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Abstract. We prove - in arbitrary characteristic - that the genus of abstract modular curves associated to

bounded families of continuous geometrically perfect F`-linear representations of étale fundamental groups of
curves goes to infinity with `. This applies to the variation of the Galois image on étale cohomology groups

with coefficients in F` in 1-dimensional families of smooth proper schemes or, under certain assumptions, to

specialization of first Galois cohomology groups.
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1. Introduction

1.1. Notation. Let k be a finitely generated field of characteristic p ≥ 0 with absolute Galois group
π1(k). Let X be a smooth, separated, geometrically connected scheme over k with generic point η and

set of closed points |X|. Set X := X ×k k. When X is a curve let X
cpt

denote the smooth compacti-

fication of X, write ∂X := X
cpt \X for the divisor at infinity and gX , γX for the genus and gonality

of X
cpt

respectively. Every x ∈ |X| produces a quasi-splitting σx : π1(x) ↪→ π1(X) of the structural
projection π1(X) → π1(k) (recall that π1(x) identifies with the absolute Galois group π1(k(x)) of the
residue field k(x) at x).

Let r ∈ Z≥1. Let L be an infinite set of primes with p /∈ L, and for every ` ∈ L, fix a field F`
of characteristic ` and a discrete F`[π1(X)]-module H` with bounded F`-rank r` ≤ r that is, equiv-
alently, a continuous group homomorphism ρ` : π1(X) → GL(H`) ' GLr`(F`). Set G` := im(ρ`),

G` := ρ`(π1(X)) and G`,x := im(ρ` ◦ σx). Note that G` is normal in G` and [G` : G`G`,x] ≤ [k(x) : k].

1.2. Leading examples. From the smooth-proper base change theorem, such families arise from the
étale cohomology with coefficients in F` of the generic fiber of a smooth proper morphism Y → X
(Subsection 5.1)

ρ` : π1(X)→ GL(Hi(Yη,F`)), ` ∈ L.
Other examples arise when considering the specialization of first Galois cohomology groups (Subsection
5.2). More precisely, starting from a bounded family ρ` : π1(X) → GL(H`), ` ∈ L as above, for every
` ∈ L fix an F`-submodule V` ⊂ H1(π1(X), H`) with bounded F`-rank. Then the cohomology classes in
V` are classified by an F`[π1(X)]-module V univ

` , which is an extension

1→ H` → V univ
` → V` → 1,

giving rise to an auxiliary bounded family ρ` : π1(X) → GL(V univ
` ), ` ∈ L. When H` = Hi(Yη,F`),

these are closely related to the specialization of first étale Abel-Jacobi maps modulo `, a typical example
of which is the Kummer morphism

V` := Y (X)/` ↪→ H1(π1(X), Yη[`]),

for Y → X an abelian scheme.
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1.3. The general problem we want to address is the description of the local Galois images G`,x as x
varies in |X|. In general, given a set F` (= the ‘moduli data’) of subgroups of G` which does not contain
G`, one expects that the set X(ρ`,F`) of all x ∈ |X| such that G`,x is contained in a group of F` is
‘small’. This naturally leads to introducing the abstract modular scheme associated with ρ`, F`

Xρ`
F` :=

⊔
U∈F`

XU → X,

where XU → X denotes the connected étale cover (defined over a finite separable extension kU of k)
corresponding to the open subgroup ρ−1

` (U) ⊂ π1(X) 1. It follows from the general formalism of Galois
categories that
- (Base change) XU ×kU k → X is the connected étale cover corresponding to U := U ∩G` ⊂ G`.
- (Moduli) x ∈ |X| lifts to a k(x)-rational point on XU if and only if G`,x ⊂ U .

Thus X(ρ`,F`) is exactly the set of all x ∈ |X| which lift to a k(x)-rational point on Xρ`
F` . This gives

a diophantine reformulation of our original group representation-theoretic problem and already shows
that for every finite extension k′ of k the set X(ρ`,F`)(k′) := X(ρ`,F`)∩X(k′) is thin. But one usually
expects stronger sparsity results - for instance that for every integer d ≥ 1 the set X(ρ`,F`)≤d of all
x ∈ X(ρ`,F`) such that [k(x) : k] ≤ d is not Zariski-dense in X (hence finite when X is a curve), that
X(ρ`,F`) is of bounded height, that X(ρ`,F`) is not Zariski-dense in X or even that X(ρ`,F`) is empty.

This work focuses on the weakest of these finiteness properties, namely find minimal conditions on the
ρ`, F`, ` ∈ L to ensure that X(ρ`,F`)(k) is not Zariski-dense in X. But even this weakened problem
seems out of reach when X has dimension ≥ 2. For curves, the situation is better due to the remarkable
fact that the genus controls the finiteness of the set of rational points.

1.3.1. Fact (Faltings (p = 0, [FW84]), Voloch (p > 0, [EElsHKo09, Prop. 3])) Let k be a finitely gen-
erated field. Then there exists an integer g(k) ≥ 2 such that for every curve C over k with gC ≥ g(k)
one has |C(k)| < +∞.

When X is a curve, which we assume from now and till the end of the introduction, this reduces our
original problem to determining under which conditions on the ρ`, F`, ` ∈ L one has

gXρ`
F`

:= min{gXU | U ∈ F`} → +∞?

1.4. The conditions under which we can prove gρ`XF`
→ +∞ (Theorem 1.6.1, Corollary 1.6.2) or which

appear in the intermediate results (Theorem A, Theorem B, Theorem C) are denoted by (T), (P), (I)
in the following. Their precise statements are gathered in Subsection 2.4, to which the reader can refer
to.

1.5. If one considers the set F`,tot of all subgroups U of G` such that G` 6⊂ U (that is X(ρ`,F`,tot)(k)
is the set of all x ∈ X(k) such that G`,x ( G`), it may happen that there exists an integer B ≥ 1

and infinitely many ` such that 1 < [G` : U ] ≤ B for some U ∈ F`,tot. This is an obstruction to
gXρ`
F`,tot

→ +∞. This obstruction disappears if one replaces F`,tot with the set F`,+ of all subgroups U

of G` such that G
+
` 6⊂ U . Here, given a finite subgroup G ⊂ GL(H`), we write G+ ⊂ G for the (normal)

subgroup generated by the elements of order `. Theorem A below shows that little information is lost
when replacing F`,tot with F`,+.

1This is a slight abuse of notation: more precisely, kU is the finite separable extension of k corresponding to the image
of ρ−1

` (U) ↪→ π1(X) � π1(k) and XU → X is the connected étale cover corresponding to ρ−1
` (U) ⊂ π1(X) with XU

geometrically connected over kU .
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Theorem A ([CT13b, Thm. 1.1 and Rem. 2.10]2) Assume (T). Then there exists an open subgroup
Π ⊂ π1(X) such that ρ`(Π) = ρ`(Π)+ for `� 0.

In particular, [G` : G
+
` ] is bounded from above independently of `. This leads to considering the

abstract modular curve Xρ`
+ := Xρ`

F`,+ .

1.6. The main result of this paper is:

1.6.1. Theorem Assume F` = F`, (T) and (P). Then gXρ`
+
→ +∞.

As one can always construct a family X` → X of connected étale covers with C` of genus 0 which are
geometrically Galois with group Z/`, the above perfectness condition (P) is necessary3.

Theorem 1.6.1 has the following arithmetic application4.

1.6.2. Corollary Assume F` = F`, (T) and (P). Then for ` � 0 and all but finitely many x ∈ X(k)

one has G
+
` ⊂ G`,x. In particular, there exists an integer B ≥ 1 such that for `� 0 and all but finitely

many x ∈ X(k) one has [G` : G`,x] ≤ B. If G` = G
+
` for `� 0, one can take B = 1.

To apply Theorem 1.6.1 and Corollary 1.6.2 to families

ρ` : π1(X)→ GL(Hi(Yη,F`)), ` ∈ L

for Y → X a smooth proper morphism (Subsection 5.1) and (at least in some case) to families aris-
ing from first Galois cohomology classes as explained in 1.2 (Subsection 5.2), one has to check that
conditions (T) and (P) are satisfied. These follow from alterations and the purity part of the Weil
conjectures (Theorem 5.1.1).

As an example, one can apply Corollary 1.6.2 to the particular case of the Kummer morphism to ex-
tend the Néron-Silverman specialization theorem to finitely generated fields of arbitrary characteristic
(Subsection 5.3.2.2).

1.7. The general problem of the growth of geometric invariants attached to families of abstract modular
schemes - especially the geometric genus and gonality of abstract modular curves has been investigated
extensively during the past 5 years and essentially settled in the following cases:

- `-adic coefficients, characteristic 0: genus ([CT12b]), gonality ([CT13a]). The results of [CT12b]
for the growth of the genus in the case of `-adic coefficients extend to positive characteristic
p > 0 (p 6= `) along the guidelines of [CT12a].

- F`-coefficients, characteristic 0: gonality hence genus (this follows essentially from Theorem A
and the techniques of [EHKo12] – see the Appendix for details).

The main contribution of this paper is thus to deal in whole generality with the growth of the genus in
the case of F`-coefficients in positive characteristic.

2More precisely, [CT13b, Thm. 1.1] is Theorem A for bounded families of continuous F`-linear representations of π1(X)
but using Larsen-Pink’s filtration (see Subsection 3.2) as indicated in [CT13b, Rem. 2.10], the proof of [CT13b, Thm.
1.1] extends as it is to bounded families of continuous F`-linear representations.

3Another way to phrase Theorem 1.6.1 is to say that, if (T) holds then either gXρ`+
→ +∞ or G` � Z/` for infinitely

many `.
4From Fact 1.3.1 and Theorem 1.6.1, for `� 0 and every U ∈ F`,+, the set XU (k) is finite hence so is X(ρ`,F`,+)(k) =⋃
U∈F+

`
im(XU (k) → X(k)). But, by construction, G

+
` ⊂ G`,x for every x ∈ X(k) \X(ρ`,F`,+)(k). This proves the first

part of the assertion in Corollary 1.6.2. The second part follows from Theorem A and the fact that for every x ∈ X(k)

one has G` = G`G`,x.
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It is natural to ask whether Theorem 1.6.1 could be strengthened with gonality instead of genus. There
is a priori no hope to extend the complex-analytic arguments of [EHKo12] to the case of positive char-
acteristic (or reduce to a characteristic 0 situation since gonality may decrease under specialization).
Actually, gonality is in general much harder to handle than genus, especially in positive characteristic.
For a purely algebraic approach and partial results in positive characteristic see [C12] and [CT16], for a
graph-theoretical method in the non-archimedean setting and partial results see [CoKKo]. Let us men-
tion that even if one can prove that the gonality of Xρ`

+ goes to infinity with ` when p > 0 this would
not (at least straightforwardly) imply the above extension of Corollary 1.6.2 for points of bounded
degree. This is due to isotriviality phenomena in the positive characteristic form of the Mordell-Lang
Conjecture [Hr96] (see [CT16, Appendix] for details).

Another natural problem that does not seem to have been investigated seriously so far is the case of
F`-coefficients. We discuss briefly this question in the concluding Section 6 and explain how a deep
group-theoretical result of Guralnick ([Gu03]) can be used to extend Theorem 1.6.1 to this setting.
However, Gurlanick’s result relies on delicate satellite theorems of the classification. In contrast, our
approach is more geometric and only resort to approximation theory for subgroups of GLr(F`) (r fixed,
` varying) as elaborated by Nori ([N87]) and Larsen-Pink ([LaP11]). The main idea is to develop a
rough analogue of invariant theory for subgroups of GLr(F`) in order to replacing the curves Xρ`

+ by
abstract modular curves which are easier to handle. We hope this strategy is interesting in itself and
may be used for further development in the study of families of modulo-` representations. In the next
subsection, we summarize it.

Eventually, let us point out that Theorem 5.1.1, which asserts in particular that, after possibly replacing
X by a connected étale cover, the image of the geometric étale fundamental group on étale cohomology
with F`-coefficients is perfect for ` � 0, is new in characteristic p > 0. When p = 0, this follows from
the fact that the geometric étale fundamental group acts semisimply on étale cohomology with F`-
coefficients for `� 0 (see the argument in [CT11, §2.2]). When p > 0 the geometric étale fundamental
group is also expected to act semisimply for `� 0 (a proof of this assertion is announced in [CHT16]).

1.8. From now on, assume F` = F`. The strategy of the proof of Theorem 1.6.1 is to construct a ‘uni-

versal tensor representation’ in order to separate groups in F`,+ from G
+
` by lines for `� 0. This allows

to construct an auxilliary bounded family ρ̃` : π1(X)→ GL(T̃`), ` ∈ L of continuous F`-representations
such that every connected component of Xρ`

+ dominates a connected component of the abstract mod-

ular curve X ρ̃`
0 associated to the family F`,0 of all stabilizer of lines in T̃`. This reduces the problem

to showing that g
X
ρ̃`
0

→ +∞ which, due to the specific shape of the moduli problem encoded in F`,0,

is doable. More precisely, to simplify, assume that G` acts semisimply on H` for `� 0. Then the two
main intermediate statements are the following. Let Ω denote the set of all maps f : (Z≥0)⊕2 → Z≥0

with finite support (that is such that f(m,n) = 0 for all but finitely many (m,n) ∈ (Z≥0)⊕2.

