∼(Y )E → Z∗∼(X)E is
defined by

(2) f∗(β) = pY XX∗ (tΓf · pY X∗Y (β)) , β ∈ Z∗∼(Y )E .

Note that f∗ : Z∗∼(X)E → Z∗−δ∼ (Y )E shifts the degree by −δ, where δ denotes the dimension of the
generic fibre of f : X → Y . Also, f∗ : Z∗∼(X)E → Z∗−δ∼ (Y )E is not compatible with the intersection
product but, however, the following relations hold

(3) f∗(α · f∗β) = (f∗α) · β , α ∈ Z∗∼(X)E , β ∈ Z∗∼(Y )E (projection).
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2.1.2. Weil cohomology. — Let E ↪→ K be an extension of fields of characteristic 0 and fix a

Weil cohomology (H∗, (−)∗) : P(k)op → AAlg
Z≥0

/K that is a covariant functor of tensor categories (1)

satisfying the finiteness properties (1), (2) below and endowed with traces and a cycle map satisfying
properties (3), (4), (5) below.

1. For any X ∈ P(k),
(a) dimK(Hi(X)) < +∞ for 0 ≤ i ≤ 2dim(X);
(b) Hi(X) = 0 for i ≥ 2dim(X) + 1.

2. dimK(H2(P1
k)) = 1 and H1(P1

k) = 0.

For any n ∈ Z, write

−(n) := −⊗K H2(P1
k)
⊗K(−n) : Mod

Z≥0

/K → Mod
Z≥0

/K

for the nth Tate twist operator (which shifts the degree by −2n). Also, given X ∈ P(k), write

H∗(X) :=
⊕
r≥0

H2r(X)(r).

This gives raise to a twisted Z≥0-graded covariant functor

(H∗(−), (−)∗) : P(k)op → AAlg
Z≥0

/K .

The trace of X ∈ P(k) is a morphism

TrX : H2dX (X)(dX)→ K

in Mod/K and the cycle map is a morphism of Z≥0-graded functors

γ∗H(−) : (Z∗rat(−)E , (−)∗)→ (H∗(−), (−)∗).

3. Compatibility with the tensor structures: The following two diagrams commute (here we use
”=” for ”isomorphic”)

H2dX (X)(dX)⊗K H2dY (Y )(dY )
TrX⊗KTrY // K

H2(dX+dY )(X ×k Y )(dX + dY );

TrX×kY

33ggggggggggggggggggggggggg

Z∗alg(X)E ⊗E Z∗alg(Y )E
γ∗H(X)⊗γ∗H(Y )

// H∗(X)⊗K H∗(Y )

Z∗alg(X ×k Y )E
γ∗H(X×kY )

// H∗(X ×k Y );

4. Normalization of the trace: The following diagram commutes (X connected)

ZdXalg (X)E ⊗E K
γ
dX
H (X)⊗EIdK //

����

H2dX (X)(dX)

TrX

��
E ⊗E K K,

where the first vertical arrow is induced from the canonical degree morphism. If X is geometri-

cally connected then γdXH (X) and TrX are both isomorphisms.

(1)In particular, for any X ∈ P(k), the diagonal morphism ∆X|k : X → X ×k X induces the cup product ∪ on H∗ and
the structural morphism X → spec(k) induces the k-algebra structure on H∗.
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5. Poincaré duality: The pairing

〈−,−〉 : H∗(X)⊗K H2dX−∗(X)(dX)
∪→ H2dX (X)(dX)

TrX→ K

is non-degenerate (X connected).

In particular, for any f : X → Y , one can define

f∗ : H∗(X)→ H∗−2δ(Y )(−δ)

as the composite

H i(X)
P.D.
→̃ HomMod(K)(H

2dX−i(X)(dX),K)
tf∗→ HomMod(K)(H

2dX−i(Y )(dX),K)
P.D.
→̃ H i−2δ(Y )(−δ).

This yields a covariant functor (H∗, (−)∗) : P(k)→ Mod/K such that γH(−) becomes a morphism
of functors

γH(−) : (Zalg(−)E , (−)∗)→ (H∗(−), (−)∗)

and one has the projection formula

f∗(α ∪ f∗β) = (f∗α) ∪ β, α ∈ H∗(X), β ∈ H∗(Y ).

If f : X → spec(k) is the structural morphism, then f∗ = TrX .

2.1.3. Algebraic cycles modulo homological equivalence. — By definition of homological equivalence,
the cycle map γ∗H(−) : Z∗alg(−)E → H∗(−) factors through

Z∗rat(−)E

&&MM
MMM

MMM
MM

γ∗H(−)
// H∗(−)

Z∗H(−)E ,
+ �

99ssssssssss

where Z∗H(−)E : P(k)op → Alg
Z≥0-grad

/E denotes the functor of cycles with coefficients in E modulo

homological equivalence.
From now on, we assume that H∗ is a classical Weil cohomology that is, one of the following

- If k ⊂ C, Betti cohomology with coefficients in Q (not.: H∗B(Xan,Q) =: H∗B(−));

- `-adic cohomology with coefficients in Q` (not.: H∗ét(−×k k,Q`) =: H∗` (−×k k));
- De Rham cohomology (not.: H∗zar(−,Ω∗−|k) =: H∗DR(−)).

Since the comparison isomorphisms commute with the cycle map (k ⊂ C, E = Q)

H∗B(−)⊗Q Q`

cB,`
H∗` (−×k k)

Z∗alg(−)

γ∗B(−)

ggNNNNNNNNNNN γ∗` (−)

77pppppppppppp

γ∗B(−)

wwppp
ppp

ppp
pp γ∗DR(−)

''NN
NNN

NNN
NNN

H∗B(−)⊗Q C cB,DR
H∗DR(−)⊗k C

the definition of Z∗H(−)E is independent of the choice of the classical Weil cohomology.
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2.1.4. Algebraic correspondences. — We now come to the definition of the category of algebraic
correspondences. For any X, Y ∈ P(k), applying Kunneth formula and Poincaré duality, one gets the
following identifications

H∗(X ×k Y )
Kunneth

= H∗(X)⊗K H∗(Y )

P.D.
= HomMod/K

(H∗(X),K)⊗K H∗(Y )(−dX)

= HomMod/K
(H∗(X),H∗(Y ))(−dX).

Explicitly, one has

u(α) = pXYY ∗ (u ∪ pXY ∗X (α)) , u ∈ H∗(X ×k Y ), α ∈ H∗(X);

v ◦ u = pXY ZXZ∗ (pXY Z∗XY u ∪ pXY Z∗Y Z v) , u ∈ H∗(X ×k Y ), v ∈ H∗(Y ×k Z).

And, via these identifications, the following two diagrams commute

(4) H2dX (X ×k Y )(dX)
⊕2dX

i=0 HomMod/K
(Hi(X),Hi(Y ))

HomP(k)op(X,Y )

γ
dX
H (X×kY )(tΓ−)

OO

(−)∗

44hhhhhhhhhhhhhhhhhh

(5) H2dY (X ×k Y )(dY )
⊕2dX

i=2δ HomMod/K
(Hi(X),Hi−2δ(Y ))(−δ)

HomP(k)(X,Y )

γ
dY
H (X×kY )(Γ−)

OO

(−)∗

33gggggggggggggggggggg

This motivates the introduction of the category C∼(k)E of (degree 0) correspondences with coeffi-
cients in E modulo ∼ defined as follows. The objects of C∼(k)E are those of P(k) and, given X, Y
(connected) in P(k), the set of morphisms in C∼(k)E from X to Y is

C∼(X,Y )E := ZdXH (X ×k Y )E .