(Special case of) Theorem B: There exists f ∈ Ω such that for ` � 0 and every U ∈ F`,+ there

exists a line D ⊂ T f (H`) :=
⊕

m,n≥0(H⊕m` ⊗ (H∨` )⊕n)⊕f(m,n) (depending on U , G
+
` ) with the property

that G
+
` D 6= D but UD = D.

Theorem C: Assume (T) and (I). Then gXρ`
0
→ +∞.

To deduce the main Theorem from Theorem B and Theorem C, just set T̃` := T`/T
G

+
`

` , where

T` := T f (H`), ` ∈ L. Then the family ρ̃` : π1(X) → GL(T̃`), ` ∈ L is bounded and satisfies (T)
and (I) as soon as the family ρ`, ` ∈ L satisfies (T) and (P). From Theorem B, every connected com-

ponent of Xρ`
+ dominates a connected component of X ρ̃`

0 and, from Theorem C, g
X
ρ̃`
0

→ +∞.

When one no longer assumes that G` acts semisimply on H` for `� 0, the statement of Theorem B is
slightly more involved but the statement of Theorem C remains unchanged (the proof of Theorem C
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does not use assumptions other than (T) and (I)). See Section 4 for details.

Theorem B is a variant for finite subgroups of GLr(F`) (r fixed, ` varying) of the classical Chevalley
theorem for algebraic groups and, unsurprisingly, it relies on approximation theory. Approximation
theory associates to a subgroup G of GLr(F`) a connected algebraic subgroup G̃ ↪→ GLr,F` (F` ⊃ F`) -
the algebraic envelope - whose properties reflect those of G and whose rational points approximate well
G for ` � 0. There are two approaches, one by Nori and Serre, which works only for F` = F` (with
F` = F`) but is ‘functorial’ and one by Larsen and Pink, which works for arbitrary fields F` of character-
istic ` (with F` = F `) but is ‘not functorial’. The restriction of our results to F`-coefficients comes from

the fact that we resort to the former, where G̃ ↪→ GLH` is defined as the algebraic subgroup generated

by the one-parameter groups A1
F` → GLH` , t → exp(tlog(g)) for g ∈ G of order `. By construction G̃

is connected and generated by its unipotent elements and for ` � 0 the following properties hold: (i)

G̃(F`)+ = G+, (ii) G̃(F`)/G̃(F`)+ is abelian of order ≤ 2r−1, (iii) there exists an abelian subgroup of
prime-to-` order A ⊂ G such that G+A is normal in G with [G : G+A] ≤ δ(r). To prove Theorem B, one
considers a family GLr ×Nr ⊃ Ur → Nr over Rr parametrizing exponentially generated subgroups of
GLr and, by noetherian induction and the classical Chevalley theorem, one constructs a universal map
f : (Z≥0)⊕2 → Z≥0 with the property that every exponentially generated subgroup of GLr,F` (` ≥ r)

is the stabilizer of a line in T f (F⊕r` ). By approximation theory (property (i) above), f separates -

in the sense of Theorem B - U+ from G
+
` for U ∈ F`,+ and ` � 0. Then, by ad-hoc arguments (in-

cluding properties (i), (iii) above), one adjusts f so that it satisfies exactly the conclusion of Theorem B.

To prove Theorem C, one proves first that, for the ‘Galois closure’ X̂ρ`
0 of Xρ`

0 → X, the ratio

λX̂ρ`
0

=‘genus/degree’ is bounded from below by an absolute constant K > 0. Since the cover X̂ρ`
0 → X

is Galois, Stichenoth’s bound and the Riemann-Hurwitz formula show that this amounts to proving
that gX̂ρ`

0
> 1 which, in turn, reduces to a combination of group-theoretic arguments involving the clas-

sification of finite subgroups of automorphism groups of genus ≤ 1 curves, Theorem A and assumptions
(T), (I). One then shows by the Riemann-Hurwitz formula that λX̂ρ`

0
−λXρ`

0
→ 0. Here, the main diffi-

culty is to control the length of the ramification filtration and the size of the ramification terms. Using
assumption (T) and Theorem A, this eventually amounts to a ‘non-concentration’ estimate (Lemma
4.3.5.1) which, again, is proved using Nori’s algebraic envelope.

1.9. The paper is organized as follows. After gathering the notation used throughout the paper in
Section 2, we review briefly approximation theory in Section 3. The long Section 4 is devoted to the
proof of Theorem 1.6.1 that is, essentially, that of Theorem B (Subsection 4.2) and Theorem C (Sub-
section 4.3). In Section 5, we give the above mentioned applications of Theorem 1.6.1 and Corollary
1.6.2 to families arising from étale cohomology groups and first Galois cohomology groups. Eventually,
in the final Section 6, we discuss briefly the problem of extending Theorem 1.6.1 from F`-coefficients to
arbitrary F`-coefficients.
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by JSPS KAKENHI Grant Numbers 22340006, 15H03609.



6 ANNA CADORET AND AKIO TAMAGAWA

2. Notation

Unless explicitly mentioned, k will always denote a finitely generated field of characteristic p ≥ 0. Fix a
separable closure and an algebraic closure k ↪→ ksep ↪→ k and write π1(k) for the absolute Galois group
of k, which we identify with the étale fundamental group of spec(k).

2.1. Notation for X. Let X be a smooth, separated and geometrically connected scheme over k
with generic point η and set of closed points |X|. For x ∈ |X|, let k(x) denote its residue field. Set

X := X×kk. When X is a curve let X
cpt

denote the smooth compactification of X, write ∂X := X
cpt\X

for the divisor at infinity and gX , γX for the genus and gonality of X
cpt

respectively.
Recall that, by functoriality of étale fundamental group, every x ∈ |X| gives rise to a commutative
diagram of profinite groups with exact row

1 // π1(X) // π1(X) // π1(k) // 1,

π1(x)
� ?

σx

OO

�,

;;vvvvvvvvv

,

where π1(x) ' π1(k(x)). We will always omit base points from the notation for étale fundamental
groups (and implicitly work ‘up to conjugation’).

2.2. Notation for bounded families of F`-linear representations of π1(X). Let L be an infinite
set of primes with p 6∈ L, and let r ∈ Z≥1. For every ` ∈ L, fix a field F` of characteristic ` and a
discrete F`[π1(X)]-module H` with F`-rank r` ≤ r that is, equivalently, a continuous group homomor-
phism ρ` : π1(X)→ GL(H`) ' GLr`(F`).

Write

G` := im(ρ`) ⊂ GL(H`)
G` := ρ`(π1(X)) C G`
G`,x := im(ρ` ◦ σx) ⊂ G`, x ∈ |X|.

Note that for every x ∈ |X| one has [G` : G`G`,x] ≤ [k(x) : k].

2.2.1. Remark By continuity of ρ` : π1(X) → GL(H`), the group G` ⊂ GL(H`) is finite. In par-
ticular, one can always reduce to the case where F` ⊂ F`. Indeed, for every ` ∈ L fix an F`-basis
of H` identifying GL(H`) ' GLr`(F`). Then, as G` is finite, there exists a finitely generated subring
R` = F`[a1, · · · , as] ⊂ F` such that G` ⊂ GLr`(R`). For every 1 6= g = (gi,j)1≤i,j≤r` ∈ G`, let Ig ⊂ R`
denote the ideal generated by the elements gi,j , 1 ≤ i 6= j ≤ r` and 1 − gi,i, i = 1, . . . , r`. Then Ig
defines a strict closed subscheme Vg ↪→ spec(R`) =: V and for every closed point a ∈ V r ∪16=g∈G`Vg,
the specialization map G` ↪→ GLr`(R`)→ GLr`(F`(a)) is injective.

2.3. Notation for abstract modular curves with level-` structure. For every ` ∈ L and subgroup
U ⊂ G`, the continuity of ρ` : π1(X) → GL(H`) implies that the inverse image ρ−1

` (U) ⊂ π1(X) is an
open subgroup hence corresponds to a connected étale cover XU → X, which is defined over a finite
separable extension kU of k. The general formalism of Galois categories implies that
- (Base change) XU ×kU k → X is the connected étale cover corresponding to U := U ∩G` ⊂ G`.
- (Moduli - see [SGA1, Prop. 6.4]) x ∈ |X| lifts to a k(x)-rational point on XU if and only if G`,x ⊂ U .

For every ` ∈ L, fix a family F` of subgroups of G` not containing G` and define the abstract modular
scheme associated with F` to be the (non-connected) étale cover

Xρ`
F` :=

⊔
U∈F`

XU → X.

(We will omit the superscript −ρ` when there is no possible confusion). Set

dXρ`
F`

:= min{[G` : U ∩G`] | U ∈ F`}



GENUS OF ABSTRACT MODULAR CURVES WITH LEVEL-` STRUCTURES. 7

and, when X is a curve,

gXρ`
F`

:= min{gXU | U ∈ F`}, γXρ`
F`

:= min{γXU | U ∈ F`},

which we call respectively the degree, genus and gonality of the abstract modular scheme Xρ`
F` (by

convention, if F` = ∅, set dXρ`
F`

= +∞, gXρ`
F`

= +∞ and γXρ`
F`

= +∞). Eventually, let X(F`) ⊂ |X|
denote the set of all x ∈ |X| which lifts to a k(x)-rational point on XF` and for every d ∈ Z≥1,
let X(F`)≤d ⊂ X(F`) denote the set of all x ∈ X(F`) with [k(x) : k] ≤ d (when d = 1, just write
X(F`)(k) := X(F`)≤1).

We will consider more specifically the following families.

2.3.1. Example For every ` ∈ L, let P : H` \ {0} → P(H`) denote the projectivization map and for
M ⊂ H`, write PM := P (M \ {0}). Also, for a group G acting on a set A and a subset B ⊂ A, let
StabG(B) (resp. FixG(B)) denote the subgroup of all g ∈ G such that gB = B (resp. gb = b, b ∈ B);
when B = {b} is a singleton, we write StabG(b) =StabG({b})(=FixG({b})).

Xρ`
+ , dρ`+ , gρ`+ when F` = F`,+ is the family of all subgroups U` ⊂ G` such that G

+
` 6⊂ U`;

Xρ`
0 , dρ`0 , gρ`0 when F` = F`,0 is the family of all StabG`(Pv) for 0 6= v ∈ H`;

X̂ρ`
0 , d̂

ρ`
0 , ĝ

ρ`
0 when F` = F̂`,0 is the family of all FixG`(PM) for all F`[π1(X)]-submodules 0 6= M ⊂ H`;

Xρ`
1 , dρ`1 , gρ`1 when F` = F`,1 is the family of all StabG`(v) for 0 6= v ∈ H`.

Here, given a finite subgroup G ⊂ GL(H`), we write G+ for the (characteristic) subgroup generated by
the order-` elements in G. For ` ≥ r, G+ is also the (characteristic) subgroup generated by the `-Sylow
subgroups in G.

2.4. Conditions (T), (SS), (P), (I), (F). For convenience we gather here the statements of con-
ditions (T) (tameness), (P) (perfectness), (I) ((non-)isotriviality), which appear in our main theorems
(Theorem 1.6.1, Theorem A and Theorem C) as well as the statement of condition (SS) (semisimplicity),
which plays a technical part in our applications (see the proof of Fact 5.1, Remark 5.1.2 and Corollary
5.2.1) and of condition (F) (finiteness), which is an elementary but essential consequence of condition
(T) (see Lemma 4.3.1).

(T) For every x ∈ ∂X there exists an open subgroup Ux of the inertia group Ix ⊂ π1(X) at x
such that ρ`(Ux) is tame for `� 0.

(F) π1(X)/(π1(X) ∩K) is topologically finitely generated, where K :=
⋂
`∈L

ker(ρ`).

(P) For every open subgroup Π ⊂ π1(X), there exists an integer BΠ ≥ 1 such that |ρ`(Π)ab| ≤ BΠ

for `� 0.

(SS) H` is a semisimple π1(X)-module for `� 0.

(I) For every open subgroup Π ⊂ π1(X), one has HΠ
` = 0 for `� 0.

Heuristically, these conditions should be regarded as compatibility conditions for the underlying geo-
metric family ρ`|π1(X) : π1(X)→ GL(H`), ` ∈ L.
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3. Preliminary: Review of approximation theory for subgroups of GLr(F`)

Approximation theory for finite subgroups G of GLr(F`) (r fixed, ` varying) consists in associating to
G a connected algebraic subgroup G ↪→ GLr,F` whose properties reflect those of G and such that G(F`)
is close to G. The advantage of replacing G with G is that algebraic groups are more rigid hence easier
to handle than arbitrary finite groups.

There are two approaches to this problem: one developed by M. Nori [N87] and J.-P. Serre [S00, 136,
137, 138], which is restricted to the case F` = F` but is quite explicit and functorial; and one developed
by M. Larsen and R. Pink [LaP11], which works for arbitrary fields F` of coefficients but resorts to
(much) heavier machinery from algebraic group theory and is somewhat more difficult to handle. We
review briefly the main results of these theories that we will need. Note that Larsen-Pink’s approach
will only be used when considering arbitrary F`-coefficients (Theorem A and Subsection 6). The nota-
tion introduced here will be used in the rest of the paper.

Given a field F (of characteristic 0 or ≥ r), we will say that a closed algebraic subgroup G ↪→ GLr,F is
exponentially generated, if it is generated by one-parameter subgroups of the form

eg : A1
F → GLr,F
t → exp(tlog(g))

,

with g ∈ GLr(F ) unipotent.

3.1. Nori-Serre’s approach. Given a subgroup G ⊂ GLr(F`), let G̃ ↪→ GLr,F` denote the (expo-
nentially generated) algebraic subgroup generated by the one-parameter subgroups eg : A1

F` → GLr,F` ,

g ∈ G of order `. The following gathers the main results of [N87].

3.1.1. Fact (Approximation Theory I)

(1) G̃ is connected and generated by its unipotent elements;

(2) For `� 0 (depending only on r) one has G+ = G̃(F`)+;

(3) The quotient G̃(F`)/G̃(F`)+ is abelian of order ≤ 2r−1;
(4) There exists an integer d(r) ≥ 1 such that for every prime ` and subgroup G ⊂ GLr(F`) there exists

an abelian subgroup A ⊂ G of prime-to-` order with the properties that G+A is normal in G and
[G : G+A] ≤ d(r);

(5) If G acts semisimply on F⊕r` then G̃ is semisimple (and one can choose A in such a way that it
commutes with G+ [CT13b]).

3.2. Larsen-Pink’s approach. [LaP11, Thm. 02 (and its proof)] implies that

3.2.1. Fact (Approximation Theory II) There exists an integer δ(r) ≥ 1 such that for every prime
`, every field F` of characteristic ` and every finite subgroup G ⊂ GLr,F`, there exists an algebraic

subgroup G ↪→ GLr,F ` such that [G : G◦] ≤ δ(r), G ⊂ G(F `), and there exist normal subgroups Ru(G) ⊂
R(G) ⊂ G◦ ⊂ G with the following properties
- G◦ = G ∩ G◦(F `) (in particular [G : G◦] ≤ δ(r));
- G◦/R(G) is a direct product of simple groups of Lie type by which one means groups of the form
D(SΦ), where G◦ � S is a simple (i.e. absolutely simple and adjoint) quotient and Φ : S → S a
Frobenius map so that the derived subgroup D(SΦ) be simple;

- R(G)/Ru(G) embeds into the center of (G◦/Ru(G◦))(F `);
- Ru(G) = G ∩Ru(G◦)(F `).

One easily shows that for ` > δ(r) the group Ru(G) can be defined canonically as the largest normal
`-subgroup of G. In particular,
- Ru(G) is characteristic in G for ` > δ(r).
- Let G be a subgroup of GLr(F`). Let Hss

` denote the G-semisimplification of F⊕r` =: H`. Then the
kernel of G→ GL(Hss

` ) is a normal `-subgroup and coincides with Ru(G) for ` > δ(r).



GENUS OF ABSTRACT MODULAR CURVES WITH LEVEL-` STRUCTURES. 9

As an application of Larsen-Pink’s filtration, one has the following refinement of Theorem A.

3.2.2. Lemma Assume (T) and (SS). Then there exists an open subgroup Π ⊂ π1(X) such that for ev-
ery open subgroup Π′ ⊂ Π one has ρ`(Π

′) = ρ`(Π
′)+ and ρ`(Π

′)ab = 0 for `� 0. In particular (P) holds.

Proof. First, from Theorem A, one may assume that there exists an open subgroup Π ⊂ π1(X) such
that for every open subgroup Π′ ⊂ Π one has ρ`(Π

′) = ρ`(Π
′)+ for `� 05. Then, as there is no element

of order `2 in GLr(F`) for ` ≥ r, one has

ρ`(Π
′)ab ' H1(ρ`(Π

′),F`).

So, it is enough to prove that H1(ρ`(Π
′),F`) = 0. Also, without loss of generality, one may assume that

ρ`(Π
′) is normal in G` hence acts semisimply on H`. Indeed, as Π′ ⊂ π1(X) is open, it contains an open

subgroup Π′′ ⊂ Π′ which is normal in π1(X). Assume that one has proved that H1(ρ`(Π
′′),F`) = 0,

`� 0 for normal subgroups Π′′ ⊂ Π, then the inflation-restriction exact sequence for H1 gives

0→ H1(ρ`(Π
′)/ρ`(Π

′′),F`)→ H1(ρ`(Π
′),F`)→ H1(ρ`(Π

′′),F`)

and the conclusion follows from the fact that H1(ρ`(Π
′)/ρ`(Π

′′),F`) = 0 as soon as ` > [Π′ : Π′′].
So, assume that ρ`(Π

′) acts semisimply on H`. Then Ru(ρ`(Π
′)) = 1. The inflation-restriction exact

sequence for H1 again, gives

0→ H1(ρ`(Π
′)/ρ`(Π

′)◦,F`)→ H1(ρ`(Π
′),F`)→ H1(ρ`(Π

′)◦,F`)

and

0→ H1(ρ`(Π
′)◦/R(ρ`(Π

′)),F`)→ H1(ρ`(Π
′)◦,F`)→ H1(R(ρ`(Π

′)),F`).
As both ρ`(Π

′)/ρ`(Π
′)◦ and R(ρ`(Π

′)) are of prime-to-` order for `� 0, one is reduced to showing that

H1(ρ`(Π
′)◦/R(ρ`(Π

′)),F`) = 0.

But

H1(ρ`(Π
′)◦/R(ρ`(Π

′)),F`) =
⊕
i∈I

H1(D(SΦi
i ),F`) '

⊕
i∈I

Hom(D(SΦi
i )ab,F`) = 0. �

4. Proof of Theorem 1.6.1

Let ρ` : π1(X)→ GL(H`), ` ∈ L be a bounded family of continuous F`-linear representations satisfying
(T) and (P).

4.1. Theorem B+Theorem C imply Theorem 1.6.1. The form of Theorem B stated in the intro-
duction was a simplified version of the following more technical statement.

We use the notation Ω from the introduction for the set of all maps f : (Z≥0)⊕2 → Z≥0 with finite
support. Given a field F , a finite-dimensional F -vector space V and a map f ∈ Ω, set

T f (V ) :=
⊕
m,n≥0

(V ⊗m ⊗ (V ∨)⊗n)⊕f(m,n).

(with the convention that V ⊗0 = F and V ⊕0 = 0).

Eventually, for a subgroup U ⊂ G` set U ss := URu(G`)/Ru(G`) ⊂ Gss` (:= G`/Ru(G`)).

Theorem B:
(1) There exists a map gssr ∈ Ω (depending only on r) satisfying the following property. For every prime

` � 0 and subgroups U` ⊂ G` ⊂ GL(H`) such that G+
` 6⊂ U` and that G` acts semisimply on H`,

there exists a line D` ⊂ T g
ss
r (H`) such that U` ⊂ StabG`(D`) but G+

` 6⊂ StabG`(D`).

5More precisely, from Theorem A, there exists open subgroup Π ⊂ π1(X) and a prime `0 such that ρ`(Π) = ρ`(Π)+ for
` ≥ `0. Then, for every open subgroup Π′ ⊂ Π one also has ρ`(Π

′) = ρ`(Π
′)+ for ` ≥ max{`0, [Π : Π′] + 1}.
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(2) For every integer d ≥ 1 there exists a map gur,d ∈ Ω (depending only on r, d) satisfying the fol-

lowing property. For every prime ` � 0 and subgroups U` ⊂ G` ⊂ GL(H`) such that G+
` 6⊂ U`,

[G` : G+
` ] ≤ d and U ss,+` = Gss,+` there exists a line D` ⊂ T g

u
r,d(H`) such that U` ⊂ StabG`(D`) but

G+
` 6⊂ StabG`(D`).

4.1.1. We now explain how to deduce Theorem 1.6.1 from Theorem B and Theorem C. From Theorem

A, there exists an integer d ≥ 1 such that [G` : G
+
` ] ≤ d, ` ∈ L. For every ` ∈ L, let Hss

` denote

the π1(X)-semisimplification of H`. Note that Hss
` can be naturally equipped with a structure of

π1(X)-module. With the notation of Theorem B, set

T` := T g
ss
r (Hss

` )⊕ T g
u
r,d(H`).

Note that, by construction, the F`-rank of T` only depends of r, d and r` ≤ r; in particular, it is
uniformly bounded as ` varies. Fix U` ∈ F` such that gXU` = gρ`+ . From Theorem B, for ` � 0

there exists a line D` ⊂ T` such that U ` := U` ∩ G` ⊂ StabG`(D`) but G
+
` 6⊂ StabG`(D`). As G

+
` is

characteristic in G` hence normal in G`, T
+
` := T

G
+
`

` ⊂ T` is an F`[G`]-submodule and one can consider

T̃` := T`/T
+
` , which is an F`[G`]-module as well. Let ρ̃` : π1(X) → GL(T̃`) denote the representation

associated with T̃` and write D̃` ⊂ T̃` for the image of D` in T̃`. Then D̃` 6= 0 and

U` ⊂ StabG`(D̃`).

Thus XU` is a connected étale cover of one of the connected components of X ρ̃`
0 . By Riemann-Hurwitz,

this implies that gρ`+ = gXU` ≥ g
ρ̃`
0 . Theorem 1.6.1 will then follow from Theorem C provided

4.1.2. Lemma The ρ̃` : π1(X)→ GL(T̃`), ` ∈ L satisfy (T) and (I).

Proof. Condition (T) is straightforward by construction and the hypothesis (T) on ρ` : π1(X) →
GL(H`). Condition (I) follows from condition (P). More precisely, for every open subgroup Π ⊂ π1(X)

and ` > [π1(X) : Π] one has ρ`(Π)+ = G
+
` . Let τ ∈ T` with image τ̃ in T̃` fixed by Π that is for every

g ∈ ρ`(Π) one has b(g) : gτ − τ ∈ T+
` . In particular, b|

G
+
`

: G
+
` → T+

` is a group morphism (recall that

by definition G
+
` acts trivially on T+

` hence H1(G
+
` , T

+
` ) = Hom(G

+
` , T

+
` )). If b|

G
+
`

: G
+
` → T+

` were

non-trivial, G
+
` would have an abelian quotient of order `, contradicting (P). �

We now carry out the proofs of Theorem B and Theorem C, which are independent.

4.2. Proof of Theorem B - Invariant theory for subgroups of GLr(F`) (r fixed, ` varying).
Let G be a finite group and F a field of characteristic ` > 0. Recall the following facts.

- Let M be an F [G]-module. Then for every integer 1 ≤ n ≤ ` − 1, symmetrization and antisym-
metrization provide well-defined embeddings of F [G]-modules

SnM ↪→ M⊗n

m1 · · ·mn 7→ 1
n!

∑
σ∈Sn

mσ(1) ⊗ · · · ⊗mσ(n)

∧nM ↪→ M⊗n

m1 ∧ · · · ∧mn 7→ 1
n!

∑
σ∈Sn

ε(σ)mσ(1) ⊗ · · · ⊗mσ(n),

where ε : Sn → {±1} denotes the signature.

- (semisimplicity of tensor products - [S94, Thm. 1]) Let M1, . . . ,Ms be s semisimple F [G]-
modules of finite rank as F -modules. It is not true in general that M1⊗F · · ·⊗FMs is also a semisimple
F [G]-module but this holds if ` is large compared with the F -rank of the Mi, i = 1, . . . , s. Precisely,
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assume dimF (M1)+ · · ·+dimF (Ms) < `+s. Then M1⊗F · · ·⊗FMs is also a semisimple F [G]-module.

- Let f : (Z≥0)⊕2 → Z≥0 be a map with finite support, M an F [G]-module of finite rank as F -module
and N ⊂M an F [G]-submodule. If M is a semisimple F [G]-module then any splitting of M∨ � N∨

induces an embedding of F [G]-modules T f (N) ↪→ T f (M). In the following, we will implicitly assume
that a choice for the splitting of M∨ � N∨ is given when M is a semisimple F [G]-module. If f has
support contained in Z≥0 × {0} (that is, there is no dual appearing in the tensor space), one always
has a canonical embedding of F [G]-modules T f (N) ↪→ T f (M).

4.2.1. Separation of exponentially generated subgroups. LetNr,Z ↪→ Mr,Z ' Ar2

Z denote the subscheme of

nilpotent matrices, defined by Nr,Z(R) = {X ∈ Mr(R) | Xr = 0} (R: Z-algebra). Write Rr := Z[ 1
(r−1)! ]

and set Nr := N r2

r,Rr
. Consider the morphism of Rr-schemes e : Nr × A2r2

Rr
→ GLr,Rr sending (n, t) to

e(n, t) = exp(t1n1) · · · exp(tr2nr2)exp(tr2+1n1) · · · exp(t2r2nr2).