Composition in C∼(k)E is defined by the rule

◦: C∼(Y,Z)E × CH(X,Y )E → C∼(X,Z)E
(β, α) 7→ β ◦ α := (pXY ZXZ )∗((p

XY Z
XY )∗(α) · (pXY ZY Z )∗(β))

Remark 2.1. — More generally, one could define the category C∗∼(k)E of Z-graded correspondences
with coefficients in E modulo homological equivalence whose objects are those of P(k) and, given X, Y
(connected) in P(k), the set of morphisms in C∗∼(k)E from X to Y is

C∗∼(X,Y )E := ZdX+∗
H (X ×k Y )E .

Composition in C∗∼(k)E is well-defined by the rule

◦: Cs∼(Y,Z)E × Cr∼(X,Y )E → Cr+s∼ (X,Z)E
(β, α) 7→ β ◦ α := (pXY ZXZ )∗((p

XY Z
XY )∗(α) · (pXY ZY Z )∗(β)).

The transpose of the graph gives raise to a natural covariant essentially surjective functor of tensor
categories (for the obvious tensor structure on C∼(k)E)

P(k)op → C∼(k)E .

Furthermore, the covariant functors of tensor categories

(Z∗∼(−), (−)∗) : P(k)op → Alg
Z≥0

/E , (Z∗∼(−), (−)∗) : P(k)→ Mod/E
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extends to C∼(k)E and C∼(k)opE respectively by the rules of (1), (2), (3). Then, if homological equiva-
lence is coarser than ∼, the diagrams (4) and (5) show how to extend the functors

(H∗(−), (−)∗) : P(k)op → AAlg
Z≥0

/K , (H∗, (−)∗) : P(k)→ Mod/K

to C∼(k)E so that the cycle map remains a morphism of functors of tensor categories from
(Z∗∼(−), (−)∗) to ( H∗(−), (−)∗) and from (Z∗∼(−), (−)∗) to ( H∗(−), (−)∗) respectively.

By construction, C∼(k)E is an additive tensor category. We are now ready to proceed to the next
step in the construction of pure motives.

2.2. End of the construction of the category of pure motives. —

2.2.1. Pure effective motives. —

2.2.1.1. Karoubian enveloppe of additive categories. —

An additive category A is said to be pseudoabelian if any idempotent in A admits a kernel in A.
Given an additive category A, there exists a pseudoabelian category A# and a covariant additive
functor

κ : A → A#

which is universal for additive functors from A to pseudoabelian categories. Thus κ : A → A# is
unique up to equivalence of categories and called the pseudoabelian or Karoubian enveloppe of A. It
can be easily described as follows. Objects of A# are pairs (A, e), where A is an object in A and
e : A→ A is an idempotent in A and given (A, e), (A′, e′) in A#, the set of morphisms from (A, e) to
(A′, e′) in A# is

e′ ◦HomA(A,A′) ◦ e ⊂ HomA(A,A′)

and composition is induced by the composition in A. Eventually, the functor κ : A → A# sends A to
(A, IdA) and φ : A→ A′ to φ : (A, IdA)→ (A′, IdA′); in particular, κ : A → A# is fully faithful.

By construction, if ei : A→ A, i = 1, . . . , r is a family of orthogonal idempotents in A then

A =
⊔

1≤i≤r
(A, ei).

(Here, we write A for (A, IdA)).

Also, let f : A → B be a morphism in A. Then any section g : B → A of f : A → B in A defines
an idempotent eg := g ◦ f : A→ A in A hence, from the above, a decomposition

A = (A, eg) t (A, IdA − eg).

One then has the following elementary categorical lemma.

Lemma 2.2. — With the above notation

- The morphism f ◦ eg = f : (A, eg)→̃B is an isomorphism (with inverse eg ◦ g = eg);
- For any two sections g, g′ : B → A in A, the morphism

(IdA − eg′) ◦ (IdA − eg) = IdA − eg : (A, IdA − eg)→̃(A, IdA − eg′)

is an isomorphism (with inverse (IdA − eg) ◦ (IdA − eg′) = IdA − eg′).

In other words, any morphism f : A→ B admitting a section in A induces a decompostion

A = B t Lf ,

which is independent of the section.
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2.2.1.2. Pure effective motives. —

The Karoubian enveloppe κ : C∼(k)E → C∼(k)#
E =: Meff

∼ (k)E of C∼(k)E is called the category of
pure effective motives with coefficient in E modulo ∼.

Let I denote the image of spec(k) in M∼(k)E . From lemma 2.2, any X ∈ P(k) such that X(k) 6= ∅
admits a decomposition

X = I t LX .
When X = P1

k, the motive LP1
k

=: L is simply called the Lefschetz motive. The following requires a

bit more work.

Lemma 2.3. — There is a unique tensor structure on Meff
∼ (k)E such that C∼(k)E → Meff

∼ (k)E
becomes a functor of tensor categories. Furthermore, the functor:

−⊗E L : Meff
∼ (k)E → Meff

∼ (k)E

is fully faithful (in other words, L is quasi-invertible).

By the universal property of pseudoabelian enveloppe, if homological equivalence is coarser than ∼,
the covariant functor of tensor categories

(H∗(−), (−)∗) : C∼(k)E → AAlg
Z≥0

/K

extends to Meff
∼ (k)E .

2.2.2. Pure Motives. —

2.2.2.1. Inverting the Lefschetz motive. —

Given a tensor category A and a pseudo-invertible object L in A such that(2) the permutation
(1, 2, 3) acts as the identity on L⊗3, there exists a tensor category A[L−1] and a functor of tensor
categories

ι : A → A[L−1]

which is universal for functors of tensor categories from A sending L to an invertible object. Again,
ι : A → A[L−1] can be easily described as follows. Objects of A[L−1] are pairs (A,m), where A is
an object in A and m ∈ Z and given (A,m), (A′,m′) in [L−1], the set of morphisms from (A,m) to
(A′,m′) in A[L−1] is

lim
−→

k≥−m,−m′
HomA(A⊗ Lk+m, A′ ⊗ Lk+m′)

(note that, since L is pseudo-invertible, the transition morphisms are all bijective) and composition
is induced by the composition in A. Eventually, the functor ι : A → A[L−1] sends A to (A, 0) and
φ : A→ A′ to φ : (A, 0)→ (A′, 0); in particular, ι : A → A[L−1] is fully faithful.

2.2.2.2. Pure motives. —

The category of pure motives with coefficient in E modulo ∼ is the category

ι : Meff
∼ (k)E → Meff

∼ (k)E [L−1] =: M∼(k)E .

Note that IdL identifies L := ι(L) with (I, 1) in M∼(k)E ; we will also write I := ι(I). Also, one can
check that morphisms from (X, e,m) to (X ′, e′,m′) in M∼(k)E can be identified with

e′Cm′−m∼ (X,X ′)e.

(2)This condition is an if and only if condition to ensure that the category A[L−1] constructed below is indeed a tensor
category. In our situation, one can show that transpositions already act as the identity on L⊗2.
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The category M∼(k)E is a pseudoabelian tensor category which is now rigid. The dual of (X, e,m) is
(X, te, dX−m). In particular, for any M in M∼(k)E one has an evaluation morphism εM : M⊗M∨ → I
(corresponding to IdM∨) and a coevaluation morphism ηM : I → M∨ ⊗M (corresponding to IdM )
hence a trace morphism

TrM : EndM∼(k)E (M)→ EndM∼(k)E (I) = E

sending f : M →M to the composite

I ηM→ M∨ ⊗M
IdM∨⊗f→ M∨ ⊗M

cM∨,M→ M ⊗M∨ εM→ I

and a rank defined to be

rank(M) = TrM (IdM ) ∈ E.
Define the motivic cohomology functor to be resulting covariant functor of tensor categories

h∼ : P(k)op → M∼(k)E

(sending X ∈ P(k) to (X, IdX , 0) and f : X → Y to tΓf ). If homological equivalence is coarser than

∼ and, since H∗(L) = (Id− x ◦ π)∗H∗(P1
k) = H2(P1

k) is invertible in AAlg
Z≥0

/K , the covariant functor of

tensor categories

(H∗(−), (−)∗) : Meff
∼ (k)E → AAlg

Z≥0

/K

extends to M∼(k)E that is, one has a commutative diagram of functors of tensor categories

P(k)op
H∗ //

h∼

��

Alg
Z≥0

/K

M∼(k)E .

H∗

::ttttttttt

Classically, one writes (X, e,m) := eh∼(X)(m) hence H∗(eh∼(X)(m)) = e∗H∗(X)(m). By construc-
tion, the trace and dual in M∼(k)E are compatible with the trace and Poincaré duality of the given
Weil cohomogy.

3. Kunneth type and Lefschetz type conjectures

We have now constructed pseudoabelian rigid tensor categories M∼(k)E and motivic cohomology
functors h∼ : P(k)op → M∼(k)E . When homological equivalence is coarser than ∼, classical Weil
cohomologies factor via motivic cohomology and give rise to functors of tensor categories

(H∗(−), (−)∗) : M∼(k)E → AAlg
Z≥0

/K ,

which are faithful and exact when ∼ is the homological equivalence.

However, to make the (neutral) Tannakian formalism work, two questions remain to be solved,
namely:

1. Is M∼(k)E an abelian category?
2. If M∼(k)E is an abelian category, does it admit fibre functors

F : M∼(k)E → Mod/E?

The first question is answered by the theorem of Jannsen, which gives an if and only if condition
for M∼(k)E to be abelian semisimple.

Theorem 3.1. — (Jannsen [J92]) If ∼ is an adequate equivalence relation, the following three prop-
erties are equivalent. (i) M∼(k)E is an abelian semisimple category;
(ii) C∼(X,X)E is a semisimple finite dimensional E-algebra for all X ∈ P(k);
(iii) M∼(k)E = Mnum(k)E.
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In particular, Mnum(k)E is a semisimple abelian rigid tensor category over E hence close to be
Tannakian. However, Deligne’s criterion, gives an obstruction for Mnum(k)E to be Tannakian.

Theorem 3.2. — (Deligne’s criterion [D90]) Let E be a field of characteristic 0 and T an abelian
rigid tensor category over E with EndT (I) = E. Then T is Tannakian if and only if for any M in T
one has

rank(M) ∈ Z≥0.

Indeed, since numerical equivalence is coarser than other adequate equivalence relations on P(k),
one has a canonical functor of tensor categories R∼ : M∼(k)E → Mnum(k)E , which is essentially
surjective and, given any M in MH(k)E , one has

rank(RH(M)) =
∑
i≥0

(−1)idimK(Hi(M)),

Thus, before going further, one has to remedy the default of positivity of the rank. This is conjec-
turally done by Kunneth type conjecture.

3.1. Kunneth type conjecture. — For any X in P(k), the Kunneth projectors

πiX,H : H∗(X) � Hi(X) ↪→ H∗(X), i ≥ 0

form a complete system of orthogonal central idempotents in End
Mod

Z≥0
/K

(H∗(X)). Kunneth type

conjecture claims that they should be homological correspondences that is, in motivic terms:

Conjecture 3.3. — (Kunneth type) For any X ∈ P(k), the Kunneth projectors πiX,H : H∗(X) →
H∗(X), i ≥ 0 are realizations of morphisms in MH(k)E.

Assuming Kunneth type conjecture, for any X ∈ P(k), one can set

hiH(X) := πiX,H(hH(X)) ∈MH(k)E , i ≥ 0.

and decompose

hH(X) =
⊕
i≥0

hiH(X)

in MH(k)E . Also, since πiX,H(L) = 0 except for i = 2, any M = eh(X)(m) in MH(k)E can be
canonically graded as M = ⊕i≥0Mi, where

Mi = ehi+2m
H (X)(m), i ≥ 0.

By definition of the Kunneth projectors, this graduation endows MH(k)E with a structure of Z≥0-

graded tensor category for which H∗ : MH(k)E → AAlg
Z≥0

/K becomes a Z≥0-graded functor of tensor

categories. Similarly, setting

hinum(X) := RH(πiX,H)(hnum(X)), i ≥ 0,

one can endow Mnum(k)E with a structure of Z≥0-graded tensor category.
Note that by construction, for any M, N in M∼(k)E , the commutativity constraint

cM,N : M ⊗K N→̃N ⊗K M

in MH(k)E is given by

cM,N =
⊕
i,j≥0

cMi,Nj ,

where

cMi,Nj : Mi ⊗Nj →̃ Nj ⊗Mi

mi ⊗ nj 7→ nj ⊗mi

, i, j ≥ 0.



12 ANNA CADORET

We can use the graduation provided by Kunneth type conjecture to modify this commutativity
constraint according to Koszul rule; write ṀH(k)E , Ṁnum(k)E for the resulting Z≥0-graded tensor

categories. Then, for any M in Ṁnum(k)E , one has

rank(M) =
∑
i≥0

dimK(Hi(M)) ∈ Z≥0.

Hence, from Deligne’s criterion, one gets

Corollary 3.4. — Assuming Kunneth type conjecture, the category Ṁnum(k)E is a semisimple Tan-
nakian category.

However, there is no natural way to construct fibre functors on Ṁnum(k)E whereas modified classical
Weil cohomology functors

Ḣ
∗

: ṀH(k)E
H∗→ AAlg

Z≥0

/K

For→ Mod/K

(where For denotes the forgetful functor) provide natural candidates for fibre functors on ṀH(k)E .
This motivates the following conjecture.

Conjecture 3.5. — (num=H) For any X ∈ P(k) numerical equivalence and homological equivalence
coincide on Z∗(X).

Corollary 3.6. — Assuming Kunneth type conjecture and the ’num=H’ conjecture, the category
Ṁnum(k)E is a semisimple Tannakian category with fibre functors

Ḣ
∗

: ṀH(k)E → Mod/K .

In characteristic 0, both the Kunneth type conjecture and the ’num=H’ conjecture follow from
Lefschetz type conjecture.

3.2. Lefschetz type conjecture. — For any X in P(k), a polarization η on X is the image

η = γ1
H(X)([D]) ∈ H2(X)(1)

of the class [D] ∈ Z1
H(X) of an ample divisor on X. Let Pol(X) denote the set of polarizations on

X. The strong Lefschetz theorem asserts that for any polarization η on X, the associated Lefschetz
operator Lη := − ∪ η induces isomorphisms

LdX−iη : Hi(X)(r)→̃H2dX−i(X)(dX − i+ r), i ≤ dX , r ∈ Z.