Set Ur := graph(e) and consider the following commutative diagram of Rr-schemes, where the arrows
are the restrictions of the canonical projections:

Ur //

��

Nr

Nr ×GLr,Rr

99rrrrrrrrrrr

From [Bo69, I, Prop. 2.2 and its proof], for every prime ` ≥ r, field F` of characteristic ` and exponen-
tially generated subgroup U ↪→ GLr,F` there exists n ∈ Nr(F`) such that Ur,n � U ↪→ GLr,F` .

4.2.1.1. Lemma There exists a map fr ∈ Ω (depending only on r) such that for every prime ` � 0,
field F` of characteristic ` and exponentially generated subgroup U ↪→ GLr,F`, one has

U = FixGLr,F`
(T fr(F⊕r` )U ).

Proof. This is essentially the same argument as in the proof of [LaP11, Prop. 2.3 (b)]. Let Vr → Nr
denote the constant bundle ArRr × Nr → Nr on which GLr,Rr × Nr → Nr acts canonically. We argue
by noetherian induction on Nr. Let ν denote the generic point of Nr. Then the image of Ur,ν is a
closed algebraic subgroup of GLr,ν hence, by Chevalley’s theorem [Bo69, II, Thm. 5.1], there exists

a map fr,0 ∈ Ω and a subspace V1 ⊂ T fr,0(Vr,ν) such that the image of Ur,ν is the stabilizer of V1 in
GLr,ν . From [EGAIV.3, Prop. 9.6.1(i)], this property extends to an open neighbourhood Mr,1 of ν
in Nr. Iterating the argument for each generic point ν1,1, . . . , ν1,s1 of Nr,1 := Nr \Mr,1, one obtains
maps fr,1,1, . . . , fr,1,s1 ∈ Ω etc. As Nr is of finite dimension, this process stops and the map with finite
support

f◦r =
∑

0≤i≤dim(Nr)

∑
1≤j≤si

fr,i,j

(where s0 := 1 and fr,0,1 := fr,0) has the property that for every exponentially generated subgroup

U ↪→ GLr,F` there exists an F`-vector subspace VU ⊂ T f
◦
r (F⊕r` ) such that U is the stabilizer of VU in

GLr(F`). Equivalently, U is the stabilizer of the line Λdim(VU )VU in GLr(F`) acting on Λdim(VU )T f
◦
r (F⊕r` ).

As U is an exponentially generated group, it automatically acts trivially on Λdim(VU )VU . The conclusion
then follows by considering the antisymmetrization morphism and replacing f◦r by the map fr ∈ Ω
defined by

T fr(F⊕r` ) =
⊕

1≤δ≤dim(T f
◦
r (F⊕r` ))

T f
◦
r (F⊕r` )⊗δ. �

4.2.2. Separation of subgroups of bounded order.
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4.2.2.1. Lemma For every integer d ≥ 1 there exists a map fr,d ∈ Ω (depending only on r, d) with finite
support contained in Z≥0 ×{0} such that for every prime `� 0, field F` of characteristic `, F`-module
H` of F`-rank r` ≤ r and finite subgroup Γ ⊂ GL(H`) of order ≤ d, there exists a line DΓ ⊂ T fr,d(H`)
such that

Γ = StabGL(H`)(DΓ).

Proof. For simplicity assume r` = r in the following. More precisely, we are going to show that for
every prime `� 0 and subgroup Γ ⊂ GL(H`) of order ≤ d there exists an F`-vector subspace

VΓ ⊂
⊕
δ≤d

(H⊕r` )⊗δ

such that Γ = StabGLH`
(VΓ). Let δ(r, d) and νΓ denote the F`-rank of

⊕
δ≤d(H

⊕r
` )⊗δ and VΓ respectively.

Then, equivalently, Γ is the stabilizer of the line
∧νΓ VΓ in⊕

δ′≤δ(r,d)

δ′∧
(
⊕
δ≤d

(H⊕r` )⊗δ),

which, for ` > δ(r, d), embeds into⊕
δ′≤δ(r,d)

(
⊕
δ≤d

(H⊕r` )⊗δ))⊗δ
′

=: T fr,d(H`)

by antisymmetrization.

So, set

Ar,` := F`[GLH` ] = F`[Xi,j | 1 ≤ i, j ≤ r,
1

det(Xi,j)
]

and let IΓ ⊂ Ar,` denote the ideal defining Γ regarded as a closed algebraic subgroup of GLH` . As a
subvariety of GLH` , Γ is just a set of closed (F`-rational) points hence

IΓ =
⋂
γ∈Γ

Iγ =
∏
γ∈Γ

Iγ ,

where, writing γ = (γ(i, j))1≤i,j≤r ∈ GL(H`), we write

Iγ := 〈Xi,j − γ(i, j) | 1 ≤ i, j ≤ r〉
for the (maximal) ideal defining {γ}. Then

IΓ = 〈
∏
γ∈Γ

(Xiγ ,jγ − γ(iγ , jγ)) | (iγ)γ∈Γ, (j
γ)γ∈Γ ∈ {1, . . . , r}Γ〉.

In particular, VΓ := Ar,`,≤d ∩ IΓ contains a set of generators of IΓ, where we write

Ar,`,≤d ⊂ F`[Xi,j | 1 ≤ i, j ≤ r] ⊂ Ar,`
for the vector subspace of degree ≤ d polynomials. Now, one easily checks that, for every g ∈ GL(H`)
the following are equivalent:

(i) g ∈ Γ;
(ii) gΓ = Γ ⊂ GL(H`) (where g acts on GL(H`) via translation);
(iii) gIΓ = IΓ ⊂ Ar,` (where g acts on Ar,` via g · P = P (g−1−));
(iv) gVΓ = VΓ ⊂ Ar,`,≤d.

It remains to show that Ar,`,≤d ⊂
⊕

δ≤d(H
⊕r
` )⊗δ. This follows from the following facts

- The F`-vector subspace Ar,`,1 ⊂ Ar,`,≤d of degree 1 polynomials is isomorphic to H⊕r` ;

- The F`-vector space Ar,`,≤d is isomorphic to ⊕0≤δ≤dS
δ(Ar,`,1) as a representation GLH` ;

- For ` > d ≥ δ, the symmetrization monomorphisms Sδ(Ar,`,1) ↪→ (Ar,`,1)⊗δ are well-defined. �

4.2.3. Separation of the (−)+-part - Proof of Theorem B. We begin with an elementary reduction. For
an integer n ≥ 1 write H`n := H` ⊗ F`n .
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4.2.3.1. Lemma It is enough to prove Theorem B (1), (2) with H` replaced with H`n(r) for some in-
teger n(r) ≥ 1 (depending only on r) and the line D` replaced by a non-zero submodule of arbitrary rank.

Proof. Let gr ∈ Ω such that for every prime ` � 0 and subgroups U` ⊂ G` ⊂ GL(H`) as in Theorem
B (1) or (2), there exists a non-zero submodule V` ⊂ T gr(H`n(r)) such that U` ⊂ StabG`(V`) but

G+
` 6⊂ StabG`(V`). The choice of an isomorphism F`n(r)→̃F⊕n(r)

` induces an isomorphism of F`[G`]-
modules T gr(H`n(r))→̃T g

1
r (H`), where g1

r (m,n) = n(r)gr(m,n) and, under this isomorphism, V` is

mapped onto an F`-submodule W` ⊂ T g
1
r (H`) of rank dimF`(V`) = n(r)dimF

`n(r)
(V`), which is again

U`-invariant but not G+
` -invariant. Set ν` :=dimF`(W`) and τ(r) :=dimF`(T

gr,1(H`)). Then

D` :=

ν∧̀
W` ⊂

ν∧̀
T g

1
r (H`) ⊂

⊕
1≤δ≤τ(r)

δ∧
T g

1
r (H`)

is a line which is U`-invariant but not G+
` -invariant. Furthermore, for ` > τ(r),

⊕
1≤δ≤τ(r)

δ∧
T g

1
r (H`) ⊂

⊕
1≤δ≤τ(r)

T g
1
r (H`)

⊗δ =: T g
2
r (H`)

by antisymmetrization. �

4.2.3.2. Proof of Theorem B (1). By assumption U+
` is strictly contained in G+

` hence, by Fact 3.1.1(2),

Ũ` is strictly contained in G̃` as well for ` � 0. From Lemma 4.2.1.1 there exists a line D` ⊂ T` :=
T fr(H`) such that

Ũ` = StabG`(D`).

In particular U+
` D` = D` since U+

` ⊂ Ũ`(F`) whereas G+
` D` 6= D`. Indeed, otherwise, by definition of

G̃`, one would also have G̃`D` = D` hence G̃` ⊂ Ũ`: a contradiction. Let 0 6= t` ∈ D` and consider the
F`[U`]-submodule M` := F`[U`t`] ⊂ T`. We distinguish between two cases.

- If M` is not an F`[G+
` ]-submodule then we are done by Lemma 4.2.3.1.

- If M` is an F`[G+
` ]-submodule then the morphism of F`[G+

` ]-modules M` ↪→ Res
G+
`

G`
T` induces by

adjunction a morphism of F`[G`]-modules IndG`
G+
`

M` → T`. Let M◦` denotes its image. Note that

M` ⊂ M◦` as an F`[G+
` ]-submodule. From Fact 3.1.1(4), U` contains an abelian subgroup A` of

prime-to-` order such that U+
` A` is normal in U` and [U` : U+

` A`] ≤ d(r). Set

m◦` := dimF`(M
◦
` ) ≤ τ(r) := dimF`(T`)

and n(r) := τ(r)!. Then there exists an F`n(r)-basis e1, . . . , em◦` of M◦
`n(r) such that A`ei ∈ F`n(r)ei,

i = 1, . . . ,m◦` . Let e∨1 , . . . , e
∨
m◦`

denote the dual basis (that is e∨i (ej) = 1 if i = j and = 0 otherwise).

Note that g ∈ G` fixes ei ⊗ e∨i ∈ M◦`n(r) ⊗M◦∨`n(r) if and only if g stabilizes the line F`n(r)ei and its

complement
∑

j 6=i F`n(r)ej . Also, as G` acts semisimply on T` for ` � 0 and F` is perfect, G` acts

semisimply on T`n(r) hence M◦
`n(r)⊗M◦∨`n(r) can be regarded as an F`n(r) [G`]-submodule of T`n(r)⊗T∨`n(r) .

Set

N`n(r) := (M◦
`n(r) ⊗M◦∨`n(r))

U+
` A` ⊂ T`n(r) ⊗ T∨`n(r) .

As U+
` A` is normal in U`, N`n(r) is an F`n(r) [U`]-submodule. Again, we distinguish between two cases.

– If N`n(r) is not an F`n(r) [G+
` ]-submodule. Then we are done by Lemma 4.2.3.1;

– If N`n(r) is an F`n(r) [G+
` ]-submodule then G+

` acts non-trivially on it (since it acts non-trivially on

one of the ei ⊗ e∨i for i = 1, . . . ,m`) hence the image G+
N
`n(r)

of G+
` acting on N`n(r) has order ≥ `

whereas the image UN
`n(r)

of U` acting on N`n(r) has order ≤ d(r). In particular, G+
N
`n(r)
6⊂ UN

`n(r)
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for ` > d(r). From Lemma 4.2.2.1, there exists a line D` ⊂ T fτ(r)2,d(r)(N`n(r)) such that

UN
`n(r)

= StabGLN
`n(r)

(D`).

Thus U`D` = D` whereas G+
` D` 6= D`. Eventually, note that as fτ(r)2,d(r) has support contained in

Z≥0 × {0}, T fτ(r)2,d(r)(N`n(r)) embeds into T
fτ(r)2,d(r)(T`n(r) ⊗ T∨`n(r)) as an F`n(r) [G+

` U`]-submodule.
Hence we are done by Lemma 4.2.3.1. �

Proof of Theorem B (2). From Fact 3.1.1(2), G+
` = G̃`(F`)+ and U+

` = Ũ`(F`)+ for ` � 0 so the

assumption that U+
` is a strict subgroup of G+

` implies that Ũ` is a strict subgroup of G̃` as well for

` � 0. From Lemma 4.2.1.1 applied to Ũ` ↪→ GLH` there exists 0 6= t` ∈ T fr(H`) such that Ũ` is the

stabilizer of t` in G̃`. Whence a surjection

G+
` /U

+
` � G+

` t`

whose fibers are of cardinality [Ũ`(F`) ∩G+
` : U+

` ]. But one has the following inclusions:

G+
`

U+
` = Ũ`(F`)+ � � // Ũ`(F`) ∩G+

` = Ũ`(F`) ∩ G̃`(F`)+

' �

(1)

55jjjjjjjjjjjjjjjjjj

w�

(2)
))TTT

TTTT
TTTT

TTTT
TT

Ũ`(F`)

The inclusion (1) shows that [Ũ`(F`)∩G+
` : U+

` ] is a power of ` by the assumption that U ss,+` = Gss,+` ,

whereas the inclusion (2) shows that [Ũ`(F`) ∩ G` : U+
` ] ≤ 2r−1 by Fact 3.1.1(3). Thus, for ` � 0 one

has U+
` = Ũ`(F`)∩G+

` hence the above surjection is actually a bijection and |G+
` t`| is a positive power

of `. Again, set M` := F`[U`t`] and distinguish between two cases.