In particular, one can consider the Lefschetz decompositions

Hj(X)(r) =
⊕

max{0,j−dX}≤k≤j/2

LkηP
j−2k(X)(r),

where we set

P i(X)(r) := Hi(X)(r) ∩ ker(LdX−i+1
η ), i ≤ dX

and define

- The Lefschetz involution

∗L,η :
⊕

i≥0, r∈Z
Hi(X)(r)→̃

⊕
i≥0, r∈Z

Hi(X)(r)

by

∗L,η|Hi(X)(r) = LdX−iη : Hi(X)(r)→̃H2dX−i(X)(d− i+ r) if i ≤ dX ;

∗L,η|Hi(X)(r) = (Li−dXη )−1 : Hi(X)(r)→̃H2d−i(X)(dX − i+ r) if i > dX .
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- The Hodge involution

∗H,η :
⊕

i≥0, r∈Z
Hi(X)(r)→̃

⊕
i≥0, r∈Z

Hi(X)(r)

by multiplying ∗L,η by a factor

(−1)
(j−2k)(j−2k+1)

2
k!

(dX − j + k)!

on LkηP
j−2k(X)(r).

Lefschetz type conjecture claims that the Lefschetz involution should be an algebraic correspondance
that is, in motivic terms:

Conjecture 3.7. — (Lefschetz type) For any X ∈ P(k) and polarization η on X, the Lefschetz
involution

∗L,η :
⊕

i≥0, r∈Z
Hi(X)(r)→̃

⊕
i≥0, r∈Z

Hi(X)(r)

is the realization of a morphism in MH(k).

Also, note that for any X ∈ P(k), one always has

Proposition 3.8. — (Kleiman)

Q[πiX,H , i ≥ 0] ⊂ Q[Lη, ∗L,η] = Q[Lη, ∗H,η].

(as Q-subalgebras of the endomorphism ring of
⊕

i≥0, r∈Z Hi(X)(r)). In particular,

- one can replace ∗L,η by ∗H,η in the statement of Lefschetz type conjecture;
- Lefschetz type conjecture implies Kunneth type conjecture;
- if Lefschetz type conjecture holds for X ∈ P(k) and a fixed polarization η on X then it holds for

all polarization η on X.

Also, combined with the Hodge index theorem, Lefschetz type conjecture implies the ’num=H’
conjecture.

Theorem 3.9. — (Hodge index theorem) For any X ∈ P(k) and polarization η on X, the pairing:

ZrH(X)× ZrH(X) → Q
(α, β) 7→ 〈α, ∗H,ηβ〉

takes its value in Q and is positive definite.

Indeed, since Lefschetz type conjecture implies that the Hodge involution ∗H,X is the realization of an
automorphism in MH(k), theorem 3.9 shows that the pairing

ZrH(X)× ZdX−rH (X) → Q
(α, β) 7→ 〈α, β〉

is non-degenerate as well. But then, for any α ∈ Z∗H(X), if RH(α) = 0, by definition of numerical
equivalence, for any β ∈ Z∗H(X) one has 〈α, β〉 = 0 hence α = 0.

Corollary 3.10. — Assuming Lefschetz type conjecture, ṀH(k)E is a semisimple Tannakian category
with fibre functors

Ḣ
∗

: ṀH(k)E → Mod/K .
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4. André’s theory of motivated cycles

The key idea of André’s theory of motivated cycles [A96] is to adjoin formally the Lefschetz invo-
lutions to the set of morphisms in MH(k) in order to force Lefschetz conjecture to hold and construct
a category of motives which is a semisimple neutral Tannakian category - the category Mmot,H(k)E
of pure motivated motives. In subsection 4.1, we give the technical definition of motivated cycles
and explain that they behave well-enough (basically like algebraic cycles) to play the part of algebraic
cycles in the construction of a category of pure motives. In subsection 4.2, we explain how to specialize
motivated cycles and motivated motivic Galois groups by means of Deligne’s fixed part theorem.

4.1. Construction. — For any X ∈ P(k), the set of motivated cycles on X with coefficients in E
is the subset Zmot,H(X)E ⊂ H∗(X) defined as

Zmot,H(X)E :=

(pXYX )∗(α ∪ ∗L,ηβ) | α, β ∈ Z∗H(X ×k Y )E ,
Y ∈ P(k),
ηX ∈ Pol(X), ηY ∈ Pol(Y ),
η = (pXYX )∗ηX + (pXYY )∗ηY .


André’s original definition is more elaborate; one fixes a full subcategory V of P(k) (stable by

products, direct sums and connected components) - called the category of base pieces and only allows
the Y to vary in V. But for simplicity, here, we will only consider the case where V = P(k).

Also, set

Zrmot,H(X)E := Zmot,H(X)E ∩H2r(X)(r), r ≥ 0.

The fact that Zmot,H(X)E is stable by sum, coproduct direct and inverse images by projections
requires a few computations.

Lemma 4.1. — [A96, Prop. 2.1]

1. The structure of Z≥0-graded K-algebra of H∗(X) induces a structure of Z≥0-graded E-algebra
on Zmot,H(X)E and the natural inclusions

Z∗H(X)E ⊂ Z∗mot,H(X)E ⊂ H∗(X)

are morphisms of Z≥0-graded E-algebras.
2. For any X, Y ∈ P(k), one has

(pXYX )∗Z∗mot,H(X)E ⊂ Zmot,H(X ×k Y )E

and

(pXYX )∗Z
∗
mot,H(X ×k Y )E ⊂ Zmot,H(X)E .

In particular, since algebraic cycles are motivated, the rules (1), (2), (3) of subsection 2.1.1 give rise
to two covariant functors

(Z∗mot,H(−)E , (−)∗) : P(k)op → Alg
Z≥0

/E

and

(Z∗mot,H(−)E , (−)∗) : P(k)→ Mod/E

such that the following diagrams of morphisms of functors commute.

(Z∗H(−)E , (−)∗) //

��

AlgZ/E

(Z∗mot,H(−)E , (−)∗)

77ooooooooooooo

, (Z∗H(−)E , (−)∗) //

��

Mod/E

(Z∗mot,H(−)E , (−)∗)

66nnnnnnnnnnnnn

Then, one can transpose the formal construction of M∼(k)E with Z∗mot,H(X)E replacing Z∗∼(X)E to

obtain the category Mmot,H(k)E of pure motivated motives with coefficient in E. Note also that, from
the above and the comparison isomorphisms, up to canonical isomorphism of Z≥0-graded Q-algebras,
the definition of Z∗mot,H(X)Q is independent of the classical Weil cohomology.

In the setting of pure motivated motives Lefschetz conjecture becomes an easy lemma.
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Lemma 4.2. — [A96, Prop. 2.2, 2.3] For any X ∈ P(k) and polarization η on X, the Lefschetz
involution ∗L,η is a morphisms in Mmot,H(k)E (hence ∗H,η and πiX,H , i ≥ 0 are endomorphisms in

Mmot,H(k)E as well).

One can also define the analogue of numerical equivalence on motivated cycles. Namely, a motivated
cycle α ∈ Z∗mot,H(X)E is said to be numerically equivalent to 0 if 〈α, β〉 = 0 for all β ∈ Z∗mot,H(X)E .

After observing that the Hodge index theorem extends to motivated cycles (which are of type (p, p)),
one can follow the guidelines of the standard conjectures as exposed above in section 3 (see [A96,
section 3]) that is, prove the analogue of Jansenn theorem for motivated numerical motives and,
combining it with lemma 4.2 and Hodge index theorem, obtain

Theorem 4.3. — ([A96, Thm.0.4]) The category Ṁmot,H(k)E of pure motivated motives is a
semisimple Tannakian category with fibre functors

Ḣ
∗

: Ṁmot,H(k)E → Mod/K .

In particular, for E = K, the category Ṁmot,H(k)K is a neutral semisimple Tannakian category over
K. It then follows from the general theory of Tannakian categories [DM82], [D90] that the motivic
Galois group

Gmot,H := Aut⊗(Ḣ
∗
)

is a pro-reductive algebraic group over K and that Ḣ
∗

: Ṁmot,H(k)K → Mod/K factors through

Ṁmot,H(k)K

˙H
∗

��

˙H
∗
// Mod/K

RepK(Gmot,H),

For

77ppppppppppp

where RepK(Gmot,H) denotes the category of finite dimensional algebraic representations of Gmot,H
over K and Ḣ

∗
: Ṁmot,H(k)K → RepK(Gmot,H) is an equivalence of categories.

For any M in Mmot,H(k)K one can also consider the Tannakian subcategory 〈M〉⊗ ⊂ Ṁmot,H(k)

and the associated motivic Galois group Gmot,H(M) := Aut⊗(Ḣ
∗|〈M〉⊗) ⊂ GL(H∗(M)), which is a

reductive algebraic group over K. Then

Gmot,H = lim
←−

Gmot,H(M),

where the index set is the set of pure motivated motives partially ordered by the inclusion re-
lation. Hence, the transition morphisms are the faithfully flat morphisms of algebraic groups
Gmot,H(N) � Gmot,H(M) corresponding to the inclusion of Tannakian categories 〈M〉⊗ ⊂ 〈N〉⊗.

For M = hmot,H(X), we will write Gmot,H(X) for Gmot,H(M).

Remark 4.4. — It follows from the definition of motivated cycles that

1. If Lefschetz conjecture holds then motivated cycles and algebraic cycles modulo homological
equivalence coincide.

2. If k = k is algebraically closed then the collections of De Rham and `-adic realizations (for all
field embeddings k ↪→ C) is an absolute Hodge cycle in the sense of [D82, §2]. As a result, if the
Hodge conjecture holds, algebraic cycles, motivated cycles and absolute Hodge cycles coincide.
For codimension 1 cycles, the Hodge conjecture is known as the Lefschetz theorem on (1, 1)-
classes. In particular

Z1
mot,H(X)Q = Z1

H(X)Q

Also, algebraic and numerical (hence, a fortiori homological) equivalence coincide modulo tor-
sion, whence

Z1
H(X)Q = NS(X)⊗Z Q,

where NS(X) := Z1
alg(X) denotes the Néron-Severi group of X.
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4.2. Comparison and specialization of motivated cycles. — Recall that the definition of
motivated cycles is independent of the classical Weil cohomology H∗(−) so, here, we will use `-adic
cohomology but, for simplicity, we keep the imprecise notation ’H’ and ’K’ for H` and Q` respectively.
Also, to simplify the notation, we will omit the subscript ’−E ’.

4.2.1. Invariance under algebraically closed extension and Galois descent. — Assume that k is a
finitely generated field of characteristic 0, let k be a fixed algebraic closure of k and write Γk for the
automorphism group of k/k. Classical arguments [D82, Prop. 2.9], [A96, Scolie 2.5 a)] show that

Lemma 4.5. — Let Ω/k be an extension of algebraically closed fields. Then, for any X ∈ P(k), the
specialization isomorphism for `-adic cohomology H∗` (XΩ)→̃H∗` (Xk) restricts to an isomorphism

Zmot,H(XΩ)→̃Zmot,H(Xk).

Furthermore, Zmot,H(Xk) ⊂ H∗` (Xk) is a sub-Γk-module such that the induced representation

Γk → GL(Zmot,H(Xk))

has finite image and

Zmot,H(Xk)
Γk = Zmot,H(X).

4.2.2. Specialization of motivated cycles. —

4.2.2.1. Setting. — Let S be a scheme of finite type over k andX → S a smooth, projective morphism.
Given any point s ∈ S, let s : spec(k(s)) → S denote an associated geometric point. From [SGA6,

X, App. §7], for any s, t ∈ S such that s ∈ {t}, there exists a specialization monomorphism

spt,s : Z∗H(Xt) ↪→ Z∗H(Xs)

of Z≥0-graded E-algebras such that the following diagram commutes.

Z∗H(Xt)� _
spt,s

��

� �γ
∗
` (Xt) // H∗` (Xt)

spt,s

Z∗H(Xs)
� �

γ∗` (Xs)
// H∗` (Xs),

where the right vertical arrow is the specialization isomorphism for `-adic cohomology.
It is thus natural to ask whether spt,s(Z

∗
mot,H(Xt)) ⊂ Z∗mot,H(Xs). For codimension 1 motivated

cycles, this is true since they are algebraic. For higher codimensional motivated cycles, this is not
clear from their definition. Indeed, for instance, there is no reason why the auxilliary Y ∈ P(k(t))
involved in the definition of a motivated cycle in Z∗mot,H(Xt) should have good reduction at s.

A way to prove that spt,s(Z
∗
mot,H(Xt)) ⊂ Z∗mot,H(Xs) is to use Grothendieck’s parallel transport for

motivated cycles.

4.2.2.2. Grothendieck’s parallel transport.— Let S be a scheme geometrically connected, smooth and
separated over k and f : X → S a smooth proper morphism with geometrically connected fibres. By
the general theory of étale fundamental group, the constructible sheaf Rnf∗Q`(m) is described by any
of the representations

ρs : π1(S; s)→ GL((Rnf∗Q`(m)s), s ∈ S.
In particular,

H0(S,Rnf∗Q`)(m) = (Rnf∗Q`(m)s)
π1(S;s)

and

H0(Sk, R
nf∗Q`)(m) = (Rnf∗Q`(m)s)

π1(Sk;s).
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Also, the specialization isomorphism for `-adic cohomology is not canonically defined but depends on
the choice of an étale path. More precisely, given two points s, t ∈ S any étale path α ∈ π1(S; t, s)
induces an isomorphism

(spt,s =)πα,m,nt,s : Rnf∗Q`(m)t→̃Rnf∗Q`(m)s.

As π1(Sk; t, s) is a π1(Sk; t)-torsor, this isomorphism restricts to an isomorphism

πm,nt,s : (Rnf∗Q`(m)t)
π1(Sk;t)→̃(Rnf∗Q`(m)s)

π1(Sk;s),

which is independent of α and is called the parallel transport.

The key point is that the parallel transport is a morphism in Mmot,H(k)E . This follows, essentially,
from Deligne’s fixed part theorem and the fact that Mmot,H(k)E is a semisimple abelian category.

Lemma 4.6. — There exists submotives ∆m,n

t
↪→ hnmot,H(Xt)(m) and ∆m,n

s ↪→ hnmot,H(Xs)(m) and a

morphism πm,n,0t,s : ∆m,n

t
→ ∆m,n

s in Mmot,H(k) such that H∗` (π
m,n,0
t,s ) = πm,nt,s .