- If M` is not an F`[G+
` ]-submodule then we are done by Lemma 4.2.3.1.

- If M` is an F`[G+
` ]-submodule then G+

` acts non-trivially on M` since |G+
` t`| ≥ `. Let G+

M`
and UM`

denote the image of G+
` and U` acting on M`. Then |UM`

| ≤ d by the assumption that U ss,+` = Gss,+`

and [G` : G+
` ] ≤ d, whereas `||G+

M`
|. So G+

M`
6= UM`

for `� 0. Set

m` := dimF`(M`) ≤ τ(r) := dimF`(T`).

From Lemma 4.2.2.1, there exists a line D` ⊂ T fτ(r),d(M`) such that

UM`
= StabGLM`

(D`).

Thus U`D` = D` whereas G+
` D` 6= D`. Eventually, as fτ(r),d has support contained in Z≥0 × {0},

T fτ(r),d(M`) embeds into T fτ(r),d(T`) as an F`[G+
` U`]-submodule. Hence we are done by Lemma 4.2.3.1.

�

4.3. Proof of Theorem C. We will work over the algebraically closed field k and for simplicity write
X and G` for X and G`, respectively. We will use freely the notation introduced in Example 2.3.1. We
begin with an elementary observation about conditions (T) and (I).

4.3.1. Lemma (T) implies (F).

Proof. From (T), there exists an open normal subgroup U ⊂ π1(X) such that the induced family
ρ`|U : U → GL(H`) is tame for ` � 0. Let U � U t denote the maximal tame quotient of U . As the
action of π1(X) by conjugation on U permutes the inertia groups, the kernel KU of U � U t is normal
in π1(X). So, for each prime ` the representation ρ` : π1(X) → GL(H`) factors through π1(X)/KU ,
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thus, KU ⊂ K. Hence it is enough to prove that π1(X)/KU is topologically finitely generated. But
this follows from the fact that U t is topologically finitely generated and the short exact sequence of
profinite groups

1→ U t → π1(X)/KU → π1(X)/U → 1. �

Lemma 4.3.1 and Theorem A imply in particular,

4.3.2. Lemma Assume (T) and (I). Then dρ`0 → +∞.

Proof. First, from condition (T) and Theorem A, up to replacing X with a connected étale cover, one
may assume that G` = G+

` for ` � 0. Assume Lemma 4.3.2 does not hold. Then, for some integer
B ≥ 1 and infinitely many primes `, there exists 0 6= v` ∈ H` such that |G`Pv`| ≤ B. From (F),
there are only finitely many possibilities for the connected étale cover XPv` → X corresponding to the
stabilizers StabG`(Pv`) of those 0 6= v` ∈ H` such that |G`Pv`| ≤ B. So, up to replacing X with a
connected étale cover, one may assume that for infinitely many primes `, (a) there exists 0 6= v` ∈ H`

such that |G`Pv`| = 1 and (b) G` = G+
` . But (a) and (b) imply that G` acts trivially on F`v`, which

contradicts (I). �

We introduce a few more notations. Recall that P : H` \ {0} → P(H`) denotes the projectivization
map. Correspondingly, write P : GL(H`) → PGL(H`). For every 0 6= v ∈ H`, let Xv → XPv → X
denote the connected étale covers corresponding to the inclusions of open subgroups

ρ−1
` (StabG`(v)) ⊂ ρ−1

` (StabG`(Pv)) ⊂ π1(X)

and for every π1(X)-submodule 0 6= M ⊂ H`, let XM → XPM → X denote the connected étale covers
corresponding to the inclusions of open subgroups

ρ−1
` (FixG`(M)) ⊂ ρ−1

` (FixG`(PM)) ⊂ π1(X),

where PM := P (M \ {0}). The cover XM → X (resp. XPM → X) is Galois with group the image GM
of G` → GL(M) (resp. the image GPM = PGM of G` → PGL(M)). Write gv, gPv, gM and gPM for
the genus of Xv, XPv, XM and XPM respectively.

For 0 6= v ∈ H`, let M(v) := F`[G`v] ⊂ H` denote the π1(X)-submodule generated by v. Then the
cover XM(v) → X (resp. XPM(v) → X) is the Galois closure of Xv → X (resp. XPv → X). For every
π1(X)-submodule 0 6= M ⊂ H`, set

λPM :=
2gPM − 2

|GPM |
.

The first step of the proof of Theorem C consists in proving that the genus of the ‘Galois closure’ X̂ρ`
0

of Xρ`
0 grows linearly with its degree.

4.3.3. Lemma Assume (T) and (I). Then there exists a constant K > 0 such that for every prime
`� 0 and π1(X)-submodule 0 6= M ⊂ H`, one has

λPM ≥ K.

The second step consists in comparing the genus of Xρ`
0 and the genus of X̂ρ`

0 by the Riemann-Hurwitz
formula.

4.3.4. Proof of Lemma 4.3.3.

We prove first the following weaker version of Lemma 4.3.3.
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4.3.4.1. Lemma Assume (T) and (I). Then ĝρ`0 → +∞.

Proof. Observe first that if ĝρ`0 ≥ 2 for ` � 0 then ĝρ`0 → ∞. Indeed, there exists a polynomial
Pp(T ) ∈ Z[T ] such that the automorphism group of every genus g ≥ 2 connected curve, smooth and
separated over an algebraically closed field of characteristic p is of order ≤ Pp(g) [Sti73]. So, if ĝρ`0 ≥ 2
then

(dρ`0 ≤)d̂ρ`0 ≤ min{Pp(gPM )}06=M⊂H`
and the conclusion follows from Lemma 4.3.2.

So, the only cases to rule out are

(i) gX = 0 and, for infinitely many primes `, there exists 0 6= M` ⊂ H` such that gPM`
= 0;

(ii) gX = 0 and, for infinitely many primes `, there exists 0 6= M` ⊂ H` such that gPM`
= 1;

(iii) gX = 1 and, for infinitely many primes `, there exists 0 6= M` ⊂ H` such that gPM`
= 1;

The assumption that gPM ≤ 1 imposes strong restrictions on the structure of GM , namely

Fact (Classification) Let C be a smooth, separated and connected curve over an algebraically closed field
k of characteristic p ≥ 0. Let G be a finite subgroup of the automorphism group of C.
(1) Assume that gC = 1 then G is an extension

1→ A→ G→ Q→ 1

with A a finite quotient of Ẑ2 and |Q| ≤ 24.
(2) ([Su82, Thm. 6.17]) Assume that gC = 0 then G is either (a) a cyclic group; (b) a dihedral group;

(c) an alternating group A4, A5 or the symmetric group S4; (d) a split extension

1→ A→ G→ Q→ 1,

where A is an elementary abelian p-group and Q is a cyclic group of prime-to-p order; (e) PSL2(Fpn),
n ≥ 1; or (f) PGL2(Fpn), n ≥ 1. The three last cases only occur when p > 0.

- Assume first that case (ii) or (iii) holds, then, from Fact (Classification) (1), the group GPM`
contains

an abelian subgroup AM`
of index ≤ 24 for infinitely many ` ≥ 0. From condition (F) there are only

finitely many isomorphism classes of connected étale covers of X of degree ≤ 24 corresponding to the
inverse image of AM`

in π1(X). Hence, at least one of them - say Y → X - appears infinitely many
times. So, up to base-changing by Y → X, one may assume that GPM`

is abelian for infinitely many
`. From Theorem A, one may also assume that GM`

= G+
M`

hence a fortiori that GPM`
= G+

PM`
that

is GPM`
is abelian of order a power of ` for infinitely many `. But then, by Schur-Zassenhauss, the

short exact sequence

1→ F×` ∩GM`
→ GM`

→ GPM`
→ 1

splits. Write again GPM`
for a complement of F×` ∩GM`

in GM`
. As GPM`

is of order a power of `,
it fixes a non-zero vector on M` so

N` := M
GPM`
` ⊂M`

is non-zero. As F×` ∩GM`
is central in GM`

, N` ⊂M` is a π1(X)-submodule such that, by construction,

F×` ∩ GM`
� GN` . But as we have reduced to the case where GM`

= G+
M`

, one also has GN` = G+
N`

hence GN` = 1. This contradicts (I).

- The same arguments show that if case (i) holds then GPM`
can only be of type (2) (d), (e) or (f) for

`� 0, which is only possible if p > 0.

– Assume that case (2) (d) occurs that is, GPM`
is a split extension of a cyclic group QM`

of prime-
to-p order by an elementary abelian p-group AM`

. Letting PGL(M`) acting by conjugation on
E` := End(M`), one gets an embedding

AM`
↪→ GPM`

↪→ PGL(M`) ↪→ GL(E`).
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As AM`
is abelian of prime-to-` order, it is conjugate in GL(E`⊗F`) to a subgroup of the diagonal

torus. As a result, the Fp-dimension rM`
of AM`

is ≤ r2
` . So any complement - which we denote

again by QM`
- of AM`

in GPM`
is an abelian (even cyclic) subgroup of bounded index

[GPM`
: QM`

] = |AM`
| ≤ pr

2
M` ≤ pr2

.

And one can conclude as above, using Theorem A .

– Eventually, assume that we are in case (2) (e) or (f) that is, GPM`
is isomorphic to either PSL2(Fpn)

or PGL2(Fpn), hence in particular PSL2(Fpn) ↪→ GPM`
. By considering the upper triangular

unipotent subgroup, one has

(Fp)⊕n ' Fpn ↪→ PSL2(Fpn) ↪→ GPM`
,

and one can deduce as above that n ≤ r2. Thus, only finitely many n ≥ 1 occur for cases (2) (e)
and (f), which is ruled out by Lemma 4.3.2. �

4.3.4.2. End of proof of Lemma 4.3.3. Lemma 4.3.4.1 implies that for `� 0 and every π1(X)-submodule
0 6= M ⊂ H` one has λPM > 0. To deduce Lemma 4.3.3 from this observation, one has to exploit the
restrictions imposed by (T) on the ramification filtration of XPM → X at x ∈ ∂X. More precisely,
from (T), for every x ∈ ∂X there exists a normal open subgroup Ux C Ix such that ρ`(Ux) is tame for
` � 0. Set mx := [Ix : Ux]. Write Ix,PM and Ux,PM for the images of Ix and Ux in GPM respectively,
set mx,PM := [Ix,PM : Ux,PM ] (which divides mx) and let

(RFx,PM ) · · · C Ix,PM,i+1 C Ix,PM,i C · · · C Ix,PM,0 = Ix,PM

denote the ramification filtration (with lower numbering) at x in GPM . Write Ĩx,PM := Ix,PM/Ux,PM
and Ĩx,PM,i := Ix,PM,iUx,PM/Ux,PM , i ≥ 0. Note that, as Ux,PM is of order prime-to-p while Ix,PM,i is

a p-group for i ≥ 1, one has Ix,PM,i→̃Ĩx,PM,i. Finally, let

· · · C (Ĩx,PM )i+1 C (Ĩx,PM )i C · · · C (Ĩx,PM )0 = Ĩx,PM

denote the ramification filtration (with lower numbering) of Ĩx,PM .

Claim 1 There are only finitely many possibilities for the filtration

· · · C Ĩx,M,i+1 C Ĩx,PM,i C · · · C Ĩx,PM,0 = Ĩx,PM

(when ` and M varying), and Ĩx,PM,i = (Ĩx,PM )j(i), where ux,PM := |Ux,PM | and j(i) = d i
ux,PM

e.

Proof of Claim 1. As the question is local at x, fixing any place xM ∈ ∂XPM above x and completing,
the problem amounts to studying the ramification filtration of a Galois extension K ↪→ KPM of fraction
fields of complete discrete valuation rings with group Ix,PM . Then

· · · C (Ĩx,PM )i+1 C (Ĩx,PM )i C · · · C (Ĩx,PM )0 = Ĩx,PM

is the ramification filtration at x associated with the intermediary field extension K ↪→ K
Ux,PM
PM . There

are only finitely many possibilities for normal open subgroups of Ix containing Ux hence only finitely

many possibilities for the intermediary field extension K ↪→ K
Ux,PM
PM so for the possible ramification

filtrations

· · · C (Ĩx,PM )i+1 C (Ĩx,PM )i C · · · C (Ĩx,PM )0 = Ĩx,PM .

The epimorphism

Ix,PM � Ix,PM/Ux,PM = Ĩx,PM,0

induces an isomorphism from the p-Sylow Ix,PM,1 of Ix,PM onto the p-Sylow Ĩx,PM,1 of Ĩx,PM . But,
since Ux,PM is of prime-to-p order ux,M , it follows from [S68, Chap. IV, Lemma 5] that the group

Ix,PM,i maps isomorphically onto (Ĩx,PM )j(i), where

j(i) = d i

ux,PM
e. �
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In particular the length of (RFx,PM ) (:= min{i | Ix,PM,i = 1}) and the orders of the Ix,PM,i, i ≥ 1 can
take only finitely many values.