Proof. Let X ↪→ X be a smooth compactification of X (which, since X is smooth and separated over
k, exists by combining Nagata’s compactification theorem and Hironaka’s desingularization theorem)
and consider the following sequence of canonical morphisms

Hn
` (Xk)(m) //

um,n

11
Hn
` (Xk)(m) // H0(Sk, R

nf∗Q`)(m) �
�c
m,n

t // Hn
` (Xt)(m).

Deligne’s fixed part theorem [D71, Thm. 4.1.1] and the comparison isomorphism between Betti and
`-adic cohomologies imply that the morphism um,n is surjective. Write

is : Xs ↪→ X ↪→ X and it : Xt ↪→ X ↪→ X.

This induces a commutative diagram

Hn
` (Xk)(m)

im,n
s

uulll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

ll

im,n

t

))RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR

um,n

����
H0(Sk, R

nf∗Q`)(m)

'

uukkkk
kkkk

kkkk
kk

'

))SSS
SSSS

SSSS
SSS

Hn
` (Xs)(m) Hn

` (Xs)(m)π1(Sk;s)? _
cm,n
soo Hn

` (Xt)(m)π1(Sk;t) � �
cm,n

t //
πt,s

oo Hn
` (Xt)(m),

where im,ns and im,n
t

are realizations of morphisms in Mmot,H(k) (actually, they are algebraic cor-

respondances). In particular, since Mmot,H(k) is abelian, K := ker(um,n) = ker(im,ns ) = ker(im,n
t

)

is a pure motivated motive (independent of s, t) and, by semi-simplicity of Mmot,H(k), one can

decompose hnmot,H(Xk)(m) = K⊕N in Mmot,H(k). Let iN : N ↪→ hnmot,H(X)(m) denote the canonical

monomorphism. Again, as Mmot,H(k) is abelian, ∆m,n
s := im(im,ns ◦ iN ) and ∆m,n

t
:= im(im,n

t
◦ iN ) are

pure motivated motives. It follows from the exactness of H∗` (−) that H∗` (∆
m,n
s ) = H∗` (Xs)

π1(Sk;s) and

H∗` (∆t) = H∗` (Xt)
π1(Sk;t). As im,ns ◦ iN : N→̃∆s and im,n

t
◦ iN : N→̃∆t are isomorphism in Mmot,H(k)

one can set πm,n,0t,s = (im,ns ◦ iN ) ◦ (im,n
t
◦ iN )−1, which is an isomorphism in Mmot,H(k) and, by

construction, satisfies H∗` (π
m,n,0
t,s ) = πm,nt,s . �

In particular, πt,s : H∗` (Xt)
π1(Sk;t)→̃H∗` (Xt)

π1(Sk;s) maps motivated cycles to motivated cycles.
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Corollary 4.7. — (Specialization of motivated cycles) Let S be a connected scheme smooth and
separated over a field k of characteristic 0 and f : X → S a smooth proper morphism with geometrically
connected fibres. For any s, t ∈ S such that s ∈ {t}, one has: spt,s(Z

∗
mot,H(Xt)) ⊂ Z∗mot,H(Xs).

Proof. Assume first that S = spec(R) with R a local ring, that t is the generic point and s is the closed
point of S. From lemma 4.5, the action of π1(S; t) on Z∗mot,H(Xt) has finite image. So let S′ → S be
the connected étale cover corresponding to the open subgroup

ker(π1(S; t)→ GL(Z∗mot,H(Xt))) ⊂ π1(S; t)

and consider the base change

X ′ //

f ′

��
�

X

f
��

S′ // S.

Then, for any t′ ∈ S′ above t, and associated geometric point t
′

: spec(Ω) → S′ with image

s : spec(Ω)
s′→ S′ → S, it follows from the universal property of fibre product that Xt and X ′

t
′

are isomorphic as Ω-schemes hence Zmot,H(Xt) = Zmot,H(X ′
t′

). So, without loss of generality, one

may replace S with S′ and assume that π1(S; t) acts trivially on Z∗mot,H(Xt). Hence, in particular,

Z∗mot,H(Xt) ⊂ H`(Xt)
π1(Sk;t). But then, it follows from the above that

spt,s(Z
∗
mot,H(Xt)) ⊂ Z∗mot,H(Xs).

For the general case, just observe that, without loss of generality one can replace S by
spec(O{t},s)→ S. �

Remark 4.8. — More generally, the above shows that, if for s ∈ S one writes Zess∗mot,H(Xs) ⊂
Z∗mot,H(Xs) for the subset of essentially invariant motivated cycles that is the subset of all v ∈
Z∗mot,H(Xs) such that |π1(Sk; s)v| < +∞, one always has

spt,s(Z
ess∗
mot,H(Xt)) ⊂ Zess∗mot,H(Xs)

hence, by symmetry

spt,s(Z
ess∗
mot,H(Xt)) = Zess∗mot,H(Xs).

In particular, if η denote the generic point of S and s any point of S, it follows from Z∗mot,H(Xη) =

Zess∗mot,H(Xη) that one always has

spη,s(Z
∗
mot,H(Xη)) = Zess∗mot,H(Xs) ⊂ Z∗mot,H(Xs).

4.2.3. Cospecialization of motivated motivic Galois groups. — For any abelian rigid tensor category
T and M in T , define the mixed tensors of bidegree (m,n) on M to be

Tm,n(M) := M⊗m ⊗ (M∨)⊗n ∈ T

and for any I ⊂ Z2
≥0, |I| < +∞, set

T I(M) :=
⊕

(m,n)∈I

Tm,n(M).

4.2.3.1. Chevalley’s theorem for reductive groups.— Let G be a reductive algebraic group over a field
K of characteristic 0 and let V be a finite dimensional faithful representation of G over K.

Lemma 4.9. — (Chevalley’s theorem [D82, Prop. 3.1]) There exists I ⊂ Z2
≥0, |I| < +∞ and

t ∈ T I(V ) \ {0} such that

G = StabGL(V )(t).
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In particular, if

Fix(G) :=
⋃

m,n≥0

Tm,n(V )G

denotes the set of all mixed tensors on V fixed by G then

G = StabGL(V )(Fix(G))

and, actually, there exists a finite subset F ⊂ Fix(G) such that

G = StabGL(V )(F ).

Now, recall that for M ∈ Mmot,H(k)K , the group Gmot,H(M) is a reductive algebraic group over
K. So, the above considerations can be applied to Gmot,H(M), with V := H∗(M). By definition of

Gmot,H(M), for any m, n ≥ 0 and v ∈ Tm,n(V )Gmot,H(M), there exists a submotive Sm,nv ↪→ Tm,n(M)
and a morphism of motives iv : I→ Sm,nv such that H∗(Sm,nv ) = Kv and H∗(iv) : H∗(I)→ H∗(Sm,nv ) is
the morphism of Gmot,H(M)-representations K → Kv sending 1 to v (here, K stands for the trivial
representation of Gmot,H(M)). Hence

Fix(Gmot,H(M)) =
⋃

m,n≥0

H∗(HomMmot,H(k)K (I, Tm,n(M)))

so, for X ∈ P(k) and M = hmot,H(X), one has

Fix(Gmot,H(X)) =
⋃

m,n≥0

Tm,n(H∗(X)) ∩ Z∗mot,H(Xm+n).

Hence, from the reductivity of Gmot,H(X), one has

Gmot,H(X) = StabGL(H∗(X))

 ⋃
m,n≥0

Tm,n(H∗(X)) ∩ Z∗mot,H(Xm+n)

 .