Set s := |∂X| and ex,PM := |Ix,PM |. Then the Riemann-Hurwitz formula yields

0 < λPM = 2gX−2+
∑
x∈∂X

∑
i≥0

|Ix,PM,i| − 1

ex,PM
= 2gX−2+

∑
x∈∂X

(
ex,PM − 1

ex,PM
+
∑
i>0

|Ix,PM,i| − 1

mx,PM
) = αPM−βPM

with

αPM = 2gX − 2 + s+
∑
x∈∂X

∑
i>0

|Ix,PM,i| − 1

mx,PM
, βPM =

∑
x∈∂X

1

ex,PM
.

By definition βPM ∈ Es, where

Es := {
∑

1≤i≤s

1

ei
| (e1, . . . , es) ∈ Zs>0}

(with the convention E0 := {0}). By Claim 2 below, there exists a rational number δPM > 0 such
that ]αPM − δPM , αPM [ ∩Es = ∅. But, from Claim 1, αPM can only take finitely many values so
δ := min{δPM} is also > 0 and satisfies ]αPM − δ, αPM [ ∩Es = ∅ for every 0 6= M ⊂ H` and prime `.
Take any 0 < K ≤ δ. Then, as αPM − λPM = βPM ∈ Es∩ ]0, αPM [ one has αPM − λPM ≤ αPM −K.

Claim 2 For any rational number α > 0, there exists a rational number β ∈ [0;α[ such that

]β;α[ ∩Es = ∅.
Proof of Claim 2. We proceed by induction on s ≥ 1. For s = 1, write α = d

n with d, n ∈ Z>0 coprime

and take β = 1
q+1 , where q ∈ Z>0 is defined by n = qd + r with 0 ≤ r < d. For s ≥ 2, pick any

α0 ∈]0, α[ ∩Es+1. Given γ ∈ Es+1, write γ = 1
e1

+ · · · + 1
es+1

with e1 ≤ · · · ≤ es+1. Then γ ≤ s+1
e1

. We

distinguish between two cases:
- s+1

e1
≤ α0 hence γ ≤ α0;

- s+1
e1

> α0 hence e1 < s+1
α0

. This can happen only for finitely many values 1, . . . , b s+1
α0
c of e1. By

induction hypothesis, for every i = 1, . . . , b s+1
α0
c there exists βi ∈ [0, α0− 1

i [ such that ]βi, α0− 1
i [ ∩Es =

∅.
Then

β := max{α0, βi +
1

i
, i = 1, . . . , bs+ 1

α0
c}

has the requested property. �

4.3.5. End of proof of Theorem C. Before turning to the proof of Theorem C itself, we establish Lemma
4.3.5.1 below, which plays a crucial part in the comparison of the genera of Xρ`

0 and X̂ρ`
0 .

For every ` ∈ L, let H` be an F`-module of rank r` ≤ r and G` ⊂ GL(H`) a subgroup. Then,

4.3.5.1. Lemma For every ` ∈ L, 0 6= v` ∈ H` and F`-vector subspace N` ⊂ H` such that G+
` v` 6⊂ N`

one has
|G+

` v` ∩N`|
|G+

` v`|
≤ r3

`
.

Proof. SinceN` is the intersection of codimH`(N`) hyperplanes, one can restrict6 to the case codimH`(N`) =
1 that is N` = ker(λ`) for some non-zero F`-linear form λ` : H` � F`. Recall that every g ∈ G` of order
` defines a one-parameter subgroup

eg: A1
F` → GLH`
t → exp(t log(g)).

6More precisely, if t = codimH`(N`) and N` = H`,1 ∩ · · · ∩H`,t for hyperplanes H`,1, · · · , H`,t, the fact that G+
` v` 6⊂

N` = H`,1 ∩ · · · ∩H`,r implies that there exists at least one 1 ≤ i ≤ t such that G+
` v` 6⊂ H`,i and it is enough to perform

the proof for N = H`,i.
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From [Bo69, Prop. 2.2 and its proof], there exist g1, . . . , gd` ∈ G` of order ` (d` := dim(G̃`) ≤ r2) such
that the morphism

f : Ad`F` → G̃`
t = (t1, . . . , td`) → exp(t1 log(g1)) · · · exp(td` log(gd`))

is dominant. Set E := Ad`(F`)×G+
` and introduce the ‘homogenizing’ map

φv` : E � G+
` � G+

` v`
(t, g) 7→ f(t)g

g 7→ gv`.

By construction the fibers of φv` : E � G+
` v all have the same cardinality `d` |StabG+

`
(v`)|, hence

|G+
` v` ∩N`|
|G+

` v`|
=
|(λ` ◦ φv`)−1(0)|

|E|
.

For g ∈ G+
` , set

Eg := Ad`(F`)× {g}, Eλ`g := Eg ∩ (λ` ◦ φv`)
−1(0).

Then

E =
⊔
g∈G+

`

Eg, (λ ◦ φv`)
−1(0) =

⊔
g∈G+

`

Eλ`g .

Thus, it is enough to show that

|Eλ`g | ≤
r3

`
|Eg|, g ∈ G+

` .

Since gi is of order `, the element log(gi) ∈ End(H`) is nilpotent of index ≤ r`, so exp(Ti log(gi)) ∈
End(H`)⊗F`[Ti] has degree < r` ≤ r and F λ`g,v`(T ) := λ`(f(T )gv`) ∈ F`[T ] has total degree < d`r` ≤ r3.

Furthermore, one has F λ`g,v`(T ) 6= 0. Indeed, otherwise, we would have

G+
` gv` ⊂ G̃`(F`)gv` ⊂ f(Ad`F`)

zar
(F`)gv` ⊂ N`,

which would contradict G+
` v` = G+

` gv` * N`.

As a result, |Eλg | = |(F λ`g,v`)
−1(0)| ≤ r3`d`−1 (see for instance [N87, Lemma 3.3]). �

Projective variant: There exists a sequence ε(`) ≥ 0, ` ∈ L such that ln(`)ε(`)→ 0 and for For every
` ∈ L, 0 6= v` ∈ H` and F`-vector subspace N` ⊂ H` such that G+

` v` 6⊂ N` one has

|P (G+
` v` ∩N`)|

|P (G+
` v`)|

≤ r3

`
.

Proof. Just observe that the fibers of the map

G+
` v` � P (G+

` v`)

induced by the projectivization all have the same cardinality [StabG+
`

(Pv`) : StabG+
`

(v`)]. Hence

|P (G+
` v` ∩N`)|

|P (G+
` v`)|

=
|G+

` v` ∩N`|
|G+

` v`|
and the conclusion follows from Lemma 4.3.5.1. �.

Actually, we will only need the fact (implied by the above projective variant) that the sequence

ε(`) := max{
|P (G+

` v` ∩N`)|
|P (G+

` v`)|
| 0 6= v` ∈ H`}

satisfies ln(`)ε(`)→ 0.
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4.3.5.2. We now conclude the proof of Theorem C. We argue by contradiction. Assume that the
conclusion of Theorem C does not hold, that is, for some integer g ≥ 0 and infinitely many primes `
there exists 0 6= v ∈ H` such that gPv ≤ g. Write M := M(v) and set G+

M,Pv := G+
MStabGM (Pv) and

let X+
M,Pv → X denote the connected étale cover corresponding to the inclusion G+

M,Pv ⊂ GM . The
following commutative diagram of connected étale covers sums up the situation

XM
//

��

XPM

��
Xv

//

��

XPv

��
X X+

M,Pv.
oo

By construction, replacing X with the connected étale cover X+
M,Pv → X does not affect XPv. From

Theorem A and Condition (F), there are only finitely many possibilities for the isomorphism class of
X+
M,Pv → X so, up to replacing X with a finite étale cover, one may assume that for infinitely many

primes ` there exists 0 6= v ∈ H` such that gPv ≤ g and GM = G+
M,Pv. Then GMPv = G+

MPv. So,

from (the projective variant of) Lemma 4.3.5.1 (see Subsection ?? below), for every F`-vector subspace
N ⊂ H` such that GMv 6⊂ N one has

|P (GMv ∩N)| ≤ ε(`)|P (GMv)|
For every subgroup I ⊂ GPM (= PGM ) write

εI(Pv) :=
|I \ P (GMv)|
|P (GMv)|

− 1

|I|
By applying the Riemann-Hurwitz formula to the covers XPM → XPv → X+

M,Pv = X, one gets

0 ≤ λPM − λPv ≤
∑
x∈∂X

(εIx,PM (Pv) +
∑
i>0

|Ix,PM,i|
|Ix,PM |

εIx,PM,i(Pv)),

where we write

λPv :=
2gPv − 2

|P (GMv)|
.

To estimate the εI(Pv) that appear in the above formula, introduce

P (GMv)′I :=
⋃

J∈M(I)

P (GMv)J ,

where M(I) denotes the set of all minimal non-trivial subgroups J of I. Then one has

1

|I|
(1−

|P (GMv)′I |
|P (GMv)|

) ≤ |I \ P (GMv)|
|P (GMv)|

≤ 1

|I|
(1−

|P (GMv)′I |
|P (GMv)|

) +
|(P (GMv)′I |
|P (GMv)|

and
|P (GMv)′I |
|P (GMv)|

≤
∑

J∈M(I)

|P (GMv)J |
|P (GMv)|

.

In our case I is a subgroup of Ix,PM . Let Iwx,PM denote the p-Sylow of Ix,PM and Itx,PM := Ix,PM/I
w
x,PM .

Then I can be written as an extension of the cyclic group It := im(I → Itx,PM ) by the p-group

Iw := I ∩ Iwx,PM which, from (T), is of order ≤ [Ix,PM : Ux,PM ] ≤ [Ix : Ux] =: mx. In that case, one has

Claim 3 There exists an absolute constant C > 0 such that for any subgroup I ⊂ PGLn(F`) which is
an extension of a cyclic group I1 by a group I2 of order ≤ m, one has

|M(I)| ≤ Cmn ln(`).

Proof. First, we shall estimate |M(I1)|. Let Ĩ denote the inverse image of I in GLn(F`); choose an

element γ ∈ Ĩ whose image in I1 is a generator of the cyclic group I1. Set Ĩ1 = 〈γ〉 and denote by I ′1 and
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Ĩ ′1 the maximal prime-to-` subgroups of I1 and Ĩ1, respectively. Set F := F`[Ĩ ′1] ⊂ Mn(F`), which is a
commutative semisimple subalgebra over F`. As F` is perfect, F ⊗F` ⊂Mn(F`) is again a commutative

semisimple subalgebra over F` hence is of the form Fr` with r ≤ n. This shows

dimF`(F ) = dimF`(F ⊗ F`) ≤ n.

As a result, |I ′1| ≤ |Ĩ ′1| ≤ |F | ≤ `n. As I ′1 is cyclic (since I1 is cyclic), |M(I ′1)| is the number of prime
divisors of |I ′1|. In particular, one has

2|M(I′1)| ≤ |I ′1| ≤ `n,

and

|M(I1)| ≤ |M(I ′1)|+ 1 ≤ n ln(`)

ln(2)
+ 1.

Next, we have a natural map π :M(I)→M(I1) ∪ {{1}} which sends J ∈ M(I) to the image of J in
I1. For each J1 ∈M(I1) ∪ {{1}}, fix a generator γJ1 of J1. Then, for any J ∈ π−1(J1), one can choose
a generator γJ of J which maps to γJ1 ∈ J1. Then, since J is determined by γJ as J = 〈γJ〉 and γJ is
in the fiber of I � I1 at γJ1 ∈ I1, one concludes |π−1(J1)| ≤ |I2| for any J1 ∈M(I1) ∪ {{1}}, and

|M(I)| ≤ |I2|(|M(I1)|+ 1) ≤ m
(
n ln(`)

ln(2)
+ 2

)
,

from which the assertion easily follows. (Say, set C := 3
ln(2) .) �

From Claim 3, there exists a constant C > 0 depending only on r and max{mx}x∈∂X such that

|M(I)| ≤ C ln(`).

For J ∈ M(I), let γJ ∈ GM denote an element mapping onto a generator of J (which is cyclic by the
definition of M(I)). Then

P (GMv)J =
⊔

λ∈V P (γJ )

P (GMv ∩ ker(γJ − λId)),

where V P (γJ) denotes the set of F`-rational eigenvalues of γJ . Note that |V P (γJ)| ≤ r and, as J is
non-trivial, GMv 6⊂ ker(γJ − λId) for every λ ∈ V P (γJ).

As a result, one obtains (with the notation ε(`) from 4.3.5.1)

εI(Pv) ≤
|(P (GMv)′I |
|P (GMv)|

≤
∑

J∈M(I)

|P (GMv)J |
|P (GMv)|

=
∑

J∈M(I)

∑
λ∈V P (γJ )

|P (GMv ∩ ker(γJ − λId))|
|P (GMv)|

≤ Cr ln(`)ε(`).

So, if a denotes the maximal length of the filtrations (RFx,PM ) (see Claim 1) then

0 ≤ λPM − λPv ≤ |∂X|Cr(1 + a) ln(`)ε(`).