4.2.3.2. Application to cospecialization of motivated motivic Galois groups.— We now come back to
the setting of subsection 4.2.2 that is, S is a scheme geometrically connected, smooth and separated
over k with geometric point η and f : X → S is a smooth proper morphism with geometrically
connected fibres. For any s, t ∈ S such that s ∈ {t}, we have the following commutative diagram:

Zess∗mot,H(Xt)

spt,s

� � // Z∗mot,H(Xt)
� � // H∗` (Xt)

spt,s

Zess∗mot,H(Xs)
� � // Z∗mot,H(Xs)

� � // H∗` (Xs).

So, when Zess∗mot,H(Xt) = Z∗mot,H(Xt) (for instance, when t = η is the generic point of S), identifying

H∗` (Xt) and H∗` (Xs) by means of the specialization isomorphism for `-adic cohomology, we obtain an
inclusion of algebraic groups

Gmot,H(Xs) ↪→ Gmot,H(Xt).

In the next section, we study when this inclusion is an isomorphism.

5. Variation of motivated motivic Galois groups

5.1. Statement and proof of the main theorem. — We now come to the statement and proof
of (the `-adic version of) André’s deformation theorem for motivated motivic Galois groups, improved
by resorting to the finiteness theorem [CT09b, Thm. 1.1]. We retain the notation and conventions
of paragraph 4.2.3.2. Given a point s ∈ S, since the specialization isomorphism for `-adic cohomology

spη,s(= παη,s) : H∗` (Xη)→̃H∗` (Xs)

is compatible with

α− α−1 : π1(S; η)→̃π1(S; s),
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we will identify below H∗ := H∗` (Xη) = H∗` (Xs), Π := π1(S; η) = π1(S; s) and Πgeo := π1(Sk; η) =
π1(Sk; s). Consequently, we will regard Gmot,H(Xs) as an algebraic subgroup of Gmot,H(Xη). If s ∈ S
is a closed point, it induces a quasi-splitting of the fondamental short exact sequence for Π(= π1(S; s))

1 // Πgeo // Π // Γk // 1

Γk(s)

� ?

OO

0 P

σs

aaBBBBBBBBB

We write Πs for the image of Γk(s)
σs
↪→ Π. Eventually, let G, Ggeo and Gs denote the images of Π, Πgeo

and Πs acting on H∗ respectively. Note that these are `-adic Lie groups and that, by definition, the
morphism

Gs → G/Ggeo

has open image.

Theorem 5.1. —

1. Gmot,`(Xs) ⊂ Gmot,`(Xη), s ∈ S and the following three properties are equivalent.
(a) Gmot,`(Xs) = Gmot,`(Xη);
(b) Gmot,`(Xs) contains an open subgroup of Ggeo;
(c) The specialization morphisms

spη,s : Z∗mot,H(Xn
η ) ↪→ Z∗mot,H(Xn

s ), n ≥ 1

are isomorphisms.
2. Assume that k is finitely generated over Q. Let Sf ⊂ S denote the set of all s ∈ S such that
Gmot,`(Xs) 6= Gmot,`(Xη).

(a) For any finite field extension k′/k the set Sf ∩ S(k′) is thin in S(k′).

(b) Assume that S is a curve. Then, for any integer d ≥ 1, the set S≤df := Sf ∩ S≤d is finite.

Remark 5.2. — Part (1) and (2)(a) of Theorem 5.1 are essentially contained in [A96] whereas part
(2)(b) of Theorem 5.1 follows from [CT09b].

Proof. We first prove assertion (1). For any m, n ∈ Z≥0, write

Tm,n := Tm,n(H∗);

(Tm,n)ess := {v ∈ Tm,n | |Πgeov| < +∞};
and, for any t ∈ S

Tm,nmot,t := Tm,n ∩ Z∗mot,H(Xm+n
t

);

(Tm,nmot,t)
ess := (Tm,n)ess ∩ Tm,nmot,t.

Recall that

Tm,nmot,t = (Tm,n)Gmot,`(Xt)

and

Gmot,`(Xt) = StabGL(H∗)

 ⋃
m,n≥0

Tm,nmot,t

 ,

which already shows (a) ⇔ (c).
As already mentioned in remark 4.8, the set (Tm,nmot,t)

ess is actually independent of t and equal to

Tm,nmot,η; so we simply denote it by (Tm,nmot )ess. For simplicity, write

Γ := Gmot,`(Xη) = StabGL(H∗)

 ⋃
m,n≥0

(Tm,nmot )ess

 .
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Also, as one can always find a finite subset

F ⊂
⋃

m,n≥0

(Tm,nmot )ess

such that

Γ = StabGL(H∗)(F ),

the group Γ contains an open subgroup of Ggeo, whence (a) ⇒ (b).
Now, assume that Gmot,`(Xs) contains an open subgroup of Ggeo then

Tm,nmot,s ⊂ (Tm,nmot )ess = Tm,nmot,η ⊂ T
m,n
mot,s,

whence Tm,nmot,s = Tm,nmot,η. This shows (b) ⇒ (c).

We now prove assertion (2). For any closed point s ∈ S there exists a finite subset

Fs ⊂
⋃

m,n≥0

Tm,nmot,s

such that Gmot,`(Xs) = StabGL(H∗)(Fs). So, from lemma 4.5, the group Gmot,`(Xs) contains an open
subgroup Us of Gs. Assume that s ∈ Sf that is, Gmot,`(Xs) contains no open subgroup of Ggeo. Then,
in particular, Us ∩ Ggeo is not open in Ggeo, which is equivalent to the fact that Us is not open in
G. So, the set where Gmot(Xs) ( Gmot(Xη) is contained in the set where Gs is not open in G. The
problem thus amounts to studying this second set.

To prove (a), observe that giving ρf,η : Γk(η) → GL(H∗) is equivalent to giving a Galois extension
K/k(η) with group G := im(ρf,η) and unramified over S. The group Gs can then be identified with
the decomposition group of s in K/k(η). In this setting, a profinite variant of Hilbert irreducibility
theorem, due to Serre [Se89, Thm. p.149] (and [Se92, Prop. 3.3.1]), asserts that there exists a thin
subset Ω ⊂ S(k) such that for all s ∈ S(k) r Ω one has Gs = G.

As for (b), observe that the generic `-adic Galois representation ρf,η : Γk(η) → GL(H∗) factors
through the natural `-adic representation

ρf : π1(S; η)→ GL(H∗).

In this setting and when S is a curve, one can replace the above profinite variant of Hilbert’s irre-
ducibility theorem by the following stronger result.

Theorem 5.3. — ([CT09b, Thm. 1.1]) Let k be a finitely generated field of characteristic 0 and S
a smooth, separated and geometrically connected curve over k. Let ρ : π1(S) → GLr(Z`) be a `-adic
representation such that

(†) Lie(ρ(π1(Sk)))
ab = 0.

Then, for any integer d ≥ 1, the set Sρ,d of all s ∈ S≤d such that Gs is not open in G is finite.
Furthermore, there exists an integer Bρ,d ≥ 1 such that [G : Gs] ≤ Bρ,d for any closed point s ∈ SrSρ,d
such that [k(s) : k] ≤ d.

As the representations ρf : π1(S; η)→ GL(H∗) satisfy the condition (†) [CT09a, Thm. 5.7], one gets
(b). (Note that, to prove theorem 1.2, one only uses the first part of theorem 5.3). �

5.2. Applications. — In this section, we assume that k is finitely generated over Q and that S is
a smooth, separated, geometrically connected curve over k.
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5.2.1. Néron-Severi groups. — For codimension 1 motivated cycles, theorem 5.1 (3) and remark 4.4
(2) imply in particular

Corollary 5.4. — For any integer d ≥ 1 the set of all s ∈ S≤d such that

rank(NS(Xη)) < rank(NS(Xs))

is finite.

(See also [MaP10] for a p-adic approach of the study of the jumping locus of the Néron-Severi rank).
More generally, under the Leftschetz type conjecture, homological and motivated cycles coincide hence
for any integer d ≥ 1 the set of all s ∈ S≤d such that

rank(ZH(Xη)) < rank(ZH(Xs))

is conjecturally finite.

As observed in [MaP10, Prop. 1.13], this also implies that if A → S is an abelian scheme over S
then the set of all s ∈ S≤d such that

End(Aη) ↪→ End(As)

is not an isomorphism is finite. When k is a number field, this is related to a result of Masser, which
shows the following. Assume here that S is affine of dimension ≥ 1 and fix an affine embedding
φ : S ↪→ Ank ; let hφ denote the associated Weil’s logarithmic height on S and write S≤d,h for the

set of all s ∈ S≤d such that hφ(s) ≤ h. It is known that S≤d,h is always finite. Let ω(k, d, h) (resp.

ω(A, d, h)) denote the minimal degree of a polynomial in k[T1, . . . , Tn] vanishing on S≤d,h (resp. on
the set of all s ∈ S≤d,h such that End(Aη) ↪→ End(As) is not an isomorphism) but not on S. Then
([M96, Thm. p. 459]) there exists constants C = C(A) and λ = λ(dim(Aη)) such that

ω(A, d, h) ≤ Cmax{d, h}λ.

As one always has

ω(k, d, h) ≥ exp(ch),

for some constant c = c(k, d) and d ≥ 2dim(S), this shows that the set of all s ∈ S≤d,h such that
End(Aη) ↪→ End(As) is not an isomorphism is ’sparse’ with respect to Sd,h when d is fixed and h goes
to ∞. When S is a curve, our result improves the one of Masser. However, Masser’s result is effective
and, if we let h(d) denote the maximal height of an exceptional s ∈ S≤d, it implies that the number
of exceptional s ∈ S≤d is bounded from above by the constant Ch(d)λ. This yields the question of
trying to estimate h(d).

5.2.2. Motivated Tate conjecture. —

5.2.2.1. Statement. —

Let RepQ`
(Γk) denote the category of continuous finite-dimensional Q`-linear representations of Γk.

Then one gets a factorization

Ṁmot,H(k)
Ḣ∗ //

Ḣ∗

��

Mod/Q`

RepQ`
(Γk)

For

88rrrrrrrrrr

For X ∈ P(k), it is natural to formulate the motivated variant of Tate conjecture, namely

Conjecture 5.5. — (Motivated Tate conjecture for X) The induced functor Ḣ∗ : 〈hmot,H(X)〉⊗ →
RepQ`

(Γk) is full.
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This is equivalent to

H∗(Xn
k

)Γk = Z∗mot,H(Xn), n ≥ 1.

But, on the other hand, one has

H∗(Xn
k

)Gmot,H(X) = Z∗mot,H(Xn), n ≥ 1.

So, the motivated Tate conjecture for X implies that Gmot,H(X) contains the Zariski-closure Gz of
the image G of Γk → GL(H∗(Xk)) and, if Γk → GL(H∗(Xk)) is semisimple, that Gmot,H(X) = Gz.
This motivates

Conjecture 5.6. — (Generalized Motivated Tate conjecture for X) The two following equivalent
conditions hold

1. X satisfies the motivated Tate conjecture and Γk → GL(H∗(Xk)) is semisimple;
2. Gmot,H(X) = Gz.

In particular, as the dimension of Gmot,H(X) is independent of `, the generalized motivated Tate
conjecture for X implies that the dimension of G as `-adic Lie group is independent of ` as well.

One can of course extend these conjectures from

Ḣ∗ : 〈hmot,H(X)〉⊗ → RepQ`
(Γk)

to

Ḣ∗ : Ṁmot,H(k)→ RepQ`
(Γk)

to get

Conjecture 5.7. —
- (Motivated Tate conjecture) The functor Ḣ∗ : Ṁmot,H(k)→ RepQ`

(Γk) is full.

- (Generalized Motivated Tate conjecture) The functor Ḣ∗ : Ṁmot,H(k) → RepQ`
(Γk) is full and for

each X ∈ P(k), the representation Γk → GL(H∗(Xk)) is semisimple.

Remark 5.8. — The classical generalized Tate conjecture is for homological cycles. It implies the
Lefschetz type conjecture hence, in particular, the motivated generalized Tate conjecture [A04, Prop.
7.3.2.1.].

5.2.2.2. Dependency on ` of the special locus of theorem 5.3. —

Let f : X → S be a smooth, projective morphism with geometrically connected fibres and write G`
(resp. G`,s) for the image of ρf,` : π1(S) → GL(H∗(Xη,Q`)) (resp. ρf,`,s : Γk(s) → GL(H∗(Xs,Q`))).

Then, from theorem 5.3, for any integer d ≥ 1 the set Sd,` of all s ∈ S≤d such that G`,s is not open in

G` is finite. Also, from theorem 5.1, it contains the set Dd (independent of `) of all s ∈ S≤d such that
Gmot,H(Xs) ( Gmot,H(Xη).

If, in addition, X satisfies the generalized Tate conjecture then Dd = Sd,` for all prime `. This
yields us to formulate the following conjecture on `-independency of the exceptional loci.

Conjecture 5.9. — With the notation above, for any integer d ≥ 1, the exceptional locus Sd,` is
independent of `.

(See also [CT09a, Conj. 5.5]).
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5.2.2.3. ’Specialization’ of the generalized motivated Tate conjecture. —

We retain the notation of the preceding paragraph. Almost nothing is known concerning generalized
Tate conjectures (see [A04, §7.3] for a brief survey). However, one can make the following observation.
Assume that Xη satisfies the generalized motivated Tate conjecture, that is Gz` = Gmot,H(Xη) and

that Gmot,H(Xη) is connected. Then, for every s ∈ S≤d r S`,d, it follows from theorem 5.3 (and the
connectedness of Gz` ) that Gz`,s = Gz` and from theorem 5.1 that Z∗mot,H(Xn

η ) = Z∗mot,H(Xn
s ), n ≥ 1

hence that

Z∗mot,H(Xn
η ) = Z∗mot,H(Xn

η )G` = Z∗mot,H(Xn
η )G

z
` = Z∗mot,H(Xn

s )G
z
`,s = Z∗mot,H(Xn

s )G`,s = Z∗mot,H(Xn
s ), n ≥ 1

which is equivalent to Gmot,H(Xη) = Gmot,H(Xs). In other words,

Proposition 5.10. — Assume that Xη satisfies the generalized motivated Tate conjecture and that

Gmot,H(Xη) is connected then, for any integer d ≥ 1, the set of all s ∈ S≤d such that Xs does not
satisfy the generalized motivated Tate conjecture is finite.
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[A04] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panorama et
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