As ln(`)ε(`)→ 0 (Lemma 4.3.5.1), for `� 0 one has

g ≥ gPv =
1

2
|GPv|(λPv − λPM + λPM ) + 1

(1)

≥ 1

4
|GPv|K + 1

(2)

≥ 1

4
dρ`0 K + 1,

where the inequality (1) follows from Lemma 4.3.3 and the inequality (2) is by definition of dρ`0 . This
contradicts Lemma 4.3.2.

5. Applications: Specialization in 1-dimensional families

In this section, L can be (any infinite subset of) the set of all primes but p.
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5.1. Galois image on étale cohomology groups. Let Y → X be a smooth proper morphism. By
the smooth-proper base change theorem (and modulo the choice of an étale path from η to x and
appropriate labeling of base points in étale fundamental groups) for every i ∈ Z≥0, x ∈ |X| and ` ∈ L,
the representation

ρi` ◦ σx : Γk(x) → GL(Hi(Yη,F`))
identifies with the ‘usual’ Galois representation

ρi`,x : Γk(x) → GL(Hi(Yx,F`))

associated to Yx → Spec(k(x)). Hence, in this setting, understanding how the G`,x vary with x ∈ |X|
amounts to understanding how the images of the ρ`,x do. The main result of this subsection is that

Theorem 1.6.1 and Corollary 1.6.2 apply to the family ρi` : π1(X) → GL(Hi(Yη,F`)), ` ∈ L. This
follows from

5.1.1. Theorem The family

ρi` : π1(X)→ GL(Hi(Yη,F`)), ` ∈ L
is bounded and satisfies conditions (T), (P).

Proof. To simplify, write H i
Z` := Hi(Yη,Z`), H

i
Z` := H i

Z`/(torsion), H i
Q` := H i

Z` ⊗Z` Q`, and H i
` :=

Hi(Yη,F`).

(1) H i
Z` is torsion free for ` � 0. When p = 0, this follows from the comparison isomorphism

between Betti and étale cohomology with finite coefficients and the fact that Betti cohomology
with coefficients in Z is finitely generated. When p > 0, see [G83] (projective case) and [Or13,
Rem. 3.1.5]. As H i+1

Z` is also torsion free for ` � 0, by considering the long exact sequence
associated to the short exact sequence

0→ Z`
`→ Z` → F` → 0

of constant sheaves on Xét, one sees that the canonical map H i
Z`/` → H i

` is an isomorphism for
`� 0.

(2) Boundedness. This is [Or13, Prop. 3.1.3].

(3) Condition (T). Condition (T) for H i
Q` follows from de Jong’s alteration theorem [B96, Prop.

6.3.2] that is, for any x ∈ ∂X there exists an open subgroup Ux of the inertia group Ix ⊂ π1(X) at

x such that the image of Ux in GL(H i
Q`) is unipotent for ` 6= p. As H i

Z` ' H
i
Z` ⊂ H i

Q` for ` � 0,

the image of Ux in GL(H
i
Z`) is unipotent for ` � 0 and as H i

Z`/` ' H
i
Z`/` ' H i

` for ` � 0, the

image of Ux in GL(H i
`) is also unipotent for `� 0.

(4) Condition (P). One may freely replace X with a connected étale cover. In particular, one

may assume that Π = π1(X) and that G` = G
+
` by Theorem A. Let H i,ss

` denote the π1(X)-

semisimplification of H i
`. Then Ru(G`) is the kernel of G` → GL(H i,ss

` ) for `� 0 by the comments

following Fact 3.2.1. Set G
ss
` := G`/Ru(G`). From the right-exactness of the abelianization functor,

one has the exact sequence (of F`-vector spaces for ` ≥ r)

Ru(G`)
ab → G

ab
` → G

ss,ab
` → 0

and from Lemma 3.2.2, one may assume that G
ss,ab
` = 0 for ` � 0. So, it is enough to prove that

the image of Ru(G`)
ab in G

ab
` is trivial for ` � 0. This will follow from a Weil-weight argument

by reduction modulo ` of H i
Z` , which is torsion free with H i

Z`/` ' H i
` for ` � 0. More precisely,

by the standard specialization argument of tame étale fundamental group, one may assume that
k is finite. Let ϕ denote the Frobenius of k. From the Weil conjectures [D80], the characteristic

polynomials Pϕ,1 and Pϕ,2 of ϕ acting respectively on π1(X)(`),ab and H i
Z` both lie in Z[T ] and are

independent of `. Furthermore, the zeroes of Pϕ,1 are Weil numbers of weight 1 or 2 and those of
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Pϕ,2 are Weil numbers of weight i. As a result, the characteristic polynomial Pϕ,3 of ϕ acting (via
the adjoint representation) on EndQ`(H

i
Q`) lies in Q[T ], is independent of ` and its zeroes are Weil

numbers of weight 0. Fix an integer a ≥ 1 such that P ◦ϕ,3 := aPϕ,3 lies in Z[T ]. (In fact, one can

take a ∈ |k|Z≥0 . But this fact is not used later.) As Pϕ,1 and P ◦ϕ,3 have no common zero, there

exists U, V ∈ Z[T ] and 0 6= b ∈ Z such that

UPϕ,1 + V P ◦ϕ,3 = b.

In particular, for ` � 0, the reductions Pϕ,1
`

and P ◦ϕ,3
`

of Pϕ,1 and P ◦ϕ,3 modulo ` are coprime.

On the one hand, as π1(X)(`),ab/` � G
ab
` , the characteristic polynomial Pϕ,1,` of ϕ acting on G

ab
`

divides Pϕ,1
`
. On the other hand, let r` := dimF`(H

i
`) ≤ r and write N` ⊂ End(H i

`) for the subset
of nilpotent matrices and U` ⊂ GL(H i

`) for the subset of unipotent matrices. Then the logarithm
and exponential log : U` → N`, exp : N` → U` defined by

log(u) = −
∑

1≤i≤`−1

(1− u)i

i
, exp(n) =

∑
0≤i≤`−1

ni

i!

define bijections which are inverse to each other. Furthermore, it follows from the Campbell-
Haussdorff formula that log(DRu(G`)) and log(Ru(G`)) are F`-Lie-algebras (see [N87, Remark
1.8]) and from [N87, Lemma 1.5] (applied to W1 = W2 = log(DRu(G`)) and S = log(Ru(G`))) plus
the fact that DRu(G`) is normal in Ru(G`) that log(DRu(G`)) is actually a Lie-ideal in log(Ru(G`))
for `� 0. Thus, one obtains, for `� 0, a well-defined commutative diagram

1 // DRu(G`) //

log
��

Ru(G`) //

log
��

Ru(G`)
ab //

log

��

1

0 // log(DRu(G`)) // log(Ru(G`)) // L` // 0

with the property that the upper row is a short exact sequence of finite groups, the lower one is
a short exact sequence of Lie algebras and the two left vertical arrows are bijections. The right
vertical arrow is then automatically surjective by commutativity of the diagram hence bijective by
cardinality. Furthermore, one has

(∗) log(gg′) = log(g) + log(g′), g, g′ ∈ Ru(G`)
ab.

As the logarithm
log : Ru(G`)→̃ log(Ru(G`)) ⊂ EndF`(H

i
`),

is ϕ-equivariant, one sees that the characteristic polynomial Pϕ,3,` of ϕ acting7 on L` divides P ◦ϕ,3
`
.

Write Pϕ,3,` =
∑

ν≥0 aνT
ν . The bijectivity of log and the relation (*) then show that∏

ν≥0

ϕνgaνϕ−ν = 1

or equivalently, with additive notation, Pϕ,3,`(ϕ)(g) = 0, g ∈ Ru(G`)
ab. In other words, the minimal

polynomial of ϕ acting on Ru(G`)
ab divides Pϕ,3,` hence P ◦ϕ,3

`
: this is only possible if the image of

Ru(G`)
ab in G

ab
` is trivial, as requested. �

5.1.2. Remark Note that Condition (P) in characteristic p > 0 does not seem to have been noticed
before. Condition (SS) holds if p = 0 (more precisely, condition (SS) for the Betti cohomology with
coefficients in Q follows from Deligne’s semisimplicity theorem [D71, Cor. 4.2.9]; to deduce the result
for étale cohomology with coefficients in F`, use [CT11, Lemma 2.5] and the comparison between Betti
and étale cohomologies). Condition (SS) also holds if p > 0, when Y → X is an abelian scheme ([Ta66],
[Z77], [Sz85]). It is expected to hold in general. (Note that the `-adic version of it holds [D80, Cor.
3.4.13]).

7Note that as Ru(G`) is characteristic in G` and DRu(G`) is characteristic in Ru(G`), DRu(G`) is characteristic in G`
hence the action of ϕ on G` restricts to an action on Ru(G`) and DRu(G`).
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5.2. First Galois cohomology groups. Another situation where Corollary 1.6.2 applies is the fol-
lowing. Let π1(X) → GL(V`), ` ∈ L be a bounded family of continuous F`-linear representations of
π1(X). Fix an integer r ≥ 1 and for every ` ∈ L an F`-submodule

H` ⊂ H1(π1(X), V`) = Ext1
F`[π1(X)](F`, V`)

of F`-rank r` ≤ r. Then,

5.2.1. Corollary Assume that the family π1(X) → GL(V`), ` ∈ L satisfies (T), (SS) and (I). Then
for `� 0 and all but finitely many x ∈ X(k) the specialization map

spx : H` ↪→ H1(π1(X), V`)→ H1(k(x), V`)

is injective.

Proof. We refer to [C16, §1.1] for more details. First, recall that there exists an F`[π1(X)]-module

0→ V` → Huniv
` → H` → 0

with the property that the pull-back morphism

−∗Huniv
` : Hom(F`, H`)→ Ext1

F`[π1(X)](F`, V`)

induces an isomorphism onto H` ⊂ Ext1
F`[π1(X)](F`, V`). Assuming that the family π1(X) → GL(V`),

` ∈ L satisfies (T), (SS) and (I) one easily shows that the family ρ` : π1(X)→ GL(Huniv
` ), ` ∈ L satisfies

(T) and (P) (this is a special case of [C16, Lemma 2.5 (2)]). In particular, from Corollary 1.6.2, there
exists an integer K ≥ 1 such that for `� 0 and all but finitely many x ∈ X(k) one has [G` : G`,x] ≤ K.

Then, from [C16, Lemma 2.4 (2)], the specialization map spx : H` ↪→ H1(π1(X), V`) → H1(k(x), V`) is
injective as soon as ` > K. �

5.3. Abelian varieties: Néron-Silverman specialization theorem for arbitrary finitely gen-
erated fields of characteristic p ≥ 0. As an application of Corollary 5.2.1, one can extend the
Néron-Silverman specialization theorem [Si83, Thm. C] to arbitrary finitely generated fields of charac-
teristic p ≥ 0. Before doing this, we need a preliminary result on the ’almost’ uniform boundedness of
`-torsion in 1-dimensional family of abelian varieties, which is of interest in itself.

5.3.1. ‘Almost’ uniform boundedness of `-torsion in 1-dimensional family of abelian varieties. Let
Y → X be an abelian scheme. The following statement extends [EHKo12, Thm.7] to finitely gen-
erated fields k of characteristic p > 0 (see also [CT11, Cor 1.4 and §3.3]). For a comparison of our
results and technics with those of [EHKo12] - and, in particular, the limitation to k-rational points
versus points of bounded degree - see Subsection 1.7.

5.3.1.1. Corollary The set of all x ∈ X(k) such that Yx[`](k) 6= 0 is finite for `� 0.

Proof. Considering the family

ρ` : π1(X)→ GL(Yη[`]), ` ∈ L,
the statement amounts to showing that Xρ`

1 (k) is finite for ` � 0. For this, let (Yη)0 ⊂ Yη denote the
largest abelian subvariety isogenous to a k-isotrivial abelian variety; set Y 0

η := Yη/(Yη)0 and, for every

v ∈ Yη, let v0 denote the image of v in Y 0
η (see [CT12a, §1.1] for more details). Then one can write

Xρ`
1 = X0

` tX`,0,

where

X`,0 :=
⊔

06=v∈(Yη)0[`]

Xv.

From [CT11, Prop. 3.18], one has X`,0(k) = ∅ for ` � 0 thus it is enough to show that X0
` (k) is

finite for ` � 0. But, by functoriality of the étale fundamental group, for any 0 6= v ∈ Yη[`], one has
a finite étale cover Xv → Xv0 hence it is enough to make the proof for Y 0

η . In other words, we may
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assume that (Yη)0 = 0. Under this assumption, it follows from Theorem C that the minimum of the gen-
era of the connected components of Xρ`

1 goes to +∞ with `. So the conclusion follows from Fact 1.3.1. �

5.3.2. Néron-Silverman specialization theorem for arbitrary finitely generated fields of characteristic
p ≥ 0. Let again Y → X be an abelian scheme and assume furthermore that Yη contains no non-trivial
isotrivial abelian subvariety. For every ` ∈ L, fix an F`-submodule H` ⊂ H1(π1(X), Yη[`]) of finite
F`-rank r` ≤ r. Then

5.3.2.1. Corollary For `� 0 and all but finitely many x ∈ X(k) the specialization map

spx : H` ↪→ H1(π1(X), Yη[`])→ H1(k, Yx[`])

is injective. In particular, for `� 0 and all but finitely many x ∈ X(k) the specialization map

Yη(k(η))/`→ Yx(k)/`

is injective.

Proof. By the geometric Lang-Néron theorem [LN59], the assumption that Yη contains no non-trivial
isotrivial abelian subvariety ensures that the Yη[`], ` ∈ L satisfy (I). They also satisfy (T) and (SS) (See
Remark 5.1.2 above). So, the first part of Corollary 5.3.2.1 follows from Corollary 5.2.1. The second part
is a special case of the first part. More precisely, the long exact sequence of Galois cohomology groups
associated to the Kummer short exact sequence (` 6= p) yields the following commutative diagram,
where the horizontal arrows are injective and the upper left vertical arrow is an isomorphism (extension
property of Néron models).

Yη(k(η))/` �
� // H1(k(η), Yη[`])

Y (X)/`

��

� � // H1(X,Y [`]) ' H1(π1(X), Yη[`])

inf

OO

res
��

Yx(k(x))/` �
� // H1(k(x), Yx[`])

To apply the first part of Corollary 5.3.2.1, one only needs to show that H` = Yη(k(η))/` has finite
F`-rank bounded from above independently of `. But this follows from the arithmetic Lang-Néron’s
theorem [LN59], which asserts that Yη(k(η)) is a finitely generated abelian group. �

5.3.2.2. Corollary (Néron-Silverman’s specialization for arbitrary finitely generated fields of charac-
teristic p ≥ 0) For ` � 0 and all but finitely many x ∈ X(k) the specialization map spx : Y (k(η)) →
Yx(k) is injective.

Proof. We apply the Criterion of [S89, §11.1, p. 152], which asserts that the specialization map
spx : Y (k(η))→ Yx(k) is injective as soon as

(i) Y (k(η)) is a finitely generated abelian group;
(ii) the specialization map Yη(k(η))/`→ Yx(k)/` is injective;
(iii) the specialization map Yη(k(η))tors → Yx(k)tors is injective;
(iv) the specialization map Yη(k(η))[`]→̃Yx(k)[`] is an isomorphism.

Condition (i) is the arithmetic Lang-Néron’s theorem. Condition (ii) for ` � 0 and all but finitely
many x ∈ X(k) is Corollary 5.3.2.1. Condition (iii) for `� 0 and all but finitely many x ∈ X(k) comes
from the following facts:

- If p = 0, the specialization map is always injective on torsion;
- If p > 0, the specialization map is always injective on p′-torsion and p-torsion is locally con-

structible. More precisely, the scheme-theoretic closure Z of Yη(k(η))[p] in Y is finite over X and
the generic fiber of Z → X is (finite) étale. Thus Z → X is generically étale that is there exists a
non-empty open subscheme U ⊂ X such that Z×XU → U is finite étale. Then, for all x ∈ U(k)
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(hence for all but finitely many x ∈ X(k)) the specialization map spx : Zη(k(η))→ Zx(k(x)) is
injective.

Condition (iv) for ` � 0 and all but finitely many x ∈ X(k) is Condition (iii) and Corollary 5.3.1.1
(which ensure that Yη(k(η))[`] = Yx(k)[`] = 0). �

5.3.2.3. Remark (Comparison with [Si83]) As pointed out by Brian Conrad, one could also try and
extend directly the proof of [Si83, Thm. C]. The setting in [Si83] is the following: k is a global field, C
is a smooth, projective, geometrically connected curve over k and A is a smooth, projective, irreducible
variety equipped with a flat morphism A → C whose generic fiber is an abelian variety. Let C◦ ⊂ C
denote a (non-empty) open subscheme such that A◦ := A ×C C◦ → C◦ is an abelian scheme. Then,
the main result of loc. cit. ([Si83, Thm. B]) is the following limit formula relating the height hC
on C and the Neron-Tate height pairings 〈−,−〉Aη on Aη and 〈−,−〉Ax on Ax for x ∈ C◦: for every
P,Q ∈ Aη(k(η))

lim
x∈|C◦|, hC(x)→+∞

〈Px, Qx〉Ax
hC(x)

= 〈Pη, Qη〉Aη .

Combining this limit formula with the non-degeneracy of the Neron-Tate height pairing on the generic
fiber shows that the set of all x ∈ |C◦| where the specialization map A(k(η)) → Ax(k(x)) is non-
injective is of bounded height. To apply Silverman’s argument to our setting, one should first extend
Y → X to a family Y cpt → Xcpt over the8 smooth compactification Xcpt of X and then use resolution
of singularities (in characteristic 0) to ensure the smoothness of Y cpt over k. However, as mentioned
to us by Philipp Habegger, it does not seem that the smoothness of A is really required in Silverman’s
argument. More precisely, the only height-theoretic statement among those listed in [Si83, Section 2]
that really requires the smoothness is (d). However, Silverman only applies (d) to the base curve C.
Desingularizing curves is not a problem in any characteristic. Thus it seems that (without resorting to
resolution of singularities or alterations for higher dimensional varieties) Silverman’s argument shows
that the set of all x ∈ |X| where the specialization map Yη(k(η)) → Yx(k(x)) is non-injective is of
bounded height. However, it does not seem that, over finitely generated fields of transcendence degree
≥ 1 in characteristic 0 and ≥ 2 in characteristic p > 0 the boundedness of heights implies the finiteness
of rational points. In characteristic 0, this might be achieved using arithmetic height functions as
constructed in [M00], using Arakelov theory and resolution of singularities but such constructions do
not seem to be available in characteristic p > 0.
Compared with Silverman (possibly generalized) proof, let us mention that our approach shows that
the Néron-Silverman specialization theorem is only a special case of a more general statement about
specialization of first cohomology classes (Corollary 5.3.2.1), which seems to be currently out of reach
of the elementary heights techniques used in [Si83]. In characteristic 0, we still require deep arguments
(even when k is a number field): to obtain the finiteness of points x ∈ X(k) (resp. of points x ∈ |X|
with [k(x) : k] ≤ d) where the specialization map is non-injective, we need the Mordell conjecture (resp.
the Mordell-Lang conjecture for subvarieties of abelian varieties plus the strengthened form of Theorem
1.6.1 for gonality discussed in Subsection 1.7). But, in contrast, our proof in characteristic p > 0 is fairly
elementary. Note that checking the assumptions of Corollary 5.2.1 is easier when Y → X is an abelian
scheme than a general smooth, proper morphism and that the proof of Fact 1.3.1 in characteristic p > 0
is much easier than in characteristic 0).

6. Arbitrary F`-coefficients

For most of the applications, considering F`-coefficients is enough. However, one may ask whether
Theorem 1.6.1 extends to F`-coefficients, where F` is an arbitrary subfield of F` (see Remark 2.2.1).
This seems to be doable at the cost of invoking much deeper group-theoretical results.

So, let ρ` : π1(X) → GL(H`), ` ∈ L be a bounded family of continuous F`-linear representations. We
begin with the following observation. For every ` ∈ L, with the notation of Fact 3.2.1, write

G
◦
`/R(G`) =

∏
i∈I`

D
n`,i
`,i

8Possibly after replacing k by a finite extension.



GENUS OF ABSTRACT MODULAR CURVES WITH LEVEL-` STRUCTURES. 27

with D`,i := D(SΦ`,i
`,i ) and D`,i 6' D`,j , i 6= j ∈ I`, where Φ`,i = ϕ`,iFr`,i for some standard Frobenius

map Fr`,i : S`,i → S`,i and some automorphism ϕ`,i : S`,i→̃S`,i induced by an automorphism of the
root system of S`,i. Given U` ∈ F`,+, the geometric monodromy group of XU` → X is

M(U`) := G`/KG`
(U `),

where KG`
(U `) :=

⋂
g∈G` gU `g

−1 is the largest normal subgroup of G` contained in U `.

Lemma 6.1. Assume (T) and (P). Then for every U` ∈ F`,+ there exists i ∈ I such that D(SΦi
i ) is a

subquotient of M(U`).

Proof. From Lemma 4.3.1, Theorem A and Condition (P), up to replacing X with a connected étale

cover, one may assume that G
+
` = G` = G

◦
` and that G

ab
` = 0 for every ` ∈ L. As KG`

(U `) ⊂ U ` ( G`,

the group M(U`) is non-trivial hence, being a quotient of G` = G
+
` , has order divisible by `. Then

one has a commutative diagram of the following form, where the vertical arrows are surjective and the
horizontal rows are short exact sequences.

1 // R(G`) //

����

G` //

����

G`/R(G`) //

����

1

1 // K`
// M(U`) // Q` // 1.

If Q` = 1 then M(U`) is a quotient of R(G`) generated by its order-` elements that is a quotient of
R(G`)

+. But R(G`)
+ = Ru(G`). (Indeed, observe that R(G`)/Ru(G`) is of prime-to-` order.) Thus

M(U`) would be of order a power of ` hence have a non-trivial quotient isomorphic to Z/`. As M(U`)
is also a quotient of G`, this would contradict Condition (P). This shows that Q` 6= 1, which implies

that Q` (hence also M(U`)) admits a quotient isomorphic to D(SΦi
i ) for some i ∈ I, as desired. �

Theorem 1.6.1 for arbitrary F`-coefficients can now be deduced from Lemma 6.1 and the results
of [Gu03], which rely on delicate satellite group-theoretical results of the classification (such as the
Aschbacher-O’Nan-Scott theorem and Aschbacher’s theorem on subgroups of classical groups over fi-
nite fields). More precisely, [Gu03, Thm. 1.5] asserts that9 for every pair of integers r ≥ 1, g ≥ 0 there

are only finitely many simple groups of the form D(SΦ`
` ), with S` a simple adjoint group over F` of rank

≤ r, which occur as a composition factor of the monodromy group of a connected étale cover X` → B`
with X` of genus ≤ g. From this and Lemma 6.1, one immediately deduces

Theorem 6.2. Assume (P) and (T). Then gρ`+ → +∞.

It is probable (though the authors did not work out all the details) and it would be in any case desirable
that one could give a proof of Theorem 6.2 along the same guidelines as the proof of Theorem 1.6.1
thus resorting to ‘more elementary’ material than [Gu03].

7. Appendix: the gonality variant of Theorem 1.6.1 in characteristic 0

We sketch the proof of the following result. We refer to [EHKo12, §2 and §3] for details and refer-
ences. With the notation of Subsection 2.3, we write γρ`+ := γXρ`

+
.

7.1. Theorem Assume p = 0 and (P). Then γρ`+ → +∞.

Proof (sketch). Recall that for a finite morphism of curves C
f→ B, one has γB ≤ γC ≤ deg(f)γB so,

to prove that γρ`+ → +∞, one can freely replace X by a connected étale cover hence, by Theorem A,

assume that (*) G` = G
+
` and G

ab
` = 0 for ` � 0. Eventually, after fixing an embedding k ↪→ C, one

may reduce to the case where k = C. Fix a finite ‘symmetric’ subset S of generators of the topological

9Note that in [Gu03], the terminology ‘Chevalley groups’ includes arbitrary finite simple groups of Lie type in the sense
of Larsen-Pink (contrary to the somewhat standard conventions).
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fundamental group πtop1 (X(C)). Write s := |S| and let S` denote the image of S in G`. For every ` ∈ L,
fix U` ∈ F`,+ such that γXU` = γρ`+ . Then, from a deep group-theoretical result of Pyber and Szabo,

properties (*) ensure that the family of Cayley-Schreier graphs C(G`/U `, S`), ` ∈ L is an ‘esperan-
tist’ family that is the possible decreasing of the first eigenvalue of the combinatorial Laplacian of the
graphs is controlled by the order of the graphs in an explicit way. Assuming this, it is easy to show
that gXU` ≥ 2 for ` � 0 and, then, to relate the first eigenvalue of the combinatorial Laplacian to the

first eigenvalue of the Laplacian acting on the hyperbolic L2-functions on XU` ' Γ` \H (here H is the
hyperbolic plane and Γ` ⊂ PSL2(Z) a discrete subgroup). The latter, in turn, is related to γXU` by the

Li-Yau inequality. Combining these facts and the esperantist property, one gets the announced result. �

It has the following arithmetic consequence ([F94], [Fr94]).

7.2. Corollary Assume p = 0 and (P). Then for every integer d ≥ 1, for ` � 0 and all but finitely

many x ∈ X with [k(x) : k] ≤ d one has G
+
` ⊂ G`,x. In particular, there exists a constant K ≥ 1 such

that for `� 0 and all but finitely many x ∈ X with [k(x) : k] ≤ d one has [G` : G`,x] ≤ K.
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[SGA1] A. Grothendieck et al, Revêtements étales et groupe fondamental (SGA1), Lecture Notes in Mathematics 224,

Springer-Verlag, 1971.
[Gu03] R. Guralnick, Monodromy group of covering curves, in Galois Groups and Fundamental Groups, MSRI Publi-

cations 41, 2003, p. 1–46.
[Hr96] E. Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc. 9, p.667–690, 1996.
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